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Abstract. Testing is one of the most important and most time-consuming
tasks in the software developing process and thus techniques and systems
to automatically generate and check test cases have become crucial. In pre-
vious work we have presented techniques to test membership
equational logic specifications; these techniques consist of two steps: first
several ground terms are generated by using all the available construc-
tor symbols in a breadth-first search, and then these terms are processed
to check whether they fulfill some properties. This approach presents the
drawback of separating two related processes, thus examining several terms
that are indistinguishable from the point of view of testing. We present
here a narrowing-based test-case generator that improves the performance
of the tool and extends its use to rewriting logic specifications. First, we
present two mechanisms to improve the narrowing commands currently
available in Maude to use conditional statements and equational mod-
ules. Then, we show how to use these new narrowing commands to per-
form three different approaches to testing for any Maude specification:
code coverage, property-based testing, and conformance testing. Finally,
we present trusting mechanisms to improve the performance of the tool.
We illustrate the tool by means of an example.
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1 Introduction

Testing is a technique for checking the correctness of programs by means of
executing several inputs and studying the obtained results. Testing is one of
the most important stages of the software-development process, but it also is a
very time-consuming and tedious task, and for this reason several efforts have
been devoted to automate it [2,1]. Basically, we can distinguish two different
approaches to testing: glass-box testing [13,24], that uses the specific statements
of the system to generate the most appropriate test cases, and black-box test-
ing [32,14,5], that considers the system as a black box with an unknown structure
and where a specification of the system is used to generate the test cases and
check their correctness. We can also distinguish different kinds of testing de-
pending on how the test cases are obtained: they can either be ground terms
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that are later executed to check the obtained results or terms with variables that
are symbolically executed [20] to find the most appropriate values to test the
program. While the former generates in general more test cases (because it just
combines constructors to build terms) they can be illegal (input that can never
be used in real executions) and equivalent (different test cases check the same
statements), the latter generates less but more accurate test cases.

Maude [8] is a high-level language and high-performance system supporting
both equational and rewriting logic computation for a wide range of applica-
tions. Maude modules correspond to specifications in rewriting logic [22]. This
logic is an extension of equational logic; in particular, Maude functional modules
correspond to specifications in membership equational logic [3], which, in addi-
tion to equations, allows the statement of membership axioms characterizing
the elements of a sort. Rewriting logic extends membership equational logic by
adding rewrite rules, that represent transitions in a concurrent system. Maude
system modules are used to define specifications in this logic. The current ver-
sion of Maude supports a limited version of narrowing [31], a generalization of
term rewriting that allows to execute terms with variables by replacing pattern
matching by unification, for some unconditional rewriting logic theories with-
out memberships. This limitation is dropped in this work by using a program
transformation and by checking separately the conditions.

As part of an ongoing project to test and debug Maude specifications, we have
implemented a declarative debugger for Maude specifications [28], that allows
the user to debug both wrong (incorrect results obtained from a valid input) and
missing (incomplete results obtained from a valid input) answers in any Maude
specification, and a test case generator for functional modules [27]. The testing
approach used in that paper consists of different phases: first, the module is
preprocessed to obtain the statements used by the functions being tested; then,
terms are generated by using a breadth-first search that takes into account the
constructor information provided by the user, and then each of these terms
is executed step-by-step to check the used statements. However, this approach
uses ground terms and, as explained above, presents an important drawback:
since the test cases are not generated following the structure of the program but
just the available constructors, most of them apply the same statements, hence
consuming most of the time and preventing more complex terms from being
checked due to the time and space constraints. This problem is solved here by
symbolically executing terms with variables with narrowing.

We present in this paper a program transformation to test Maude functional
modules by using narrowing, a strategy to use membership axioms and condi-
tional statements in the narrowing process,1 and the adaptation of three test-
ing techniques to Maude: two white-box approaches (one selects a set of test
cases whose correctness must be checked by the user, while the other one checks

1 This strategy allows all kinds of conditions: rewrite and equational conditions, solved
by narrowing (the latter, which includes equational and matching conditions, re-
quires a previous transformation), and membership conditions, solved by using uni-
fication.
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whether a property holds in the specification) and one black-box mechanism
(conformance testing). In the first case, in addition to other criteria described
in [27], we have adapted a new criterion to select the set of test cases to be
checked by the user in system modules, which is based on modified condition
decision coverage [19] and checks the negative information (the rules that are not
applied). Finally, we enhance the performance of the tool by providing trusting
techniques that prevent the system from taking into account some statements.
The transformation, the extension of the narrowing process, and the testing
strategies have been implemented in a Maude prototype by using its meta-level
capabilities, that allow to manipulate Maude modules and statements as usual
data. Moreover, it also provides support for some predefined modules and at-
tributes, such as owise, that indicates that the current equation is only used
when the rest of equations cannot be applied.

The rest of the paper is organized as follows: Section 2 presents some re-
lated work and its relation with our system. Section 3 introduces Maude and
narrowing, Section 4 describes a module transformation that allows us to use
narrowing on Maude functional modules, while Section 5 presents how to use
conditional rules in the narrowing process. Section 6 illustrates how the tech-
niques described in the previous sections are used to generate test cases, while
Section 7 presents some trusting techniques to improve the performance of the
system. Finally, Section 8 concludes and outlines some future work. The source
code of the tool, examples, related papers, and much more information is avail-
able at http://maude.sip.ucm.es/testing/.

2 Related Work

Different approaches to testing for declarative languages have been proposed in
the literature. As explained in the introduction, test cases can be checked in
different ways: executing ground test cases or symbolically executing terms with
variables.

The first approach is followed by Smallcheck [30], a property-driven Haskell
tool that considers that most of the errors can be found by using only a few
constructors, and thus it generates all the possible combinations of constructors
given a (usually small) bound on the size of the test cases. Another tool fol-
lowing this ground approach is Quickcheck [7], a test-case generator developed
for Haskell specifications where the programmer writes assertions about logi-
cal properties that a function should fulfill; test cases are randomly generated
by using the constructors of the data type (in contrast to the complete search
performed by Smallcheck) to test and attempt to falsify these assertions. The
project, started in 2000, has been extended to generate test cases for several
languages such as Java, C++, Erlang, and several others. Finally, Easycheck [6]
is a test-case generator for Curry that takes advantage of the non-determinism
of functional-logic programs to generate a tree of potential test cases, that is
later traversed to list only the most interesting ones.

The second approach has been applied by Lazy Smallcheck [30] (an improve-
ment of a previous system called SparseCheck), a library for Haskell to test

http://maude.sip.ucm.es/testing/
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partially-defined values that uses a mechanism similar to narrowing to test
whether the system fulfills some requirements. Another way of achieving sym-
bolic execution is by considering that the statements in the program under test
introduce constraints on the variables, an approach followed by PET [15], that
uses Constraint Logic Programming to generate test cases satisfying some cov-
erages on object-oriented languages. Finally, narrowing has been used to verify
security protocols [21,18], symbolically exploring the state space trying to find
a flow in the protocol.

The previous version of our approach is quite similar to Smallcheck: we gen-
erate the complete search space given the constructors and a bound, but we
use them for both white-box and black-box testing, while Smallcheck only tries
to disprove some properties. Note that, on the one hand, the strategies in our
previous system could possibly be improved by following an approach similar to
Easycheck, while on the other hand we can consider that the current narrowing
approach is another way of pruning the tree of possible terms, making our ap-
proach similar to it. Regarding Quickcheck, it is an industrial tool with several
heuristics and a lot of experience in testing, and hence it presents a better perfor-
mance than our tool, that we try to improve by providing trusting mechanisms
to the user. On the other hand, an advantage of our tool is the computation
of test cases fulfilling different coverage criteria, which allows the user to test
the specification by checking test cases “by hand” even when no properties over
the specification are stated, and the usage of Maude as both a specification and
implementation language, which allows to perform conformance testing using
a previously tested Maude module as specification. Moreover, both Quickcheck
and our tool implement the shrinking mechanism, that consists of returning the
simplest form of a term that detects a bug in the program; in our case it is imple-
mented by performing a breadth-first search using narrowing steps, that will find
the simplest term (w.r.t. the number of steps) reproducing the buggy behavior.
The more similar approach to ours is Lazy Smallcheck; both are narrowing-based
experimental tools that focus on research rather than in efficiency, and thus they
present a similar performance; however, Smallcheck is only applied to property-
based testing. PET provides a coverage of the statements in Java-like programs,
but it does not allow the user to state properties or check the correctness of
the system against a specification. Finally, the verification of security protocols
focus on a specific problem and cannot be compared with the rest of tools.

Note that, in general, each system only focus in one testing approach: cover-
age, properties, or conformance. Maude features allow us to implement a wide
range of testing techniques: we can manipulate its modules to perform white-box
testing by using its meta-level capabilities; its analysis tools (such as the search
command) ease the testing of properties; and Maude programs can be used as
specification of others.

3 Preliminaries

This section introduces Maude and its narrowing mechanisms [9].
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3.1 Maude

Maude functional modules [8, Chap. 4], with syntax fmod ... endfm, are exe-
cutable membership equational specifications that allow the definition of sorts
(by means of keyword sort(s)); subsort relations between sorts (subsort); op-
erators (op) for building values of these sorts, giving the sorts of their arguments
and result, and which may have attributes such as being associative (assoc) or
commutative (comm), for example; memberships (mb) asserting that a term has
a sort; and equations (eq) identifying terms. Both memberships and equations
can be conditional (cmb and ceq). Maude system modules [8, Chap. 6], intro-
duced with syntax mod ... endm, are executable rewrite theories [22]. A system
module can contain all the declarations of a functional module and, in addition,
declarations for rules (rl) and conditional rules (crl).

An important characteristic of Maude functional modules is that sorts are
grouped into equivalence classes called kinds ; that is, all the sorts related by
a subsort relation belong to the same kind [8]. Intuitively, terms with a kind
but without a sort represent undefined or error elements. We will make exten-
sive use of kinds to indicate that variables may have any sort when performing
unification; the proper sorts of the variables will be later checked by means of
membership axioms.

We introduce Maude modules with an example; variable declarations are not
shown because of space constraints, but assume they are defined at the sort level.
We specify ordered lists of natural numbers in the following module:

(fmod SORTED-NAT-LIST is

pr NAT .

We use the sort NatList, with constructors nil and _._, for generic lists and
SortedList for sorted lists, which are a subsort of NatList:

sorts SortedList NatList . subsorts SortedList < NatList .

op nil : -> SortedList [ctor] . op _._ : Nat NatList -> NatList [ctor] .

We use membership axioms to characterize nonempty sorted lists. They indicate
that the singleton list is ordered (ol1) and that a larger list is ordered if the first
element is equal to or smaller than the second one and the rest of the list is also
ordered (ol2):

mb [ol1] : N . nil : SortedList .

cmb [ol2] : N . N’ . L : SortedList if N <= N’ /\ N’ . L : SortedList .

We also specify a function ins-sort that sorts a list by inserting the elements
in an ordered fashion by using the auxiliary function ins-list:

op ins-sort : NatList -> SortedList .

eq [is1] : ins-sort(nil) = nil .

eq [is2] : ins-sort(N . L) = ins-list(ins-sort(L), N) .

This function returns the singleton list when inserting an element into the empty
list, and otherwise it distinguishes whether the first element in the list is smaller
or not:
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op ins-list : SortedList Nat -> SortedList .

eq [il1] : ins-list(nil, N) = N . nil .

ceq [il2] : ins-list(N . SL, N’) = N’ . (N . SL) if N’ <= N .

ceq [il3] : ins-list(N . SL, N’) = N . ins-list(SL, N’) if N < N’ .

Since we are also interested on testing system modules, we use this module to
specify how processes enter into a critical section in the following system module
CS. We consider that processes are represented by their priority (the smaller the
number the higher the priority), and hence lists of natural numbers stand for
lists of processes:

(mod CS is

pr SORTED-NAT-LIST .

We define the sort NatSoup for an associative and commutative multiset built
with the operators mtSoup and _,_; the sort NatWithEmpty for a supersort of
the natural numbers with an extra element empty; and System for the system,
that receives as arguments a multiset of natural numbers (the idle processes), a
sorted list of numbers (the processes waiting to enter the critical section), a value
of sort NatWithEmpty (the process in the critical section), and another multiset
of numbers (the processes that have already entered the critical section):

sort System NatSoup NatWithEmpty . subsort Nat < NatSoup NatWithEmpty .

op empty : -> NatWithEmpty [ctor] . op mtSoup : -> NatSoup [ctor] .

op _,_ : NatSoup NatSoup -> NatSoup [ctor assoc comm id: mtSoup] .

op _[_][_]_ : NatSoup NatList NatWithEmpty NatSoup -> System [ctor] .

We use the rule ticket to introduce a new process into the list of waiting
processes:

rl [ticket] : (N, NS) [NL] [NWE] NS’ => NS [ins-list(NL, N)] [NWE] NS’ .

If at least one process is waiting to enter the critical section and it contains
the value empty, then the first process in the list is introduced into the critical
section:

rl [cs-in] : NS [N . NL] [empty] NS’ => NS [NL] [N] NS’ .

The rule cs-out moves the process from the critical section to the finished
section:

rl [cs-out] : NS [NL] [N] NS’ => NS [NL] [empty] (N, NS’) .

Finally, the rule reset moves the elements in the fourth component of the system
to the first one to start the process again:

rl [reset] : mtSoup [nil] [empty] NS => NS [nil] [empty] mtSoup .

endm)

3.2 Narrowing

Narrowing [31,12,23] is a generalization of term rewriting that allows free vari-
ables in terms and replaces pattern matching by unification in order to reduce
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these terms. It was first used for solving equational unification problems [29]
and then generalized to deal with problems of symbolic reachability. Similarly
to rewriting, where at each rewriting step one must choose which subterm of the
subject term and which rule of the specification are going to be considered, at
each narrowing step one must choose which subterm of the subject term, which
rule of the specification, and which instantiation on the variables of the sub-
ject term and the rule’s lefthand side are going to be considered. The difference
between a rewriting step and a narrowing step is that in both cases we use a
rewrite rule l ⇒ r to rewrite t at a position p, but narrowing unifies the lefthand
side l and the chosen subject term t before actually performing the rewriting
step, while in rewriting this term must be an instance of l (i.e., only matching
is required). Using this narrowing approach, we can obtain a substitution that,
applied to an initial term that only contains variables (except for the function
symbol at the top), generates the most general term that can apply the traversed
rules.

We denote by t �σ t′, with σ = q1; . . . ; qn a sequence of labels, the succession
of narrowing steps applying (in the given order) the statements q1; . . . ; qn that
leads from the initial term t (possibly with variables) to the term t′, and by θσ

the substitution used by this sequence, which results from the composition of
the substitutions obtained in each narrowing step. We will overload the notation
t �q t′ by using conditions in q to illustrate narrowing steps due to conditions.

In the example above, we could start from the term NS1 [NL] [NWE] NS2,
with NS1 and NS2 variables of sort NatSoup, NL a variable of sort NatList, and
NWE a variable of sort NatWithEmpty, and apply one step of narrowing to obtain
a set of four terms, each of them corresponding to the application of one of the
rules for System. For example,

NS1 [NL] [NWE] NS2 �ticket NS3 [ins-list(NL, N1)] [NWE] NS2

where NS1 has been replaced by N1, NS3 (with N1 and NS3 fresh variables of sorts
Nat and NatSoup, respectively) and then the rule ticket has been applied.

The latest version of Maude includes an implementation of narrowing for free,
C, AC, or ACU theories in Full Maude [9]. More specifically, we are interested
in the metaNarrowSearchPath function that, given a term and a bound on the
number of narrowing steps, returns all the possible paths starting from this term,
the used substitutions, and the applied rules. We use this command to perform
a breadth-first search of the state space. Note that the current implementation
of narrowing only works for non-conditional rules and specifications without
membership axioms; we will show in Section 5 how to check separately the
conditions, including membership conditions.

4 A Module Transformation for Narrowing

We present in this section a simple module transformation that will be applied
to the modules in order to use narrowing with the equational part of Maude.
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This transformation has two objectives: on the one hand it transforms equations
into rules (and thus it requires to transform equational conditions into rewrite
conditions), which allows us to use narrowing with the equational part of Maude
system modules. On the other hand, and since the current implementation of
narrowing in Maude does not support memberships, we transform all the terms
where membership inferences may be needed into equivalent terms with the
variables declared at the kind level, while extra membership conditions stating
the correct sort, that will be separately checked with the mechanisms in the next
section, are added for each variable whose type has changed. More specifically,
the transformation takes an equation of the form

l = r if
n∧

i=1

ti = t′i ∧
m∧

j=1

pj := uj ∧
l∧

k=1

vk : sk

and returns a rule

kind(l) ⇒ kind(r) if mbs(l) ∧∧n
i=1(kind(ti) ⇒ wi ∧ kind(t′i) ⇒ wi) ∧∧m
j=1(kind(uj) ⇒ kind(pj ) ∧ mbs(pj )) ∧∧l
k=1 kind(vk) : sk

where

– The terms wi are fresh variables of the same kind as the corresponding term.
– The function kind replaces the sort of all the variables in the term given as

argument by the corresponding kind (we follow here the Maude approach
that represents each variable as a pair of an identifier and a type, that can
be either a sort or a kind; thus, we can modify these pairs when the second
component is a sort by the appropriate kind).

– The function mbs generates a conjunction of conditions stating that the
variables, whose type has been changed by its kind, have in fact the sort
previously required, that is:

mbs(f(t1, . . . , tn)) = mbs(t1) ∧ · · · ∧ mbs(tn)
mbs(c) = nil
mbs(v) = kind(v) : sort(v)

where f is a function symbol, the ti are terms, c is a constant, v is a variable,
and sort(v) returns the sort of v.

We have to transform similarly all the membership axioms and rules in the
module in order to apply them. In the membership case we obtain another mem-
bership axiom with the lefthand side and the condition transformed as shown
above,2 while rules are transformed into rules, being the equational part trans-
formed as in the previous cases while the rewriting conditions remain unchanged.
2 Note that this transformation may generate invalid membership axioms, because

they may contain rewrite conditions. However, in practice all the equations and rules
in the module are unconditional and the membership axioms have been removed in
order to use narrowing; these conditions and membership axioms are kept apart and
checked separately by using the techniques described in Section 5.
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Note that, since Maude equational modules are assumed to be confluent and
terminating, the equations may be understood as oriented from left to right,
which is what we are explicitly doing when transforming them into rules. More-
over, the kind transformation only postpones (but not prevents from) the check-
ing of the specific sorts of the variables to the condition of the rule. For these
reasons, it is straightforward to see that this transformation is correct, even
though it can only be executed by using narrowing as explained in the next
section.

If we transform the critical section example above, the membership axiom ol2
is modified as follows (assume that the variables are now declared at the kind
level):

cmb [ol2] : N . N’ . L : SortedList

if N : Nat /\ N’ : Nat /\ L : NatList /\

N <= N’ => B /\ true => B /\

N’ . L : SortedList .

The first three conditions indicate that the variables, that are now declared at
the kind level, have in fact the appropriate sort. The next two conditions deal
with the first condition of the original axiom, N <= N’, which is an abbreviation
for N <= N’ = true; in this case both sides of the equality must be rewritten
to the same variable B, defined in the kind of Bool. Finally, the membership
condition remains unchanged.

In a similar way, the equation il2 is transformed into the following rule:

crl [il2] : ins-list(N . SL, N’) => N’ . N . SL

if N : Nat /\ SL : SortedList /\ N’:Nat /\

N’ <= N => B /\ true => B .

where the first three conditions indicate that the variables have the appropriate
sort. The next two conditions deal with the condition of the original axiom,
N’ <= N’’, which is an abbreviation for N <= N’ = true; in this case both
sides of the equality must be rewritten to the same variable B, defined in the
kind of Bool.

5 Narrowing of Conditional Rules

We present in this section a methodology to take into account the conditions in
the narrowing process because, as explained in the introduction, they are not
supported by the current implementation of the Maude system. Note that other
systems deal with rewrite conditions (see e.g. [23,16]) with a similar approach to
ours: they must be solved before applying the body of the rule. The novelty of
our technique, beyond describing and implementing this narrowing of conditional
rules in Maude, lies on the resolution of membership conditions by means of
unification.

Basically, when a rule is applied the conditions must be evaluated separately
by using narrowing (remember that equational conditions become rewrite condi-
tions) to find a substitution (that must be the composition of the substitutions
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obtained for each single condition) that fulfills them. If the set of substitutions
fulfilling the conditions is nonempty, all of them extend the set of substitutions
obtained for the unconditional rule; otherwise, the rule cannot be applied.

However, in addition to rewrite conditions we must also take into account
membership conditions. The current implementation of narrowing does not sup-
port membership axioms, and thus we must independently check whether a
membership condition holds. The first step to achieve it was presented in the
previous section: we transform the lefthand of the statements to deal with kinds
instead of sorts in order to move the membership information to the conditions.
The next step consists of checking the memberships (those introduced by the
transformation, as well as those stated by the user); if the sort is defined by using
membership axioms (and possibly by operators), then we unify the current term
with the lefthand side of each membership axiom inferring this sort or any of
its subsorts and then we proceed to prove the conditions in the corresponding
axioms as explained before, applying the substitution obtained in the unification
(moreover, it also updates the type of the variables, if they are at the kind level,
to the required sorts in order to use the operator definitions, see the example
below for details). Otherwise (the sort is not defined by using memberships) we
update the type of the variables and the rest of the condition is processed.

In our example, we can apply conditional narrowing to ins-list(NL, N1).
The narrowing process would start by unifying this term with the lefthand side
of il2,3 whose transformed version was presented at the end of the previous
section:

ins-list(NL, N1) �unif-lhs(il2) ins-list(N2 . SL1, N1)

This first step requires the initial list of natural numbers NL to be of the form
N2 . SL1, being N2 and SL1 fresh variables at the kind level. Thus, the unifica-
tion generates the substitution NL �→ N2 . SL1. However, it must be extended by
using the conditions of the applied rule. The first condition, N : Nat, is a mem-
bership condition for a sort that is not defined with membership axioms, and
thus it forces the variable N24 to have sort Nat; we change the sort of the variable
and proceed with the next condition. The second condition, SL : SortedList,
is trickier because this sort is defined by means of membership axioms. We must
use a transformed version of the membership axiom ol2 to obtain:

ins-list(N2 . SL1, N1) �unif-lhs(ol2) ins-list(N2 . N3 . NL2, N1)

where the unification of the term with the lefthand side of the membership ax-
iom gives the substitution SL1 �→ N3 . NL2. Note that the transformation of ol2
generates three initial conditions (N : Nat /\ N’ : Nat /\ L : NatList) that

3 Note that other rules, such as il1 or il3, could be also used. In the same way, some
other steps in this example could apply different membership axioms and rules.

4 Note that, after the unification, the rule is being symbolically applied by using the
substitution N �→ N2 ; SL �→ SL1 ; N’ �→ N1. In the following, we will not show the
substitution required to apply each rule.
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just update the sorts of the variables, two rewrite conditions, N <= N’ => B and
true => B, which require narrowing again to be solved, and keeps the member-
ship condition unmodified. As we will explain below, since our implementation
supports some predefined operators such as <=, that returns true when its first
argument is 0, we can use narrowing to solve the rewrite conditions:

ins-list(N2 . N3 . NL2, N1) �N <= N’ => B ins-list(0 . N3 . NL2, N1)

and the current substitution is extended with N2 �→ 0 ; B �→ true. With this
substitution the next condition of ol2 (B => true) trivially holds and only
the membership condition, N’ . L : SortedList, remains. It can be satis-
fied by using the membership axiom ol1, which extends the substitution with
NL2 �→ nil. Summarizing the narrowing process thus far, starting from the
term ins-list(NL, N1) and applying the rule il2 and its two first condi-
tions (which includes applying the membership axiom ol2 and all its con-
ditions, the rule for <=, and the membership axiom ol1), we have reached
ins-list(0 . N3 . nil, N1) with the substitution NL �→ 0 . N3 . nil. We
proceed now with the third condition of il2, N’ : Nat, that simply updates the
sort of N1. The next condition, N’ <= N => B, is solved as explained above by
using the substitution N1 �→ 0 ; B �→ true:

ins-list(0 . N3 . nil, N1) �N1 <= 0 => B ins-list(0 . N3 . nil, 0)

Finally, the last condition for il2 holds because true is rewritten to itself, and
the rule is applied by using the obtained substitution in the righthand side,
obtaining the following complete narrowing step with the substitution NL �→
0 . N3 . nil ; N1 �→ 0:

ins-list(NL, N1) �il2 0 . 0 . N3 . nil

5.1 A Brief Note on Predefined Functions

As we have shown in the example above, we use some predefined functions on
the narrowing process. We basically add some rules to deal with the most used
functions for boolean values and natural numbers. For example, we add the rules
rl [let1] : 0 <= s(N) => true .

rl [let2] : s(N1) <= s(N2) => N1 <= N2 .

rl [let3] : s(N) <= 0 => false .

to deal with the _<=_ function. In this way we introduce rules are easily man-
aged by the narrowing mechanisms and greatly increase the number of Maude
specifications that can be tested with the tool.

6 Using Narrowing to Generate Test Cases

Different testing techniques can be used to test Maude specifications, and for
each of these techniques a different narrowing strategy will be used. We show
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in this section how to compute a coverage, how to check whether a specification
fulfills an invariant, and how to examine if, given a correct specification, another
module performs the required actions, which is called conformance testing.

6.1 Coverage Criteria

Code coverage techniques [19,25] consist of selecting a set of test cases that,
when executed, apply all the statements required by the coverage criterion. In
our case we use global branch coverage [13], a strategy that tries to find test cases
that use all the statements potentially used by the function under test (which,
of course, includes the functions and membership axioms in the conditions) and
has been already described for functional modules in [27], and system coverage,
an adaptation of modified condition decision coverage [19] that tries to obtain
information by making the conditions to fail.

Narrowing can be naturally used to compute global branch coverage by start-
ing with a term with variables and performing a breadth-first search, where after
each narrowing step, that computes the set of reachable terms by applying one
rule, we check that the conditions of each rule are fulfilled by using the mecha-
nism presented in the previous section, thus removing some of the obtained terms
and extending the substitutions when required (e.g., in the example of the pre-
vious section, the substitution was extended to NL �→ 0 . N3 . nil ; N1 �→ 0).
This search finishes when all the statements required by the coverage have been
used, a bound in the number of steps has been reached, or all the possible states
have been reached (this last point is checked by trying to unify the terms ob-
tained in each step with any of the previous terms; that is, we build a graph
instead of a tree). Moreover, our system provides two different options to select
the set of test cases: the smallest one, composed of the minimum number of
terms whose execution leads to the execution of all the statements in the cover-
age and thus may contain complex test cases; and the simplest one, in the sense
that it may present more but simpler test cases. The user can switch between
these two modes to decide which one is more appropriate for each specification.

More formally, we look for a set of sequences σi and terms ti, 0 ≤ i ≤ l, such
that, given the set of labels Q defining the coverage and a term f(v1, . . . , vn),
with f the function under test and vi variables of the appropriate sorts,
∀q ∈ Q ∃l

i=0 . f(v1, . . . , vn) �σi ti ∧ q ∈ σi. The test cases will be⋃l
i=0 θσi(f(v1, . . . , vn)). Since there are several different possibilities to select

the σi, the different strategies to display the set of test cases will choose between
a small number of large sequences, that will generate less test cases applying
more rules, and a big number of short sequences, that will generate simpler test
cases. Note that the extension to testing of system modules is straightforward
by starting from c(v1, . . . , vn), with c any constructor for the sort being tested.

In our lists example, we may be interested in testing the function ins-sort
using the global branch coverage criterion. This function is defined by two equa-
tions (is1 and is2); one of these equations uses the function ins-list, and
thus its three equations (il1, il2, and il3) must also be added to the needed
coverage; finally, this function uses the functions _<_ and _<=_, imported from
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ins-sort(L) �is2

ins-list(ins-sort(L1), N1) �is2

ins-list(ins-list(ins-sort(L2), N2), N1) �is2

ins-list(ins-list(ins-list(ins-sort(L3), N3), N2), N1) �is2

ins-list(ins-list(ins-list(ins-list(ins-sort(L4), N4), N3), N2), N1) �is1

ins-list(ins-list(ins-list(ins-list(nil, N4), N3), N2), N1) �il1

ins-list(ins-list(ins-list(N4 . nil, N3), N2), N1) �il3

ins-list(ins-list(0 . ins-list(nil, s(N5)), N2), N1) �il1

ins-list(ins-list(0 . s(N5) . nil, N2), N1) �il2,ol1

ins-list(0 . 0 . s(N5) . nil, N1) �il2,ol2,ol1

0 . 0 . 0 . s(N5) . nil

Fig. 1. Narrowing path for global branch coverage

NAT and a variable of sort SortedList, which is defined with two membership
axioms (ol1 and ol2). All these statements must be executed at least once by
the test cases to fulfill global branch coverage. We can use our tool to auto-
matically generate the test cases, following the default strategy that selects the
smaller set of test cases:
Maude> (test ins-sort .)

1. ins-sort(1 . 0 . 0 . 0 . nil) has been reduced to 0 . 0 . 0 . 1 . nil

All the statements were covered.

Note that the tool shows the initial term, the result of reducing it in the module,
and whether some reachable statements could not be used. The term shown by
the tool may be obtained as shown in Figure 1, where s stands for the successor
function over natural number (note that this is one branch of a search tree of
depth 10).

Since all the possible instantiations of this term generate test cases traversing
all the required statements, the tool generates the simplest one by replacing the
variables with constants of the given sort (or the simplest built term if the sort
does not have constants). If we find that any reduction is wrong, we could debug
it with:
Maude> (invoke debugger with user test case 1 .)

Declarative debugging of wrong answers started.

This command starts the declarative debugging process [28] that, by asking
questions to the user about the computations that took place will find the specific
statement that generated the wrong behavior. This command is available for all
the testing options.

Note that the extension to testing of system modules is straightforward; in
this case we want to test the transitions of the terms with a given sort instead of
a specific function, and thus the narrowing process starts with a term with vari-
ables of the given sort, and tries to apply all the reachable rules, equations, and
memberships, proceeding in the same way as the testing for functional modules.
That is, we start the narrowing process from c(v1, . . . , vn), with c any constructor
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for the sort and vi variables of the appropriate sorts, and continue as indicated
above.

Moreover, we propose another coverage criterion, related to modified condi-
tion decision coverage (MCDC) [19,10]. Basically, MCDC requires that all the
conditions in a program are evaluated with the given set of test cases to both
true and false. In a non-deterministic framework as the one of system modules it
is important to know, as explained in [28], the applied statements that make the
program reach certain states, the positive information, but also the statements
that were not applied and thus prevented the program from reaching some other
values, the negative information. While we obtain the positive information with
the global branch coverage shown above, it does not provide any of the negative
information. For this reason, we have implemented the so-called system coverage
criterion, which requires a set of test cases to apply all the rules in the trans-
formed module (which corresponds to global branch coverage) but also to fail
for at least one condition for each rule in the original module.

6.2 Checking Invariants

Checking of invariants has already been studied for Maude specifications in [8,
Chapter 12]. It takes advantage of the command search, that performs a breadth-
first search from an initial term, given a bound in the number of steps and a
condition to be fulfilled; by searching for the negation of the invariant we can
check that no illegal states are reached. We apply a similar idea in our testing
framework by using symbolic search; this search will traverse all the possible
states and, each time a rule is applied, it tries to find a path to fulfill the nega-
tion of the invariant. If such a path is found, then the specification does not fulfill
the invariant. Note that the invariant is usually specified by using equations, and
thus it is important to use equations in the narrowing process, since it allows
the tool to fix the values of the initial state required to fulfill the condition.

More formally, we consider a new rule inv(pat) ⇒ pat if Cond , where inv
is a new operator defined over the sort of states, pat is the pattern given for
the invariant, and Cond a condition (we assume the invariant is composed of
a pattern and a condition, see below for details). Thus, for every narrowing
sequence t �q1 t1 �q2 . . . �qn tn, the invariant is fulfilled if, for every ti
obtained by using a narrowing step with the rule qi we cannot find a term t′

such that ti �inv t′ (we look for the negation of the invariant). If such a term
exists, then the term θinv (θq1;...;qi(t)) can be used as initial term for debugging;
otherwise, the invariant holds.

The transformation presented in Section 4 allows us to check invariants in
both functional and system modules. We could e.g. set an invariant on our
critical section example stating some correct property over lists or systems, but
it is worth examining how an initial term proving the specification wrong is
obtained. In our critical section example we can specify a function empty?, that
checks whether a NatSoup is empty, defined as follows:
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op empty? : NatSoup -> Bool .

eq [mt1] : empty?(mtSoup) = true .

eq [mt2] : empty?(NS) = false [owise] .

and then search for a system that never has its first argument empty (remember
that we look for the negation of the invariant) with:

Maude> (test [10] System =>+ NS1 [NL] [NWE] NS2 s.t. empty?(NS1) .)

The term mtSoup [nil] [0] 0 reaches the state

mtSoup [nil] [empty] (0,0), which does not fulfill the invariant.

This command looks for terms of sort System that, in at least one step (indicated
by the search arrow =>+; the tool also provides searches in zero or more steps with
=>* and searches for final forms with =>!) and at most 10, match the pattern
and fulfill the condition (the negation of the invariant). In this case, the tool has
found (as expected) an initial state that, after applying one rule (in this specific
case it is cs-out although it would be possible to apply other rules), reaches a
state that does not fulfill the invariant. In this case the narrowing process has
fixed the value of the first NatSoup to mtSoup to fulfill the condition and has
forced an element to be in the critical section to apply the rule, while the nil list
and the singleton soup are just possible instances of the variables left by the nar-
rowing step NS1 [NL] [NWE] NS2 �cs-out NS1 [NL] [empty] (N1, NS2) and
then checking the property by instantiating NS1 with mtSoup when applying the
equations for empty?.

6.3 Conformance Testing

Conformance testing [32,14,5] involves testing a system with respect to its speci-
fication. The goal of this approach is to check that the system presents the same
behavior as the specification, that has already been tested. To check whether an
implementation conforms to a specification we must formalize the conformance
notion by means of an implementation relation that relates the two systems.
In our case, and taking into account that a rewrite system can be understood
as a labeled transition system, where terms stand for states and rewrites for
transitions, we apply to Maude specifications the conformance testing strategies
for such systems [32]. In particular, we use the relation conf [4], that requires
the implementation to perform the same actions as the specification, although
it allows the implementation to execute some other actions not included in the
specification, that is, conf requires that an implementation does what it should
do, not that it does not do what it is not allowed to do.

In our framework we consider that only the rules in the original specification
must be executed in the implementation, and thus narrowing steps using equa-
tions are considered auxiliary and it is not required to reproduce them in the
implementation. In this way, we compute all the possible paths by using nar-
rowing in the specification and then that all these paths are also possible in the
implementation. More formally, if we denote by σ |R the restriction of σ to the
rules in R, that is, remove from σ all those statements that are not in the set,
then we require that for every narrowing sequence t �σs ts in the specification
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there exists a narrowing sequence t �σi ti in the implementation such that σs |R
is a prefix of σi |R. Note that, although the reached states may be different in
the specification and the implementation (only the applied rules matter), we
consider that both the correct specification and the system being tested share
the same signature for the initial terms and the same rule labels; this can be
achieved by means of a renaming.

For the sake of example, we could create a new module RED-CS that has the
same rules as CS except for the rule cs-out. We can state CS as the specification
with:

Maude> (correct test module CS .)

CS selected as correct module for testing.

Now, we can check the behavior of RED-CS with respect to this module with:

Maude> (test in RED-CS : System .)

Starting from the term 0 [nil] [0] 0 the rule

cs-out could not be applied to the implementation.

That is, the tool shows the simplest term (in fact, only the 0 in the critical section
is instantiated during the process) that is required to find the disconformity
between the specification and the implementation due to the cs-out rule.

7 Trusting

Our tool provides some trusting techniques to enhance its performance. Basi-
cally, it only takes into account labeled statements when computing coverages
and checking the implementation relation. Moreover, the user can also select a
subset of these statements by using the different commands available in the tool
(trusting of all the statements of a given module, trusting of a complete kind of
statements—e.g. all the equations, memberships, or rules—and trusting of sin-
gle statements). Using these commands we can use different trusting strategies:
assuming that our specifications are structured, we can test first easier specifi-
cations, and then trust them when testing larger specifications including them;
and we can trust all the equations (except for the ones defining the property
when checking invariants) and memberships when testing system modules. Of
course, trusting mechanisms are correct assuming the user points out as trusted
only rules that are not relevant for the testing process.

Trusting works in a different way depending on the testing strategy: if we
are computing a coverage then the trusted statements are removed from the
needed coverage, and thus we may reduce both the number and the complexity
of the test cases. When using conformance testing, the trusted statements are
related to the specification and indicate that the behavior specified by the rule
is not required to be performed in the system being tested (e.g. because it is an
auxiliary rule). That is, the sequences of statements σ required for coverage are
not required to contain the trusted statements,5 while the restriction to rules
5 Note that using trusting when using system coverage will remove the statements

from both the positive and negative information.
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ins-sort(L) �is2

ins-list(ins-sort(L1), N1) �is2

ins-list(ins-list(ins-sort(L2), N2), N1) �is2

ins-list(ins-list(ins-list(ins-sort(L3), N3), N2), N1) �is1

ins-list(ins-list(ins-list(nil, N3), N2), N1) �il1

ins-list(ins-list(N3 . nil, N2), N1) �il2

ins-list(0 . N3 . nil, N1) �il2,is1

0 . 0 . N3 . nil

Fig. 2. Narrowing path for global branch coverage with trusting

in the specification given in conformance testing is now applied to non-trusted
rules in the specification.

For example, we can trust the statements il3 and ol2 (which required the
longest computations in Figure 1) if we are sure of its correctness to improve the
performance of the computation of the global branch coverage in Section 6.1 by
using the commands:
Maude> (test include SORTED-NAT-LIST .)

Labels hd il1 il2 il3 is1 is2 ol1 ol2 have been added to the coverage.

Maude> (test deselect il3 ol2 .)

Labels il3 ol2 have been excluded from the coverage.

Maude> (test in SORTED-NAT-LIST : ins-sort .)

1. ins-sort(0 . 0 . 0 . nil) has been reduced to 0 . 0 . 0 . nil

All the statements were covered.

Obtaining in this case a simpler test case that covers all the statements. It
is interesting to see that trusting a rule when using conformance provides more
flexibility, because it allows to perform some analyses by removing auxiliary rules
that are not supposed to be applied in the final implementation. However, if the
user trusts a statement that should not be trusted he may obtain an incorrect
answer, hence the assumption presented above about the correctness of trusting,
that may produce incorrect results. Similarly, we can trust the rule cs-out when
using conformance testing and check that in this case the specification and the
implementation perform the same actions:
Maude> (test deselect cs-out .)

Labels cs-out have been excluded from the coverage.

Maude> (test in RED-CS : System .)

The implementation conforms to the specification.

The improvement in the performance when using trusting is highly dependent
on the selected set of statements: while in some cases trusting may reduce the
number of steps more than a 50%, in other cases they are not reduced at all. For
example, the global branch coverage obtained in Section 6.1 was highly reduced
by trusting the statements shown above, reducing the depth of the search tree
from 10 to 7, as illustrated in Figure 2.6 However, selecting other statements
6 Remember that this is one branch of the search tree, that is, trusting has reduced

the depth of the search tree from 10 to 7, which results in a huge improvement of
the performance.
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such as is1 or is2, that must be always executed in order to reach a state
where other statements can be used, would not reduce the size of the search at
all. All the examples in this paper, and much more information is available at
http://maude.sip.ucm.es/testing/.

8 Concluding Remarks and Ongoing Work

We have presented in this paper how to use narrowing to generate test cases
for Maude specifications. To achieve this we use a module transformation that
allows us to use the equational part of Maude modules in the narrowing process
and a method to check whether the conditions of the applied statements are
fulfilled, including those conditions that require membership axioms. Using these
techniques we have implemented a tool that is able to compute a set of test
cases fulfilling two different coverage criteria, to check whether an invariant is
fulfilled by the specification, and to examine whether an implementation of the
system fulfills the behavior indicated by its specification. Moreover, two different
sets of test cases can be computed: a smaller set that contains more complex
terms or a larger set that contains less complex terms; the user is in charge of
selecting the most appropriate depending on the complexity of the specification
and his knowledge of it. Trusting mechanisms are also provided to improve the
performance of both coverage criteria and conformance testing. Finally, some
predefined modules can be also used to generate the test cases. We are currently
working on a comparison between our current approach using narrowing and
(i) the previous one using ground terms, and (ii) similar approaches in other
languages, either using narrowing, like Lazy Smallcheck, or random testing, like
QuickCheck.

As future work, we plan to extend the tool by introducing symbolic model
checking [11], that would allow the user to check linear temporal logic formu-
las over the specification starting from a term with variables, thus proving the
formula on, potentially, all the possible inputs of the system. Moreover, we are
studying new coverage criteria and implementation relations to allow the user
to choose the most appropriate technique for each application. Finally, we also
intend to develop a distributed implementation of the tool to deal with narrow-
ing; in this way, we can start the symbolic search of the system in one Maude
instance and then send the different paths to different Maude processes, that
must share some information (the coverage and the reached states) to finish the
search as soon as possible.

Acknowledgements. I thank Santiago Escobar for his kind help with narrow-
ing.
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