
EDD: A Declarative Debugger
for Sequential Erlang Programs�

Rafael Caballero1, Enrique Martin-Martin1,
Adrian Riesco1, and Salvador Tamarit2

1 Universidad Complutense de Madrid, Madrid, Spain
rafa@sip.ucm.es, emartinm@fdi.ucm.es, ariesco@fdi.ucm.es

2 Babel Research Group, Universitat Politécnica de Madrid, Madrid, Spain
stamarit@fi.upm.es

Abstract. Declarative debuggers are semi-automatic debugging tools
that abstract the execution details to focus on the program semantics.
This paper presents a tool implementing this approach for the sequential
subset of Erlang, a functional language with dynamic typing and strict
evaluation. Given an erroneous computation, it first detects an erroneous
function (either a “named” function or a lambda-abstraction), and then
continues the process to identify the fragment of the function responsible
for the error. Among its features it includes support for exceptions, pre-
defined and built-in functions, higher-order functions, and trusting and
undo commands.

1 Introduction

Declarative debugging, also known as algorithmic debugging, is a well-known
technique that only requires from the user knowledge about the intended behav-
ior of the program, that is, the expected results of the program computations,
abstracting the execution details and hence presenting a declarative approach. It
has been successfully applied in logic [5], functional [6], and object-oriented [4]
programming languages. In [3,2] we presented a declarative debugger for se-
quential Erlang. These works gave rise to EDD, the Erlang Declarative Debugger
presented in this paper. EDD has been developed in Erlang. EDD, its documenta-
tion, and several examples are available at https://github.com/tamarit/edd
(check the README.md file for installing the tool).

As usual in declarative debugging the tool is started by the user when an
unexpected result, called the error symptom, is found. The debugger then builds
internally the so-called debugging tree, whose nodes correspond to the auxiliary
computations needed to obtain the error symptom. Then the user is questioned
� Research supported by EU project FP7-ICT-610582 ENVISAGE, Spanish
projects StrongSoft (TIN2012-39391-C04-04), DOVES (TIN2008-05624), and VI-
VAC (TIN2012-38137), and Comunidad de Madrid PROMETIDOS (S2009/
TIC-1465). Salvador Tamarit was partially supported by research project POLCA,
Programming Large Scale Heterogeneous Infrastructures (610686), funded by the
European Union, STREP FP7.

E. Ábrahám and K. Havelund (Eds.): TACAS 2014, LNCS 8413, pp. 581–586, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

https://github.com/tamarit/edd


582 R. Caballero et al.

about the validity of some tree nodes until the error is found. In our proposal,
the debugger first concentrates in the function calls occurred during the com-
putation. The goal is to find a function call that returned an invalid result,
but such that all the function calls occurring in the function body returned a
valid result. The associated node is called a buggy node. We prove in [3] that
such function is a wrong function, and that every program producing an error
symptom1 contains at least one wrong function. An important novelty of our
debugger w.r.t. similar tools is that it allows using zoom debugging to detect an
erroneous fragment of code inside the wrong function. At this stage the user is
required to answer questions about the validity of certain variable matchings,
or about the branch that should be selected in a case/if statement for a given
context. The theoretical results in [2] ensure that this code is indeed erroneous,
and that a wrong function always contains an erroneous statement.

The rest of the paper is organized as follows: Section 2 introduces Erlang and
EDD. Section 3 describes the questions that can be asked by the tool and the
errors that can be detected. Section 4 concludes and presents the future work.

2 Erlang and EDD

In this section we introduce some pieces of Erlang [1] which are relevant for
our presentation. At the same time we introduce the basic features of our tool.
Erlang is a concurrent language with a sequential subset that is a functional
language with dynamic typing and strict evaluation. Programs are structured
using modules, which contain functions defined by collections of clauses.

Example 1. Obtain the square of a number X without using products. This is
possible defining Y = X − 1 and considering X2 = (Y +1)2 = Y 2 + Y + Y +1.

-module(mathops).
-export([square/1]).
square(0) -> 0;
square(X) when X>0 -> Y=X-1, DoubleY=X+X, square(Y)+DoubleY+1.

Observe that variables start with an uppercase letter or underscore. In order
to evaluate a function call Erlang scans sequentially the function clauses until a
match is found. Then, the variables occurring in the head are bound. In our ex-
ample the second clause of the function square is erroneous: the underlined sub-
term X+X should be Y+Y. Using this program we check that mathops:square(3)
is unexpectedly evaluated to 15. Then, we can start EDD, obtaining the debug-
ging session in Fig. 1, where the user answers are boxed. Section 3.1 explains all
the possible answers to the debugger questions. Here we only use ‘n’ (standing
for ‘no’), indicating that the result is invalid, and ‘y’ (standing for ‘yes’), indicat-
ing that it is valid. After two questions the debugger detects that the tree node
containing the call mathops:square(1) is buggy (it produces and invalid result
while its only child mathops:square(0) returns a valid result). Consequently,
1 Note that, if the module has multiple errors that compensate each other, there is no
error symptom and hence declarative debugging cannot be applied.



EDD: A Declarative Debugger for Sequential Erlang Programs 583

> edd:dd("mathops:square(3)").
mathops:square(1) = 3? n
mathops:square(0) = 0? y
Call to a function that contains an error:
mathops:square(1) = 3
Please, revise the second clause:
square(X) when X > 0 -> Y=X-1, DoubleY=X+X, square(Y)+DoubleY+1.
Continue the debugging session inside this function? y
In the function square(1) matching with second clause succeed.
Is this correct? y
Given the context: X = 1
the following variable is assigned: DoubleY = 2? n
This is the reason for the error:
Variable DoubleY is badly assigned 2 in the expression:
DoubleY = X + X (line 4).

Fig. 1. EDD session corresponding to the call mathops:square(3)

the tool points out the second clause of square as wrong. Next, the user is asked
if zoom debugging must be used. The user agrees with inspecting the code as-
sociated to the buggy node function call. The debugger proceeds asking about
the validity of the chosen function clause, which is right (the second one), and
about the validity of the value for DoubleY, which is incorrect (it should be 0
since X=1 implies Y=0). The session finishes pointing to this incorrect match-
ing as the source of the error. Observe that an incorrect matching is not always
associated to wrong code, because it could depend on a previous value that con-
tains an incorrect result. However, the correctness results in [3] ensure that only
matchings with real errors are displayed as errors by our tool. Note in this ses-
sion the improvement with respect to the trace, the standard debugging facility
for Erlang programs. While the trace shows every computation step, our tool
focuses first on function calls, simplifying and shortening the debugging process.

The next example shows that Erlang allows more sophisticated expressions in
the function bodies, including case or if expressions.
Example 2. Select the appropriate food taking into account different preferences.

-module(meal).
-export([food/1]).
food(Preferences) ->

case Preferences of
{vegetarian,ovo_vegetarian} -> omelette;
{vegetarian,_lacto_vegetarian} -> yogurt;
{vegetarian,vegan} -> salad;
_Else -> fish

end.
Now we can evaluate the expression meal:food({vegetarian,vegan}) and

we obtain the unexpected result yogurt. This time the first phase of the debugger
is not helpful: it points readily to the only clause of food. In order to obtain
more precise information we use zoom debugging, and the debugger asks:



584 R. Caballero et al.

For the case expression:
(... omitted for the sake of space ... )
Is there anything incorrect?
1.- The context: Preferences = {vegetarian,vegan}
2.- The argument value: {vegetarian,vegan}.
3.- Enter in the second clause.
4.- The bindings: _lacto_vegetarian = vegan
5.- The final value: yogurt.
6.- Nothing.
[1/2/3/4/5/6]? 3

This question asks for anything invalid in the evaluation of the case expressions
with respect to its intended meaning. It is important to mention that in the case
of something wrong the answer must be the first wrong item. In our case the
context and the case argument are correct, but we did not expect to use the
second branch/clause but the third. Therefore we answer 3 indicating that this
is the first error in the list. The next question is:

Which clause did you expect to be selected [1/2/3/4]? 3

As explained above, we expected to use the third clause for this context. Then
the debugger stops indicating the error:

This is the reason for the error:
The pattern of the second clause of case expression:
case Preferences of {vegetarian, _lacto_vegetarian} -> yogurt end

Indeed there is an erroneous underscore in _lacto_vegetarian. It converts
the constant into an anonymous variable, and thus the branch was incorrectly
selected. The debugger has found the error, indicating that the second branch is
wrong and that in particular the pattern definition is incorrectly defined. Note
that, with a trace-debugger, programmers proceed instruction by instruction
checking whether the bindings, the branches selected in case/if expressions or
inner function calls are correct. Our tool fulfills a similar task, although it dis-
cards inner function calls—they were checked in the previous phase. Moreover,
the navigation strategy automatically guides the session without the participa-
tion of the user by choosing breakpoints and steps, finally pointing out the piece
of code causing the bug. Therefore, it provides a simpler and clearer way of
finding bugs in concrete functions, although the complexity is similar.

3 Using the Tool

3.1 User Answers

The possible answers to the debugging questions during the first phase are:

– yes (y)/ no (n): the statement is valid/invalid.
– trusted (t): the user knows that the function or λ-abstraction used in the

evaluation is correct, so further questions about it are not necessary. In this
case all the calls to this function are marked as valid.



EDD: A Declarative Debugger for Sequential Erlang Programs 585

– inadmissible (i): the question does not apply because the arguments should
not take these values. The statement is marked as valid.

– don’t know (d): the answer is unknown. The statement is marked as unknown,
and might be asked again if it is required for finding the buggy node.

– switch strategy (s): changes the navigation strategy. The navigation strate-
gies provided by the tool are explained below.

– undo (u): reverts to the previous question.
– abort (a): finishes the debugging session.

In the case of zoom debugging, the answer trusted has not any sense and it is
never available, while the answers yes, no, and inadmissible cannot be used in
some situations, for instance in compound questions about case/if expressions.
The rest of answers are always available.

The tool includes a memoization feature that stores the answers yes, no,
trusted, and inadmissible, preventing the system from asking the same question
twice. It is worth noting that don’t know is used to ease the interaction with the
debugger but it may introduce incompleteness; if the debugger reaches a deadlock
due to these answers it presents two alternatives to the user: either answering
some of the discarded questions to find the buggy node or showing the possible
buggy code, depending on the answers to the nodes marked as unknown.

3.2 Strategies

As indicated in the introduction, the statements are represented in suitable de-
bugging trees, which represents the structure of the wrong computation. The
system can internally utilize two different navigation strategies [7,8], Divide &
Query and Top Down Heaviest First, in order to choose the next node and there-
fore the next question presented to the user. Top Down selects as next node the
largest child of the current node, while Divide & Query selects the node whose
subtree is closer to half the size of the whole tree. In this way, Top Down sessions
usually presents more questions to the user, but they are presented in a logical
order, while Divide & Query leads to shorter sessions of unrelated questions.

3.3 Detected Errors

Next we summarize the different types of errors detected by our debugger. As we
have seen, the first phase always ends with a wrong function. The errors found
during the zoom debugging phase are:

Wrong case argument, which indicates that the argument of a specific case
statement has not been coded as the user expected.

Wrong pattern, which indicates that a pattern in the function arguments or
in a case/if branch is wrong.

Wrong guard, which indicates that a guard in either a function clause or in a
case/if branch is wrong.

Wrong binding, which indicates that a variable binding is incorrect.



586 R. Caballero et al.

4 Concluding Remarks and Ongoing Work

EDD is a declarative debugger for sequential Erlang. Program errors are found
by asking questions about the intended behavior of some parts of the program
being debugged, until the bug is found. Regarding usability, EDD provides sev-
eral features that make it a useful tool for debugging real programs, such as sup-
port for built-in functions and external libraries, anonymous (lambda) functions,
higher-order values, don’t know and undo answers, memoization, and trusting
mechanisms, among others. See [2,3] for details.

We have used this tool to debug several programs developed by others. This
gives us confidence in its robustness, but also illustrates an important point of
declarative debugging: it does not require the person in charge of debugging to
know the details of the implementation; it only requires to know the intended
behavior of the functions, which is much easier and more intuitive, hence allowing
a simpler form of debugging than other approaches, like tracing or breakpoints.

As future work we plan to extend this proposal to include the concurrent
features of Erlang. This extension requires first to extend our calculus with
these features. Then, we must identify the errors that can be detected in this
new framework, define the debugging tree, and adapt the tool to work with these
modifications.

References

1. Armstrong, J., Williams, M., Wikstrom, C., Virding, R.: Concurrent Programming
in Erlang, 2nd edn. Prentice-Hall (1996)

2. Caballero, R., Martin-Martin, E., Riesco, A., Tamarit, S.: A zoom-declarative de-
bugger for sequential Erlang programs. Submitted to the JLAP

3. Caballero, R., Martin-Martin, E., Riesco, A., Tamarit, S.: A declarative debugger
for sequential Erlang programs. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS,
vol. 7942, pp. 96–114. Springer, Heidelberg (2013)

4. Insa, D., Silva, J.: An algorithmic debugger for Java. In: Lanza, M., Marcus, A.
(eds.) Proc. of ICSM 2010, pp. 1–6. IEEE Computer Society (2010)

5. Naish, L.: Declarative diagnosis of missing answers. New Generation Comput-
ing 10(3), 255–286 (1992)

6. Nilsson, H.: How to look busy while being as lazy as ever: the implementation of a
lazy functional debugger. Journal of Functional Programming 11(6), 629–671 (2001)

7. Silva, J.: A comparative study of algorithmic debugging strategies. In: Puebla, G.
(ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 143–159. Springer, Heidelberg (2007)

8. Silva, J.: A survey on algorithmic debugging strategies. Advances in Engineering
Software 42(11), 976–991 (2011)


	EDD: A Declarative Debugger for Sequential Erlang Programs 
	Introduction
	Erlang and EDD
	Using the Tool
	User Answers
	Strategies
	Detected Errors

	Concluding Remarks and Ongoing Work


