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Abstract. Declarative debuggers are semi-automatic debugging tools
that abstract the execution details to focus on the program semantics.
Erroneous computations are represented by suitable trees, which are tra-
versed by asking questions to the user until a bug is found. This paper
applies declarative debugging to the sequential subset of the language
Erlang. The debugger takes the intermediate representation generated
by Erlang systems, known as Core Erlang, and an initial error detected
by the user, and locates an erroneous program function responsible for
the error. In order to represent the erroneous computation, a semantic
calculus for sequential Core Erlang programs is proposed. The debugger
uses an abbreviation of the proof trees of this calculus as debugging trees,
which allows us to prove the soundness of the approach. The technique
has been implemented in a debugger tool publicly available.
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1 Introduction

Erlang is a programming language that combines the elegance and expressive-
ness of functional languages (higher-order functions, lambda abstractions, single
assignments), with features required in the development of scalable commercial
applications (garbage collection, built-in concurrency, and even hot-swapping).
The language is used as the base of many fault-tolerant, reliable software sys-
tems. The development of this kind of systems is a complicated process where
tools such as discrepancy analyzers [21], test-case generators [27], or debug-
gers play an important rôle. In the case of debuggers, Erlang includes a useful
trace-debugger including different types of breakpoints, stack tracing, and other
features. However, debugging a program is still a difficult, time-consuming task,
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and for this reason we think that alternative or complementary debugging tools
are convenient. In this paper we take advantage of the declarative nature of the
sequential subset of Erlang in order to propose a new debugger based on the
general technique known as declarative debugging [32]. Also known as declara-
tive diagnosis or algorithmic debugging, this technique abstracts the execution
details, which may be difficult to follow in declarative languages, to focus on
the results. This approach has been widely employed in the logic [23,36], func-
tional [25,29], multi-paradigm [5,22], and object-oriented [6,20] programming
languages.

Declarative debugging is a two-step scheme: it first computes a debugging tree
representing a wrong computation, usually using a formal calculus that allows
to prove the soundness and completeness of the approach, and then traverses
this tree by asking questions to the user until the bug is identified.

The first contribution of the paper is the formalization of a semantic calculus
for sequential Core Erlang programs, the intermediate language that Erlang uses
to codify all the programs in a uniform representation. An interesting feature of
this calculus is that it handles exceptions as usual values, which allows the user
to debug expressions giving rise to exceptions in a natural way. The second and
main contribution is the development of a framework for the declarative debug-
ging of sequential Erlang programs based on an abbreviation of the proof trees
obtained in this calculus as debugging trees. The process starts when the user
observes that the evaluation of some expression produces an unexpected result.
Therefore, the technique is restricted to terminating computations, a standard
constraint in the declarative debugging approach. First, a debugging tree repre-
senting the computation is internally built. Each node in the tree corresponds
to a function call occurred during the computation, and it is considered valid
if the function call produced the expected result, and invalid otherwise. Then,
the debugger asks questions to the user about the validity of some nodes until
a buggy node—an invalid node with only valid children—is found and its asso-
ciated function is pointed out as the cause of the error. The relation between
the debugging trees and the proof trees in the semantic calculus allows us to
prove the soundness and completeness of the technique. The formal ideas have
been put into practice in the development of an Erlang system supporting the
declarative debugging of sequential Erlang programs. The tool provides features
such as different navigation strategies [33,34], trusting, higher-order functions,
support for built-ins, and “don’t know” answers.

The rest of the paper is organized as follows: Section 2 describes the related
work and the similarities with our approach. Section 3 introduces Erlang and
presents an example used throughout the rest of the paper. Section 4 presents the
calculus we have tailored for sequential Core Erlang programs, while Section 5
shows how to use the proof trees obtained from this calculus to use declarative
debugging. Section 6 outlines the main features of our tool, including a debugging
session. Finally, Section 7 concludes and presents the future work.
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2 Related Work

The semantics of Erlang is informally described in [2], but there is no official
formalized semantics. However, several authors have proposed and used different
formalizations in their works, most of them aiming to cover the concurrent behav-
ior of the language. In [18], Huch proposes an operational small step semantics
for a subset of Erlang based on evaluation contexts to only perform reductions in
certain points of the expression. It covers single-node concurrency (spawning and
communication by messages between processes in the same node) and reductions
that can yield runtime errors. However, it does not cover other sequential fea-
tures of the language like lambda abstractions or higher-order functions. Another
important small-step semantics for Erlang is proposed in Fredlund’s PhD the-
sis [16]. This semantics is similar to [18] and also uses evaluation contexts but cov-
ers a broader subset of the language including single-node concurrency, runtime
errors, and lambda abstractions. However, it also lacks support for higher-order
features. To overcome the limitations of Fredlund’s single-node semantics when
dealing with distributed systems, [13] proposes a semantics based on Fredlund’s
but adding another top-level layer describing nodes. This distributed multi-node
semantics for Erlang was further refined and corrected in [35]. Besides standard
operational semantics, other approaches have been proposed to formalize Erlang
semantics like the one based on congruence in [12], which works with partial
evaluation of Erlang programs.

Regarding Core Erlang [8,9],1 there is no formalized semantics in the liter-
ature. However, the language specification [9] contains a detailed but informal
explanation of the expected behavior for the evaluation of expressions. The se-
mantics proposed for Core Erlang in this paper—inspired in the semantics pre-
viously presented for Erlang, mainly [18,16]—formalizes the behavior explained
in [9] and covers all the Core Erlang syntax except concurrency-related expres-
sions (message sending and reception) and bit string notation.

Tools for testing and debugging programs are very popular in the Erlang
community since long ago. The OTP/Erlang system comes with a classical
trace-debugger with both graphical and command line interfaces. This official
debugger supports the whole Erlang language—including concurrency—, allow-
ing programmers to establish conditional breakpoints in their code, watch the
stack trace of function calls, and inspect variables and other processes, among
other features. Another tool included in the OTP/Erlang system is the DIscrep-
ancy AnaLYZer for ERlang programs (Dialyzer) [21], a completely automatic
tool that performs static analysis to identify software discrepancies and bugs
such as definite type errors [31], race conditions [11], unreachable code, redun-
dant tests, unsatisfiable conditions, and more. Model checking tools have also
received much attention in the Erlang community [18,3], being McErlang [4]
one of the most powerful nowadays due to its support for a very substantial
part of the Erlang language. Regarding testing tools, the most important ones

1 The official Core Erlang [8,9] should not be confused with the subsets of Erlang that
the previous papers covered, although they usually refer them as some core Erlang.
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are EUnit [10] and Quviq QuickCheck [19]. The EUnit tool is included in the
OTP/Erlang system, and allows users to write their own unit tests to check that
functions return the expected values. On the other hand, Quiviq QuickCheck
is a commercial software that automatically generates and checks thousands of
unit tests from properties stated by programmers.

Declarative debugging is a well-known debugging technique. In [30] a com-
parison between different debuggers is presented. From this comparison we can
see that our debugger has most of the features in state-of-the-art tools, although
we still lack some elements such as a graphical user interface, or more naviga-
tion strategies. An interesting contribution of our debugger is the debugging of
exceptions. Declarative debugging of programs throwing exceptions has already
been studied from an operational point of view for the Mercury debugger [22],
for Haskell in its declarative debugger Buddha [28], and for Java programs [20].
However, these approaches are operational and do not provide a calculus to rea-
son about exceptions: in Mercury exceptions are considered another potential
value and thus functions throwing exceptions are included as standard nodes in
the debugging tree; Buddha uses a program transformation to build the debug-
ging tree while executing the program; finally, the approaches for Java return
and propagate exceptions without defining the inference rules. Similarly, several
calculi handling exceptions, like the ones in [15,14], have been proposed for func-
tional languages. In this paper we present, for the best of our knowledge, the
first tool that uses a calculus to perform declarative debugging, allowing us to
reason about exceptions as standard values.

Finally, other non-conventional approaches to debugging have been studied
in the literature, like abstract diagnosis [1] or symbolic execution [17], but these
techniques are not closely related to declarative debugging, so we do not provide
a detailed comparison.

3 Erlang

Erlang [2] is a concurrent language with a sequential subset that is a functional
language with dynamic typing and strict evaluation. It allows to model programs
where different processes communicate through asynchronous messages and gives
support to fault-tolerant and soft real-time applications, and also to non-stop
applications thanks to the so-called hot swapping.

Example 1. Figure 1 presents an example of an Erlang program (for the time
being ignore the boxes). The program exports function mergesort/2 that, given
a list L and a comparison function Comp, orders the elements of L according
to Comp. Function comp/2 is also exported in order to provide an atom com-
parison function. The rest of functions are used internally. Function merge/3

merges two lists according to a given comparison function. Finally, take/2 and
last/2 extract the N first (respectively last) elements of a list. Observe that the
code contains calls to built-ins and standard library functions, e.g. is atom/1

in line 16 or reverse/1 of module lists in line 21. Now the user can write the
next expression to sort the list [b,a] using the comparison function comp/2:
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1 mergesort([], Comp) -> [];
2 mergesort([X], Comp) -> [X];
3 mergesort(L, Comp) ->
4 Half = length(L) div 2,
5 LOrd1 = mergesort(take(Half, L), Comp),
6 LOrd2 = mergesort(last(length(L) - Half, L), Comp),
7 merge(LOrd1, LOrd2, Comp).

8 merge([], [], Comp) -> [];
9 merge([], S2, Comp) -> S2;

10 merge(S1, [], Comp) -> S1;
11 merge([H1 | T1], [H2 | T2], Comp) ->
12 case Comp(H1,H2) of

13 false -> [ H1 | merge([ H2 | T1], T2, Comp)];

14 true -> [H1 | merge(T1, [H2 | T2], Comp)]
15 end.

16 comp(X,Y) when is atom(X) and is atom(Y) -> X < Y.

17 take(0, List) -> [];
18 take(1, [H| T]) -> [H];
19 take( , []) -> [];

20 take(N, [H|T]) -> [ N | take(N-1, T)].

21 last(N, List) -> lists:reverse(take(N, lists:reverse(List))).

Fig. 1. Erlang code implementing mergesort algorithm

merge:mergesort([b,a], fun merge:comp/2). The system evaluates this ex-
pression and displays [b,a]. This is an unexpected result, an initial symptom
indicating that there is some erroneous function in the program. In the next
sections we show how the debugger helps in the task of finding the bug.

The intermediate language Core Erlang [8,9] can be considered as a simplified
version of Erlang, where the syntactic constructs have been reduced by removing
syntactic sugar. It is used by the compiler to create the final bytecode and it is
very useful in our context, because it simplifies the analysis required by the tool.
Figure 2 presents its syntax after removing the parts corresponding to concurrent
operations, i.e. receive, and also the bit syntax support. The most significant
element in the syntax is the expression (expr). Besides variables, function names,
lambda abstractions, lists, and tuples, expressions can be:

– let: its value is the one resulting from evaluating exprs2 where vars are
bound to the value of exprs1.

– letrec: similar to the previous expression but a sequence of function decla-
rations (fname = fun) is defined.

– apply: applies exprs (defined in the current module) to a number of argu-
ments.

– call: similar to the previous expression but the function applied is the one
defined by exprsn+2 in the module defined by exprsn+1. Both expressions
should be evaluated to an atom.

– primop: application of built-in functions mainly used to report errors.
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fname ::= Atom / Integer
lit ::= Atom | Integer | Float | Char | String | [ ]

fun ::= fun(var1 , . . . , varn) -> exprs
clause ::= pats when exprs1 -> exprs2
pat ::= var | lit | [ pats | pats ] | { pats1, . . . , patsn } | var = pats
pats ::= pat | < pat, . . . , pat >
exprs ::= expr | < expr, . . . , expr >
expr ::= var | fname | fun | [ exprs | exprs ] | { exprs1, . . . , exprsn }

| let vars = exprs1 in exprs2
| letrec fname1 = fun1 . . . fnamen = funn in exprs
| apply exprs ( exprs1 , . . . , exprsn )

| call exprsn+1:exprsn+2 ( exprs1 , . . . , exprsn )

| primop Atom ( exprs1 , . . . , exprsn )

| try exprs1 of <var1 , . . . , varn> -> exprs2 catch <var’1 , . . . , var’m> -> exprs3
| case exprs of clause1 . . . clausen end | do exprs1 exprs2 | catch exprs

ξ ::= Exception(valm)
val ::= lit | fname | fun | [ vals | vals ] | {vals1, . . . , valsn} | ξ
vals ::= val | < val, . . . , val >
vars ::= var | < var, . . . , var >

Fig. 2. Core Erlang’s Syntax

– try-catch: the expression exprs1 is evaluated. If the evaluation does not re-
port any error, then exprs2 is evaluated. Otherwise, the evaluated expression
is exprs3. In both cases the appropriate variables are bound to the value of
exprs1.

– case: a pattern-matching expression. Its value corresponds to the one in the
body of the first clause whose pattern matches the value of exprs and whose
guard evaluates to true. There is always at least one clause fulfilling these
conditions, as we explain below.

It is important to know some basis of how the translation from Erlang to Core
Erlang is done. One of the most relevant is that the body of a Core Erlang func-
tion is always a case-expression representing the different clauses of the original
Erlang function. case-expressions as shown below always contain an extra clause
whose pattern matches with every value of the case argument and whose body
evaluates to an error (reported by a primop). This clause is introduced by the
compiler and placed last. Consider, for instance, the function take/2 in Figure 1.
The translation to Core Erlang produces the following code:

’take’/2 = fun ( cor1, cor0) ->

case < cor1, cor0> of

<0, cor6> when ’true’ -> []

<1,[H| cor7]> when ’true’ -> [H|[]]

< cor8,[]> when ’true’ -> []

<N,[H|T]> when ’true’ -> ...

< cor5, cor4> when ’true’ ->

primop ’match fail’ (’function clause’, cor5, cor4)

end

Note that the compiler has introduced new variables in the translation with the
form cor followed by an integer. Another important point is the introduction



102 R. Caballero et al.

of let-expressions. These expressions are not present in Erlang, and in Core are
introduced for different reasons. One usage of let-expressions in the translation
is to ensure that function applications always receive simple expressions (values
or variables) as arguments. For instance, the call to take/2 at line 20 in Figure 1
(take(N-1, T)) is translated to Core as:

let < cor2> = call ’erlang’:’-’(N, 1) in apply ’take’/2( cor2, T)

let-expressions are also used to translate sequences of Erlang expressions. For
instance, the sequence of expressions going from line 4 to line 7 in Figure 1 is
translated to the following Core Erlang code:

let < cor2> = call ’erlang’:’length’(L)

in let <Half> = call ’erlang’:’div’( cor2, 2)

in let <L1> = apply ’take’/2(Half, L)

in let < cor5> = call ’erlang’:’length’(L)

in let < cor6> = call ’erlang’:’-’( cor5, Half)

in let <L2> = apply ’last’/2( cor6, L)

in let <LOrd1> = apply ’mergesort’/2(L1, Comp)

in let <LOrd2> = apply ’mergesort’/2(L2, Comp)

in apply ’merge’/3(LOrd1, LOrd2, Comp)

It can be observed that the translation from plain Erlang to Core enforces the
function applications to receive values or variables as arguments. In principle,
we could simplify our language and semantics taking into account these partic-
ularities, but our tool allows the more general grammar of Core Erlang for two
reasons. First, Core Erlang could be used as intermediate language produced
by other languages. Second, the Core Erlang structure could be modified by
optimization tools, and thus a particular structure cannot be assumed.

4 A Calculus for Sequential Erlang

This section presents the main rules of our calculus for Core Erlang Sequential
Programs (CESC in the following). The complete set of rules is presented in [7].
The calculus uses evaluations of the form 〈exprs , θ〉 → vals , where exprs is the
expression being evaluated, θ is a substitution, and vals is the value obtained
for the expression. Moreover, we use the notation 〈exprs , θ〉 →i vals in some
cases to indicate that the ith clause of a function was used to obtain a value. We
assume that all the variables for exprs are in the domain of θ, and the existence
of a global environment ρ which is initially empty and is extended by adding
the functions defined by the letrec operator. References to functions, denoted
as rf , are unique identifiers pointing to the function in the source code (this can
be described in general with the tuple (mod, line, column) with line and column
the starting position of the function in mod). We extend the idea of reference
to reserved words, denoted by r, to obtain the module where they are defined,
which is denoted by r .mod . These references are used to unify the handling of
function calls with the inference rule (BFUN), which is explained below. The
notation CESC |=(P,T ) E , where E is an evaluation, is employed to indicate that
E can be proven w.r.t. the program P with the proof tree T in CESC , while



A Declarative Debugger for Sequential Erlang Programs 103

CESC �P E indicates that E cannot be proven in CESC with respect to the
program P .

The basic rule in our calculus is (VAL), which states that values are evaluated
to themselves:

(VAL) 〈vals , θ〉 → vals

The (CASE) rule is in charge of evaluating case-expressions. It first evaluates
the expression used to select the branch. Then, it checks that the values thus
obtained match the pattern on the ith branch and verify the when guard, while
the side condition indicates that this is the first branch where this happens. The
evaluation continues by applying the substitution to the body of the ith branch.

(CASE)
〈exprs ′′, θ〉 → vals ′′ 〈exprs ′iθ′, θ′〉 → ’true’ 〈exprs iθ′, θ′〉 → vals

〈case exprs ′′ of patsn when exprs ′n -> exprsn end, θ〉 →i vals

where θ′ ≡ θ � matchs(patsi , vals
′′); ∀j < i.�θj .matchs(patsj , vals

′′) = θj ∧
〈exprs ′j θj , θj〉 → ’true’; and matchs a function that computes the substitution
binding the variables to the corresponding values using syntactic matching as
follows:

matchs(< pat1 , . . . , patn >, < val1 , . . . , valn >) = θ1 � . . . � θn,
with θi = match(pati , vali ) where match is an auxiliary function defined as:

match(var , val) = [var 	→ val ]
match(lit1 , lit2 ) = id , if lit1 ≡ lit2
match([pat1 |pat2 ], [val1 |val2 ]) = θ1 � θ2, where θi = match(pati , vali)
match({pat1 , . . . , patn}, {val1 , . . . , valn}) = θ1 � . . . � θn,
where θi = match(pati , vali)
match(var = pat , val) = θ[var 	→ val ],where θ = match(pat , val)

Similarly, the (LET) rule evaluates exprs1 and binds it to the variables. The
computation continues by applying the substitution to the body:

(LET)
〈exprs1, θ〉 → vals1 〈exprs2θ′, θ′〉 → vals

〈let vars = exprs1 in exprs2, θ〉 → vals

where θ′ ≡ θ � matchs(vars , vals1).
The (BFUN) rule evaluates a reference to a function, given a substitution

binding all its arguments. This is accomplished by applying the substitution to
the body of the function (with notation exprsθ) and then evaluating it. This rule
takes advantage of the fact that, as explained in Section 3, all Erlang functions
are translated to Core Erlang as a case-expression distinguishing the different
clauses. The particular branch of the case-expression employed during the com-
putation t (i.e. the i labeling the evaluation) corresponds to the clause used to
evaluate the function:

(BFUN)
〈case exprsθ of clause1θ . . . clausemθ end, θ〉 →i vals

〈rf , θ〉 →i vals

where 1 ≤ i ≤ m and rf references to a function f defined as f /n = fun ( var1
, . . . , varn ) -> case exprs of clause1 . . . clausem end.
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The rule (CALL) evaluates a function defined in another module:

(CALL)

〈exprsn+1, θ〉 → Atom1 〈exprsn+2, θ〉 → Atom2

〈exprs1, θ〉 → val1 . . . 〈exprsn, θ〉 → valn
〈rf , θ′〉 →i vals

〈call exprsn+1:exprsn+2(exprs1, . . . , exprsn), θ〉 → vals

where Atom2/n is a function defined in the Atom1 module as Atom2/n = fun

( var1 , . . . , varn ) -> case exprs of clause1 . . . clausem end; rf its reference;
1 ≤ i ≤ m; and θ′ ≡ {var1 	→ val1, . . . , varn 	→ valn}.

Analogously, the (CALL EVAL) rule is in charge of evaluating built-in func-
tions:

(CALL EVAL)

〈exprsn+1, θ〉 → ’erlang’ 〈exprsn+2, θ〉 → Atom2

〈exprs1, θ〉 → val1 . . . 〈exprsn, θ〉 → valn
eval (Atom2, val1, . . . , valn) = vals

〈call exprsn+1:exprsn+2(exprs1, . . . , exprsn), θ〉 → vals

where Atom2/n is a built-in function included in the erlang module.
Finally, the rule (APPLY3)

2 indicates that firstweneed to obtain the name of the
function, which must be defined in the current module (extracted from the refer-
ence to the reservedword apply) and then compute the arguments of the function.
Finally the function, described by its reference, is evaluated using the substitution
obtained by binding the variables in the function definition to the values for the
arguments:

(APPLY3)

〈exprs , θ〉 → Atom/n
〈exprs1, θ〉 → val1 . . . 〈exprsn, θ〉 → valn

〈rf , θ′〉 →i vals

〈applyr exprs(exprs1, . . . , exprsn), θ〉 → vals

where Atom/n /∈ dom(ρ) (i.e., it was not defined in a letrec expression); r is the
reference to apply; Atom/n is a function defined in the current module r.mod
as Atom/n = fun ( var1 , . . . , var n) -> case exprs of clause1 . . . clausem
end; rf its reference; 1 ≤ i ≤ m; and θ′ ≡ [varn 	→ valn].

We can use this calculus to build the proof tree for any evaluation. For exam-
ple, Figure 3(top) shows the proof tree for 〈mergesort/2([b,a], comp/2), id〉 →
[b,a], where ms stands for mergesort/2 and c for the comparison function
comp/2. Note that the root of the tree contains the identity substitution and
that all the arguments are evaluated (in this case by using the rule (VAL)) be-
fore really reducing the function in �1.

The proof tree �1 is partially shown in Figure 3(middle), where rms is the
reference to mergesort and θ1 is {_cor1 	→ [b,a]; _cor0 	→ c}. The root of this
tree presents some of the features described in Section 3: the function has been
translated as a case-expression and Core Erlang variables (_cor1 and _cor0)
have been introduced to check whether they match any clause. This matching is

2 The rule (APPLY1) executes a function previously defined in a letrec, while (APPLY2)
executes functions defined as lambda abstractions. See [7] for details.
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accomplished by evaluating the values to themselves in the premises of (CASE),
and then checking that the condition holds trivially by evaluating ’true’ to
itself. The computation continues by evaluating the body of this branch, which
is represented in �2.

The tree in Figure 3(bottom) shows �2, where θ2 extends θ1 with {Comp 	→
c; L 	→ [b,a]}, l stands for the built-in function length/2, and m for merge/3.
It first computes the length of the list, that is kept in a new variable _cor2,
and then used to split the list, as explained in the translation to Core Erlang
at the end of Section 3. Note that length/2 is evaluated with (CALL EVAL), an
inference rule for applying built-in functions. Finally, the subtree �3 stands for
several inferences using the (LET) rule that bind all the variables until we reach
the function merge/3([b], [a], comp), which is executed using the (APPLY3)
as shown for the proof tree on the top of the figure. Note that this node indicates
that the 4th clause of the function merge/3 has been used. The rest of the �
and the substitutions θ, θ′, and θ′′ are not relevant and are not described.

5 Debugging with Abbreviated Proof Trees

Our debugger detects functions incorrectly defined by asking questions to the
user about the intended interpretation of the program, which is represented as
a set of the form I = {. . . , m.f (val1 , . . . , valn) → vals , . . .} where m is a
module name (omitted for simplicity in the rest of the section), f is a user-
defined function in module m, and val1 , . . . , valn , vals are values such that the
user expects f(val1 , . . . , valn ) → vals to hold. The validity of the nodes in a
proof tree is obtained defining an intended interpretation calculus, ICESC , which
contains the same inference rules as CESC , except by the (BFUN) rule, which
is replaced by the following:

(BFUNI) 〈rf , θ〉 → vals

where rf references a program function f /n = fun( var1 , . . . , varn ) -> B,
(B represents the body of the function), and f(var1 θ, . . . , varnθ) -> vals) ∈ I.

Analogously to the case of CESC , the notation ICESC |=(P,I,T ) E indicates
that the evaluation E can be proven w.r.t. the program P and the intended
interpretation I with proof tree T in ICESC , while ICESC �(P,I) E indicates
that E cannot be proven in ICESC . The tree T , the program P , and the intended
interpretation I are omitted when they are not needed. The rôle of the two calculi
is further clarified by the next two assumptions:

1. If an evaluation eθ → vals is computed by some Erlang system with respect
to P then CESC |=P 〈|e|, θ〉 → |vals |, with | · | the transformation that
converts an Erlang expression into a Core expression.

2. If a reduction eθ → vals computed by some Erlang system is considered
unexpected by the user then ICESC �P,I 〈|e|, θ〉 → |vals |.

Thus, CESC represents the actual computations, while ICESC represents the
‘ideal’ computations expected by the user. Next we define some key concepts:
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Definition 1. Let P be a program with intended interpretation I. Let E ≡
〈e, θ〉 → vals be an evaluation such that CESC |=P E. Then we say that:

1. E is valid when ICESC |=(P,I) E, and invalid when ICESC �(P,I) E.
2. A node is buggy if it is invalid with valid premises.
3. Let rf be a reference to a function f/n = fun( var 1, . . ., varn ) -> B, and

θ a substitution. Then 〈rf , θ〉 is a wrong function instance iff there exists a
value v such that ICESC �(P,I) 〈rf , θ〉 → v and ICESC |=(P,I) 〈Bθ, θ〉 → v.

4. P〈e,θ〉 denotes the (Core Erlang) program P ∪{ main/0 = fun() -> case <>

of <> when ’true’ -> |eθ| end }, with | · | the operator converting Erlang
code into Core Erlang code, and main a new identifier in P .

The first two items do not need further explanations. In order to understand
the third point observe that we cannot say that a function is wrong simply
because it computes an unexpected result, since this can be due to the presence
of wrong functions in its body. Instead, a wrong function instance corresponds
to a function that produces an erroneous result assuming that all the functions
in its body are correct. Finally, the purpose of definition of P〈e,θ〉 is to introduce
the expression producing the initial symptom as part of the program. The two
following auxiliary results are a straightforward consequence of the coincidence
of CESC and ICESC in all the rules excepting (BFUN):

Lemma 1. Let T be a CESC -proof tree and let N be a node in T conclusion of
an inference rule different from (BFUN) with all the premises valid. Then N is
valid.

Lemma 2. Let T be a CESC-proof tree which does not use the (BFUN) infer-
ence. Then all the nodes in T are valid.

The next theorem uses the two lemmas to establish that CESC proof trees are
suitable for debugging.

Theorem 1. Let P be a Core Erlang program, I its intended interpretation,
and eθ → vals an unexpected evaluation computed by an Erlang system.

Then:

1. There is a proof tree T such that CESC |=(P〈e,θ〉,T ) 〈rmain, id〉 → |vals |.
2. T contains at least one buggy node N verifying:

(a) N is the conclusion of a (BFUN) inference rule of the form 〈rf , θ〉 → vals
with f �= main.

(b) 〈rf , θ〉 is a wrong function instance.
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Proof Sketch

1. By assumption 1, there is a proof tree T ′ such that CESC |=P,T ′ 〈|e|, θ〉 →
|vals |. From T ′ it is easy to construct a proof tree T ′′ for 〈|e|θ, id〉 → |vals |.
Then, the tree T such that CESC |=(P〈e,θ〉,T ) 〈rmain, id〉 → |vals | starting by
an application of the (BFUN) inference rule for main/0 at the root, followed
by a (CASE) inference with the body of main/0 (see Definition 1, item 4)
and then followed by T ′′.

2. Every proof tree with an invalid root contains a buggy node [24].

(a) 〈e, θ〉 → vals is unexpected, by assumption 2, ICESC �P,I 〈|e|, θ〉 →
|vals |, and it is easy to check that then ICESC � 〈|e|θ, id〉 → |vals |.
Hence, the root of T ′′ is invalid and T ′′ contains a buggy node N . Since
T ′′ is a subtree of T which does not contain main/0 then the node is not
related to this function. Moreover, since all the inference rules except for
(BFUN) are both in CESC and in ICESC , and the buggy node has all its
premises valid, by Lemma 1 N is the conclusion of a (BFUN) inference.
Thus, N is of the form 〈rf , θ〉 → vals , f �= main.

(b) By Definition 1.2 the buggy node N in T ′′ (and therefore in T ) verifies:
i. N is invalid, and thus by Definition 1.1: ICESC �(P,I) 〈rf , θ〉 → vals .

ii. The premises of N in T are valid. N is the conclusion of a (BFUN)
rule, and then the only premise corresponds to the proof in CESC
of the function body B. Since it is valid, by Definition 1.1 the proof
in CESC implies the proof in ICESC .

By 2(b)i and 2(b)ii and according to Definition 1.3, 〈rf , θ〉 is a wrong
function instance. �

Although the previous result shows that the proof trees obtained by using CESC
might be used as debugging trees, they contain many questions difficult to answer
for the user, including the results of nested applications, or even new statements
introduced in the Core representation of the program. In order to overcome these
difficulties we abbreviate the proof tree keeping only the relevant information
for detecting buggy nodes.

Definition 2. Let P be a program and 〈e, θ〉 → vals an evaluation. A tree T is
an Abbreviated Proof Tree (APT in short) for the evaluation with respect to P ,
iff there is a proof tree T ′ such that CESC |=(P〈e,θ〉,T ′) 〈rmain, id〉 → vals, and
T = APT (T ′) with the transformation APT defined as follows:

APT

(
(BFUN)

T

E
)

=
APT (T )

E
APT

(
(R)

T1 . . . Tn

E
)

= APT (T1) . . .APT (Tn), with (R) �= (BFUN)

The transformation keeps the conclusion of (BFUN) inferences, removing the
rest of the nodes. Observe that the result is a single tree because the root of T ′

always corresponds to the application of (BFUN) to an evaluation over main/0.
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�1 t(1,[b,a]) → [b] ms([a],c) → [a] �2 ms([b],c) → [b]

(◦) ms([b,a],c) → [b,a]

main() → [b,a]
where:

�1 =
m([a],[],c) → [a] c(b,a) → false

(◦, •) m([b],[a],c) → [b,a]
�2 =

t(1,[a,b)] → [a]

l(1,[b,a]) → [a]

Fig. 4. Abbreviated Proof tree for mergesort([b,a],comp) → [b,a]

The structure of the APTs is similar to the evaluation dependence tree employed
in functional languages [26]. The main difference, apart from the particularities
of each language, is that in our case the APTs are obtained from a semantic
calculus, which allows us to prove their adequacy as debugging trees:

Theorem 2. Let P be a Core Erlang program, I its intended interpretation,
and eθ → vals an unexpected evaluation. Let T ′ be such that CESC |=(P〈e,θ〉,T ′)
〈rmain, id〉 → vals, and T = APT (T ′). Then T contains at least one buggy node
N including a wrong instance of a user function different from main/0.

Proof Sketch
As observed in the sketch of Theorem 1, there is a tree T ′′, subtree of T ′, which
contains a buggy node N not associated to main. By construction (Definition 2)
N is in T , and thus N is the invalid root of a subtree of T which does not contain
main/0. Hence T contains a buggy node N not associated to main/0.

Let N1, . . . , Nk be the direct descendants of N in T ′ which correspond to
conclusions of (BFUN) inferences. By Definition 2 these nodes are the premises of
N in T , and since N is buggy then N1, . . . , Nk must be valid. Applying Lemma 1
it is easy to check that all the intermediate nodes between N and N1, . . . , Nk

are valid. This proves that all the premises of N in T ′ which are ancestors of
(BFUN) inferences are valid. The rest of the premises of N in T ′ are roots of
proof trees without (BFUN) inferences, and by Lemma 2 are valid as well. Thus
N is buggy in T ′, and by Theorem 1 it contains a wrong function instance. �
Therefore, during the debugging process the user only needs to answer ques-
tions about the validity of nodes in the APT, which corresponds exactly to the
evaluations in the intended interpretation. Figure 4 shows the APT for our run-
ning example. The calls to reverse/1 have been removed because predefined
functions are automatically trusted. The evaluations 〈rf , θ〉 → vals are shown
with the more user-friendly form f(var 1θ, . . . , varnθ) → vals , which is also the
form employed by the debugger. For the sake of space we use c for comp/2, t
for take/2, l for last/2, ms for mergesort/2, and m for merge/3. The invalid
nodes are preceded by ◦ and the only buggy node is preceded also by •.

6 System Description

The technique described in the previous sections has been implemented in Er-
lang. The tool is called edd and it has approximately 1000 lines of code. It is
publicly available at https://github.com/tamarit/edd.

https://github.com/tamarit/edd
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When a user detects an unexpected result, edd asks questions of the form
call = value, where the user has the option to answer either yes (y) or no (n).
In addition to these two responses, the user can answer don’t know (d), when
the answer is unknown; inadmissible (i), when the question does not apply; or
trusted (t), when the user knows that the function is correct and further ques-
tions are not necessary. Before starting the debugger, the user can also define a
number of functions to be trusted. The user can also undo (u), which reverts to
the previous question, and abort (a), which closes the debugging session. More-
over, the tool includes a memoization feature that stores the answers yes, no,
trusted, and inadmissible, preventing the system from asking the same question
twice. Finally, it is worth noting that the answer don’t know is used to ease the
interaction with the debugger but it may introduce incompleteness, so we did
not consider it in our proofs; if the debugger reaches a deadlock due to these
answers it will inform the user about this fact.

The system can internally utilize two different navigation strategies [33,34],
Divide & Query and Heaviest First, in order to choose the next node and there-
fore the next question presented to the user.

Both strategies help the system to minimize the number of questions and they
can be switched during the session with option s. The rest of the section shows
how the tool is used through a debugging session. Assume the user has decided
to use edd to debug the error shown in Section 3. The debugging session with
the default Divide & Query navigation strategy is:

> edd:dd("merge:mergesort([b,a], fun merge:comp/2)").

Please, insert a list of trusted functions [m1:f1/a1, m2:f2/a2 ...]:

merge:merge([b], [a], fun merge:comp/2) = [b, a]?: n

The strategy selects the subtree marked with (◦, •) in Figure 4, because the
whole tree (without the dummy node for main and the node for the initial call,
that we know is wrong because the user is using the debugger) has 8 nodes
and this subtree, with 3 nodes, is the closest one to half the size of the whole
tree. The question associated to the node, shown above, asks the user whether
she expects to obtain the list [b,a] when evaluating merge([b], [a], fun

merge:comp/2). She answers no because this is obviously an unexpected result.
Thus, the subtree rooted by this node becomes the current debugging tree.

merge:comp(b, a) = false?: t

The next question corresponds to one of the children of the previous node. In
this case the tool asks to the user whether the result for comp(b, a) is false.
The answer is t, which removes all the nodes related to the function comp (in
this case the answer only affects this node, but trusting a function may remove
several nodes in general). The next question is:

merge:merge([a], [], fun merge3:comp/2) = [a]?: y

In this case the function merge produces the expected result, so the user says yes.
Since the first answer marked a node as invalid node and the next two answers
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indicated that all its children are correct, the tool infers that the node (◦, •) in
Figure 4 is buggy:3

Call to a function that contains an error:

merge:merge([b], [a], fun merge:comp/2) = [b, a]

Please, revise the fourth clause:

merge([H1 | T1], [H2 | T2], Comp) -> case Comp(H1, H2) of

false -> [H1 | merge([H2 | T1], T2, Comp)];

true -> [H1 | merge(T1, [H2 | T2], Comp)]

end.

This information is enough to find the error, marked by boxes in the definition
of merge in Section 3. It is corrected by using [H2 | merge([H1 | T1], T2,

Comp)].
Although this change fixes the error for the list [b,a], when mergesort is

executed with a larger list, like [o,h,i,o], a new problem arises:

> merge:mergesort([o,h,i,o], fun merge:comp/2).

** exception error: no function clause matching

merge:comp(2,h) (merge.erl, line 16)

in function merge:merge/3 (merge.erl, line 12)

in call from merge:mergesort/2 (merge.erl, line 7)

Note that the information given by the system is not useful to find the error,
since merge and mergesort seem correct. Moreover, the user is sure that the
error is not in comp/2, even though it receives a erroneous argument, and hence
she has marked it as trusted. The user decides to follow a Top Down strategy
in this session. The debugging session runs as follows:

> edd:dd("merge:mergesort([o,h,i,o], fun merge:comp/2)",top down).

Please, insert a list of trusted functions [m1:f1/a1, m2:f2/a2 ...]:

merge:comp/2

merge:mergesort([2, h], fun merge:comp/2) = {error, match fail}?: i

merge:last(2, [o, h, i, o]) = [i, 2]?: n

merge:take(2, [o, i, h, o]) = [2, i]?: n

merge:take(1, [i, h, o]) = [i]?: y

Call to a function that contains an error:

merge:take(2, [o, i, h, o]) = [2, i]

Please, revise the fourth clause:

take(N, [H | T]) -> [N | take(N - 1, T)].

The answer to the first question is inadmissible, because the user considers that
the function mergesort/2 is intended to sort lists of atoms, and the list contains
an integer. In this case the debugger shows that the problem is in the function
take/2. In fact, if we inspect the code in Section 3 (the box in the definition of
take) we realize that it contains an error. It should be [H | take(N - 1, T)].

After these changes all the errors have been solved. Note that only seven
questions were required to locate two errors, one of them involving exceptions.

3 Note that we have used here the debugging tree to explain the main ideas of the
technique, although it is not needed during a standard debugging session.
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7 Concluding Remarks and Ongoing Work

Debugging is usually the most time-consuming phase of the software life cycle,
yet it remains a basically unformalized task. This is unfortunate, because for-
malizing a task introduces the possibility of improving it. With this idea in mind
we propose a formal debugging technique that analyzes proof trees of erroneous
computations in order to find bugs in sequential Erlang programs. A straight-
forward benefit is that it allows to prove the soundness and completeness of the
scheme. Another benefit is that, since the debugger only requires knowing the
intended meaning of the program functions, the team in charge of the debugging
phase do not need to include the actual programmers of the code. This separation
of rôles is an advantage during the development of any software project.

Although most of the applications based on Erlang employ the concurrent
features of the language the concurrency is usually located in specific modules,
and thus specific tools for debugging the sequential part are also interesting.
Our debugger locates the error based only on the intended meaning of the user
functions, and thus abstracts away the implementation details. It can be viewed
as complementary to the trace debugger already included in Erlang: first the
declarative debugger is used for singling out an erroneous program function
and then the standard tracer is employed for inspecting the function body. The
declarative debugger is particularly useful for detecting wrong functions that
produce unexpected exceptions, as shown in the running example included in
the paper. The main limitation of the proposal is that an initial unexpected
result must be detected by the user, which implies in particular that it cannot
be used to debug non-terminating computations.

We have used these ideas to implement a tool that supports differ-
ent navigation strategies, trusting, and built-in functions, among other
features. It has been used to debug several buggy medium-size programs,
presenting an encouraging performance. More information can be found at
https://github.com/tamarit/edd.

As future work we plan to improve the location of the bug inside a wrong
function, which implies an extended setting taking into account the code defining
the functions. Another interesting line of future work consists on extending the
current framework to debug concurrent Core Erlang programs. This extension
will require new rules in the calculus to deal with functions for creating new
processes and sending and receiving messages, as well as the identification of
new kinds of errors that the debugger can detect.
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