
ITP/OCL: A Rewriting-Based Validation Tool
for UML+OCL Static Class Diagrams ?

Manuel Clavel1 and Marina Egea2

1 Universidad Complutense de Madrid, Spain. clavel@sip.ucm.es
2 Universidad Complutense de Madrid, Spain. marina egea@fdi.ucm.es

Abstract. In this paper we present the ITP/OCL tool, a rewriting-
based tool that supports automatic validation of UML class diagrams
with respect to OCL constraints. Its implementation is directly based on
the equational specification of UML+OCL class diagrams. It is written
entirely in Maude making extensive use of its reflective capabilities. We
also give notice of the Visual ITP/OCL, a Java graphical interface that
can be used as a front-end for the ITP/OCL tool.

1 Introduction

The Unified Modeling Language (UML) [1] is a general-purpose visual modeling
language that is used to specify, visualize, construct, and document the artifacts
of a software system. The UML notation is largely based on diagrams. How-
ever, for certain aspects of a model, diagrams often do not provide the level of
conciseness and expressiveness that a textual language can offer. The Object
Constraint Language (OCL) [2] is a textual constraint language. OCL comes to
provide help on precise information specification in UML models.

Validation and testing in software development have been recognized of key
importance for long. There are many different approaches to validation: sim-
ulation, rapid prototyping, etc. We validate a model by checking whether its
instances (also called “snapshots”) fulfill the desired constraints. A number of
CASE tools exist which facilitate drawing and documenting UML diagrams.
However, there is little support for validating models during the design stage and
generally no substantial support for constraints written in OCL. In this paper we
present the ITP/OCL tool, a rewriting-based tool that supports automatic val-
idation of UML class diagrams with respect to OCL constraints. The ITP/OCL
implementation is directly based on the equational specification of UML+OCL
class diagrams developed in [3, 4]. It is written entirely in Maude [5], making
extensive use of its reflective capabilities to implement the user interface, thanks
to which the tool’s underlying equational semantics remains hidden to the user,
who only must be familiar with the standard notions of UML diagrams and OCL
constraints.

? Research supported by Spanish MEC Projects TIC2003-01000, TIN2005-09207-C03-
03, and by Comunidad de Madrid Program S-0505/TIC/0407.

2 UML+OCL Diagrams

The UML static view models concepts in the application domain as well as
internal concepts invented as part of the implementation of an application. It
does not describe the time-dependent behavior of the system, which is described
in other views. Key elements in the static view are classes and their relationships,
which can be of different kinds, including associations and generalizations. The
static view is displayed in class diagrams.

Example 1. Consider the class diagram TRAINWAGON shown in Figure 1. It
models an example from a railway context. A train may own wagons, and wagons
may be connected to other wagons (their predecessor and successor wagons).
Wagons can be either smoking or non-smoking.

Train
Wagon

smoking:Boolean
train wagon

1 *Ownership

[0..1]pred

Order

[0..1] succ

Fig. 1. The class diagram TRAINWAGON.

A system may be in different states as it changes over time. An object diagram
models the objects and links that represent the state of a system at a partic-
ular moment. An object is an instance of a class. A link is an instance of an
association. An object diagram is primarily a tool for research and testing.

Example 2. Consider now the object diagram TRAINWAGON-1 shown in Fig-
ure 2. It describes a snapshot of the railway system modeled by the class diagram
TRAINWAGON, although possibly an “undesired” one since it describes a train
with two wagons linked in a cyclic way!

Train1:Train

Wagon1:Wagon

smoking:true

Wagon2:Wagon

smoking:false

Ownership

Ownership

Order Order

Fig. 2. The object diagram TRAINWAGON-1.

OCL is a pure specification language on top of UML. It is a textual language
with a notational style similar to common object oriented languages.

Example 3. Consider the following constraint over the class diagram TRAIN-

WAGON: There do not exist two different wagons directly linked to each other

in a cyclic way. This constraint can be expressed using OCL as the following
invariant notInCyclicWay over the class diagram TRAINWAGON:

not ((Wagon.allInstances)
→exists(w1:Wagon | (Wagon.allInstances) →exists(w2:Wagon |

w1:Wagon <> w2:Wagon
and (w1:Wagon.succ) → includes(w2:Wagon)
and (w2:Wagon.succ) → includes(w1:Wagon)))) .

The object diagram TRAINWAGON-1 does not satisfy this constraint, since there
exists two wagons, namely Wagon1 and Wagon2, such that the successors of
Wagon1 include Wagon2, and the successors of Wagon2 include Wagon1.

3 The ITP/OCL Tool

The ITP/OCL tool is based on the equational specification of UML+OCL class
diagrams developed in [3, 4], according to which: i) class and object diagrams
are specified as membership equational theories; ii) constraints are represented
as Boolean terms over extensions of those theories; and iii) validating object
diagrams with respect to constraints is reduced to checking whether the corre-
sponding Boolean terms rewrite to true or false. The ITP/OCL tool is written
entirely in Maude [5], a term-rewriting based programming language that im-
plements membership equational logic (and rewriting logic). Maude is also a
reflective programming language. This means, in particular, that both its parser
and its rewriting engine are available to the programmer as built-in operations:
we have taken advantage of the latter to implement the tool’s OCL parser and
of the former to implement the tool’s UML+OCL rewriting-based validation
engine. The implementation of the ITP/OCL tool comprises around 4,000 lines
of Maude code. The latest version of the ITP/OCL tool, with the available
documentation and a collection of examples (that includes class diagrams with
enumeration classes, association classes, generalizations, attributes and query
operations), can be found at http://maude.sip.ucm.es/itp/ocl/.

The implementation of an interactive tool in Maude comprises four different
tasks: defining a read-eval-print loop; defining the syntax for the commands;
defining the interaction with the loop; and defining the processing of the com-
mands. Maude provides a generic input/output facility through its “loop objects”
terms. It also provides great flexibility to define the syntax for the commands
thanks to its mixfix front-end and to the use of bubbles (any nonempty list of
Maude identifiers). Finally, the processing of the requests made to an interactive
tool is defined in Maude by equations acting on the loop objects terms.

The ITP/OCL’s commands can be grouped in four classes:

– Commands that create a diagram. They are defined by equations that add
to the tool’s database the module that, according with the tool’s semantics,
specifies an empty class (respectively, object) diagram. For example, to create
a class diagram we use the command (create-class-diagramCD .), where
CD is the class diagram’s name.

– Commands that insert an element (class, attribute, association, and so on)
in a diagram. They are defined by equations that add to the module speci-
fying the diagram in the tool’s database the declarations (sorts, operators,
memberships, equations) that, according with the tool’s semantics, specify
that the diagram has this element. E.g., to insert a class we use the command
(insert-class CD : C .), where CD is the class diagram’s name and C
is the class’ name.

– Commands that state a constraint over a class diagram. They are defined by
equations that associate to the module specifying the class diagram in the
tool’s database the Boolean term that, according with the tool’s semantics,
represents this constraint. For instance, to state a contextualized invariant
we use the command (insert-invariant CD : C : INV .), where CD is
the class diagram’s name, C is the contextual class’ name, and INV is the
invariant.

– Commands that validate an object diagram. They are defined by equations
that check whether the Boolean terms representing the invariants reduce to
true or false in the module that, according with the tool’s semantics specifies
the union of the class diagram, along with its invariants, and the object
diagram. E.g., to check whether an object diagram validates the invariants
stated over the class diagram of which it is an instance, we use the command
(check-invariants CD : OD .), where CD is the class diagram’s name
and OD is the object diagram’s name.

4 The Visual ITP/OCL Tool

The Visual ITP/OCL is a Java graphical interface for the ITP/OCL tool.3

Events on the Visual ITP/OCL’s worksheets and toolbars are transformed into
ITP/OCL commands and are interpreted and executed in a Maude process run-
ning the ITP/OCL tool. In its current state:

– Diagrams can be graphically created in a similar way to other CASE tools,
like Rational Rose [6] or Gentleware Poseidon UML [7]. By clicking, drag-
ging, and dropping on the class diagram’s (respectively, object diagram’s)
worksheet and toolbar, the user can interactively insert, modify, and delete
classes and associations (respectively, objects and links.) Several class dia-
grams can be opened at the same time. Object diagrams are associated to
their class diagrams. There is also a zooming facility to increase/decrease
the scale. Finally, diagrams can also be saved (and loaded from) a MySQL
database and can be exported as eps-files.

– Constraints on class diagrams (respectively, queries on object diagrams) are
inserted through an OCL editor and parser. Constraints inserted in a class
diagram can be automatically checked over specific object diagrams. Queries
can also be automatically evaluated.

3 The Visual ITP/OCL tool is being developed by F. Alcaraz, J. P. Gavela, and
J. Arias as a Master’s project.

5 Related and Future Work

A number of CASE tools exists which facilitate drawing and documenting UML
diagrams [6–8]. However, there is little support for validating models during the
design stage and generally no substantial support for constraints written in OCL.
The USE tool [9] is, however, a significant exception. The USE tool expects as
input a textual description of a model and its constraints. This textual descrip-
tion is then displayed in a graphical interface. Objects and links can be then
graphically created by a drag and drop facility. In every system state, the con-
straints can be automatically checked. The USE tool also supports the validation
of sequence diagrams by checking that, for each step in the sequence, the ini-
tial and the resulting diagrams satisfy, respectively, the pre- and post-conditions
constraining the application of the corresponding (non-query) operation. This
feature is not yet supported by the ITP/OCL tool. Notice, however, that val-
idating sequence diagrams à la USE only requires the capability of checking
constraints (the pre- and post-conditions) over object diagrams. We plan to add
this feature in the next version of the ITP/OCL tool.

The ITP/OCL tool is based on the equational specification of UML+OCL
class diagrams: validating invariants over (or evaluating OCL queries in) ob-
ject diagrams is done by rewriting the corresponding term in the corresponding
equational specification. This is clearly different from the USE tool’s underlying
semantics and its corresponding evaluation mechanism [10]. Finally, as suggested
by various of our referees, we have tried a first comparison between both tools.
In particular, Table 1 shows the time (in seconds) consumed the tools to val-
idate a number of constraints over two object diagrams, TRAINWAGON-10x25

and TRAINWAGON-10x100, of the class diagram TRAINWAGON. In addition to
the constraint notInCyclicWay introduced in Section 2, we have considered the
following constraints:

– All trains must own at least one wagon.

context Train inv atLeastOnewagon:
self:Train.wagon size() ≥ 1.

– A wagon and its successor wagon should belong to the same train.

context Wagon inv belongToTheSameTrain:
self:Wagon.succ →notEmpty() implies
self:Wagon.succ → forAll(w:Wagon | (w:Wagon.train = self:Wagon.train)).

– All trains will have the same number of wagons.

context Train inv sameNumberOfWagons:
Train.allInstances → forAll (t1:Train |
(self:Train <> t1:Train implies
(self:Train.wagon → size() = t1:Train.wagon → size()))).

The object diagram TRAINWAGON-10x25 contains 10 trains and 250 wagons,
each train is linked to 25 different wagons, which are linked in the expected

way; that is, each wagon has a predecessor and a successor, except for the
first and the last wagon. The object diagram TRAINWAGON-10x100 contains
10 trains and 1000 wagons, each train is linked to 100 different wagons, which
are also linked in the expected way. The object diagrams TRAINWAGON-10x25

and TRAINWAGON-10x100 satisfy indeed our four constraints. The validations
have been carried out in a laptop computer with a 2GHz Pentium processor and
1 GB RAM. As expected, validating the constraint notInCyclicWay takes more
time; essentially, it has to make, respectively, 250 × 250 and 1000 × 1000 com-
parisons. However, the time consumed by the USE tool is unexpectedly high.
We have tried to obtain from the USE community an explanation for this fact
(which may be simply due to our inexpert use of the tool) but we have not get
an answer yet; as soon as we get it, we will publish it in the ITP/OCL web page.

Table 1. Validation times

TRAINWAGON-10x25 TRAINWAGON-10x100
USE ITP/OCL USE ITP/OCL

atLeastOnewagon 0.055s 0.076s 0.034s 0.116s

belongToTheSameTrain 0.207s 0.076s 0.970s 0.780s

sameNumberOfWagons 0.202s 0.120s 0.241s 0.936s

notInCyclicWay 45.745s 13.788s 2819.410s 233.710s

References

1. Object Management Group: Unified Modeling Language Specification (2004) http:
//www.uml.org.

2. Object Management Group: Object Constraint Language Specification (2004)
http://www.omg.org.

3. Egea, M.: ITP/OCL: a theorem prover-based tool for UML+OCL class diagrams.
Master’s thesis, Facultad de Informática, Universidad Complutense de Madrid
(2005) http://maude.sip.ucm.es/~marina/.

4. Clavel, M., Egea, M.: Equational specifications of UML+OCL static class dia-
grams. http://maude.sip.ucm.es/itp/~clavel (2006)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: Maude Manual (Version 2.2). (2005) SRI International, December 2005, http:
//maude.cs.uiuc.edu.

6. IBM: Rational Software (2006) http://www-306.ibm.com/software/rational/.
7. AG, G.: Poseidon Standard Edition (2006) http://www.gentleware.com.
8. Demuth, B., Löcher, S., Zschaler, S.: Structure of the Dresden OCL toolkit. Tech-

nical report, Technical University of Darmstadt, Germany (2004) Reviewed Con-
ference Paper.

9. Richters, M.: The USE tool : A UML-based specification environment. (2001)
http://www.db.informatik.uni-bremen.de/projects/USE/.

10. Gogolla, M., Richters, M., Bohling, J.: Tool support for validating UML and OCL
models through automating snapshot generation. In: Proceedings of SAICSIT.
(2003) 111–120

