
CiMPG+F: A Proof Generator & Fixer-upper for
CafeOBJ Specifications

Adrián Riesco1 Kazuhiro Ogata2,3

Facultad de Informática, Universidad Complutense de Madrid, Spain
ariesco@fdi.ucm.es

School of Information Science, JAIST, Japan

Research Center for Software Verification, JAIST, Japan
ogata@jaist.ac.jp

ICTAC 2020
Macau S.A.R., China (Online event)

A. Riesco (DSIC) CiMPG+F ICTAC 2020 1 / 1

Motivation

Motivation: CafeOBJ

CafeOBJ is a language for writing formal specifications and verifying
properties of them.

It implements equational logic by rewriting.

CafeOBJ specifications are executable, so the specifier can analyze how
different terms are reduced.

In particular, specifiers can write proof scores to prove properties on their
specifications.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 2 / 1

Motivation

Motivation: Proof scores

Proof scores are proof outlines written in CafeOBJ.

If all proof scores return the expected value when executed (usually true),
then the corresponding theorems are proved.

This approach is known as “proving as programming.”

A. Riesco (DSIC) CiMPG+F ICTAC 2020 3 / 1

Motivation

Motivation: Proof scores and CafeInMaude

An important advantage of this approach is its flexibility: the syntax for
performing proofs is the same as for specifying systems.

However, we lose formality because CafeOBJ does not check proof scores in
any way.

Previously, we presented:
I An inductive theorem prover (CiMPA).
I A proof script generator that infers formal proofs from proof scores (CiMPG).

These tools extended the CafeInMaude compiler, implemented in Maude.

CafeInMaude takes advantage of Maude metalevel and stores a
metarepresentation of proof scores, so we can reason with them at the
metalevel.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 4 / 1

Motivation

Motivation: Proof scores and CafeInMaude

CiMPG had limitations:
I It generated a formal proof when the proof score was correct and complete.
I It pointed out the flaws in other case, but it could not suggest how to fix them.

In this paper we improve the previous version of the tool and present the
CafeInMaude Proof Generator and Fixer Upper (CiMPG+F).

CiMPG+F can:
I When part of a proof score is missing, infer the rest taking into account the

information given by the user.
I Infer proofs from scratch following a back-tracking algorithm guided by the

current goal.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 5 / 1

Proof scores

Proving with proof scores

We present as our running example a simplified cloud synchronization
protocol as an observational transition system.

We have a cloud computer and an arbitrary number of PCs.

PCs try to keep a value synchronized, so new values appearing in the PCs
must be uploaded to the cloud.

PCs must retrieve new values from the cloud.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 6 / 1

Proof scores

Proving with proof scores

We represent values as natural numbers and consider that larger values are
newer to simplify the presentation.

The cloud computer is represented by:

I Its status (statusc), which takes the values idlec and busy (a PC is
connected).

I Its current value (valc).

A. Riesco (DSIC) CiMPG+F ICTAC 2020 7 / 1

Proof scores

Proving with proof scores

The module LABELC defines the labels for the cloud.

mod! LABELC {

[LabelC]

ops idlec busy : -> LabelC {constr}

eq (idlec = busy) = false .

}

A. Riesco (DSIC) CiMPG+F ICTAC 2020 8 / 1

Proof scores

Proving with proof scores

In turn, the PCs are represented by:
I Its status (statusp), which takes values idlep, gotval (the PC has fetched

the value from the cloud), and updated (the PC has updated either its value
or the cloud’s value).

I Its current value (valp).
I A temporal value retrieved from the cloud. This value is used to avoid

overwriting newer values.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 9 / 1

Proof scores

Proving with proof scores

The module LABELP defines the labels for PCs.

mod! LABELP {

[LabelP]

ops idlep gotval updated : -> LabelP {constr}

eq (idlep = gotval) = false .

eq (idlep = updated) = false .

eq (gotval = updated) = false .

}

A. Riesco (DSIC) CiMPG+F ICTAC 2020 10 / 1

Proof scores

Proving with proof scores

The module VALUE defines the values for both the cloud and the PCs.

mod* VALUE {

[Value]

op mv : -> Value {constr}

op _<=_ : Value Value -> Bool .

eq (V <= V) = true .

eq (mv <= V) = true .

}

A. Riesco (DSIC) CiMPG+F ICTAC 2020 11 / 1

Proof scores

Proving with proof scores

The module CLIENT below requires the existence of a sort Client, which
stands for PC identifiers:

mod* CLIENT {

[Client]

}

A. Riesco (DSIC) CiMPG+F ICTAC 2020 12 / 1

Proof scores

Proving with proof scores

The module CLOUD defines the sort Sys for the system.

The values of the system are obtained via observers.

mod* CLOUD {

pr(LABELP) pr(LABELC) pr(CLIENT) pr(VALUE)

[Sys]

op statusc : Sys -> LabelC

op valc : Sys -> Value

op statusp : Sys Client -> LabelP

ops valp tmp : Sys Client -> Value

A. Riesco (DSIC) CiMPG+F ICTAC 2020 13 / 1

Proof scores

Proving with proof scores

The system is built by means of transitions.

The constructor init stands for the initial state.

The state of both the cloud and PCs is idle and the rest of values are
undefined.

op init : -> Sys {constr}

eq statusc(init) = idlec .

eq statusp(init,I) = idlep .

A. Riesco (DSIC) CiMPG+F ICTAC 2020 14 / 1

Proof scores

Proving with proof scores

The transition getVal takes as arguments a system and the identifier of the
client that is retrieving the value from the cloud.

It can only be applied if both the cloud computer and the current computer
are idle.

If these conditions do not hold, then the transition is skipped.

op getval : Sys Client -> Sys {constr}

ceq getval(S,I) = S

if not (statusp(S,I) = idlep and statusc(S) = idlec) .

A. Riesco (DSIC) CiMPG+F ICTAC 2020 15 / 1

Proof scores

Proving with proof scores

If the conditions hold then the status of the cloud is busy and the PC goes
to gotVal:

ceq statusc(getval(S,I)) = busy

if statusp(S,I) = idlep and statusc(S) = idlec .

ceq statusp(getval(S,I),J) = (if I = J

then gotval

else statusp(S,J)

fi)

if statusp(S,I) = idlep and statusc(S) = idlec .

A. Riesco (DSIC) CiMPG+F ICTAC 2020 16 / 1

Proof scores

Proving with proof scores

Similarly, if the conditions hold the temporary value of the computer must be
the one of the cloud:

ceq tmp(getval(S,I),J) = (if I = J then valc(S) else tmp(S,J) fi)

if statusp(S,I) = idlep and statusc(S) = idlec .

Because this transition retrieves the value from the cloud and stores it in as
temporary value, the current values does not change:

eq valc(getval(S,I)) = valc(S) .

eq valp(getval(S,I),J) = valp(S,J) .

A. Riesco (DSIC) CiMPG+F ICTAC 2020 17 / 1

Proof scores

Proving with proof scores

The remaining transitions are gotoidle, modval, and update.

op gotoidle : Sys Client -> Sys {constr}

op modval : Sys Client -> Sys {constr}

op update : Sys Client -> Sys {constr}

A. Riesco (DSIC) CiMPG+F ICTAC 2020 18 / 1

Proof scores

Proving with proof scores

We define seven properties that must hold in the system:

ops inv1 inv2 inv6 inv7 : Sys Client -> Bool

ops inv3 inv4 inv5 : Sys Client Client -> Bool

eq inv1(S,I) = (statusp(S,I) = updated implies valp(S,I) = valc(S)) .

eq inv2(S,I) = (statusp(S,I) = gotval implies tmp(S,I) = valc(S)) .

eq inv3(S,I,J) = (statusp(S,I) = updated and

statusp(S,J) = gotval implies I = J) .

eq inv4(S,I,J) = (statusp(S,I) = gotval and

statusp(S,J) = gotval implies I = J) .

eq inv5(S,I,J) = (statusp(S,I) = updated and

statusp(S,J) = updated implies I = J) .

eq inv6(S,I) = not(statusp(S,I) = updated and statusc(S) = idlec) .

eq inv7(S,I) = not(statusp(S,I) = gotval and statusc(S) = idlec) .

A. Riesco (DSIC) CiMPG+F ICTAC 2020 19 / 1

Proof scores

Proving with proof scores/CiMPA

open CLOUD . open CLOUD .

op s : -> Sys . :goal{

ops i j : -> Client . eq [cloud :nonexec] :

eq [inv1 :nonexec] : inv1(S:Sys,C:Client) = true .

inv1(s,K:Client) = true}

... :ind on (S:Sys)

eq statusp(s,j) = idlep . :apply(si)

eq statusc(s) = idlec . :apply(tc)

eq i = j . :def csb1 = :ctf {

red inv1(s,i) implies eq statusp(S#Sys,C#Client) = idlep .}

inv1(getval(s,j),i) . :apply(csb1)

close ...

A. Riesco (DSIC) CiMPG+F ICTAC 2020 20 / 1

Inferring proofs

Inferring proofs

For inferring proof scripts for CiMPA, we can use:
I Simultaneous induction.
I Theorem of constants.
I Case splitting (by true/false and terms).
I Implication with the induction hypotheses, possibly instantiated.
I Reduction (to check whether the subgoal is reduced to true).

We need to:
I Decide when to apply each step.
I Decide the most appropriate case splitting.
I Choose and instantiate the induction hypotheses.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 21 / 1

Inferring proofs

Inferring proofs - First steps

We present the CafeInMaude Proof Generator and Fixer-Upper (CiMPG+F).

Given a subgoal (possibly the initial one), CiMPG+F uses the possible
commands to discharge it.

First, the variables that require simultaneous induction, if any, are pointed
out by the user.

Induction generates subgoals for each constructor.

For each subgoal, CiMPG+F applies the theorem of constants when there are
variables.

It is also used for separating different subgoals for the same inductive case.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 22 / 1

Inferring proofs

Inferring proofs - Main algorithm

CiMPG+F uses a bounded backtracking algorithm.

It applies case-splitting until the goal is discharged or the bound is reached.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 23 / 1

Inferring proofs

Inferring proofs - Case splitting

When case splitting is required, the main point is how to decide which one
should be applied.

CiMPG+F chooses the most appropriate terms for case case splitting using
the current goal as follows:

I The goal is reduced.
I Those non-constructor terms that are not reduced are case-splitting

candidates.
I For each candidate, we check whether the left-hand side of an equation

matches it.
I In that case, the condition that failed is added as candidate (and the previous

one is removed).
I Those candidates that do not match any equation are used for case-splitting.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 24 / 1

Inferring proofs

Inferring proofs - Case splitting

The kind of case splitting applied to the term depends of the form of the
term and its sort.

CiMPG+F distinguishes between case splitting by true-false and by terms
(using constructors).

It also supports special case splittings for associative sequences.

It can also infer new candidates by using the induction hypotheses.

We refer to the full text for the complete algorithm (Section 3.3).

A. Riesco (DSIC) CiMPG+F ICTAC 2020 25 / 1

Inferring proofs

Inferring proofs - Discharging goals

Goals are discharged when they are reduced to true.

It is usually required to use the induction hypotheses.

We might have many hypotheses, each of them with free variables that must
be instantiated.

Checking all possible cases would require too much time.

The user is in charge of introducing a bound in the number of hypotheses
that can be used at the same time and in the number of variables that can be
instantiated.

Even with these limitations the computation might be expensive.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 26 / 1

Inferring proofs

Inferring proofs - Discharging goals

We use a so-called pre-instantiation.

For pre-instantiating a term, we first reduce hyp(X1 , ...,Xn) =⇒ goal , with
Xi variables of the appropriate sort.

For each equality c(· · · , Xi, · · ·) = c(· · · , ti, · · ·), we instantiate Xi 7→ ti.

Pre-instantiations improve the performance up to 300 times faster in the best
case.

We refer to the full text for the complete algorithm (Section 3.2).

A. Riesco (DSIC) CiMPG+F ICTAC 2020 27 / 1

Inferring proofs

Cloud protocol - Case splitting

We present now how this idea is applied to the Cloud protocol presented
before.

CiMPG+F starts by applying simultaneous induction, which generates five
subgoals corresponding to the five constructors (each of them containing the
seven properties).

It then applies the theorem of constants, which generates seven subgoals
(one for each property) for the first constructor, getval.

The first subgoal that needs to be proven is inv1(getval(S,C),i).

The induction hypotheses are inv1(S, I:Client), etc.

This subgoal is not directly reduced to true, so case splitting is required.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 28 / 1

Inferring proofs

Cloud protocol - Case splitting

The goal is reduced to

true xor updated = statusp(getval(S,C),i) and valc(S) = valp(S,i)

xor updated = statusp(getval(S,C),i)

Case splitting candidates are initially updated = statusp(getval(S,C),i)

and valc(S) = valp(S,i).

For statusp(getval(S,C),i) we find an equation that could be applied
but the condition statusp(S,C) = idlep failed.

We add statusp(S,C) = idlep as candidate and remove updated =

statusp(getval(S,C),i).

A. Riesco (DSIC) CiMPG+F ICTAC 2020 29 / 1

Inferring proofs

Cloud protocol - Case splitting

No terms from the current candidates match a left-hand side, so we generate
the case splittings from them.

For statusp(S,C) = idlep it generates a case splitting by terms for
statusp(S,C).

For valc(S) = valp(S,i) it generates a case splitting by equations, as well
as case splitting by terms for valc(S) and valp(S,i).

In fact, the proof for this goal starts with statusp(S,C).

A. Riesco (DSIC) CiMPG+F ICTAC 2020 30 / 1

Inferring proofs

Cloud protocol - Discharging goals

After three case splittings, the goal can be reduced to true.

It is required to use an implication with the induction hypothesis.

Given the goal inv1(getval(S,C),i) and the hypothesis inv1(S,

I:Client), CiMPG+F uses the substitution I : Client 7→ i.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 31 / 1

Inferring proofs

Understanding failures

In case a proof is not found, CiMPG+F shows:
I The case splittings that were applied.
I The subgoals that could be discharged.
I The subgoales that failed because

1 No more case splittings were available or
2 The bound on the depth of the backtracking algorithm is reached.

For each goal and subgoal it shows the case splitting that was tried and how
it behaved.

Because several case splittings are in general possible for each goal it shows
all of them, numbering them and using indentation for the sake of readability.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 32 / 1

Inferring proofs

Cloud - Understanding failures

*** Goal 1, Try 1 - inv1(getval(S#Sys,C#Client),i@Client) - Failure

:def csb1 = :ctf {eq valc(S#Sys) = valp(S#Sys,i@Client).}

:apply(csb1)

*** Goal 1-1 Success by reduction

:apply (rd)

*** Goal 1-2 cannot be discharged. Maximum depth reached.

*** Goal 1, Try 2 - inv1(getval(S#Sys,C#Client),i@Client) - Failure

:def csb1 = :ctf [statusc(S#Sys) .]

:apply(csb1)

*** Goal 1-1 Success by implication and reduction.

:imp [proofCLOUD] by {i:Client <- i@Client ;}

:apply (rd)

*** Goal 1-2 cannot be discharged. Maximum depth reached.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 33 / 1

Guiding with proof scores

Guiding proofs with proof scores

For large specifications each step is expensive because many case splittings
are possible and many implications and instantiations can be used.

Fully automated theorem provers cannot deal with large or complex
specifications, so user interaction is required.

It might be the case that the user is stuck in a particular subgoal; it might
help the user to focus on more promising case splittings.

It is possible to feed CiMPG+F with an incomplete proof score, which must
contain the case splittings that will be used first.

The CiMPG algorithm will reconstruct the proof to that point and then
execute CiMPG+F to try to generate the rest of the proof.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 34 / 1

Guiding with proof scores

Guiding proofs with proof scores

Note that a single equation might not determine the case splitting.

CiMPG+F collects the equations from the open-close environments related to
each inductive case and analyzes whether:

I All the equations required to the splitting are present.
I In this case the case splitting is applied and the standard analysis used by

CiMPG continues.
I If the splitting is not unambiguously identified, we need to try each of them

and, if the proof fails, try again with the next possible splitting.
I In this case the CiMPG+F algorithm is required, but the non-determinism is

reduced.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 35 / 1

Benchmarks

Benchmarks

The benchmarks performed thus far give us confidence in its applicability.

Name Spec. size Proof size Time Description
2p-mutex 58 23 <1s 2 processes mutex
ABP 320 1370 ∼2.5h Alternating Bit Protocol
Cloud 127 530 <1s Simplified cloud synch. protocol
NSLPK 188 342 617s Authentication protocol NSLPK
Qlock 124 88 <1s Variant of Dijkstra’s semaphore
SCP 182 200 340s Simple Communication Protocol
TAS 73 88 <1s Mutual exclusion protocol

A. Riesco (DSIC) CiMPG+F ICTAC 2020 36 / 1

Concluding remarks and ongoing work Concluding remarks

Concluding remarks

We have presented CiMPG+F, a tool that tries to automatically prove
properties of CafeOBJ specifications.

These proofs can be based on known information.

They can be also completely generated by using a bounded depth-first search
directed by the current goal and system.

CiMPG+F optimizes some subtasks, like instantiation of free variables, and
provides three parameters to customize the generated proofs.

The performance of the tool has been tested with some benchmarks.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 37 / 1

Concluding remarks and ongoing work Ongoing work

Ongoing work

We are interested in informing the user whether a goal is not provable, which
happens when we are able to reduce it to false and there are no
contradictions in the module.

We do not want to limit its application to the generation of complete proofs.

It is worth making CiMPG+F more interactive.

It could graphically show information about:
I Those branches that have been traversed without reaching a result.
I Those branches that have not been traversed yet.

This interaction would ease the proofs of advanced protocols, which cannot
be automatically generated in general.

A. Riesco (DSIC) CiMPG+F ICTAC 2020 38 / 1

Concluding remarks and ongoing work Ongoing work

Thanks!

Please visit the webpage for more details:
https://github.com/ariesco/CafeInMaude

Questions are welcome! (ariesco@ucm.es)

A. Riesco (DSIC) CiMPG+F ICTAC 2020 39 / 1

https://github.com/ariesco/CafeInMaude

