
Using Big-Step and Small-Step Semantics

in Maude to Perform Declarative Debugging�

Adrián Riesco

Departamento de Sistemas Informáticos y Computación,
Universidad Complutense de Madrid, Madrid, Spain

ariesco@fdi.ucm.es

Abstract. Declarative debugging is a semi-automatic debugging tech-
nique that abstracts the execution details to focus on results. This tech-
nique builds a debugging tree representing an incorrect computation and
traverses it by asking questions to the user until the error is found. In
previous works we have presented a declarative debugger for Maude
specifications. Besides a programming language, Maude is a semantic
framework where several other languages can be specified. However, our
declarative debugger is only able to find errors in Maude specifications,
so it cannot find bugs on the programs written on the languages being
specified. We study in this paper how to modify our declarative debugger
to find this kind of errors when defining programming languages using
big-step and small-step semantics, two generic approaches that allow to
specify a wide range of languages in a natural way. We obtain our de-
bugging trees by modifying the proof trees obtained from the semantic
rules. We have extended our declarative debugger to deal with this kind
of debugging, and we illustrate it with an example.

Keywords: Declarative debugging, Big-step semantics, Small-step
semantics, Maude.

1 Introduction

Declarative debugging is a semi-automatic debugging technique that abstracts
the execution details to focus on results. It has been widely used in logic [10,16],
functional [11,12], multi-paradigm [2,8], and object-oriented [3] programming
languages. The declarative debugging scheme consists of two steps: during the
first one a tree representing the erroneous computation is built, while during
the second one this tree is traversed by asking questions to an external oracle
(usually the user) until the bug is found.

The operational semantics of a programming language can be defined in dif-
ferent ways [6]. One approach, called big-step or evaluation semantics, consists
of defining how the final results are obtained. The complementary approach,

� Research supported by MICINN Spanish project StrongSoft (TIN2012-39391-C04-
04) and Comunidad de Madrid program PROMETIDOS (S2009/TIC-1465).

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 52–68, 2014.
c© Springer International Publishing Switzerland 2014

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 53

small-step or computation semantics, defines how each step in the computation
is performed.

Maude [4] is a high-level language and high-performance system supporting
both equational and rewriting logic computation. Maude modules correspond
to specifications in rewriting logic [9], a logic that allows the representation
of many models of concurrent and distributed systems. This logic is an ex-
tension of membership equational logic [1], an equational logic that, in addi-
tion to equations, allows the statement of membership axioms characterizing
the elements of a sort. Rewriting logic extends membership equational logic by
adding rewrite rules that represent transitions in a concurrent system and can be
nondeterministic.

In [18] (and in the extended version in [17]) the big-step and small-step seman-
tics for several programming languages and its translation to Maude is presented.
These papers show that big-step and small-step semantics can be easily specified
in Maude by using a method called transitions as rewrites. This approach trans-
lates the inferences in the semantics into rewrite rules, that is, the lefthand side
of the rule stands for the expression before being evaluated and the righthand
side for the reached expression. The premises are specified analogously by using
rewrite conditions.

Our declarative debugger for Maude specifications is presented in [14]. This
debugger uses the standard calculus for rewriting logic1 to build the debugging
trees, which are used to locate bugs in equations, membership axioms, and rules.
However, when a programming language is specified in Maude we cannot debug
the language but only the semantics. That is, the previous version of our de-
bugger could point out some rules as buggy (e.g. the rule in charge of executing
functions) but not the specific constructs of the language being specified (e.g.
the specific function going wrong in our program). We present here an improve-
ment of this debugger to locate the user-defined functions responsible for the
error when big-step or small-step semantics are used to define the programming
languages. It is based on the fact these semantics contain a small number of rules
that represent evaluation of functions in the specified language, so they can be
isolated to extract the applied function, hence revealing an error in the program.
Note that the information about the rules in charge of evaluating functions will
be different in every semantics, and hence they must be provided by the user.
We will see a more detailed example in the next section, showing the difference
between these two kinds of debugging.

The rest of the paper is organized as follows: Section 2 describes the standard
approach to big-step and small-step semantics and how to represent the seman-
tics of programming languages in Maude following them. Section 3 develops the
relation between the proof trees obtained with these approaches and the debug-
ging trees used by our declarative debugger. Section 4 presents our declarative
debugger by means of examples. Finally, Section 5 concludes and outlines some
lines of future work.

1 In fact, we extended the calculus to debug new kinds of errors. However, this exten-
sion of the debugger is not relevant for the present work.

54 A. Riesco

Syntactic categories:
D in Decl e in Exp be in BExp F in FunVar
op in Op bop in BOp n in Num x in Var bx in BVar

Definitions:
D ::= F (x1, . . . , xk) ⇐= e | F (x1, . . . , xk) ⇐= e,D, k ≥ 0
op ::= + | − | ∗ | div
bop ::= And | Or
e ::= n | x | e op e | let x = e in e | If be Then e Else e | F (e1, . . . , ek), k ≥ 0
be ::= bx | T | F | be bop be | Not be | Equal(e, e)

Fig. 1. Syntax for Fpl

2 Preliminaries

We present in this section the basic notions used throughout the rest of the
paper. First, we briefly describe a simple functional language and introduce its
big-step and small-step semantics. Then, we present Maude and outline how to
specify the semantics from the previous sections. The example in this section
has been extracted from [6], while the translation to Maude follows [17]. Finally,
we compare this approach with standard trace-debuggers.

2.1 Fpl, A Simple Functional Language

The Fpl language [6] is a simple functional language with arithmetic and Boolean
expressions, let expressions, if conditions, and function definitions. The syntax
for Fpl, presented in Figure 1, indicates that declarations are mappings, built
with ⇐=, between function definitions and their bodies; an expression can be
either a number, a variable, two expressions combined with an arithmetic opera-
tor, a let expression, an if condition, or a function call; and a Boolean expression
can be either a Boolean variable, true, false, two Boolean expressions combined
with a Boolean operator, the negation of a Boolean expression, or an equality
between two arithmetic expressions.

In order to execute programs, we will also need an environment ρ mapping
variables to values. We will use the syntax D, ρ � e for our evaluations, indi-
cating that the expression e is evaluated by using the definitions in D and the
environment ρ. We explain now the different semantics to reach the final value.

Big-Step Semantics. Big-step semantics evaluates a term written in our Flp
language to its final value, evaluating in the premises of each rule the auxiliary
values. That is, this semantics will be used to infer judgements of the form D, ρ �
e ⇒B v, with D the function definitions, ρ an (initially empty) environment, e
and expression, and v a value. For example, the rule for executing a function
call is defined as follows:

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 55

(FunBS)
D, ρ � ei ⇒B vi D, ρ[vi/xi] � e ⇒B v

D, ρ � F (e1, . . . , en) ⇒B v

where 1 ≤ i ≤ n and F (x1, . . . , xn) ⇐= e ∈ D.

That is, the arguments are evaluated in the premises, and then the variables,
obtained from the definition of the function on the function definitions, are
bound to these values in order to evaluate the body of the function. The value
thus obtained is the one returned by the rule.2

Small-Step Semantics. In contrast to big-step semantics, small-step semantics
just try to represent each step performed by the program to reach the final value.
We will use in this case judgements of the form D, ρ � e ⇒S e′, and hence the
expression may need several steps to reach its final value. For example, the rules
for evaluating a function call with this semantics would be:

(FunSS1)
D, ρ � ei ⇒B e′i

D, ρ � F (e1, . . . , ei, . . . , en) ⇒B F (e1, . . . , e
′
i, . . . , en)

(FunSS2) D, ρ � F (v1, . . . , vn) ⇒B e[v1/x1, . . . , vn/xn]

where F (x1, . . . , xn) ⇐= e ∈ D.

That is, they first evaluate all the arguments to their final values and then
continue by evaluating the body of the function. Note that this semantics just
shows the result of applying one step; since this is very inconvenient for execution
purposes, we will define in the next section its reflexive and transitive closure.

2.2 Maude

Maude modules are executable rewriting logic specifications. Maude functional
modules [4, Chap. 4], introduced with syntax fmod ... endfm, are executable
membership equational specifications that allow the definition of sorts (by means
of keyword sort(s)); subsort relations between sorts (subsort); operators (op)
for building values of these sorts, giving the sorts of their arguments and result,
and which may have attributes such as being associative (assoc) or commuta-
tive (comm), for example; memberships (mb) asserting that a term has a sort; and
equations (eq) asserting that terms are equal. Both memberships and equations
can be conditional (cmb and ceq). Maude system modules [4, Chap. 6], intro-
duced with syntax mod ... endm, are executable rewrite theories. A system
module can contain all the declarations of a functional module and, in addition,
declarations for rules (rl) and conditional rules (crl).

To specify our semantics in Maude we first define its syntax in the SYNTAX

module. This module contains the sort definitions for all the categories:

2 Note that we are using call-by-value parameter passing; a modification of the rule
could also define the behavior for call-by-name.

56 A. Riesco

sorts Var Num Op Exp BVar Boolean BOp BExp FunVar VarList NumList

ExpList Prog Dec .

Note that we need to define lists explicitly. It also defines some subsorts, e.g. the
one stating that a variable or a number are specific cases of expressions:

subsort Var Num < Exp .

Then it defines the syntax for each sort. For example, variables are defined
by using the operator V, which receives a Qid (a term preceded by a quote) as
argument; function names, of sort FunVar, are built by the operator FV, which
also receives a Qid; operators are defined as constants; and let-expressions, if-
expressions, and function calls are defined by using the operators below, where
underscores are placeholders, ctor indicates that the operator is a constructor,
and the prec attribute indicates its precedence:

op V : Qid -> Var [ctor] .

op FV : Qid -> FunVar [ctor] .

ops + - * : -> Op [ctor] .

op let_=_in_ : Var Exp Exp -> Exp [ctor prec 25] .

op If_Then_Else_ : BExp Exp Exp -> Exp [ctor prec 25] .

op _(_) : FunVar ExpList -> Exp [ctor prec 15] .

Once this module is defined, we have others that use equations to define
the behavior of the basic operators, such as addition; another to define the
environment (mapping variables to values); and another one for dealing with
substitutions. These modules are required by the ones in charge of defining
the semantics. Following the idea of transitions as rewrites [17] outlined in the
introduction, we can specify inference rules by using conditional rules, being the
body of the rule the conclusion of the inference and the conditions, written as
rewrite conditions, the premises. In this way, we can write the (FunBS) rule as:

crl [FunBS] : D, ro |- FV(elist) => v

if D, ro |- elist => vlist /\

FV(xlist) <= e & D’ := D /\

D, ro[vlist / xlist] |- e => v .

that is, given the set of definitions D, the environment for variables ro and a
function FV applied to a list of expressions elist, the function is evaluated to
the value v if (i) the expressions elist are evaluated to the list of values vlist;
(ii) the body of the function FV stored in D is e and the function parameters are
xlist; and (iii) the body, where the variables in xlist are substituted by the
values in vlist, is evaluated to v.

We define the small-step semantics in another module. The rule FunSS1 in-
dicates that, if the list of expressions applied to a function FV has not been
evaluated to values yet, then we can take any of these expressions and replace
it by a more evolved one:

crl [FunSS1] : D, rho |- FV(elist,e,elist’) => FV(elist,e’,elist’)

if D, rho |- e => e’ .

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 57

The rule FunSS2 indicates that, once all the expressions have been evaluated
into values, we can look for the definition of FV in the set of definitions D,
substitute the parameters by the given values, and then reduce the function
to the body:

crl [FunSS2] : D, rho |- FV(vlist) => e[vlist / xlist]

if FV(xlist)<= e & D’ := D .

Moreover, we can also define the reflexive and transitive closure, which will
be required to reach final values. These rules are defined by using a different
operator _|=_, which distinguishes between single steps and the closure in order
to avoid infinite computations. The rule zero indicates that a value is reduced
to itself:

rl [zero] : D, ro |= v => v . *** no step

The rule more indicates that, if the expression e has not reached a value then
we can first perform a small step to reach a newer expression e’, which will
further evaluated using this reflexive and transitive closure until it reaches a
value:

crl [more] : D, ro |= e => v

if not (e :: Num) /\

D, ro |- e => e’ /\ *** one step

D, ro |= e’ => v . *** all the rest

However, note that this distinction is only necessary from the executability
point of view, and hence these rules can be understood as:

(zero)
D, ρ � v ⇒S v

(more)
D, ρ � e ⇒S e′ D, ρ � e′ ⇒S v

D, ρ � e ⇒S v

Using any of these semantics we can execute programs written in our Fpl
language. For example, we can define in a constant exDec the Fibonacci function
and use a wrong addition function, which is implemented as “times”:

eq exDec =

FV(’Fib)(V(’x)) <= If Equal(V(’x), 0) Then 0

Else If Equal(V(’x), 1) Then 1

Else FV(’Add)(FV(’Fib)(V(’x) - 1),

FV(’Fib)(V(’x) - 2)) &

FV(’Add)(V(’x), V(’y)) <= V(’x) * V(’y) .

and use the big-step semantics to execute Fib(2), obtaining 0 as result:

Maude> (rew exDec, mt |= FV(’Fib)(2) .)

rewrite in BIG-STEP : exDec, mt |- FV(’Fib)(2)

result Num : 0

58 A. Riesco

(FunBS)

(CRN)
D, id � 2 ⇒B 2

(IfR2)

(EqR2)
�1 �2

D, ρ � x == 0 ⇒B F
(IfR2)

�3 �4

D, ρ � If x == 1 . . . ⇒B 0

D, ρ � If x == 0 . . . ⇒B 0

D, id � Fib(2) ⇒B 0

where proof tree �4 is defined as:

(FunBS)

(ExpLR)

(FunBS)
� �

D, ρ � Fib(x− 1) ⇒B 1
(FunBS)

� �
D, ρ � Fib(x− 2) ⇒B 0

D, ρ � Fib(x− 1), Fib(x− 2) ⇒B 1, 0 �
D, ρ � Add(Fib(x− 1), Fib(x− 2)) ⇒B 0

Fig. 2. Proof tree for Fib(2) evaluated by using big-step semantics

This result is erroneous, and its associated proof tree, partially depicted in
Figure 2, has 37 nodes. In this figure D stands for the declarations shown above,
ρ for x �→ 2, and we have simplified the syntax to improve the readability. The
labels for the rules that we have not shown are straightforward: CRN evaluates a
value to itself, IfR2 evaluates an if statement when the condition is false, EqR
evaluates an equality to false, and ExpLR evaluates a list of expressions. The
tree 	1 abbreviates the tree for the evaluation of x to 2, 	2 the evaluation
of 0 to itself, 	3 evaluates x == 1, and the rest of 	’s just continue with the
computation following the same ideas presented above.

Similarly, the evaluation of Fib(2) using small-step semantics returns the fol-
lowing result:

Maude> (rew exDec2, mt |= FV(’Fib)(2) .)

rewrite in COMPUTATION : exDec2, mt |= FV(’Fib)(2)

result Num : 0

The proof tree for this case is shown in Figure 3, where D stands for the
definitions, e1 for the definition of Fib applied to 2, and e2 for this definition
once we have substituted the condition by F. We start with a transitivity step,
which has a function application as left child, which replaces the call to Fib by
the body of the function. This value is used to keep looking for the final result
with another more rule, which evaluates the condition in this If expression by
means of an (IfR1) inference rule. It then continues with another more rule, where
the 	’s stand for trees similar to the ones shown here.

If we try to use the previous version of our debugger to debug this problem
it will indicate that the rule FunBS is buggy for the big-step semantics, while
FunSS2 will be pointed out as buggy for small-step semantics, although they are
correctly defined. This happens because these rules are in charge of applying
the functions (in this case Fib and Add) defined by the user, but they cannot
distinguish between different calls. We will show how to improve the debugger
to point out the specific user-defined function responsible for the error in the
next sections.

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 59

(more)

(FunSS2)
D, id � Fib(2) ⇒S e1

(more)

(IfR1)

(EqR4)
D, id � Equal(2,0) ⇒S F

D, id � e1 ⇒S e2
(more)

� �
D, id � e2 ⇒S 0

D, id � e1 ⇒S 0

D, id � Fib(2) ⇒S 0

Fig. 3. Proof tree for Fib(2) evaluated by using small-step semantics

2.3 Related Work

We compare in this section our approach with the best known debugging method
for any programming language: tracing with breakpoints. Although the trace is
easy to use and highly customizable, a declarative debugger provides more clar-
ity and simplicity of usage. In a trace-debugger, programmers must set some
breakpoints where they want to stop the execution. From those points they can
proceed step by step, checking whether the results of the functions or the ar-
guments and bindings are the expected ones. If they skip the evaluation of a
function but they discover it returns a wrong value, they have to restart the ses-
sion to enter and debug its code. The advantage of the declarative debugger is
that, starting only from an expression returning a wrong value, it finds a buggy
function by simply asking about the results of the functions in the computa-
tion, avoiding low-level details. It focuses on the intended meaning of functions,
which is something very clear to programmers (or debuggers), and the naviga-
tion strategies saves them from choosing what functions check and in what order
as with breakpoints in the trace-debugger.

Moreover, note that throughout the paper we talk about functions as potential
sources of errors because they depend on the user code and have an expected
result (so we can make questions about them). However, we can modify the
granularity of the errors discovered by the debugger by pointing out more specific
rules as potentially erroneous. For example, we could consider that a loop in an
imperative language is a “computational unit” and hence it has meaning by
itself (as considered when enhancing declarative debugging in [7]). In this way,
the debugger would ask questions related to loops (it could also ask questions
about functions, if they are included). That is, we can configure the debugger to
ask questions as specific as we want, so we could also examine the code inside
functions, just as a trace-debugger.

Moreover, our approach is quite useful when prototyping a new programming
language, since it would not have any debugging mechanism a priori. That is,
the present work provides a debugger for free for any programming language
specified in Maude, while the trace would only provide the execution of Maude
equations and rules.

3 Declarative Debugging Using the Semantics

We present in this section the relation between the proof trees obtained by using
the operational semantics in the previous section and the debugging trees that
should be used to debug them.

60 A. Riesco

3.1 Preliminaries

Declarative debugging requires an intended interpretation, which corresponds
to the model the user had in mind while writing the program, to locate the
bug. This interpretation depends on the programming language, and hence we
cannot define it a priori. For this reason, we present the assumptions that must
be fulfilled by the calculus and the information provided by the user before
starting the debugging process:

– There is a set S of rules whose correctness depends on the code of the
program being debugged. That is, we can distinguish between the inference
rules executing the user code (e.g. the rules defining function call), which will
be contained in S, and the rest of rules defining the operational details (e.g.
the rules defining the execution order). If the inference rules are correctly
implemented, only the execution of rules in S may lead to incorrect results.

– The user must provide this set, which will fix the granularity of the debugging
process. The rest of the rules will be assumed to work as indicated by the
semantics (i.e. no errors can be detected through them).

– The user knows the fragment of code being executed by each rule, assuming
the premises are correct.

Example 1. The obvious candidate for the set S in our functional language is
S = {(FUNBS)} for big-step semantics (respectively, S = {(FUNSS2)} for small-
step semantics). This rule is in charge of evaluating a function, and thus we can
indicate that, when an error is found, the responsible is F , the name given in
the rule to the function being evaluated.

Corollary 1. As a consequence of the second restriction, given a calculus with
a set of inference rules R, a set of rules S fulfilling the restrictions above, a set
of rules U ⊆ R such that U ∩ S = ∅, a model M of the calculus, an intended
interpretation I, and a judgement j which is the consequence of any inference
rule in U , we have M |= j ⇐⇒ I |= j.

We are interested in the judgements whose correctness may differ between
the model and the intended interpretation. Given a model of the calculus, an
intended interpretation I, and a judgement j such that M |= j we will say that
a judgement j is valid if I |= j and invalid otherwise. The basic declarative
debugging scheme tries to locate a buggy node, that is, an invalid node with all
its children valid. Regarding buggy nodes in the proof trees defined above, it is
important to take into account the following property:

Proposition 1. Let N be a buggy node in some proof tree in the given calculus,
I an intended interpretation, and S the set of rules indicated by the user.

1. N corresponds to the consequence of an inference rule in S.
2. The error associated to N is the one indicated by the user to the rule in N .

Proof. The first item is a straightforward consequence of Corollary 1. The second
item is also straightforward from the third condition required on the set S.

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 61

3.2 Declarative Debugging with Big-Step Semantics

Instead of using the proof trees obtained from the calculus for declarative de-
bugging, we will use an abbreviation to remove all the nodes that do not pro-
vide debugging information. We call this abbreviation APTbs , from Abbreviated
Proof Tree for big-step semantics. APTbs is defined by using the set of rules S
indicated by the user as follows:

APTbs

(
(R)

T

j

)
= (R)

APT ′
bs(T)

j

APT ′
bs

(
(R)

T1 . . . Tn

j

)
=

{
(R)

APT ′
bs(T1) . . . APT ′

bs(Tn)

j

}
, (R) ∈ S

APT ′
bs

(
(R)

T1 . . . Tn

j

)
= APT ′

bs(T1)
⋃

. . .
⋃

APT ′
bs(Tn), (R) 	∈ S

The basic idea of the transformation is that we keep the initial evaluation and
the evaluation performed by rules in S, while the rest of evaluations are removed
from the tree. We show that this transformation is appropriate:

Theorem 1. Let T be a finite proof tree representing an inference in the given
calculus. Let I be an intended interpretation for this calculus such that the root
N of T is invalid in I. Then:
(a) APTbs(T) contains at least one buggy node (completeness).
(b) Any buggy node in APTbs(T) has an associated error, according to the in-

formation given by the user.

Proof. We prove the items separately:

(a) By induction on the height of APTbs(T).
(Base case). If height(APTbs(T)) = 1 then APTbs(T) only contains the

root, which is invalid by hypothesis, and hence buggy.
(Inductive case). When height(APTbs (T)) = k then APTbs(T) contains

a buggy node. If height(APTbs(T)) = k + 1 we distinguish whether the
root if buggy or not. If it is buggy then we have found the buggy node.
Otherwise, it has at least one child node which is invalid and it contains
a buggy node by hypothesis.

(b) Note first that the root is buggy iff (R) ∈ S. In fact, it is easy to see that,
by Proposition 2, if (R) ∈ S then at least one of its child nodes is invalid
in I, and hence the APT ′

bs function will contain an invalid tree, preventing
the root from being buggy. Once this is stated, we realize that APT ′

bs only
keeps the inference rules in S and, since a buggy node has all its children
valid and the user has assured that it can indicate the source of the error,
the result holds.

where the auxiliary results are proved as follows:

Proposition 2. Given a proof tree T , a set S of rules given by the user, an
intended interpretation I such that the root N of T is invalid, and {T1, . . . , Tn} =
APT ′

bs(T), then ∃ Ti, 1 ≤ i ≤ n, and N ′ the root of ti such that I |= N ′.

62 A. Riesco

(FunBS)

(FunBS)

(FunBS)
D, ρ � Fib(x− 1) ⇒B 1

(FunBS)
D, ρ � Fib(x− 2) ⇒B 0

D, ρ � Add(Fib(x− 1), Fib(x− 2)) ⇒B 0

D, id � Fib(2) ⇒B 0

Fig. 4. Abbreviated proof tree for Fib(2)

Proof. We proceed by induction on the height of T .

Base case. If height(T) = 1 then, because of the restrictions on the set S, we
have (R) ∈ S, with (R) the rule used to infer N , and the result holds.

Inductive case. When height(T) = k we have an invalid tree w.r.t. I in the
set APT ′

bs(T). If height (T) = k, then we distinguish whether the rule (R)
used in the root is in S. If it is, then the result holds trivially, since the
transformation will keep this tree. Otherwise, we know that there is a child
node that is invalid (since we restrictions in the set S prevent this node from
being buggy), and we can use the induction hypothesis to check that the
result holds.

Example 2. We can apply these rules, using the set S from Example 1, to the
proof tree presented in Figure 2, obtaining the tree in Figure 4. Note that the
37 nodes in the proof tree have been reduced to 4 nodes in the abbreviated one.

The major weakness of big-step semantics when used for declarative debugging
resides in the fact that evaluating terms whose subterms have not been fully
reduced, as shown in Figure 4. This element makes the debugging process more
complicated because it forces the user to think about the expected results for
the subterms before considering whether the current computation is correct or
not.

To solve this problem, we propose to use the single-stepping navigation strat-
egy [15], which starts asking from the leaves, discarding the correct ones until
an invalid one (and hence buggy, since leaves have no children) is found. This
strategy allows us to substitute subterms by the appropriate values when asking
questions, given this property is assured by the user:

Proposition 3. Given I |= t ⇒ t′, we have

I |= f(t1, . . . , t, . . . , tn) ⇒ r ⇐⇒ I |= f(t1, . . . , t
′, . . . , tn) ⇒ r

That is, the user must make sure that the semantics works, for the rules he
has selected, by first reducing the subterms/arguments and then applying the
rules for the reduced term. Note that these reduced terms are just a specific
case of the ones indicated by the user for his intended semantics, and thus are
included in I. Since the structure of the tree does not change it is easy to see that
completeness holds. Regarding soundness, it only holds if we traverse the tree
by checking the correctness of the inferences for the subterms before checking
the correctness of the whole term (otherwise we might discard the real source

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 63

(FunBS)

(FunBS)

(FunBS)
(♦) D, ρ � Fib(1) ⇒B 1

(FunBS)
(♥) D, ρ � Fib(0) ⇒B 0

(♣) D, ρ � Add(1, 0) ⇒B 0

D, id � Fib(2) ⇒B 0

Fig. 5. Simplified abbreviated proof tree for Fib(2)

of the error). For this reason, we combine this transformation with the single-
stepping navigation strategy [15], which performs exactly this traversal.

Using this simplification, we would obtain the tree in Figure 5, where all the
subterms have been reduced. Although this change might seem trivial in this
simple example, the benefits are substantial when more complex programs are
debugged. Notice also that Proposition 3 may not hold in some cases, e.g. in
lazy languages where the arguments are not evaluated until they are required.
In this case we will follow the standard approach, asking about subterms not
fully reduced and using the top-down or divide and query navigation strategies,
which are more efficient in general that single-stepping.

3.3 Declarative Debugging with Small-Step Semantics

In contrast to the big-step semantics above, the small-step semantics applies
a single evaluation step, making the debugging very similar to the step-by-step
approach. To avoid this problem we place transitivity nodes in such a way that (i)
the debugging tree becomes as balanced as possible, which improves the behavior
of the navigation strategies and (ii) the questions in the debugging tree refer to
final results, making the questions easier to answer. The tree transformation for
this semantics, similar to the one in [14], takes advantage of transitivity rules
while keeping the correctness and completeness of the technique. Thus, in this
case the APTss function is defined as:

APTss

(
(R)

T

j

)
= (R)

APT ′
ss(T)

j

APT ′
ss

⎛
⎜⎜⎝(Tr)

(R)
T1 . . . Tn

j′ T

j

⎞
⎟⎟⎠ =

{
(R)

APT ′
ss(T1) . . .APT ′

ss(Tn) APT ′
ss(T)

j

}
, (R) ∈ S

APT ′
ss

(
(R)

T1 . . . Tn

j

)
=

{
(R)

APT ′
ss(T1) . . .APT ′

ss(Tn)

j

}
, (R) ∈ S

APT ′
ss

(
(R)

T1 . . . Tn

j

)
= APT ′

ss(T1)
⋃

. . .
⋃

APT ′
ss(Tn), (R) 	∈ S

That is, when we have a transitivity step whose left premise is a rule pointed
out by the user, then we keep the “label” of the inference (which indicates that

64 A. Riesco

we will locate the error in the lefthand side of this node, which is the same as
the one in the premise) in the transitivity step, that presents the final value.

Theorem 2. Let T be a finite proof tree representing an inference in the given
calculus. Let I be an intended interpretation for this calculus such that the root
N of T is invalid in I. Then:
(a) APTss (T) contains at least one buggy node (completeness).
(b) Any buggy node in APTss (T) has an associated error, according to the in-

formation given by the user.

Proof. We prove each item separately:

(a) Analogous to the proof for Theorem 1(a).
(b) We first use Proposition 4 below to check that, if the root is buggy, then it

is associated to an inference rule (R) ∈ S and the result holds by using the
assumed conditions on the rules of this set. Any other buggy node must be
obtained from APT ′

ss(T).
Let N be a buggy node occurring in APT ′

ss(T). Then N is the root of some
tree TN , subtree of some T ′ ∈ APT ′

ss(T). By the structure of the APT ′
ss

rules this means that there is a subtree T ′ of T such that TN ∈ APT ′
ss (T

′).
We prove that the inference rule used to obtain N is in the set S by induction
on the number of nodes of T ′, |T ′|.
If |T ′| = 1 then T ′ contains only one node and APT ′

ss (T
′) = {T ′}, due to the

restrictions in the set S. Since only the second APT ′
ss rule can be applied in

this case the rule has been kept and it is associated to the error specified by
the user.
If |T ′| > 1 we examine the APT ′

ss rule applied at the root of T ′:
• In the first case, T ′ is of the form

(Tr)

(R)
T1 . . . Tn

j′ T ′′

j
, with (R) ∈ S

Hence N ≡ j and TN is

(R)
APT ′

ss(T1) . . . APT ′
ss(Tn) APT ′

ss (T
′′)

j

Since N is buggy in TN it is invalid w.r.t. I. However, a transitivity step
cannot be buggy in T ′, since it does not depend on the code written
by the user. For this reason either j′ or the root of T ′′ are invalid. But
the root of T ′′ cannot be buggy, since Proposition 4 indicates that the
APT ′

ss applied to a tree with an invalid root produces a set where at
least one tree has an invalid root, which would prevent N from being
buggy. Therefore j′ is invalid. Moreover, the roots of T1 . . . Tn must be
valid, since otherwise N would not be buggy. Hence, j′ is buggy in T ′

and the user is able to point out the error. Therefore, and given that in a
transitivity rule the lefthand side of the root is the same as the lefthand
side of the left premise, the user can identify the error in j.

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 65

• In the second case the conclusion of the inference is kept and, given that
N is buggy, all the premises are valid and hence the user can identify
the error.

• In the third case, TN ∈ APT ′
ss (Ti) for some child subtree Ti of the root

T ′ and the result holds by the induction hypothesis.

where the auxiliary results are proved as follows:

Proposition 4. Given a proof tree T , a set S of rules given by the user, an
intended interpretation I such that the root N of T is invalid, and {T1, . . . , Tn} =
APT ′

ss(T), then ∃ Ti, 1 ≤ i ≤ n, and N ′ the root of ti such that I |= N ′.

Proof. Analogous to Proposition 2.

The tree obtained by using this abbreviation is equal to the one shown in
Figure 5, although in this case the (FunBS) inferences are (FunSS2) inferences ob-
tained by applying the first equation for APT ′

SS . Finally, note that, if the user
does not want to use this simplification, we can still use the APT transforma-
tion for big-step and the result from Theorem 1 to perform the debugging in a
“normal” tree, which will present a step-by-step-like debugging session.

4 Debugging Session

The debugger is started by loading the file dd.maude available at
http://maude.sip.ucm.es/debugging/. It starts an input/output loop where
commands can be introduced by enclosing them into parentheses.

Once we have introduced the modules specifying the semantics, we can intro-
duce the set S rule by rule as follows:

Maude> (intended semantics FunBS culprit FV:FunVar .)

The rule FunBS has been added to the intended semantics.

If buggy, FV in the lefthand side will be pointed out as erroneous.

This command introduces the rule FunBS into the set S indicating that, when
the buggy node is found, the responsible for the error will be the value matching
the variable FV. Now we can select the single-stepping navigation strategy and
start the debugging session for big-step, which reduces the subterms by default:

Maude> (single-stepping strategy .)

Single-stepping strategy selected.

Maude> (debug big step semantics exDec, mt |- FV(’Fib)(2) => 0 .)

Is D, V(’x) = 2 |- FV(’Fib)(1) evaluated to 1 ?

Maude> (yes .)

The first question (where we have replaced the definitions by D to simplify the
presentation) corresponds to the node marked as (♦) in Figure 5. Since we
expected this result we have answered yes, so the subtree is removed and the
next question corresponds to the node marked as (♥):

http://maude.sip.ucm.es/debugging/

66 A. Riesco

Is D, V(’x) = 2 |- FV(’Fib)(0) evaluated to 0 ?

Maude> (yes .)

This result was also expected, so we have answered yes again, and this subtree
is also removed. The next question, which is related to the node marked as
(♣), corresponds to an erroneous evaluation, so we answer no. Now, this node
becomes an invalid node with all its children valid, and hence it reveals an error
in the specification:

Is D, V(’x) = 2 |- FV(’Add)(1,0) evaluated to 1 ?

Maude> (no .)

The buggy node is:

The term D, V(’x) = 2 |- FV(’Add)(1, 0) has been evaluated to 0

The code responsible for the error is FV(’Add)

That is, the debugger indicates that the function Add has been wrongly imple-
mented in the Fpl language. We can debug the program in a similar way using
the small-step semantics. In this case we have to introduce, in addition to the
set of rules responsible for errors as shown above, the set of rules required for
transitivity:

Maude> (intended semantics FunSS2 culprit FV:FunVar .)

The rule FunSS2 has been added to the intended semantics.

If buggy, the FV:FunVar in the lefthand side will be pointed out

as erroneous.

Maude> (transitivity rules more .)

The rules more have been introduced as rules for transitivity.

We can now start the debugging session for small-step as follows:

Maude> (debug small step semantics exDec2, mt |= FV(’Fib)(2) => 0 .)

Is D, mt |= FV(’Add)(1, 0) evaluated to 0 ?

The answer is no, which allows the debugger to find the error in Add:

The buggy node is:

The term D, mt |= FV(’Add)(1, 0) has been evaluated to 0

The code responsible for the error is FV(’Add)

5 Concluding Remarks and Ongoing Work

We have presented in this paper a methodology to use declarative debugging
on programming languages defined using big-step and small-step semantics in
Maude. It uses the specific features of each semantics to improve the questions
asked to the user. The big-step semantics can present terms with all the sub-
terms in normal form, while the small-step semantics use the transitivity rule

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 67

to present the final results. This approach has been implemented in a Maude
prototype extending the previous declarative debugger for Maude specifications.
The major drawback of this approach consists in relying on the user for most of
the results, that depend on the set of rules chosen for debugging. Although this
is unfortunate, we consider it is necessary to build a tool as general as the one
presented here.

Thus far we have checked the adequacy of the approach for small functional
and imperative languages, so we also plan to study its behavior with more com-
plex languages. Moreover, we want to extend our declarative debugger to work
with K definitions. The K framework [5] is a rewrite-based executable seman-
tic framework where programming languages and applications can be defined.
However, K performs intermediate transformations to the rules defining the se-
mantics and thus it is difficult to reason about them.

Another interesting subject of future work would consist of studying how
declarative debugging works for languages with parallelism. We could use the
search engine provided by Maude to look for paths leading to errors, and then
use the path leading to the errors to build the debugging tree, thus providing
a simple way to combine verification and debugging. We also plan to extend
the possible answers in this kind of debugging. We are specifically interested in
implementing a trust answer that removes from the tree all the subtrees rooted
by the expression being trusted. Finally, a prototype for generating test cases
based on the semantics specified in Maude has been proposed in [13]. It would
be interesting to connect both tools, in order to debug the failed test cases.

References

1. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theoretical Computer Science 236, 35–132 (2000)

2. Caballero, R.: A declarative debugger of incorrect answers for constraint functional-
logic programs. In: Antoy, S., Hanus, M. (eds.) Proc. of the 2005 ACM SIGPLAN
Workshop on Curry and Functional Logic Programming, WCFLP 2005, Tallinn,
Estonia, pp. 8–13. ACM Press (2005)

3. Caballero, R., Hermanns, C., Kuchen, H.: Algorithmic debugging of Java pro-
grams. In: López-Fraguas, F. (ed.) Proc. of the 15th Workshop on Functional and
(Constraint) Logic Programming, WFLP 2006, Madrid, Spain. Electronic Notes in
Theoretical Computer Science, vol. 177, pp. 75–89. Elsevier (2007)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

5. Şerbănuţă, T.F., Roşu, G.: K-Maude: A rewriting based tool for semantics of pro-
gramming languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp.
104–122. Springer, Heidelberg (2010)

6. Hennessy, M.: The Semantics of Programming Languages: An Elementary Intro-
duction Using Structural Operational Semantics. John Wiley & Sons (1990)

7. Insa, D., Silva, J., Tomás, C.: Enhancing declarative debugging with loop expansion
and tree compression. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 71–
88. Springer, Heidelberg (2013)

68 A. Riesco

8. MacLarty, I.: Practical declarative debugging of Mercury programs. Master’s thesis,
University of Melbourne (2005)

9. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96(1), 73–155 (1992)

10. Naish, L.: Declarative diagnosis of missing answers. New Generation Comput-
ing 10(3), 255–286 (1992)

11. Nilsson, H.: How to look busy while being as lazy as ever: the implementation
of a lazy functional debugger. Journal of Functional Programming 11(6), 629–671
(2001)

12. Pope, B.: A Declarative Debugger for Haskell. PhD thesis, The University of Mel-
bourne, Australia (2006)

13. Riesco, A.: Using semantics specified in Maude to generate test cases. In: Roy-
choudhury, A., D’Souza, M. (eds.) ICTAC 2012. LNCS, vol. 7521, pp. 90–104.
Springer, Heidelberg (2012)

14. Riesco, A., Verdejo, A., Mart́ı-Oliet, N., Caballero, R.: Declarative debugging of
rewriting logic specifications. Journal of Logic and Algebraic Programming 81(7-8),
851–897 (2012)

15. Shapiro, E.Y.: Algorithmic Program Debugging. ACM Distinguished Dissertation.
MIT Press (1983)

16. Tessier, A., Ferrand, G.: Declarative diagnosis in the CLP scheme. In: Deransart,
P., Ma�luszyński, J. (eds.) DiSCiPl 1999. LNCS, vol. 1870, pp. 151–174. Springer,
Heidelberg (2000)

17. Verdejo, A., Mart́ı-Oliet, N.: Executable structural operational semantics in
Maude. Technical Report 134-03, Dpto. Sistemas Informáticos y Programación,
Universidad Complutense de Madrid (2003)

18. Verdejo, A., Mart́ı-Oliet, N.: Executable structural operational semantics in
Maude. Journal of Logic and Algebraic Programming 67, 226–293 (2006)

	Using Big-Step and Small-Step Semantics in Maude to Perform Declarative Debugging
	Introduction
	Preliminaries
	Fpl, A Simple Functional Language
	Maude
	Related Work

	Declarative Debugging Using the Semantics
	Preliminaries
	Declarative Debugging with Big-Step Semantics
	Declarative Debugging with Small-Step Semantics

	Debugging Session
	Concluding Remarks and Ongoing Work

