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Abstract. In this paper we present the ITP/OCL tool, a rewriting-
based tool that supports automatic validation of UML static class di-
agrams with respect to OCL invariants. From a conceptual point of
view, the ITP/OCL tool is directly based on the equational specifica-
tion of UML+OCL class diagrams developed in [11], according to which:
i) class and object diagrams are specified as membership equational the-
ories; ii) invariants are represented as Boolean terms over extensions of
those theories; and iii) checking invariants over object diagrams is re-
duced to inspecting whether the corresponding Boolean terms rewrite to
true or false. From an implementation point of view, the ITP/OCL tool
is written entirely in Maude [8], making extensive use of its reflective
capabilities to implement the user interface, thanks to which the tool’s
underlying equational semantics remains hidden to the user who only
must be familiar with the standard notions of UML diagrams and OCL
invariants.

1 Introduction

The Unified Modeling Language (UML) [15, 20, 2] is a general-purpose visual
modeling language that is used to specify, visualise, construct, and document
the artifacts of a software system. The UML notation is largely based on dia-
grams; however, for certain aspects of a design, diagrams do not provide the level
of conciseness and expressiveness that a textual language can offer. The Object
Constraint Language (OCL) [14, 23] is a textual constraint language with a nota-
tional style similar to common object oriented languages. OCL came to help the
modelers to specify and document with UML diagrams. Although designed to be
a formal language, experience with OCL has shown that the language definition
is not precise enough. In this regard, various authors have pointed out language
issues related to ambiguities, inconsistencies or open interpretations [18, 19, 10,
12].

Validation and testing in software development has been recognised of key
importance for long. There are many different approaches to validation: sim-
ulation, rapid prototyping, etc. We validate a model by checking whether its
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instances (also called “snapshots”) fulfill the desired invariants. This can lead
to several consequences with respect to the design. First, if there are reasonable
snapshots that do not fulfill the invariants this may indicate that the invari-
ants are too strong or the model is not adequate in general. On the other hand,
invariants may bee too weak, allowing undesirable system states.

A number of CASE tools exists which facilitate drawing and documenting
UML diagrams. However, there is little support for validating models during the
design stage and generally no substantial support for invariants written in OCL.
In this paper we present the ITP/OCL tool, a rewriting-based tool that sup-
ports automatic validation of UML static class diagrams with respect to OCL
invariants. It is intended as a lightweight formal method: it should help software
modelers to find flaws in UML class diagrams in the early phases of the software
development process. It is intended also as a practical formal method: it should
be directly usable for UML+OCL modelers. The ITP/OCL tool is directly based
on the equational specification of UML+OCL class diagrams developed in [11].
This semantics has three important advantages: i) it uses a formal language,
namely, membership equational logic [13], that already exists, is well-understood,
and is implemented; ii) it formalizes the different UML+OCL modeling elements
preserving their natural meaning and relationships; and iii) it provides valida-
tion methods for UML+OCL object diagrams that can be mechanized using a
technique, namely, term-rewriting, that also exists, is well-understood, and is
implemented. Although the equational semantics developed in [11] only covers
UML+OCL static class diagrams, it provides a solid ground upon which to de-
velop equational extensions to cope with the semantics of other UML diagrams.

The ITP/OCL tool is written entirely in Maude [8], a term-rewriting based
programming language that implements membership equational logic (and rewrit-
ing logic). Maude is also a reflective programming language [9]. This means,
in particular, that both its parser and its rewriting engine are available to
the programmer as built-in operations: we have taken advantage of the lat-
ter to implement the tool’s OCL parser and of the former to implement the
tool’s UML+OCL rewriting-based validation engine. Finally, Maude provides a
generic input/output facility, that we have tailored to built an interface for the
ITP/OCL that effectively keeps the tool’s underlying semantics hidden to the
user. The latest version of the ITP/OCL tool, with the available documentation
and examples, can be found at http://maude.sip.ucm.es/itp/ocl/. We are
also currently developing the Visual ITP/OCL, a Java visual front-end for the
ITP/OCL tool; in Appendix B we show a screenshot of this graphical interface.
Currently, the ITP/OCL tool does not share modules with the ITP tool [7];
code-wise, they are two independent tools. However, we envision a strong in-
teraction with the ITP tool in the future: for example, when proving diagram
transformation properties.

Organisation In Section 2 we provide background material: first, we introduce
membership equational logic; then, we present UML+OCL diagrams and sum-
marise the membership equational specification proposed for them in [11]. In
Section 3 we present the ITP/OCL tool: we discuss its reflective design and ex-



plain its commands in relation with the tool’s equational semantics. Finally, in
Sections 4 and 5 we report on related work and draw conclusions. In general, we
assume that the reader is familiar with the reflective capabilities of the Maude
system and the style of functional metaprogramming that it supports.

2 An equational specification of UML+OCL class
diagrams

In this section we provide background material: first, we introduce membership
equational logic; then, we present UML+OCL class diagrams and summarise the
membership equational specification proposed for them in [11].

2.1 Membership Equational Logic

Membership equational logic (MEL) is an expressive version of equational logic;
a full account of its syntax and semantics can be found in [4]. A signature in MEL
is a triple Ω = (K, Σ, S), with K a set of kinds, Σ a many-kinded signature, and
S a pairwise disjoint K-kinded family of sets of sorts. The basic intuition is that
correct or well-behaved terms are those that can be proved to have a sort, whereas
error or undefined terms are terms that have a kind but do not have a sort. For
example, we can declare a kind Class for terms representing arbitrary objects,
with two sorts Train and Wagon, for terms representing, respectively, trains and
wagons. We can also declare a kind ClassCol for terms representing collections
of arbitrary objects, with two sorts TrainCol and WagonCol for representing,
respectively, collections of trains and collections of wagons. Then, assuming that
col and nil are the operators for building collections, the term col(Wagon1,

col(Wagon2, nil)) will be a term of the kind ClassCol with sort WagonCol,
while the term col(Train1, col(Wagon2, nil)) will be a term of the kind
ClassCol but with no sorts.1

The atomic formulas of MEL are either equations t = t′, where t and t′

are terms of the same kind, or membership assertions of the form t : s, where
the term t has kind k and s ∈ Sk. Sentences are Horn clauses on these atomic
formulas, i.e., sentences of the form ∀{x}A0 if A1 ∧ . . . ∧ An, where each Ai is
either an equation or a membership assertion. A theory (in other contexts called
“theory presentation”) is a pair (Ω, E), where E is a finite set of sentences in
MEL over the signature Ω. For example, our theory for collections of trains and
wagons will contain a conditional membership axiom that states that any term
col(X , XC ) belongs to the sort TrainCol if X is of the sort Train and XC is
of the sort TrainCol, with X a variable of the kind Class and XC a variable
of the kind ClassCol. MEL inference system extends equational logic with rules
for handling sort-memberships.

1 The distinction between kinds and sorts is introduced in MEL to handle partiality.
Although the example does not show the expressiveness of this formalism (better
examples are data structures with partial constructors like priority queues, sorted
lists, etc.), it serves a purpose in the context of this paper: to introduce the basic
features of MEL and its use in our specification of UML+OCL static diagrams.



2.2 UML class diagrams

The UML static view models concepts in the application domain as well as
internal concepts invented as part of the implementation of an application. It
does not describe the time-dependent behaviour of the system, which is described
in other views. Key elements in the static view are classes and their relationships,
which can be of different kinds, including association and generalisation. The
static view is displayed in class diagrams. A class diagram has the following
components: a set of classes, a set of attributes for each class, a set of operations
for each class, and a set of relationships between classes. Consider the class
diagram TRAIN-WAGON shown in Figure 1. It models an example from a railway
context. A train may own wagons, and wagons may be connected to other wagons
(their predecessor and successor wagons). Trains are of two types: monorail and
high-speed; and can be identified by a string of characters. Finally, wagons can
be either smoking or non-smoking and there is a special class of wagons, namely,
the first-class wagons.

Fig. 1. The class diagram TRAIN-WAGON.

In [11] we propose an equational specification of class diagrams as member-
ship equational theories, called “class-theories”, where basically

– classes are represented by sorts of the kind Class;

– class collections are represented by sorts of the kind Col;

– attributes and roles are represented by operators of the appropriate ranks.

In Section 3.2, we will give a more detailed explanation of the construction
of class-theories when presenting the ITP/OCL commands for describing class
diagrams. Notice that, for the sake of simplification, we do not consider in [11]
association classes, query class operations (that is, operations that do not change
the state of the system), and multi-valued class attributes: they are, however,
specified in a similar fashion. Non-query operations are a different story: we
discuss this issue in the concluding section. Finally, notice that n-ary associations
can be reduced to binary ones.



2.3 UML object diagrams

A system may be in different states as it changes over time. An object diagram
models the objects (i.e., the instances of the classes) and links (i.e., the instances
of the associations) that represent the state of a system at a particular moment.
An object diagram is primarily a tool for research and testing. It can be used
to understand a problem by documenting examples from the problem domain.
It can also be used during analysis and design to verify the accuracy of class
diagrams.

Consider the object diagram TRAIN-WAGON-1 shown in Figure 2. It de-
scribes an instance (also called a “snapshot”) of the railway system modeled
by the class diagram TRAIN-WAGON shown in Figure 1. In [11] we propose

Fig. 2. The object diagram TRAIN-WAGON-1.

an equational specification of object diagrams as membership equational theo-
ries, called “object-theories”. The relation between class diagrams and object
diagrams is preserved by the fact that object-theories instantiate their corre-
sponding class-theories by “filling” the sorts representing their classes and by
defining the operators representing their attributes and roles. Basically,

– objects are represented by constants of the kind Class, which are declared
to belong to the sorts representing their classes;

– values are declared for each object’s attribute by defining the value of the op-
erator representing the attribute when applied to the constant representing
the object; and

– collections are associated to each object’s role by defining the value of the
operator representing the role when applied to the constant representing the
object.

In Section 3.2 we will give a more detailed explanation of the construction of
object-theories when presenting the ITP/OCL commands for describing object
diagrams.

2.4 OCL invariants

OCL is a pure specification language on top of UML. It is a textual language
with a notational style similar to common object oriented languages. It can be



used to state constraints concerning the static structure and the behaviour of a
system. The most important uses of OCL expressions in UML diagrams are [23]:
(1) the specification of invariants on classes and types in the class diagram; (2)
the specification of constraints on operations and methods; (3) the description
of pre- and post-conditions on operations; (4) the specification of initial values
and derivation rules for attributes; (5) the specification of query operations; and
(6) the introduction of new attributes and operations. The equational semantics
for UML+OCL class diagrams proposed in [11] explicitely supports use (1) and,
implicitly, uses (4), (5) and (6). Regarding uses (2) and (3), see our remarks in
the concluding section.

In OCL, a number of basic types are predefined and available to the mod-
eler. These types are Boolean (true, false), Integer (1, -5, 2, 34, . . . ), Real (1.5,
3.14, . . . ), and String (‘To be or not to be...’). OCL defines a number of opera-
tions on the predefined types. For example, for the type Boolean, the operations
and, not, and implies. Each OCL expression is written in the context of a UML
class diagram. Classes from the UML class diagram are also types in the OCL
expressions that are attached to the model.

The value of a property for an object is accessed in OCL by a dot (.) followed
by the name of the property. For example, if w:Wagon is the reference to an
object, (w:Wagon).smoking is the value of the attribute smoking for w:Wagon.
Starting from a specific object, we can also navigate an association to refer to
other objects and their properties by using the opposite association-end. For
example, if t:Train is the reference to an object, (t:Train).wagon is the collection
of objects of type Wagon linked to t:Train under the association Ownership. In
OCL it is possible to use features defined on the classes themselves. A predefined
feature on classes is allInstances() which results in the collection of all instances
of the class. For example, Train.allInstances() is the collection of objects of class
Train that exist in the system at the time the expression is evaluated.

Collections, like sets, ordered sets, bags, and sequences are predefined types in
OCL. They have a large number of predefined operations on them. Here we only
introduce those that we use later on in our examples. The value of a property for
a collection is accessed by an arrow (→) followed by the name of the property. For
example, if t:Train is the reference to an object, ((t:Train).wagon)→size() is the
number of objects in the collection (t:Train).wagon; similarly, ((t:Train).wagon)
→isEmpty() is true if and only if the collection (t:Train).wagon is empty. When
we want to specify a collection which is derived from some other collection, but
which contains different elements from the original collection (i.e., it is not a sub-
collection), we can use a collect operation. The syntax for the collect operation
is:

collection →collect(v | expression-with-v)

The variable v is called the iterator-variable. The value of the collect operation
is the collection of the results of the evaluation of expression-with-v for each
element in collection . For example, the result of Train.allInstances→collect(t:Train
| (t:Train).identifier) is the collection of all the train identifiers. Many times a
constraint is needed on all elements of a collection. The forAll operation in OCL



allows specifying a Boolean expression, which must hold for all objects in a
collection:

collection →forAll(v | boolean -expression-with-v)

This forAll expression results in a Boolean. The result is true if and only if the
boolean-expression-with-v is true for all elements of collection . For example, the
result of Wagon.allInstances→forAll(w:Wagon | (w:Wagon).smoking) is true if and
only if smoking is allowed in all wagons.

Consider the following constraint over the class diagram TRAIN-WAGON: A
wagon and its successor wagon should belong to the same train. This constraint
can be expressed using OCL as the following invariant belongToTheSameTrain
over the class diagram TRAIN-WAGON:

contex Wagon inv belongToTheSameTrain:
(Wagon.allInstances)→forAll(self:Wagon |

(self:Wagon).succ→notEmpty() implies
(self:Wagon).train = (((self:Wagon).succ→collect(w:Wagon|(w:Wagon).train))→asSet()))

Of course, the same constraint can be expressed in different ways in OCL. In
particular, one may use the self operator to contextualize the invariant and get
rid of the initial Wagon.allInstances expression. For the sake of simplification, we
consider here the general case.

In [11] we propose a formalisation of OCL invariants over UML class dia-
grams as Boolean terms over membership equational theories, called “invariant-
theories”, that extend the class-theories corresponding to the UML class dia-
grams. This extension basically consists on:

– the specification of the OCL operators over collections (like size, includes,
asSet, and so on);

– the specification of the OCL operator allInstances; and

– the specification of the particular instances of the OCL iterator-operators
(like forAll, exists, collect, and so on) that occur in the invariants.

In Section 3.2 we will give a more detailed explanation of the construction of
the invariant-theories when presenting the ITP/OCL commands for stating and
checking invariants.

3 The ITP/OCL: a validation tool for UML+OCL
diagrams

In this section we present the ITP/OCL tool: we discuss its reflective design
and explain its commands in relation with the tool’s equational semantics. We
assume that the reader is familiar with the reflective capabilities of the Maude
system and the style of functional metaprogramming that it supports. See [9]
for a complete description of the Maude system.



3.1 The ITP/OCL design

The implementation of an interactive tool in Maude comprises four different
tasks [6]: defining a read-eval-print loop; defining the syntax for the commands;
defining the interaction with the loop; and defining the processing of the com-
mands.

The read-eval-print loop. Maude provides a generic input/output facility through
its predefined module LOOP-MODE. This module declares an operator that builds
terms of sort System—called “loop objects”— with an input stream (its first
argument, of sort QidList), an output stream (its third argument, also of sort
QidList), and a state (its second argument, of sort State). The way to distin-
guish the inputs passed to a loop object from the inputs passed to the Maude
system is by enclosing the former in parentheses. In the module LOOP-MODE the
sort State does not have any constructors: this gives complete flexibility for
defining the terms that represent the state of the loop object in each interactive
tool. In the case of the ITP/OCL tool, the sort State contains terms representing
objects which basically have:

– An attribute odb that keeps a database in which the UML+OCL diagrams
are stored.

– An attribute input that holds the next request to be processed by the tool.
– An attribute output that holds the next response to be output to the user.

The syntax for the commands. Maude provides great flexibility to define the
syntax for an interactive tool thanks to its mixfix front-end and to the use of
bubbles (any nonempty list of Maude identifiers). In the case of the ITP/OCL,
the syntax for its commands is defined in the module OCL-GRAMMAR which intro-
duces three sorts of bubbles: the sort Token for bubbles of length one; the sort
Bubble for bubbles of any length; and the sort NeTokenList for bubbles of any
length greater that one. In Appendix A we include the fragment of the module
OCL-GRAMMAR that defines the ITP/OCL’s command grammar. In this module
commands are represented as terms of sort Input.

The interaction with the loop. The implementation in Maude of an interactive
tool contains rewrite rules acting on loop objects to detect when a valid request
has been entered by the user (and hence it must be processed), or when a valid
result has been produced by the application (and hence it must be output).
Detecting valid requests can be easily and efficiently achieved using the built-in
operation metaParse. In the case of the ITP/OCL, a rule labelled [in] checks
when a list of quoted identifiers placed in the input stream of its loop object
corresponds to a valid command, that is, to a term of sort Input in the module
OCL-GRAMMAR, and it places the metarepresentation of this term in the input

attribute of the loop object’s state. For the inverse direction of the interaction, a
rule labelled [out] checks when the output attribute of the loop object’s state
holds a response to be output and it places it in the output stream of the loop
object.



The processing of the commands. The processing of the requests made to an
interactive tool can be defined in Maude by equations acting on the states of the
loop objects, that is, acting on terms of sort State. The ITP/OCL’s commands
can be grouped in four classes:

– Commands that create a diagram. They are defined by equations that add
an empty class (resp. object) diagram to the state’s database. This database
is implemented as a list of terms metarepresenting Maude modules: namely,
the modules specifying the UML+OCL diagrams entered by the user. These
commands add to this list the term that metarepresents the module that,
according with the semantics introduced in [11], specifies an empty class
(resp. object) diagram.

– Commands that insert an element (class, attribute, association, and so on) in
a diagram. They are defined by equations that add to the module specifying
the diagram in the state’s database the declarations (sorts, operators, mem-
berships, equations) that, according with the semantics introduced in [11],
specify that the diagram has this element.

– Commands that state an invariant over a class diagram. They are defined by
equations that associate to the module specifying the class diagram in the
state’s database the metarepresentation of the Boolean term that, according
with the semantics introduced in [11], represents this invariant.

– Commands that validate invariants over an object diagram. They are de-
fined by equations that check whether the Boolean terms representing the
invariants reduce to true or false in the module that, according with the
semantics introduced in [11], specifies the union of the invariant-theory cor-
responding to these invariants and the object-theory corresponding to the
object diagram.

In the next section we introduce in more detail the different ITP/OCL com-
mands, their syntax and their effects on the state of the tool’s loop object. Re-
garding their implementation, the equations defining the ITP/OCL commands
make extensive use of the functions predefined in Maude to create, modify, and
execute modules at the metalevel.

3.2 The ITP/OCL commands

In this section we introduce the commands available in the ITP/OCL tool to
describe UML class and object diagrams, and to state and validate OCL con-
straints over these diagrams.

UML class diagrams To create a class diagram we use the command (create-class-diagram

CD .), where CD is the class diagram’s name. Internally, this command adds a
module CD , which specifies an empty class diagram, to the state’s database.

To insert a class we use the command (insert-classCD : C .), where CD
is the class diagram’s name and C is the class’ name. Internally, this command
adds the sorts C and CCol, of the kinds, respectively, Class and Col, to the



module CD in the state’s database. It also adds the membership axioms that
define the set of terms that represent C -collections.

To insert a generalisation relation we use the command (insert-subclass

CD : C -> C ′ .), where CD is the class diagram’s name, C is the sub-class’
name, and C ′ is the super-class’ name. Internally, this command adds a subsort
relation between the sorts C and C ′ to the module CD in the state’s database.
The subsort relation makes C to inherit the attributes and properties declared
for its superclass C ′.

To insert an enumeration class we use the command (insert-enum-class

CD : C - W1 . . . Wn .), where CD is the class diagram’s name, C is the class’
name, and Wi are the class’ values, for i = 1, . . . , n. Internally, this command
adds the sort C of the kind Class to the module CD in the state’s database. It
also adds the operators Wi as constants of the kind Class. Finally, it adds the
membership axioms that declare that the constants Wi represent values in the
enumeration class C .

To insert a class’ attribute we use the command (insert-attr CD : C
(A,V ) .), where CD is the class diagram’s name, C is the class’ name, A is the
attribute, and V is its values’ type. Internally, this command adds an operator
A, with rank Class -> Kind(V), where Kind(V) is the kind corresponding to
the type V, to the module CD in the state’s database.

To insert an association relation we use the command (insert-assoc CD :

C : R <-> R′: C ′.), where CD is the class diagram’s name, C and C ′ are the
names of the classes at each end of the association, and R and R′ are their roles
in the association. Internally, this command adds two operators R and R′, with
ranks Class -> Col, to the module CD in the state’s database.

To insert multiplicities at each end of an association we use the command
(insert-multiplicity CD :(C : R, M )<->( M ′, R′ : C ′).), where CD
is the class diagram’s name, C and C ′ are the names of the classes at each end
of the association, R and R′ are their roles in the association, and M and M ′

are the multiplicities at each end of the association. A multiplicity is either (<
k >), with k a natural number or the symbol *, or (< n, k >), with n a natural
number and k a natural number or the symbol *. Internally, multiplicities are
automatically added to the list of invariants associated to the module CD in the
state’s database. We will go back to this point in Section 3.2.

UML object diagrams To create an object diagram we use the command
(create-object-diagramCD : OD .), where OD is the object diagram’s name
and CD is its class diagram’s name. Internally, this command adds a module
OD , which specifies an empty instance of the object diagram OD , to the state’s
database.

To insert an object we use the command (insert-object OD : C : O .),
where OD is the object diagram’s name, O is the object’s name, and C is the
name of the class of which O is an instance. Internally, this command adds the
operator O as a constant of the kind Class. It also adds the membership axiom
that declares that the constant O represents an object in the class C. Finally, for



each operator-role R in OD , it adds the equation that declares that the object
O is initially linked in its role R to the empty collection of objects.

To insert the value of an object’s attribute we use the command (insert-attr-value

OD : C :O : A : V -> E .), where OD is the object diagram’s name, O is
the object’s name, C is the name of the class of which O is an instance, A is the
attribute, V is its type, and E is its value for the object O . Internally, this com-
mand adds to the module OD in the state’s database the equation that declares
that the term A(O) is equal to E .

To insert a link we use the command (insert-link OD | C : R <-> R′:

C ′ | O <-> O ′ .), where OD is the object diagram’s name, O and O ′ are the
names of the objects at each end of the link, C and C ′ are the names of their
classes, and R and R′ are their roles in the association of which the link is an
instance. Internally, this command modifies the right-hand side of the equation
that define the value of the operator R (resp. R′) over the constant O ′ (resp.
O) by union-ing the collection with the object O (resp. O ′) to the collection of
objects already linked to O ′ (resp. O) in its role R.

OCL invariants To state an invariant we use the command (insert-invariant

CD :: INV .) where CD is the class diagram’s name and INV is the invariant.
A few warnings, however, are in order regarding invariant expressions:2

– To denote the collection of objects associated to an object’s role, we must
prefix the symbol # to the role (and insert a blank space between the ex-
pression denoting the object and the role).

– We must also prefix the allInstances operator with the symbol # (and insert
a blank space between the class’ name and the operator).

– We can not apply an iterator with several iterator-variables; instead, we must
apply the iterator in nested form.

– Finally, the iterator-variable must be used along with its class (separated by
a semicolon).

Internally, this command associates the Boolean term representing INV to the
module CD in the state’s database.

Multiplicities are considered as invariants. Internally, a command to insert
multiplicities at each end of an association in a class diagram is transformed into
a command that state the corresponding invariant over the class diagram.

Validating invariants To check whether an object diagram satisfies the in-
variants stated over the class diagram of which it is an instance, we use the
command (check-invariants CD : OD .) where CD is the class diagram’s
name and OD is the object diagram’s name. Internally, for each invariant INV
associated to the module CD in the state’s database, this command:

2 These restrictions will be removed in the near future, with a more adequate definition
of ITP/OCL’s bubbles and tokens in the module OCL-GRAMMAR.



– First, it creates a new module as a result of extending the module OD with
i) the specification of the OCL operators over collections; ii) the specification
of the OCL operator allInstances for the module OD ; and iii) the specification
of the particular instances of the OCL iterator-operators that occurs in INV .
Each of these extensions is explained below.

– Then, it reduces in this new module the Boolean term representing the in-
variant INV . Since, by construction, this module is Church-Rosser, termi-
nating, and sufficiently complete for ground Boolean terms, the result of this
reduction must be either true or false.3

– Finally, it changes the state’s attribute output to hold a message informing
the user of the reduction result.

The specification of the OCL operators over collections (like size, includes,
asSet, and so on) as equationally defined operators can be found in the module
OCL-BASIC which is part of the ITP/OCL distribution.

The specification of the OCL operator allInstances as an equationally defined
operator with rank ClassId->ClassCol is accomplished as follows. First, for
each class Ci in the object diagram, we declare an operator Ci as a constant
of the kind ClassId. Then, for each class Ci in the object diagram, we define
an equation that declare that the operator allInstances, when applied to the
constant Ci, is equal to the collection of constants representing the instances of
Ci in the object diagram.

Finally, the specification of the particular instances of the OCL iterator-
operators (like forAll, exists, collect, and so on) also as equationally defined op-
erators is accomplished as follows. First, for each iterator-expression iter→(id :
c| exp) that occurs in INV , we declare an operator iter@n, for n a unique natu-
ral number. Then, we define the equations that declare the value of iter@n over
collections. The generation of these equations is a generic process (formally spec-
ified in [11]), parameterized by the kind of the iterator iter and the expression
exp.

4 Related Work

Here we will focus on related proposals for an algebraic semantics for UML(+OCL)
models. A comparison between the ITP/OCL tool and the USE tool [17] can be
found in [11].

– RIVIERA [21] is a framework for the verification and simulation of UML
class diagram models (without OCL constraints) and statecharts. It is based
on the representation of class diagrams and statecharts as terms (not as
theories, as in our proposal) in Maude modules that specify the UML meta-
model [1].

3 The proof of these properties would be published elsewhere. Detail information about
the construction of the invariant-theory modules can be found in [11].



– MOMENT [3] is a generic model management framework. It uses Maude
modules to automatically serialize software artifacts. It supports OCL con-
straints over UML models. As in the case of RIVIERA, it is based on the
representation of class diagrams as terms (not as theories, as in our pro-
posal) in Maude module that specifies the UML metamodel. MOMENT is
integrated in Eclipse, an open platform for tool integration.

– CASL-LTL [16] is the metalanguage adopted by the CoFI Group [22] to de-
scribe the semantics of UML models, including behavioural diagrams. It pro-
poses a “flatten” representation of the different modeling elements (classes,
attributes, operations, associations, and so on) as constants (of the same
type) whose modeling meaning and relationships must be defined with ad-
ditional logical axioms. This representation of UML models must be done
manually. In our approach, we formalize the various modeling elements us-
ing different formal elements (sorts, subsorts, operators, constants and terms,
equations and memberships) in an attempt to preserve their natural meaning
and relationships. This formalization is automatized in the ITP/OCL tool.

5 Conclusion and Future Work

The equational specification of UML+OCL static class diagrams proposed in [11]
is our current contribution to an effort demanded by many actors in the software
modeling community: “The number of modeling directions requesting the use of
OCL increases significantly by the day. In these circumstances, the first steps
are identifying the reasons of the unsatisfactory state of facts that persists in the
OCL tool world and proposing reasonable solutions. A clear, unequivocal and
complete language specification is among the preconditions for conceiving and
implementing the OCL tools required by real-world projects” [5].

In this paper we have presented the ITP/OCL tool, an OCL tool directly
based on our equational semantics for UML+OCL static class diagrams. The
seminal work [11] only contained a basic description of the tool, still implemented
as an extension of the ITP tool, without many of its actual modeling features,
and lacking its current user interface. The ITP/OCL tool is written entirely
in Maude [8], making extensive use of its reflective capabilities. The ITP/OCL
interface effectively keeps the tool’s underlying semantics hidden to the user.
The tool is intended as a lightweight formal method: it will help to find defects
in UML class diagrams in the early phases of the software developing process.

Remarks on the equational specification of non-query class operations. However,
there are uses of OCL expressions in UML class diagrams that are not yet cov-
ered by our equational specification. In particular, we plan to extend this work to
deal with the specification of constraints (pre- and post-conditions) on class non-
query operations. In our view, non-query operations are in a different semantic
level with respect to the rest of the modeling elements in a class diagram. When
evaluated, non-query operation may change the model as a whole. This, in our
view, corresponds to a change in the membership equational theory specifying



the model. To address this issue, we will take advantage of the reflective prop-
erties of membership equational logic, and of its implementation in the Maude
language. Non-query operations will be specified as metalevel operators that
take class-theories modules as arguments and modify their declarations so as to
reflect the changes in the models provoked by the evaluation of the non-query
operations.
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Master’s thesis, Facultad de Informática, Universidad Complutense de Madrid,
September 2005. http://maude.sip.ucm.es/~marina/.

12. A. Hamie, F. Civello, J. Howse, S. Kent, and R. Mitchell. Reflections on the
Object Constraint Language. In 1998: Selected papers from the First International

Workshop on The Unified Modeling Language, pages 162–172, London, UK, 1999.
Springer-Verlag.

13. J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In F. Parisi-Presicce, editor, Recent Trends in Algebraic Development Tech-

niques, 12th International Workshop, WADT’97, Selected Papers, volume 1376 of
Lecture Notes in Computer Science, pages 18–61. Springer-Verlag, 1998.

14. Object Management Group. Object Constraint Language specification, 2004.
http://www.omg.org.



15. Object Management Group. Unified Modeling Language specification, 2004. http:
//www.uml.org.

16. G. Reggio, E. Astesiano, and C. Choppy. Casl-Ltl: A Casl Extension for Dynamic
Reactive Systems - Summary. Technical report, DISI-Università di Genova, Italy,
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A The command grammar

---------------------------------

--- Commands to create diagrams

---------------------------------

op create-class-diagram_. : Token -> Input .

op create-object-diagram_:_. : Token Token -> Input .

---------------------------------

--- Commands to insert elements in diagrams

---------------------------------

op insert-class_:_. : Token Token -> Input .

op insert-enum-class_:_-_. : Token Token Bubble -> Input .

op insert-attr_:_(_,_). : Token Token Token Token -> Input .

op insert-assoc_:_:_<->_:_. : Token Token Token Token Token -> Input .

op insert-subclass_:_->_. : Token Token Token -> Input .

op insert-multiplicity_:(_:_,_)<->(_,_:_). :

Token Token Token Multi Multi Token Token -> Input .

op insert-object_:_:_. : Token Token Token -> Input .

op insert-link_|_:_<->_:_|_<->_. : Token Token Token Token Token

Token Token -> Input .

op insert-attr-value_:_:_:_:_->_. : Token Token Token Token Token

Token -> Input .

---------------------------------

--- Commands to state invariants over diagrams

---------------------------------

op insert-invariant_::_. : Token Bubble -> Input .

---------------------------------

--- Commands to validate diagrams



---------------------------------

op check-invariants_:_. : Token Token -> Input .

B The Visual ITP/OCL

The Visual ITP/OCL tool is simply a Java graphical front-end for the ITP/OCL
tool.4 Events on the Visual ITP/OCL’s worksheets and toolbars are transformed
into ITP/OCL commands and are interpreted and executed in a Maude process
running the ITP/OCL tool. In fact, the Visual ITP/OCL tool does not contain
any knowledge about the meaning of the UML modeling elements, neither about
the semantics of OCL expressions.

In Figure 3 we show the screenshot of a standard Visual ITP/OCL session:
in one window (the main window) we see a class diagram (in this case, our
TRAINWAGON example) under construction; in a second window (a pop-up
window) we see a class property sheet that has been opened out (possibly, to
edit a class already introduced); finally, in a third window (a shell terminal) we
see the commands that have been sent to the ITP/OCL tool which is running
on a Maude process in the background.

4 The Visual ITP/OCL tool is being developed by F. Alcaraz, J. P. Gavela, and
J. Arias as a Master’s project.



Fig. 3. A Visual ITP/OCL tool running example.


