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Abstract. This work contains both a theoretical development and a
novel application of ideas introduced in [1] for using reflection in formal
metareasoning. From the theoretical side, we extend the metareasoning
principles proposed in [1] to cover the case of metatheorems about equa-
tional theories which are unrelated by the inclusion relation. From the
practical side, we apply the newly introduced metareasoning principles
to formalize and prove semantic relations between equational theories
used in formal specification.

1 Introduction

Intuitively, a reflective logic is a logic in which important aspects of its metalogic
can be represented at the object level in a consistent way, so that the object-
level representations correctly simulate the relevant metalogical aspects. More
concretely, a logic is reflective when there exists a theory —that we call univer-
sal— in which we can represent and reason about all finitely presentable theories
in the logic, including the universal theory itself [8, 3]. As a consequence, in a
reflective logic, metatheorems involving families of theories can be represented
and logically proved as theorems about its universal theory. Of course, one of the
advantages of formal metareasoning based on reflection is that it can be carried
out using already existing logical reasoning tools.

The use of reflection for formal metareasoning was first proposed in [1], both
abstractly and concretely. Abstractly, it proposes a set of requirements for a logic
to be used as a reflective metalogical framework. Concretely, it presents member-
ship equational logic [12] as a particular logic that satisfies those requirements.
In addition, it provides metareasoning principles to logically prove metatheo-
rems about families of membership equational theories as theorems about its
universal theory [9].

This work is both a development and an application of the reflective method-
ology proposed in [1] for formal metareasoning using membership equational
logic. First, we extend the metareasoning principles introduced in [1]. In par-
ticular, while [1] only considered metatheorems about membership equational
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theories which are related by the inclusion relation, our reflective methodology
can also deal with metatheorems about theories which are unrelated with re-
spect to inclusion. Thus, our extension increases significantly the applicability
of the reflective methodology proposed in [1], as we show with the following
case study. As is well-known, equational specifications can be related in different
ways, and these relations can be informally formulated as metalogical statements
of equational logic. The semantic relations between different equational specifica-
tions are in fact key conceptual tools in the stepwise specification methodology,
and different techniques and criteria have been proposed to metalogically prove
them [10]. We show that some of these semantic relations can be formalized as
theorems about the universal theory of membership equational logic and that
they can be logically proved in a way that mirrors their corresponding proofs at
the metalogical level.

Organization The paper is organized as follows. First, in Sect. 2 we introduce
membership equational logic; the content of this section is standard material bor-
rowed from other papers. Then, in Sect. 3 we formulate some semantic relations
between membership equational specifications as metalogical statements, and in
Sect. 4 we introduce metareasoning principles for metalogically proving them.
Finally, in Sects. 5, 6, and 7 we present our reflective framework, and we put
it to work. In particular, we show how a whole class of metalogical statements,
that contains those in Sects. 3 and 4, can be represented and logically proved,
using reflection, in membership equational logic; we include in an appendix a
detailed example of this.

2 Membership Equational Logic

Membership equational logic is an expressive version of equational logic. A full
account of the syntax and semantics of membership equational logic can be found
in [2, 12]. Here we define the basic notions needed in this paper.

A signature in membership equational logic is a triple Ω = (K,Σ, S) with
K a set of kinds, Σ a K-kinded signature Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K , and
S = {Sk}k∈K a pairwise disjoint K-kinded family of sets. We call Sk the set of
sorts of kind k. The pair (K,Σ) is what is usually called a many-sorted signature
of function symbols; however we call the elements of K kinds because each kind
k now has a set Sk of associated sorts, which in the models will be interpreted
as subsets of the carrier for the kind.

The atomic formulae of membership equational logic are either equations
t = t′, where t and t′ are Σ-terms of the same kind, or membership assertions
of the form t : s, where the term t has kind k and s ∈ Sk. Sentences are Horn
clauses on these atomic formulae, i.e., sentences of the form

∀(x1, . . . , xm). A1 ∧ . . . ∧An =⇒ A0 ,

where each Ai is either an equation or a membership assertion, and each xj is
a K-kinded variable. A theory in membership equational logic is a pair (Ω,E),
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where E is a finite set of sentences in membership equational logic over the
signature Ω. We write (Ω,E) ` φ to denote that (Ω,E) entails the sentence φ.

We employ standard semantics concepts from many-sorted logic. Given a
signature Ω = (K,Σ, S), an Ω-algebra is a many-kinded Σ-algebra (that is, a
K-indexed-set A = {Ak}k∈K together with a collection of appropriately kinded
functions interpreting the function symbols in Σ) and an assignment that as-
sociates to each sort s ∈ Sk a subset As ⊆ Ak. An algebra A and a valuation
σ, assigning to variables of kind k values in Ak, satisfy an equation t = t′ iff
σ(t) = σ(t′). We write A, σ |= t = t′ to denote such a satisfaction. Similarly,
A, σ |= t :s holds iff σ(t) ∈ As.

Note that anΩ-algebra is aK-kinded first-order model with function symbols
Σ and a kinded alphabet of unary predicates {Sk}k∈K . We can then extend the
satisfaction relation to Horn and first-order formulae φ over the atomic formulae
in the standard way. We write A |= φ when the formula φ is satisfied for all
valuations σ, and then say that A is a model of φ. As usual, we write (Ω,E) |= φ

when all the models of the set E of sentences are also models of φ. As expected,
the rules of inference for membership equational logic are sound and complete.

Theories in membership equational logic have initial models. This provides
the basis for reasoning by induction. In the initial model of a membership equa-
tional theory, sorts are interpreted as the smallest sets satisfying the axioms
in the theory, and equality is interpreted as the smallest congruence satisfying
those axioms. Given a theory (Ω,E), we denote its initial model by TΩ/E . In
particular, when E = ∅ we obtain the term algebra TΩ, and for X a K-kinded
set of variables the free algebra TΩ(X). We write (Ω,E) |' φ to denote that the
initial model of the membership equational theory (Ω,E) is also a model of φ,
that is, that the satisfaction relation TΩ/E |= φ holds.

3 Semantic Relations between Specifications

The formalization and proof of certain semantic relations between equational
specifications are important aspects of the algebraic specification methodology.
In this regard, a classical notion is that of enrichment, which is a key conceptual
tool in the stepwise specification methodology [10, 11]. We consider the following
definition of the enrichment relation between membership equational specifica-
tions.

Definition 1. Let R = (Ω,E) and R′ = (Ω′, E′) be specifications, with Ω =
(K,Σ, S) and Ω′ = (K ′, Σ′, S′), such that R ⊆ R′ componentwise. Let k be a
kind in K, and let s be a sort in Sk. Then R′ is an s-enrichment of R if and
only if:

1-a. ∀t ∈ TΩ′ . R′ ` t :s =⇒ ∃t′ ∈ TΩ. R ` t′ :s ∧R′ ` t = t′

1-b. ∀t, t′ ∈ TΩ. R ` t :s ∧R ` t′ :s ∧R′ ` t = t′ =⇒ R ` t = t′ .

Note that our definition is slightly different from that in [10] —(1-a) and (1-b)
correspond, respectively, to their notions of complete and consistent extensions—
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since we define the enrichment relation relative to a particular sort. The idea
captured by our definition is that each ground term in the specification R′ having
the sort s can be proved equal to a ground term of the specification R having
the sort s, and also that R′ does not impose new equalities on ground terms of
sort s of the specification R. These properties correspond, respectively, to the
no junk and no confusion properties in Burstall and Goguen’s terminology.

The enrichment relation assumes an inclusion between the given specifica-
tions. There are other semantic relations, however, that do not require such an
inclusion. Consider, for example, the specifications INT 1 and INT 2 below. They
are presented using Maude syntax [5, 6], where operators, variables, membership
axioms, and equations are introduced, respectively, with the keywords op, var, mb
(or cmb for the conditional case), and eq. The Maude system implements mem-
bership equational logic (and rewriting logic) and can infer kind information
automatically; however, for increased clarity, we have explicitly named kinds,
with their associated sort lists inside square brackets following the kind’s name.
The specifications INT 1 and INT 2 are clearly related since both specify the
integer numbers —and, in that sense, they are interchangeable—, but neither
INT 1 is included in INT 2, nor INT 2 in INT 1.

fmod INT1 is fmod INT2 is

kind Num[Neg, Nat, Int] . kind Num[Int] .

op 0 : -> Num . op 0 : -> Num .

op s : Num -> Num . op s : Num -> Num .

op p : Num -> Num . op p : Num -> Num .

var N : Num . var N : Num .

--- Nonpositive numbers --- Integers

mb 0 : Neg . mb 0 : Int .

cmb p(N) : Neg if N : Neg . cmb s(N) : Int if N : Int .

--- Natural numbers cmb p(N) : Int if N : Int .

mb 0 : Nat . eq p(s(N)) = N .

cmb s(N) : Nat if N : Nat . eq s(p(N)) = N .

endfm

--- Integers

cmb N : Int if N : Neg .

cmb N : Int if N : Nat .

endfm

We propose the following definition for this particular relation between member-
ship equational specifications. For the sake of simplicity, we restrict our definition
to specifications with a common set of kinds.

Definition 2. Let R = (Ω,E) and R′ = (Ω′, E′) be specifications, with Ω =
(K,Σ, S) and Ω′ = (K,Σ′, S′). Let k be a kind in K, and let s be a sort in
Sk ∩ S′

k. Then R and R′ are s-interchangeable if and only if:

2-a. ∀t ∈ TΩ. R ` t :s =⇒ ∃t′ ∈ TΩ′ . R′ ` t′ :s ∧R ` t = t′

2-b. ∀t, t′ ∈ TΩ′ . R′ ` t :s ∧R′ ` t′ :s ∧R ` t = t′ =⇒ R′ ` t = t′

2-c. ∀t ∈ TΩ′ . R′ ` t :s =⇒ ∃t′ ∈ TΩ. R ` t′ :s ∧R′ ` t = t′
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2-d. ∀t, t′ ∈ TΩ. R ` t :s ∧R ` t′ :s ∧R′ ` t = t′ =⇒ R ` t = t′ .

The idea captured by the above definition is that each ground term in the
specification R′ (resp. R) having the sort s can be proved equal to a ground term
of the specification R (resp. R′) having the sort s, and also that R′ (resp. R)
does not impose new equalities on ground terms of sort s of the specification R
(resp. R′).

Now, note that to prove properties (1-b), (2-b), and (2-d) we need, in general,
to examine the form of the axioms in R and R′. But to prove properties (1-a), (2-
a), and (2-c) we can use inductive techniques. In fact, an inductive reasoning
principle is proposed in [2] to logically prove property (1-a). However, the lack
of an inclusion between R and R′ invalidates the use of this principle for proving
properties (2-a) and (2-c). We will propose in Sect. 4 an inductive reasoning
principle (ind+) to metalogically prove these properties, and we will show in
Sect. 7 how this principle can be transformed, using reflection, into an inductive
reasoning principle (ind+) to logically prove them.

4 An Inductive Principle for Metalogically Proving

Semantic Relations

In order to provide a simpler and more compact formulation, and soundness
proof, of an inductive principle (ind+) for metalogically proving semantic rela-
tions between equational specifications, we begin by extending the definitions
of terms, atomic formulae, and entailment relation for membership equational
logic. Basically, these extensions allow us to metareason on equivalence classes of
terms, instead than on concrete terms, which is essential for metareasoning about
families of theories which are unrelated with respect to inclusion. However, this
change of logical framework is only transitory. We will show in Sect. 7 how the
inductive principle (ind+) can be transformed, using reflection, into an inductive
principle (ind+) for logically proving, in standard membership equational logic,
semantic relations between equational specifications. Of course, since our final
goal is to provide principles for carrying out formal metareasoning, we are inter-
ested in (ind+) rather than in (ind+), but we introduce the latter as a technical
device to simplify the presentation and proof of the former.

In what follows, let CR be the class of finite multisets of finitely presentable
theories with a common, nonempty set of kinds R = {Ri}i = {(Ωi, Ei)}i∈[1..p],
with each Ωi = (K,Σi, Si). We consider multisets instead of lists or sets for
technical reasons: it simplifies our definition of the inductive principles (ind+).

Definition 3. Given R = {Ri}i = {(Ωi, Ei)}i∈[1..p] ∈ CR, with each Ωi =
(K,Σi, Si), we define the set TR

Ωi
(X) of (Ωi,R)-terms with K-kinded variables

in X as follows:

– c ∈ (TR
Ωi

(X))k iff c ∈ (Σi)λ,k, k ∈ K, where λ denotes the empty sequence
of kinds;

– x ∈ (TR
Ωi

(X))k iff x ∈ Xk, k ∈ K;
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– f(t1, . . . , tn) ∈ (TR
Ωi

(X))k iff f ∈ (Σi)k1...kn,k, and tj ∈ (TR
Ωi

(X))kj
, for

j = 1, . . . , n,
– [t]Rj

∈ (TR
Ωi

(X))k iff Rj ∈ R and t ∈ (TR
Ωj

(X))k.

As we will formalize in Def. 5 below the intended meaning of the term [t]Rj
, in

the particular case that t ∈ TΩj
, is the equivalence class of the terms provably

equal to t in the theory Rj .

Definition 4. Given R = {Ri}i = {(Ωi, Ei)}i∈[1..p] ∈ CR, with each Ωi =
(K,Σi, Si), an atomic (Ωi,R)-formula is either an equation t = t′, where t and
t′ are (Ωi,R)-terms of the same kind, or a membership assertion of the form
t :s, where the (Ωi,R)-term t has kind k and s ∈ (Si)k.

Definition 5. Given R = {Ri}i = {(Ωi, Ei)}i∈[1..p] ∈ CR, with each Ωi =
(K,Σi, Si), for all theories Ri ∈ R and atomic (Ωi,R)-formulae φ, we recur-
sively define the entailment relation `R as follows:

– if there is a position p in φ (for an appropriate definition of positions in
atomic formulae), and a term t ∈ (TΩj

)k, with Rj ∈ R, such that [t]Rj

occupies position p in φ, then

Ri `
R φ iff ∃t′ ∈ (TΩi

)k ∩ (TΩj
)k. (Ri `

R φ[t′]p ∧ Rj ` t = t′) ,

where φ[t′]p is the replacement operation of the term t′ inside the atomic
formula φ at position p;

– otherwise, Ri `R φ iff Ri ` φ.

According to this definition, a theory Ri entails an atomic (Ωi,R)-formula φ if φ
can be proved in Ri after recursively replacing all occurrences of terms [t]Rj

, such
that t ∈ TΩj

, with appropriate ground terms in the corresponding equivalence
classes.

Remark 1. Given R={Ri}i ={(Ωi, Ei)}i∈[1..p]∈CR, with each Ωi =(K,Σi, Si),
for all theories Ri, Rj ∈ R, atomic (Ωi,R)-formulae φ(x), with free variable x
of kind k, and terms t, t′ ∈ (TΩi

)k ∩ (TΩj
)k, the following statements hold:

– if Rj ` t = t′, then Ri `R φ([t]Rj
) iff Ri `R φ([t′]Rj

);
– Ri `R φ(t) iff Ri `R φ([t]Ri

);
– if Ri `R φ(t) then Ri `R φ([t]Rj

);
– if Ej ⊆ Ei, then Ri `R φ(t) iff Ri `R φ([t]Rj

); and
– if Ej does not include any equations, then Ri `R φ(t) iff Ri `R φ([t]Rj

).

For example, using these extended definitions of terms, atomic formulae, and
entailment relation for membership equational logic, we can express, in a simple
and compact way, property (2-c) with respect to INT 2 and INT 1 by the following
metalogical statement:

∀t ∈ (TINT2
)Num .(INT 2 ` t :Int =⇒ INT 1 `I [t]INT2

:Int) , (1)
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where I is the multiset {INT1, INT 2}.
We are now ready to prove in Prop. 1 below an inductive principle (ind+)

for metalogically proving metatheorems about finite multisets of theories R =
{Ri}i = {(Ωi, Ei)}i∈[1..p] in CR. Since this proposition is rather technical, we
informally advance its content.

– The inductive principle (ind+) can be applied to metalogical statements
of the form: “for all terms t of a sort s in a membership equational the-
ory Ri in R, some property P holds.” Here, P is a Boolean expression,
bexp(B1, . . . , Bp), whose propositional variables are instantiated with meta-
logical statements of the form: “an atomic (Ωj ,R)-formula φ([t]Ri

) holds in
Rj ,” with respect to our extended definition of the entailment relation. For
example, the metalogical statement (1) belongs to the class of metatheorems
to which our inductive principle can be applied.

– The inductive cases generated by the inductive principle (ind+) are directly
derived from the inductive definition of the sort s in the membership equa-
tional theory Ri. Therefore, our inductive cases mirror the inductive cases
generated by the usual structural induction principle for membership equa-
tional theories. For example, the three inductive cases generated by (ind+)
when applied to the metalogical statement (1) correspond to the three cases
in the inductive definition of the sort Int in INT 2: namely, 0 is an Int ; s(n)
is an Int , if n is an Int ; and p(n) is an Int , if n is an Int .

In what follows, given a term u ∈ TR
Ω (X), we denote by u(x1, . . . , xn), or just

u(~x), the fact that the variables in u are in the set ~x = {x1, . . . , xn} ⊆ X . Thus,
given a set {t1, . . . , tn} of metavariables, we denote by u(~t) the simultaneous
replacement of xi by ti in u, for i = 1, . . . , n. Similarly, given an atomic formula
φ(~x) with free variables in ~x, we denote by φ(~t) the simultaneous replacement
of xi by ti in φ, for i = 1, . . . , n.

Proposition 1. Let R = {Ri}i = {(Ωi, Ei)}i∈[1..p] be a finite multiset of theo-
ries in CR, with each Ωi = (K,Σi, Si). Let s be a sort in some (Se)k, e ∈ [1..p]
and k ∈ K, and let C[Re,s] = {C1, . . . , Cn} be those sentences in Ee that specify
s, i.e., those Ci of the form

∀(x1, . . . , xri
). A1 ∧ . . . ∧Aqi

=⇒ A0 , (2)

where, for 1 ≤ j ≤ ri, xj is of kind kij
, and for some term w of kind k, A0 is

w :s.
Then, for all finite multisets of atomic formulae, {φl(x)}l∈[1..p], with each

φl(x) an atomic (Ωl,R)-formula with free variable x of kind k, and Boolean
expressions bexp, the following metalogical statement holds:

ψ1 ∧ . . . ∧ ψn (3)

=⇒ ∀t ∈ (TΩe
)k. (Re ` t :s =⇒ bexp(R1 `R φ1([t]Re

), . . . , Rp `R φp([t]Re
))) ,

where, for 1 ≤ i ≤ n and Ci in Ee of the form (2), ψi is

∀t1 ∈ (TΩe
)ki1

. . .∀tri
∈ (TΩe

)kiri
. [A1]

] ∧ . . . ∧ [Aqi
]] =⇒ [A0]

]
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and, for 0 ≤ j ≤ qi,

[Aj ]
] ,

{

bexp
(

R1 `R φ1([u(~t)]Re
), . . . , Rp `R φp([u(~t)]Re

)
)

if Aj = u :s

Re ` Aj(~t) otherwise.

The metalogical statement (3) introduces an inductive metareasoning principle
(ind+), where each ψi corresponds to an inductive case and the top line in the
definition of [Aj ]

] provides the corresponding induction hypotheses.

Proof (soundness). Assume that ψ1 ∧ · · · ∧ ψn holds. We must prove that

∀t ∈ (TΩe
)k. (Re ` t :s =⇒ bexp(R1 `R φ1([t]Re

), . . . , Rp `R φp([t]Re
)))

also holds. Let t ∈ (TΩe
)k be a term such that Re ` t : s; we proceed by

structural induction on this derivation. If Re ` t : s, then there exists a sentence
Ci in Ee of the form ∀(x1, . . . , xri

). A1 ∧ . . .∧Aqi
=⇒ A0, where, for 1 ≤ j ≤ ri,

xj is of kind kij
, and for some term w of kind k, A0 is w :s, and a substitution

σ : {x1, . . . , xri
} −→ TΩe

, such that

– Re ` t = σ(w), and

– Re ` σ(Aj), for 1 ≤ j ≤ qi.

In this case, we must prove that bexp(R1 `R φ1([t]Re
), . . . , Rp `R φp([t]Re

))
holds, under the inductive hypothesis that, for 1 ≤ j ≤ qi, if Aj = uj : s,
then bexp

(

R1 `R φ1([σ(uj)]Re
), . . . , Rp `R φp([σ(uj)]Re

)
)

holds. Since, by as-
sumption, ψi holds, then it also holds [A1]

]
σ ∧ . . . ∧ [Aqi

]]σ =⇒ [A0]
]
σ, where, for

0 ≤ j ≤ qi,

[Aj ]
]
σ ,

{

bexp
(

R1 `R φ1([σ(uj)]Re
), . . . , Rp `R φp([σ(uj)]Re

)
)

if Aj = uj :s
Re ` σ(Aj) otherwise.

Note then that, for 1 ≤ j ≤ qi,

– If Aj = (uj :s), then [Aj ]
]
σ holds by induction hypothesis.

– If Aj 6= (uj :s), then [Aj ]
]
σ holds by assumption.

Hence, [A0]
]
σ, that is, bexp(R1 `R φ1([σ(w)]Re

), . . . , Rp `R φp([σ(w)]Re
)), also

holds. Finally, since Re ` t = σ(w), by Rem. 1, we have that bexp(R1 `R

φ1([t]Re
), . . . , Rp `R φp([t]Re

)) as required. ut

As a final remark, note that a case analysis metareasoning principle (case+)
can be introduced in a way entirely similar to (ind+), except of course for the
definition of [Aj ]

], that will be as follows (see [7] for more details):

[Aj ]
] ,

{

bexp
(

R1 `R φ1([u(~t)]Re
), . . . , Rp `R φp([u(~t)]Re

)
)

if j = 0

Re ` Aj(~t) otherwise.
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5 Reflection in Membership Equational Logic

A logic is reflective when there exists a universal theory in which we can repre-
sent and reason about all finitely presentable theories in the logic, including the
universal theory itself [8, 3]. A universal theory MB-META for membership equa-
tional logic was introduced in [9], along with a representation function ( ` )
that encodes pairs, consisting of a finitely presentable membership equational
theory with nonempty kinds and a sentence in it, as sentences in MB-META. The
signature of MB-META contains constructors to represent operators, variables,
terms, kinds, sorts, signatures, axioms, and theories. In particular, the signature
of MB-META includes the sorts Op, Var, Term, TermList, Kind, Sort, and Theory

for terms representing, respectively, operators, variables, terms, lists of terms,
kinds, sorts, and theories. In addition, it contains three Boolean operators

op _::_in_ : [Term] [Kind] [Theory] -> [Bool] .

op _:_in_ : [Term] [Sort] [Theory] -> [Bool] .

op _=_in_ : [Term] [Term] [Theory] -> [Bool] .

to represent, respectively, that a term is a ground term of a given kind in a
membership equational theory, and that a membership assertion or an equation
holds in a membership equational theory. Note that here, and in what follows,
we use Maude’s convention for naming kinds: kinds are not named but denoted
using the name of their sorts enclosed in square brackets.

The representation function ( ` ) is defined in [9] as follows: for all finitely
presentable membership equational theories with nonempty kinds R and atomic
formulae φ over the signature of R,

R ` φ ,

{

(t : s in R) = true if φ = (t :s)
(t = t′ in R) = true if φ = (t = t′) ,

where ( ) is a representation function defined recursively over theories, signa-
tures, axioms, and so on. Under this representation function, a term t is rep-
resented in MB-META by a ground term t of sort Term, a kind k is represented
by a ground term k of sort Kind, a sort s is represented by a ground term s of
sort Sort, and a theory R is represented by a ground term R of sort Theory. In
particular, to represent terms the signature of MB-META contains the constructors

op _[_] : [Op] [TermList] -> [Term] .

op nil : -> [TermList] .

op _,_ : [TermList] [TermList] -> [TermList] .

and the representation function ( ) is defined as follows:

t ,







c if t = c is a constant
x if t = x is a variable

f[t1, . . . ,tn] if t = f(t1, . . . , tn).

For example, the term s(0) of kind Num is represented in MB-META as the term
s[0] of sort Term.
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The following propositions state the main properties of MB-META as a univer-
sal theory [9]:

Proposition 2. For all finitely presentable membership equational theories with
nonempty kinds R = (Ω,E), with Ω = (K,Σ, S), terms t in TΩ, and kinds
k ∈ K,

t ∈ (TΩ)k ⇐⇒ MB-META ` (t :: k in R) = true .

Proposition 3. For all finitely presentable membership equational theories with
nonempty kinds R = (Ω,E), with Ω = (K,Σ, S), kinds k ∈ K, and ground terms
u of the kind [Term], if

MB-META ` (u :: k in R) = true ,

then there is a term t ∈ (TΩ)k such that t = u.

Proposition 4. For all finitely presentable membership equational theories with
nonempty kinds R = (Ω,E), with Ω = (K,Σ, S), terms t in (TΩ)k and sorts s
in Sk,

R ` t : s ⇐⇒ MB-META ` (t : s in R) = true.

Similarly, for all terms t, t′ in (TΩ)k,

R ` t = t′ ⇐⇒ MB-META ` (t = t′ in R) = true .

For example,

MB-META ` (p(s(p(0))) : Int in INT2) = true ,

but

MB-META 6` (p(s(p(0))) : Int in INT1) = true .

6 Reflection in Extended Membership Equational Logic

To represent and reason about our extended definition of entailment relation, we
define a new theory MB-META= that extends the universal theory MB-META with
a binary operator

op _in_ : [Term] [Theory] -> [Term] .

ceq (t in R) = (t′ in R) if (t = t′ in R) = true .

to represent the equivalence class of a term in a membership equational theory.

Proposition 5. For all finitely presentable membership equational theories with
nonempty kinds R = (Ω,E), with Ω = (K,Σ, S), and terms t, t′ in (TΩ)k,
k ∈ K,

R ` t = t′ ⇐⇒ MB-META= ` (t in R) = (t′ in R) .

10



Using this operator, we can now define a representation function ( ) for terms
in the extended class, which satisfies the expected property, as shown in Prop. 6
below. Let R = {Ri}i = {(Ωi, Ei)}i∈[1..p] be a finite multiset of theories in CR.
Then, for all terms t ∈ TR

Ω (X),

t ,















c if t = c is a constant
x if t = x is a variable

f[t1, . . . ,tn] if t = f(t1, . . . , tn)
(t′ in R) if t = [t′]R.

(4)

Proposition 6. Let R = {Ri}i = {(Ωi, Ei)}i∈[1..p] be a finite multiset of the-
ories in CR, with each Ωi = (K,Σi, Si). Then, for all theories Ri ∈ R, terms
t ∈ (TR

Ωi
)k and sorts s in (Si)k, k ∈ K,

Ri `
R t : s ⇐⇒ MB-META= ` (t : s in Ri) = true.

Similarly, for all terms t, t′ ∈ (TR
Ωi

)k, k ∈ K,

Ri `
R t = t′ ⇐⇒ MB-META= ` (t = t′ in Ri) = true .

Proof. This proposition is a corollary of Props. 4 and 5. ut

7 An Inductive Principle for Logically Proving Semantic

Relations

We are now ready to prove in Prop. 7 below the main technical result in this pa-
per, namely, that there is a class of metatheorems about membership equational
logic theories which can be represented and logically proved as theorems about
the initial model of the membership equational theory MB-META=. As a corollary
of this proposition we will obtain an inductive reasoning principle (ind+) for log-
ically proving metatheorems about families of membership equational theories.

In order to simplify the presentation of the upcoming material, we introduce
here some additional notation. Let R = {Ri}i = {(Ωi, Ei)}i∈[1..p] be a finite
multiset of theories in CR, with each Ωi = (K,Σi, Si). For all theories Ri ∈ R
and terms t ∈ TR

Ωi
(X), we denote by t

[X]
the reflective representation of t defined

in (4), except that now variables x ∈ X are replaced by variables x[X] = x of the

kind [Term],1 and we denote by X
[X]

the set X
[X]

, {x[X] | x ∈ X}. In addition,
for all theories Ri ∈ R, and membership assertions t :s, with t in TR

Ωi
(X) and s

in some (Si)k,
t :s

[Ri,X]
, (t

[X]
: s in Ri) = true ,

and, similarly, for all equations t = t′, with t, t′ in TR
Ωi

(X),

t = t′
[Ri,X]

, (t
[X]

= t′
[X]

in Ri) = true .

1 The key difference between t and t
[X]

is that t is a ground term of sort Term, whereas
t
[X]

is a term of kind [Term] with variables of the kind [Term].
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We can now define a representation function for metalogical statements,
which satisfies the expected property, as shown in Prop. 7 below. Let R =
{Ri}i = {(Ωi, Ei)}i∈[1..p] be a finite multiset of theories in CR, with each
Ωi = (K,Σi, Si). Let {k1, . . . , kn} be a finite multiset of kinds, with each ki

in K, let ~x = {x1, . . . , xn} be a finite set of variables, with each xi of kind ki,
and let τ be a metalogical statement of the form

∀t1 ∈ (TΩ1)k1 . . . . ∀tn ∈ (TΩn
)kn

. bexp(R1 `R φ1(~t), . . . , Rp `R φp(~t)) , (5)

where each φl(~x) is an atomic (Ωl,R)-formula with free variables in ~x. Then,

τ , ∀x1. . . . ∀xn. (((x1 :: k1 in R1) = true ∧ · · · ∧ (xn :: kn in Rn) = true)

=⇒ bexp(φ1(~x)
[R1,~x]

, . . . , φp(~x)
[Rp,~x]

)) ,

where {x1, . . . , xn} are now variables of the kind [Term].
Note that the class of metalogical statements of the form (5) includes, for

example, all instances of the properties (1-a) in Def. 1, and (2-a) and (2-c) in
Def. 2. In particular, the metalogical statement (1) is represented in MB-META=

as the formula

∀N.((N :: Num in INT2 = true)

=⇒ (N : Int in INT2 = true) =⇒ ((N in INT2) : Int in INT1 = true)) ,

where N is a variable of the kind [Term].

Proposition 7. Let R = {Ri}i = {(Ωi, Ei)}i∈[1..p] be a finite multiset of theo-
ries in CR, with each Ωi = (K,Σi, Si). For all metalogical statements τ of the
form (5), τ holds iff MB-META= |' τ .

Proof. We first prove the (⇒)-direction of this proposition. Suppose that τ holds.
Let σ : {x1, . . . , xn} −→ TMB-META= be a substitution such that, for 1 ≤ i ≤ n,

MB-META= |' (σ(xi) :: ki in Ri) = true . (6)

We must prove that

MB-META= |' σ
(

bexp(φ1(~x)
[R1,~x]

, . . . , φp(~x)
[Rp,~x]

)
)

.

Note that, since (σ(xi) :: ki in Ri) is a ground term, (6) implies

MB-META= |= (σ(xi) :: ki in Ri) = true ,

which, by completeness of membership equational logic, implies

MB-META= ` (σ(xi) :: ki in Ri) = true .

Thus, by Prop. 3, we know that, for 1 ≤ i ≤ n, σ(xi) = wi for some wi ∈ (TΩi
)ki

.
Note then that

σ
(

bexp(φ1(~x)
[R1,~x]

, . . . , φp(~x)
[Rp,~x]

)
)

= bexp(φ1(~w)
[R1,∅]

, . . . , φp(~w)
[Rp,∅]

),
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and that, by Prop. 6, for 1 ≤ l ≤ p, Rl `R φl(~w) iff MB-META= ` φl(~w)
[Rl,∅]

.
Since we are assuming that bexp(R1 `R φ1(~w), . . . , Rp `R φp(~w)) holds, then

MB-META= ` bexp(φ1(~w)
[R1,∅]

, . . . , φp(~w)
[Rp,∅]

) ,

and, by soundness of membership equational logic,

MB-META= |' bexp(φ1(~w)
[R1,∅]

, . . . , φp(~w)
[Rp,∅]

) ,

as required.
The proof of the (⇐)-direction is similar. In particular, consider for any terms

{w1, . . . , wn} the substitution σ : {x1, . . . , xn} −→ TMB-META= given by σ(xi) = wi,
for 1 ≤ i ≤ n. ut

As corollaries of Prop. 7 we can prove the reflective versions of Rem. 1 and
Prop. 1, which we will denote, respectively, as Rem. 1, and Prop. 1. Both are
obtained by replacing each metalogical statement φ in Rem. 1 and Prop. 1 by
its logical representation φ in MB-META=. Of course, this is key for our purposes,
since it automatically gives us an inductive reasoning principle (ind+), and a case
analysis reasoning principle (case+), for proving metalogical statements about
membership equational theories represented as logical statements in MB-META=.
Moreover, since Rem. 1 and Prop. 1 mirror their metalogical counterparts, the
metalogical proofs based on the latter will also be mirrored by the logical proofs
based on the former. As an example of this, we logically prove in the appendix,
using the induction principle (ind+), that INT 2 satisfies property (2-c) with
respect to INT 1.

8 Conclusion

The work presented is based on the ideas proposed in [1] for formal metarea-
soning using reflection. Here we extend the metareasoning principles introduced
in [1], increasing their applicability as we show in a case study. The reader can
find in [1] a detailed discussion on tradeoffs and limitations of reflective meta-
logical frameworks, and a survey of related work.

One of the advantages of formal metareasoning based on reflection is that
it can be carried out using already existing logical reasoning tools. Our experi-
ence shows also that the logical proofs of metatheorems using reflection mirror
their standard metalogical proofs. In this regard, we plan to use our results to
extend the ITP tool [3, 4], which is an interactive inductive theorem prover for
membership equational theories, with metareasoning capabilities, so that it can
be used, for example, as a methodological tool for software development.
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Appendix

We show how Fact 1 below, that is, the representation of the metalogical state-
ment (1) as a logical statement about the initial model of MB-META=, can be
logically proved using the inductive principle (ind+), along with the reflective
properties of membership equational logic. Our proof mirrors at the logical level
the metalogical proof of (1), that we omit here for the sake of space limitations;
this proof can be found in [7].

Fact 1.

MB-META
= |' ∀N.(N :: Num in INT2 = true

=⇒ (N : Int in INT2 = true) =⇒ ((N in INT2) : Int in INT1 = true)) ,

where N is a variable of the kind [Term].
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Proof. By (ind+), we can prove the theorem by showing:

MB-META
= |' ((0 in INT2) : Int in INT1 = true) (7)

∧ ∀N.(N :: Num in INT2 = true

=⇒ ((N in INT2) : Int in INT1 = true) (8)

=⇒ ((s[N] in INT2) : Int in INT1 = true))

∧ ∀N.(N :: Num in INT2 = true

=⇒ ((N in INT2) : Int in INT1 = true) (9)

=⇒ ((p[N] in INT2) : Int in INT1 = true)) ,

where N is a variable of the kind [Term]. Note that (7) holds by Prop. 6 (using
soundness of membership equational logic). Regarding (8) and (9), their proofs
are similar; we show here only the proof of (8). It is a fact2 that, (8) holds if

MB-META
= |' ∀N.(N :: Num in INT1 = true =⇒ (N : Int in INT1 = true) (10)

=⇒ ((s[N] in INT2) : Int in INT1 = true)) ,

which, by Rem. 1, is equivalent to

MB-META
= |' ∀N.(N :: Num in INT1 = true =⇒ (N : Int in INT1 = true) (11)

=⇒ ((s[N in INT1] in INT2) : Int in INT1 = true)) .

To prove (11) we can use again (ind+), and reduce its proof to showing:

MB-META
= |' ∀N.(N :: Num in INT1 = true =⇒ (N : Nat in INT1 = true) (12)

=⇒ ((s[N in INT1] in INT2) : Int in INT1 = true))

∧ ∀N.(N :: Num in INT1 = true =⇒ (N : Neg in INT1 = true) (13)

=⇒ ((s[N in INT1] in INT2) : Int in INT1 = true))

The proofs of (12) and (13) are similar; we show here only the proof of (13).

By (case+) and Rem. 1, we can reduce proving (13) to showing:

MB-META
= |' (s[0] in INT2) : Int in INT1 = true (14)

∧ ∀N.(N :: Num in INT1 = true =⇒ (N : Neg in INT1 = true) (15)

=⇒ ((s[p[N]] in INT2) : Int in INT1 = true))

Note that (14) holds by Prop. 6 (using soundness of membership equational
logic). Regarding (15), let σ : {N} −→ TMB-META= be a substitution such that
(σ(N) :: Num in INT1 = true) and (σ(N) : Neg in INT1 = true) hold in
the initial model of MB-META=. Thus, by Prop. 3, σ(N) = N for some term
N of kind Num, and, by Prop. 4, INT 1 ` N : Neg. Finally, note that, since
INT 2 ` s(p(N)) = N , then, by Prop. 6 (using again soundness of membership
equational logic),

MB-META
= |' (s[p[N]] in INT2) : Int in INT1 = true) .

ut

2 This fact is an instance of the reflective counterpart of a general metareasoning
principle for reducing metalogical statements to a form such that (ind+) can be
applied to them. For the sake of space limitations, we omit here the proposition that
states this principle, and its proof, that can be found in [7].
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