
Rewriting Logic using Strategies for Neural
Networks: an Implementation in Maude∗

Gustavo Santos-Garćıa1, Miguel Palomino2 and Alberto Verdejo2

1 Universidad de Salamanca santos@usal.es
2 Departamento de Sistemas Informáticos y Computación, UCM
miguelpt@sip.ucm.es, alberto@sip.ucm.es

Summary. A general neural network model for rewriting logic is proposed. This
model, in the form of a feedforward multilayer net, is represented in rewriting logic
along the lines of several models of parallelism and concurrency that have already
been mapped into it. By combining both a right choice for the representation oper-
ations and the availability of strategies to guide the application of our rules, a new
approach for the classical backpropagation learning algorithm is obtained. An ex-
ample, the diagnosis of glaucoma by using campimetric fields and nerve fibres of the
retina, is presented to illustrate the performance and applicability of the proposed
model.
Keywords: Neural networks, rewriting logic, Maude, strategies, executability.

1 Introduction

Rewriting logic [8] is a logic of concurrent change that can naturally deal with
states and with highly nondeterministic concurrent computations. It has good
properties as a flexible and general semantic framework for giving semantics to
a wide range of languages and models of concurrency. Indeed, rewriting logic
was proposed as a unifying framework in which many models of concurrency
could be represented, such as labeled transition systems, concurrent object-
oriented programming, or CCS, to name a few [6, 9, 5].

Artificial neural networks [4] are another important model of parallel com-
putation. In [7] it was argued that rewriting logic was also a convenient
framework in which to embed neural nets, and a possible representation was
sketched. However, and to the best of our knowledge, no concrete map has
ever been constructed either following those ideas or any others. Our goal
with this paper is to fill this gap. In our representation of neural networks
we consider the evaluation of patterns by the network, as well as the training
required to reach an optimal performance.

∗ Research supported by Spanish project DESAFIOS TIN2006–15660–C02–01 and
by Comunidad de Madrid program PROMESAS S–0505/TIC/0407.

2 Santos-Garćıa, Palomino and Verdejo

Since its conception, rewriting logic was proposed as the foundation of an
efficient executable system called Maude [1]. Here we write our representation
directly in Maude to be able to run our neural networks and apply them to
a real case-study, the analysis of campimetric fields and nerve fibres of the
retina for the diagnosis of glaucoma [3].

The paper is organized as follows. In Section 2 we review those aspects of
Maude that will be used in our specification, mainly object-oriented modules
and strategies. Section 3 introduces multilayer perceptrons and the backprop-
agation algorithm. Their specification in Maude, and an appropriate strategy
for their evaluation and training, is presented in Section 4. The application of
our implementation to the study of the diagnosis of glaucoma is considered in
Section 5, and Section 6 concludes.

2 Maude

Maude [1] is a high performance language and system supporting both equa-
tional and rewriting logic computation for a wide range of applications. The
key novelty of Maude is that besides efficiently supporting equational compu-
tation and algebraic specification it also supports rewriting logic computation.
Mathematically, a rewrite rule has the form l : t −→ t′ if Cond with t, t′ terms
of the same type which may contain variables. Intuitively, a rule describes a
local concurrent transition in a system: anywhere a substitution instance σ(t)
is found, a local transition of that state fragment to the new local state σ(t′)
can take place.

Full Maude [1] is an extension of Maude with a richer module algebra of
parameterized modules and module composition operations and with special
syntax for object-oriented specifications. These object-oriented modules have
been exploited in the specification of neural networks.

2.1 Object oriented modules

An object in a given state is represented as a term < O : C | a1 : v1,...,
an : vn > where O is the object’s name, belonging to a set Oid of object
identifiers, C is its class, the ai’s are the names of the object’s attributes, and
the vi’s are their corresponding values. Messages are defined by the user for
each application.

In a concurrent object-oriented system the concurrent state, which is called
a configuration, has the structure of a multiset made up of objects and mes-
sages that evolves by concurrent rewriting (modulo the multiset structural
axioms of associativity, commutativity, and identity) using rules that describe
the effects of communication events between some objects and messages. The
rewrite rules in the module specify in a declarative way the behavior associ-
ated with the messages. The general form of such rules is

Rewriting Logic for Neural Networks 3

M1 . . .Mn 〈O1 : F1 | atts1〉 . . . 〈Om : Fm | attsm〉 −→
〈Oi1 : F ′

i1
| atts ′i1〉 . . . 〈Oik

: F ′
ik
| atts ′ik

〉
〈Q1 : D1 | atts ′′1〉 . . . 〈Qp : Dp | atts ′′p〉 M ′

1 . . .M ′
q if Cond

where k, p, q ≥ 0, the Ms are message expressions, i1, . . . , ik are different
numbers among the original 1, . . . ,m, and Cond is a rule condition. The result
of applying a rewrite rule is that the messages M1, . . . ,Mn disappear; the state
and possibly the class of the objects Oi1 , . . . , Oik

may change; all the other
objects Oj vanish; new objects Q1, . . . , Qp are created; and new messages
M ′

1, . . . ,M
′
q are sent.

2.2 Maude’s strategy language

Rewrite rules in rewriting logic need to be neither confluent nor terminating.
This theoretical generality requires some control when the specifications be-
come executable, because it must be ensured that the rewriting process does
not go in undesired directions and eventually terminates. Maude’s strategy
language can be used to control how rules are applied to rewrite a term [2].
Strategies are defined in a separate module and are run from the prompt
through special commands.

The simplest strategies are the constants idle and fail, which always
succeeds and fails, respectively. The basic strategies consist of the application
of a rule to a given term, and with the possibility of providing a substitution
for the variables in the rule. In this case a rule is applied anywhere in the term
where it matches satisfying its condition. When the rule being applied is a
conditional rule with rewrites in the conditions, the strategy language allows
to control how the rewrite conditions are solved by means of strategies. An
operation top restricts the application of a rule just to the top of the term.
Basic strategies are then combined so that strategies are applied to execution
paths. Some strategy combinators are the typical regular expression construc-
tions: concatenation (;), union (|), and iteration (* for 0 or more iterations,
+ for 1 or more, and ! for a ‘repeat until the end’ iteration). Another strategy
combinator is a typical ‘if-then-else’, but generalized so that the first argu-
ment is also a strategy. The language also provides a matchrew combinator
that allows a term to be split in subterms, and specifies how these subterms
have to be rewritten. Recursion is also possible by giving a name to a strategy
expression and using this name in the strategy expression itself or in other
related strategies.

For our implementation, the full expressive power of the strategy language
will not be needed and all our strategies will be expressed as combinations
of the application of certain rules (possibly instantiated), concatenation, and
‘repeat until the end’ iteration. For efficiency reasons, we have extended the
previous strategy language with a new combinator one(S) which, when applied
to a term t, returns one of the possible solutions of applying the strategy S
to t.

4 Santos-Garćıa, Palomino and Verdejo

3 Multilayer perceptrons

A neural network is defined in mathematical terms as a graph with the follow-
ing properties: (1) each node or neuron i is associated with a state variable
xi storing its current output; (2) each junction between two neurons i and
k, called synapse or link, is associated with a real weight ωik; (3) a real ac-
tivation threshold θi is associated with each neuron i; (4) a transfer function
fi(yk, ωik, θi) is defined for each neuron, and determines the activation degree
of the neuron as a function of its threshold, the weights of the input junctions
and the outputs yk of the neurons connected to its input synapses.

Multilayer perceptrons are networks with one or more layers of nodes be-
tween the layer of input units and the layer of output nodes. These hidden lay-
ers contain neurons which obtain their input from the previous layer and out-
put their results to the next layer, to both of which they are fully-connected.
Nodes within each layer are not connected and have the same transfer func-
tion. In our case, the transfer function has the form f(

∑
k ωikyk − θi), where

f(x) is a sigmoidal function. It is defined by f(x) = 1/(1 + e(ν−x)), which
corresponds to a continuous and derivable generalization of the step function.

3.1 The backpropagation algorithm

The accuracy of the multilayer perceptron depends basically on the correct
weights between nodes. The backpropagation training algorithm is an algo-
rithm for adjusting those weights, which uses a gradient descent method to
minimize the mean quadratic error between the actual outputs of the percep-
tron and the desired outputs.

Let xk
ij and yk

ij be the input and output, respectively, for the i pattern of
node j of layer k. Let ωk

ij be the weight of the connection of neuron j of layer k
with neuron i of the previous layer. By definition of the perceptron by layers,
the following relationships are fulfilled xk

ij =
∑

l ω
k
ljy

k−1
il ; yk

ij = f(xk
ij).

The mean quadratic error function between the real output of the per-
ceptron and the desired output, for a particular pattern i, is defined as
Ei = 1

2

∑
j,k(yk

ij − dk
ij)

2 , where dk
ij is the desired output for pattern i of node

j of layer k. In order to minimize the error function we use the descending
gradient function, considering the error function Ep and the weight sequence
ωk

ij(t), started randomly at time t = 0, and adapted to successive discrete
time intervals. We then have ωk

ij(t + 1) = ωk
ij(t) − η ∂El/∂ωk

ij(t), where η is
the so-called learning rate constant.

We can conclude that wij(t + 1) = wij(t) + ηδjx
′
i , where x′i is the output

of neuron i, and δj is an error term for node j. For output neurons, it must
be δj = yj(1− yj)(dj − yj) . For a hidden node j, δj = x′j(1− x′j)

∑
k δkwjk ,

where k ranges over all neurons in the layers above neuron j. Internal node
thresholds are adapted in a similar manner.

Rewriting Logic for Neural Networks 5

4 Implementing the multilayer perceptron

In this section we focus on specifying a three-layer perceptron in Maude and
designing a strategy for evaluation and training. In order to have a running
net we need to specify the number of layers, the neurons in each of them,
the weights of all links, and the input patterns which, in general, will be
multiple. Whereas the object-oriented representation is very convenient for
specifying their behavior, it is clear that introducing all these data directly in
this form would be very cumbersome. Hence, we have decided to use matrices
and vectors of values to specify thresholds and weights, and to define equations
and rules to transform them into the object-oriented representation.

The core of our representation of perceptrons in Maude revolves around
the definition of two classes to represent neurons and synapses as individual
objects:

class Neuron | x : Float, t : Float, st : Nat .

class Link | w : Float, st : Nat .

Each neuron object carries its current activation value x, depending on its
threshold t, and an attribute st that will be used to determine whether the
neuron has already fired or not, that is, whether it is still waiting for input
or has already output a value. Similarly, link objects store their numerical
weight and contain an attribute st to flag whether some value has already
passed through them or not. A net then is a “soup” (a multiset) of neurons
and links.

Neurons and links are identified by a name. We define two operations
that take natural numbers as arguments and return an object identifier: for
neurons, the numbers correspond to the layer and the position within the
layer; for links, the numbers correspond to the output layer and the respective
positions within each layer of the neurons connected.

op neuron : Nat Nat -> Oid . op link : Nat Nat Nat -> Oid .

The evaluation of the network is essentially performed by repeated appli-
cation of the rules feedForward and sygmoid. Rule feedForward calculates
the weighted sum of the inputs to the neuron, whereas sygmoid just applies
the sigmoidal function syg (defined somewhere else in the code) to the net
input. As can be seen in feedForward, the attribute st of links is assumed
to be 0 prior to their firing and becomes 1 once the information has been
sent from one neuron to the other. Hence, pending some kind of reset, links
can only be used once. Similarly, the rule sygmoid sets the attribute st of a
neuron to 1 once the sigmoidal function has been applied.

rl [feedForward] : < neuron(L, I) : Neuron | x : X1 , st : 1 >

<link(s L,I,J) : Link | w:W, st:0> <neuron(s L,J) : Neuron | x:X2, st:0>

=> <neuron(L,I) : Neuron | x:X1, st:1> <link(s L,I,J) : Link | w:W, st:1>

< neuron(s L, J) : Neuron | x : (X2 + (X1 * W)) , st : 0 > .

6 Santos-Garćıa, Palomino and Verdejo

rl [sygmoid] : < neuron(L, I) : Neuron | x : X , t : T , st : 0 >

=> < neuron(L, I) : Neuron | x : syg(_-_(X, T), L) , st : 1 > .

Evaluation of a perceptron starts by obtaining an input pattern through
the rule nextPattern, which is guided by the message netStatus. A mes-
sage of the form netStatus(N0, 0, 0, N1) means that the s N0-th pattern
should be considered, and then the following patterns until the N1-th.

msg netStatus : Nat Nat Nat Nat -> Msg .

crl [nextPattern] : netStatus(N, N1, N2, N0) =>

netStatus(s N, N1, N2, N0) inPatternConversion(s N, inputPattern(s N), 0)

outPatternConversion(s N, outputPattern(s N), 0) if N < N0 .

Before starting the feedforward process, the values of the neurons in the
input layer and the corresponding weights are reset. After that, the rule
introducePattern inserts the input pattern in the neurons of the input layer
and removes them from the configuration.

rl [introducePattern] : < neuron(0, I) : Neuron | x : X , st : 0 >

inputPattern(N, I, X0) => < neuron(0, I) : Neuron | x : X0 , st : 1 > .

Once we are done with the evaluation of all patterns, we compute the error
and mark the current object net(N) as completed.

rl [computeError] : < net(N0) : Net | e : E , st : 0 >

< neuron(2, I) : Neuron | x : X0 , st : 1 > outputPattern(N, I, X1, 0)

=> < net(N0) : Net | e : (E + ((_-_(X1, X0)) * (_-_(X1, X0)))), st : 0 >

< neuron(2, I) : Neuron | x : X0, st : 1 > outputPattern(N, I, X1, 1) .

4.1 Backpropagation in Maude

For training the net we need neurons and links to hold additional information,
namely the error terms δj and the adjusted weights ωk

ij(t+1). Since evaluation
is part of backpropagation, we define NeuronTR and LinkTR as subclasses of
Neuron and Link with an additional attribute to store the extra information.

class LinkTR | w+1 : Float . subclass LinkTR < Link .

class NeuronTR | dt : Float . subclass NeuronTR < Neuron .

Note that the rules for evaluating a net also apply to these new objects; the
new attributes are simply ignored. The next step demands the evaluation
of the error terms before adjusting the weights. The calculation of these δj

depends on whether we are working with the output or hidden layers. For the
output layer, the corresponding rule is straightforward:

rl [delta2] : outputPattern(N, I, D, 1)

< neuron(2, I) : NeuronTR | x : X , dt : DT , st : 2 >

=> < neuron(2, I) : NeuronTR | x : X ,

dt : (X * ((_-_(1.0, X)) * (_-_(D, X)))) , st : 3 > .

Rewriting Logic for Neural Networks 7

The case for the remaining layers is a bit more involved and is split in three
phases: the rule delta1A initializes dt to zero, delta1B below takes care of
calculating the sum of the weights multiplied by the corresponding error term,
and delta1C computes the final product. Again, in all these rules the status
attribute st is correspondingly updated.

rl [delta1B] : < neuron(1, J) : Neuron | dt : DT1, st : 2 >

< link(2, J, K):Link | w:W, st:2 > < neuron(2, K):Neuron | dt:DT2, st:2 >

=> < neuron(1, J) : Neuron | dt : (DT1 + (DT2 * W)), st : 2 >

< link(2, J, K):Link | w:W, st:3 > < neuron(2, K):Neuron | dt:DT2, st:2 > .

Once the error terms are available, the updated weights can be calculated:
rule link1 does it for the hidden layer and link2 for the output layer. Finally
the old weights are replaced by the adjusted ones with the rule switchLink.
Here we show rule link1:

rl [link1] : < neuron(0, I) : Neuron | x : X1, st : 1 >

< link(1, I, J) : Link | w : W, w+1 : W1, st : 1 >

< neuron(1, J) : Neuron | dt : DT, st : 3 >

=> < neuron(0, I) : Neuron | x : X1, st : 1 >

< link(1, I, J) : Link | w : W, w+1 : (W + (eta * (DT * X1))), st : 3 >

< neuron(1, J) : Neuron | dt : DT, st : 3 > .

4.2 Running the perceptron: evaluation and training

Our specification is nondeterministic and not all of its possible executions may
correspond to valid behaviors of a perceptron. Hence, in order to be able to
use the specification to simulate the evaluation of patterns we need to control
the order of application of the different rules by means of strategies.

The main strategy feedForwardStrat takes a natural number as argument
and applies to a Configuration (that is, a perceptron), chooses a layer L’ and
applies rule feedForward, at random positions and as long as it is enabled, to
compute the weighted sum of values associated to each neuron at the layer.
When all sums have been calculated, it applies the sigmoidal function to all of
them by means of rule sygmoid which, again, is applied at random positions
and as long as it is enabled.

strat feedForwardStrat : Nat @ Configuration .

sd feedForwardStrat(L’) := one(feedForward[L<-L’])!; one(sygmoid[L<-s L’])!.

There are two auxiliary strategies. The strategy inputPatternStrat takes
care of making the successive patterns available and of resetting the appro-
priate attributes of the neurons and links, whereas computeOutput is invoked
to compute the error once a pattern has been evaluated.

strat inputPatternStrat : @ Configuration .

sd inputPatternStrat :=

one(resetNeuron) ! ; one(resetLink) ! ; one(nextPattern) .

strat computeOutput : @ Configuration .

sd computeOutput := one(computeError) ! ; setNet .

8 Santos-Garćıa, Palomino and Verdejo

Last, all these previous strategies are combined into the evaluation strat-
egy, which inputs the next pattern, computes the values of the neurons in the
hidden and the output layers, and returns the error:

strat evaluateANN : @ Configuration .

sd evaluateANN := inputPatternStrat ; feedForwardStrat(0) ;

feedForwardStrat(1) ; computeOutput .

Then, to force the evaluation of the first M patterns by the multilayer percep-
tron the following command would be executed:

(srew ann netStatus(0, 0, 0, M) using one(evaluateANN) ! .)

where the input patterns would have been suitable defined and ann would be
a term of the form:

neuronGeneration(0, input0, threshold0, 0)

neuronGeneration(1, input1, threshold1, 0) linkGeneration(1, link1, 0, 0)

neuronGeneration(2, input2, threshold2, 0) linkGeneration(2, link2, 0, 0)

Similarly as for evaluation, we need to define an appropriate strategy for
training the perceptron. Assuming we have already calculated the output
associated to a pattern, we next must calculate the error terms, use them to
obtain the adjusted weights, and transfer them to the right attribute. That
can be easily done by applying the rules defined in the previous section in the
right order.

strat backpropagateANN : @ Configuration .

sd backpropagateANN := one(delta2) ! ; one(link2) ! ;

one(delta1A) ! ; one(delta1B) ! ; one(delta1C) ! ; one(link1) ! ;

one(switchLink) ! .

Finally, training a net consists in evaluating a pattern with the strategy
evaluateANN and then adjusting the weights accordingly with backpropagateANN.

strat stratANN : @ Configuration .

sd stratANN := evaluateANN ; backpropagateANN .

5 Example: Diagnosis of glaucoma

For the diagnosis of glaucoma, we proposed the use of a system that employs
neural networks and integrates the analysis of the nerve fibers of the retina
from the study with scanning laser polarimetry (NFAII;GDx), perimetry and
clinical data [3]. In that work, the resulting multilayer perceptron was devel-
oped using MatLab.

We used the data from that project as a test bed for our specification
of the backpropagation algorithm in Maude. Our results were equivalent and
the success rate was of 100% but the execution time of our implementation

Rewriting Logic for Neural Networks 9

lagged far behind, which motivated us to optimize our code. Since equations
are executed much faster than rules by Maude and, in addition, do not give
rise to branching but linear computations, easily handled by strategies, we
simplified rules as much as possible. The technique used was the same in all
cases and is illustrated here with the rule feedForward:

rl [feedForward] : C => feedForward(C) .

op feedForward : Configuration -> Configuration .

eq feedForward(C < neuron(L, I) : Neuron | x : X1 , st : 1 >

< link(s L, I, J) : Link | w : W , st : 0 >

< neuron(s L, J) : Neuron | x : X2 , st : 0 >)

= feedForward(C < neuron(L, I) : Neuron | >

< link(s L, I, J) : Link | w : W , st : 1 >

< neuron(s L, J) : Neuron | x : (X2 + (X1 * W)) >) .

eq feedForward(C) = C [owise] .

The evaluation and training strategies had to be correspondingly modified
since the combinator ! was no longer needed. The resulting specification is
obviously less natural, but more efficient.

6 Conclusions

We have presented a specification of multilayer perceptrons, in a two step
fashion. First we have shown how to use rewrite rules guided by strategies
to simulate the evaluation of patterns by a perceptron, and then we have
enhanced the specification to make the training of the net possible. The eval-
uation process is straightforward, essentially amounting to the repeated appli-
cation of two rules, feedForward and sygmoid, which further does credit to
the suitability of rewriting logic as a framework for concurrency. The training
algorithm requires more rules, but the strategy is also rather simple.

The simplicity of the resulting specification should be put in perspective.
Our first attempts at specifying perceptrons made use of a vector represen-
tation like the one we have used here for inputting the data and similar to
that proposed in [7]. Such representation was actually suitable for the eval-
uation of patterns but proved unmanageable when considering the training
algorithm. The election of our concrete representation in which neurons and
links are individual entities and which, at first sight, might not strike as the
most appropriate, is of paramount importance.

In addition to the representation, availability of strategies turned out to be
decisive. With the vector representation layers could be considered as a whole
and there was no much room for nondeterminism, while the change to the
object-oriented representation gave rise, as we have observed, to the possible
interleaving of rules in an incorrect order. It then became essential the use of
the strategy language to guide the rewriting process in the right direction.

10 Santos-Garćıa, Palomino and Verdejo

As a result, our specification is the happy crossbreed of an object-oriented
representation and the use of strategies: without the first the resulting specifi-
cation would have been much more obscure, whereas without the availability
of the strategy language, its interest would have been purely theoretical.

In addition to the novel application of rewriting logict to neural nets, the
advantage provided by our approach lies on the allowing the subsequent use
of the many tools developed in rewriting logic, such as the LTL model-checker
or the inductive theorem prover [1, 5], to study the net.

The complete Maude code, the data used for the examples, and the re-
sults of the evaluation can be downloaded from http://maude.sip.ucm.es/
∼miguelpt/.

References

1. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. L. Talcott. All About Maude — A High-Performance Logical Framework.
How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350
of Lecture Notes in Computer Science. Springer, 2007.

2. S. Eker, N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Deduction, strategies, and
rewriting. In M. Archer, T. B. de la Tour, and C. A. Muñoz, editors, 6th Inter-
national Workshop on Strategies in Automated Deduction, STRATEGIES’06,
Seattle, Washington, August 16, 2006, Part of FLOC 2006, volume 174(11) of
Electronic Notes in Theoretical Computer Science, pages 3–25. Elsevier, 2007.

3. E. Hernández Galilea, G. Santos-Garćıa, and I. Franco Suárez-Bárcena. Iden-
tification of glaucoma stages with artificial neural networks using retinal nerve
fibre layer analysis and visual field parameters. In E. Corchado, J. M. Corchado,
and A. Abraham, editors, Innovations in Hybrid Intelligent Systems, Advances
in Soft Computing, pages 418–424. Springer, 2007.

4. R. P. Lippman. An introduction to computing with neural nets. IEEE ASSP
Magazine, pages 4–22, 1987.

5. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. In D. Gabbay, editor, Handbook of Philosophical Logic. Second Edition,
volume 9, pages 1–81. Kluwer Academic Press, 2002.

6. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: Roadmap and bibliography.
Theoretical Computer Science, 285(2):121–154, 2002.

7. J. Meseguer. Research directions in rewriting logic. In U. Berger and
H. Schwichtenberg, editors, Computational Logic: Marktoberdorf, Germany, July
29 – August 6 1997, volume 165, pages 347–398. NATO Advanced Study Insti-
tute.

8. J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

9. C. L. Talcott. An actor rewriting theory. In J. Meseguer, editor, Workshop on
Rewriting Logic and its Applications, WRLA’96, volume 4 of Electronic Notes
in Theoretical Computer Science, pages 360–383. Elsevier, 1996.

