
Equational Abstractions

José Meseguer1, Miguel Palomino1,2, and Narciso Mart́ı-Oliet2

1 Computer Science Department, University of Illinois at Urbana-Champaign
2 Departamento de Sistemas Informáticos, Universidad Complutense de Madrid

meseguer@cs.uiuc.edu {miguelpt,narciso}@sip.ucm.es

Abstract. Abstraction reduces the problem of whether an infinite state
system satisfies a temporal logic property to model checking that prop-
erty on a finite state abstract version. The most common abstractions are
quotients of the original system. We present a simple method of defining
quotient abstractions by means of equations collapsing the set of states.
Our method yields the minimal quotient system together with a set of
proof obligations that guarantee its executability and can be discharged
with tools such as those in the Maude formal environment.

1 Introduction

Abstraction techniques (see for example [1–15]) allow reducing the problem of
whether an infinite state system, or a finite but too large one, satisfies a temporal
logic property to model checking that property on a finite state abstract version.
The most common way of defining such abstractions is by a quotient of the orig-
inal system’s set of states, together with abstract versions of the transitions and
the predicates. Many methods differ in their details but agree on their general use
of a quotient map. There is always a minimal system (Kripke structure) making
this quotient map a simulation. We present a simple method to build minimal
quotient abstractions in an equational way. The method assumes that the con-
current system has been specified by means of a rewrite theory R = (Σ,E,R),
with (Σ,E) an equational theory specifying the set of states as an algebraic
data type, and R specifying the system’s transitions as a set of rewrite rules.
The method consists on adding more equations, say E′, to get a quotient system
specified by the rewrite theory R/E′ = (Σ,E ∪ E′, R). We call such a system
an equational abstraction of R. This equational abstraction is useful for model
checking purposes if: (1) R/E′ is an executable rewrite theory in a appropriate
sense; and (2) the state predicates are preserved by the quotient simulation. Re-
quirements (1) and (2) are proof obligations that can be discharged by theorem
proving methods. Our approach can be mechanized using the rewriting logic
language Maude [16] and its associated LTL model checker [17], inductive the-
orem prover [18], Church-Rosser checker [19], and coherence checker [20]. Our
present experience with case studies, involving different abstractions discussed
in the literature, suggests a fairly wide applicability for this method.

After summarizing LTL prerequisites (Sect. 2) and discussing simulations
(Sect. 3), we explain in Sect. 4 how a concurrent system specified by a rewrite

theory R has an associated Kripke structure giving semantics to its LTL proper-
ties; we also explain how Maude can model check such LTL properties for initial
states having finitely many reachable states. Equational abstractions, their asso-
ciated proof methods, and case studies are discussed in Sect. 5. Sect. 6 discusses
related work and future research. Proofs of all the results in this paper and all
case studies can be found in [21].

2 Prerequisites on Kripke Structures and LTL

To specify the properties of interest about our systems we will use linear temporal
logic (LTL), which is interpreted in a standard way in Kripke structures. In what
follows, we assume a fixed non-empty set of atomic propositions AP.

Definition 1. A Kripke structure is a triple A = (A,→A, LA), where A is a
set of states, →A⊆ A×A is a total transition relation, and LA : A→ P(AP) is
a labeling function associating to each state the set of atomic propositions that
hold in it.

We will usually employ the notation a →A b to say that (a, b) ∈ →A. Note
that the transition relation must be total, that is, for each a ∈ A there is a b ∈ A
such that a →A b. Given an arbitrary relation →, we write →• for the total
relation that extends → by adding a pair a →• a for each a such that there is
no b with a→ b. A path in a Kripke structure A is a function π : IN −→ A such
that, for each i ∈ IN, π(i) →A π(i+ 1).

The syntax of LTL(AP) is given by the following grammar:

ϕ = p ∈ AP | ϕ ∨ ϕ | ¬ϕ | ©ϕ | ϕU ϕ .
The semantics of the logic, specifying the satisfaction relation A, a |= ϕ be-

tween a Kripke structure A, an initial state a ∈ A, and ϕ ∈ LTL(AP), is defined
as usual (see for example [4, Sect. 3.1], where ϕU ψ and ©ϕ are expressed in
CTL∗ notation as A(ϕUψ) and AXϕ). Other Boolean and temporal operators
(e.g., >, ⊥, ∧, →, 2, 3, R, and ;) can be defined as syntactic sugar.

It is sometimes useful to restrict ourselves to the negation-free fragment
LTL−(AP) of LTL(AP), defined as follows:

ϕ = p ∈ AP | > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | ϕU ϕ | ϕRϕ .

Negation is no longer available in LTL−, and therefore the duals of the basic
operators must be considered as basic ones, too. Since LTL− is a sublogic of
LTL, its semantics is the same. Furthermore, in a very practical sense there is
no real loss of generality by restricting ourselves to formulas in LTL−, because
we can always transform any LTL formula ϕ into a semantically equivalent
LTL− formula ϕ̂. For that, we consider the extended set of atomic propositions
ÂP = AP ∪ AP, where AP = {p̄ | p ∈ AP}, and construct ϕ̂ by first forming
the negation normal form of ϕ (i.e., all negations are pushed to the atoms), and
then replacing each negated atom ¬p by p̄. Given A = (A,→A, LA), we define
Â = (A,→A, LÂ) where LÂ(a) = LA(a)∪{p̄ ∈ AP | p /∈ LA(p)}. Then we have,
A, a |= ϕ ⇐⇒ Â, a |= ϕ̂.

3 Simulations

We present a notion of simulation similar to that in [4], but somewhat more
general (simulations in [4] essentially correspond to our strict simulations).

Definition 2. Given Kripke structures A = (A,→A, LA) and B = (B,→B, LB),
both having the same set AP of atomic propositions, an AP -simulation H :
A −→ B of A by B is given by a total binary relation H ⊆ A×B such that:

– if a→A a′ and aHb, then there is b′ ∈ B such that b→B b
′ and a′Hb′, and

– if a ∈ A, b ∈ B, and aHb, then LB(b) ⊆ LA(a).

If the relation H is a function, then we call H an AP -simulation map. If both
H and H−1 are AP -simulations, then we call H an AP -bisimulation. Also we
call H strict if aHb implies LB(b) = LA(a).

The first condition guarantees that there is an abstract path in B correspond-
ing to each concrete path in A; the second condition guarantees that an abstract
state in B can satisfy only those atomic propositions that hold in all the concrete
states in A that it simulates.

We say that an AP -simulation H : A −→ B reflects the satisfaction of an
LTL formula ϕ ∈ LTL iff B, b |= ϕ and aHb imply A, a |= ϕ. The following
theorem slightly generalizes Thm. 16 in [4]:

Theorem 1. AP -simulations always reflect satisfaction of LTL−(AP) formu-
las. In addition, strict simulations also reflect satisfaction of LTL(AP) formulas.

This theorem is the key basis for the method of model checking by abstrac-
tion: given an infinite (or too large) system M, find a finitely reachable system
A that simulates it and use model checking to try to prove that ϕ holds in A;
then, by Thm. 1, ϕ also holds in M. In general, however, we typically only have
our concrete system M and a surjective function h : M −→ A mapping concrete
states to a simplified (usually finitely reachable) abstract domain A. In these
cases there is a canonical way of constructing a Kripke structure out of h in such
a way that h becomes a simulation.

Definition 3. The minimal system Mh
min corresponding to M and the surjec-

tive function h : M −→ A is given by the triple (A, h(→M), LMh
min

), where
LMh

min
(a) =

⋂
x∈h−1(a) LM(x).

The following proposition is an immediate consequence of the definitions.

Proposition 1. For all such M and h, h : M−→Mh
min is a simulation map.

Minimal systems can also be seen as quotients. Let A = (A,→A, LA) be a
Kripke structure on AP , and let ≡ be an arbitrary equivalence relation on A.
We can use ≡ to define a new Kripke structure, A/≡ = (A/≡,→A/≡, LA/≡),
where:

– [a1] →A/≡ [a2] iff there exists a′1 ∈ [a1] and a′2 ∈ [a2] such that a′1 →A a′2;
– LA/≡([a]) =

⋂
x∈[a] LA(x).

It is then trivial to check that the projection map to equivalence classes q≡ : a 7→
[a] is an AP -simulation map q≡ : A −→ A/≡, which we call the quotient ab-
straction defined by ≡. Hence, an equivalent presentation of the minimal system
is expressed by the following.

Proposition 2. Let M = (M,→M, LM) be a Kripke structure and h : M −→
A a surjective function. Then, there exists a strict bijective bisimulation map
between the Kripke structures Mh

min and M/≡h, where by definition x ≡h y iff
h(x) = h(y).

That is, we can perform the abstraction either by mapping the concrete states
to an abstract domain or, as we will do in Sect. 5, by identifying some states
and thereafter working with the corresponding equivalence classes.

The use of the adjective “minimal” is appropriate since, as pointed out in
[3], Mh

min is the most accurate approximation to M that is consistent with h.
However, it is not always possible to have a computable description ofMh

min. The
definition of →Mh

min
can be rephrased as x→Mh

min
y iff there exist a and b such

that h(a) = x, h(b) = y, and a →M b. This relation, even if →M is recursive,
is in general only recursively enumerable. However, Sect. 5 develops equational
methods that, when successful, yield a computable description of Mh

min.

4 Rewriting Logic Specifications and Model Checking

One can distinguish two specification levels: a system specification level, in which
the computational system of interest is specified; and a property specification
level, in which the relevant properties are specified. The main interest of rewrit-
ing logic [22] is that it provides a very flexible framework for the system-level
specification of concurrent systems. A concurrent system is axiomatized by a
rewrite theory R = (Σ,E,R), where (Σ,E) is an equational theory describing
its set of states as the algebraic data type TΣ/E,k associated to the initial algebra
TΣ/E of (Σ,E) by the choice of a type k of states in Σ3. The system’s transi-
tions are axiomatized by the conditional rewrite rules R which are of the form
l : t −→ t′ ⇐ cond , with l a label, t and t′ Σ-terms, possibly with variables, and
cond a condition4. Under reasonable assumptions about E and R, rewrite theo-
ries are executable (more on this below). Indeed, there are several rewriting logic
3 We allow very general equational theories in membership equational logic [23], that

can have types, subtypes defined by semantic conditions, and operator overloading.
The desired set of states is then described by the carrier TΣ/E,k of the initial algebra
TΣ/E for one of those types k, technically called either sorts or kinds in [23]. The
elements of TΣ/E are E-equivalence classes of terms [t]E ; that is, two terms are equal
iff they can be proved so by E.

4 In this paper we assume that the condition cond can involve a conjunction of equa-
tions u = v and memberships of the form w : s stating that the term w has sort
s. The conjunction must hold for a substitution instance θ before we are allowed to
rewrite θ(t) to θ(t′). We also assume that vars(t′) ∪ vars(cond) ⊆ vars(t).

language implementations, including ELAN [24], CafeOBJ [25], and Maude [16].
We can illustrate rewriting logic specifications by means of a simple example,
namely Lamport’s bakery protocol [26]. This is an infinite state protocol that
achieves mutual exclusion between processes by dispensing a number to each
process and serving them in sequential order according to the number they hold.
A simple Maude specification for the case of two processes is as follows:

mod BAKERY is protecting NAT .

sorts Mode State .

ops sleep wait crit : -> Mode .

op <_,_,_,_> : Mode Nat Mode Nat -> State .

op initial : -> State .

vars P Q : Mode . vars X Y : Nat .

eq initial = < sleep, 0, sleep, 0 > .

rl [p1_sleep] : < sleep, X, Q, Y > => < wait, s Y, Q, Y > .

rl [p1_wait] : < wait, X, Q, 0 > => < crit, X, Q, 0 > .

crl [p1_wait] : < wait, X, Q, Y > => < crit, X, Q, Y > if not (Y < X) .

rl [p1_crit] : < crit, X, Q, Y > => < sleep, 0, Q, Y > .

rl [p2_sleep] : < P, X, sleep, Y > => < P, X, wait, s X > .

rl [p2_wait] : < P, 0, wait, Y > => < P, 0, crit, Y > .

crl [p2_wait] : < P, X, wait, Y > => < P, X, crit, Y > if Y < X .

rl [p2_crit] : < P, X, crit, Y > => < P, X, sleep, 0 > .

endm

This specification corresponds to a rewrite theory R = (Σ,E,R), where
(Σ,E) imports the equational theory NAT of the natural numbers, and where Σ
has additional types (called here sorts) Mode and State, with Mode consisting
of just the constants sleep, wait, and crit. States are represented by terms
of sort State, which are constructed by a 4-tuple operator <_,_,_,_> ; the first
two components describe the status of the first process (the mode it is currently
in, and its priority as given by the number according to which it will be served),
and the last two components the status of the second process. E consists of just
the equations imported from NAT, plus the above equation defining the initial
state. R consists of eight rewrite rules, four for each process. These rules describe
how each process passes from being sleeping to waiting, from waiting to its
critical section, and then back to sleeping. In this case, the chosen type k for
states is of course State.

Rewriting logic then has inference rules to infer all the possible concurrent
computations in a system [22], in the sense that, given two states [u], [v] ∈
TΣ/E,k, we can reach [v] from [u] by some possibly complex concurrent compu-
tation iff we can prove R ` u −→ v in the logic. In particular we can easily define
the one-step R-rewriting relation, which is a binary relation →1

R,k on TΣ,k that
holds between terms u, v ∈ TΣ,k iff there is a one-step proof of R ` u −→ v, that
is, a proof in which only one rewrite rule in R is applied to a single subterm.
We can get a binary relation (with the same name) →1

R,k on TΣ/E,k by defining
[u] →1

R,k [v] iff u′ →1
R,k v

′ for some u′ ∈ [u], v′ ∈ [v].
The relationship with Kripke structures is now almost obvious, since we can

associate to a concurrent system axiomatized by a rewrite theory R = (Σ,E,R)

with a chosen type k of states a Kripke structure, K(R, k)Π = (TΣ/E,k, (→1
R,k)•,

LΠ). We say “almost obvious,” because nothing has yet been said about the
choice of state predicates Π and the associated labeling function LΠ . The reason
for this is methodological: Π, LΠ , and the LTL formulas ϕ describing properties
of the system specified by R belong to the property specification level. Indeed,
for the same system specification R we may come up with different predicates
Π, labeling functions LΠ , and properties ϕ at the property specification level.

The question of when a rewrite theory R is executable is closely related with
wanting TΣ/E,k to be a computable set, and (→1

R,k)• to be a computable rela-
tion in the above Kripke structure K(R, k)Π , an obvious precondition for any
model checking. We say that R = (Σ,E∪A,R) is executable if: (1) there exists a
matching algorithm modulo the equational axioms A5; (2) the equational theory
(Σ,E ∪ A) is (ground) Church-Rosser and terminating modulo A [27]; and (3)
the rules R are (ground) coherent [28] relative to the equations E modulo A.
Conditions (1–2) ensure that TΣ/E∪A,k is a computable set, since each ground
term t can be simplified by applying the equations E from left to right modulo A
to reach a canonical form canE/A(t) which is unique modulo the axioms A. We
can then reduce the equality problem [u]E∪A = [v]E∪A to the decidable equal-
ity problem [canE/A(u)]A = [canE/A(v)]A. Condition (3) means that for each
ground term t, whenever we have t →1

R u we can always find canE/A(t) →1
R v

such that [canE/A(u)]A = [canE/A(v)]A. This implies that (→1
R,k)• is a com-

putable binary relation on TΣ/E∪A,k, since we can decide [t]E∪A →1
R [u]E∪A by

enumerating the finite set of all one-step R-rewrites modulo A of canE/A(t), and
for any such rewrite, say v, we can decide [canE/A(u)]A = [canE/A(v)]A.

4.1 LTL Properties of Rewrite Theories and Model Checking

One appealing feature of rewriting logic is that it provides a seamless integration
of the system specification level and the property specification level, because we
can specify the relevant state predicatesΠ equationally, and this then determines
the labeling function LΠ and the semantics of the LTL formulas ϕ in a unique
way. Indeed, to associate LTL properties to a rewrite theory R = (Σ,E ∪A,R)
with a chosen type k of states we only need to make explicit the relevant state
predicates Π, which need not be part of the system specification R. The state
predicates Π can be defined by means of equations D in an equational theory
(Σ′, E ∪ A ∪ D) extending (Σ,E ∪ A) in a conservative way; specifically, the
unique Σ-homomorphism TΣ/E∪A → TΣ′/E∪A∪D should be bijective at each
sort s in Σ. The syntax defining the state predicates consists of a subsignature
Π ⊆ Σ′ of function symbols p of the general form p : s1 . . . sn −→ Prop (with
Prop a shorthand for Proposition), reflecting the fact that state predicates can
be parametric. The semantics of the state predicates Π is defined by D with the
help of an operator |= : k Prop −→ Bool in Σ′. By definition, given ground

5 In Maude, the axioms A for which the rewrite engine supports matching modulo are
any combination of associativity, commutativity, and identity axioms for different
binary operators.

terms u1, . . . , un, we say that the state predicate p(u1, . . . , un) holds in the state
[t] iff

E ∪A ∪D ` t |= p(u1, . . . , un) = true .

We can now associate to R a Kripke structure K(R, k)Π , whose atomic pred-
icates are specified by the set APΠ = {θ(p) | p ∈ Π, θ ground substitution}6.
We define K(R, k)Π = (TΣ/E,k, (→1

R,k)•, LΠ), where LΠ([t]) = {θ(p) ∈ APΠ |
θ(p) holds in [t]}. In practice we want the equality t |= p(u1, . . . , un) = true
to be decidable. This can be achieved by giving equations in D ∪ E that are
Church-Rosser and terminating modulo A. Then, if we begin with an executable
rewrite theory R and define decidable state predicates Π by the method just
described, we obtain a computable Kripke structure K(R, k)Π which, if it has
finite reachability sets, can be used for model checking.

The Maude 2.0 system has an on-the-fly, explicit-state LTL model checker [17]
which supports the methodology just mentioned. Given an executable rewrite
theory specified in Maude by a module M, and an initial state init of sort
StateM, we can model check different LTL properties beginning at this state.
For that, a new module CHECK-M must be defined importing M and the predefined
module MODEL-CHECKER, and a subsort declaration StateM < State must be
added. Then the syntax of the state predicates must be declared by means of
operations of sort Prop, and their semantics must be given by equations involving
the satisfaction operator op _|=_ : State Prop -> Bool. Once the semantics
of the state predicates has been defined, and assuming that the set of states
reachable from init is finite, we can model check any LTL formula in LTL(APΠ)
by giving to Maude the command: reduce modelCheck(init, formula).

Continuing with our bakery protocol example, two basic properties that we
may wish to verify are: (1) mutual exclusion: the two processes are never simul-
taneously in their critical section; and (2) liveness: any process in waiting mode
will eventually enter its critical section. In order to specify these properties it is
enough to specify in Maude the following set Π of state predicates:

mod BAKERY-CHECK is inc MODEL-CHECKER . inc BAKERY .

ops 1wait 2wait 1crit 2crit : -> Prop .

vars P Q : Mode . vars X Y : Nat .

eq (< P, X, Q, Y > |= 1wait) = (P == wait) .

eq (< P, X, Q, Y > |= 2wait) = (Q == wait) .

eq (< P, X, Q, Y > |= 1crit) = (P == crit) .

eq (< P, X, Q, Y > |= 2crit) = (Q == crit) .

endm

Since the set of states reachable from initial (defined in the BAKERY module)
is infinite, we should not model check the above specification as given. Instead,
we should first define an abstraction of it where initial has only finitely many
reachable states and then model check the abstraction.

6 By convention, if p has n parameters, θ(p) denotes the term θ(p(x1, . . . , xn)).

5 Equational Abstractions

Let R = (Σ,E ∪A,R) be a rewrite theory. A quite general method for defining
abstractions of the Kripke structure K(R, k)Π = (TΣ/E∪A,k, (→1

R,k)•, LΠ) is by
specifying an equational theory extension of the form

(Σ,E ∪A) ⊆ (Σ,E ∪A ∪ E′).

Since this defines an equivalence relation ≡E′ on TΣ/E∪A,k, namely,

[t]E∪A ≡E′ [t′]E∪A ⇐⇒ E ∪A ∪ E′ ` t = t′ ⇐⇒ [t]E∪A∪E′ = [t′]E∪A∪E′ ,

we can obviously define our quotient abstraction as K(R, k)Π/≡E′ . We call this
the equational quotient abstraction of K(R, k)Π defined by E′.

But can K(R, k)Π/≡E′ , which we have just defined in terms of the underlying
Kripke structure K(R, k)Π , be understood as the Kripke structure associated to
another rewrite theory? Let us take a closer look at

K(R, k)Π/≡E′ = (TΣ/E∪A,k/≡E′ , (→1
R,k)•/≡E′ , LΠ/≡E′

).

The first observation is that, by definition, we have TΣ/E∪A,k/≡E′ ∼= TΣ/E∪A∪E′,k.
A second observation is that if R is k-deadlock free, that is, if we have (→1

R,k)• =
→1
R,k, then the rewrite theory R/E′ = (Σ,E∪A∪E′, R) is also k-deadlock free,

and we have
(→1

R/E′,k)• = →1
R/E′,k = (→1

R,k)•/≡E′ .

Therefore, for R k-deadlock free, our obvious candidate for a rewrite theory
having K(R, k)Π/≡E′ as its underlying Kripke structure is the rewrite theory
R/E′ = (Σ,E ∪ A ∪ E′, R). That is, we just add to R the equations E′ and
do not change at all the rules R. How restrictive is the requirement that R is
k-deadlock free? There is no essential loss of generality: in Sect. 5.2 we show
how we can always associate to an executable rewrite theory R a semantically
equivalent (from the LTL point of view) theory Rd.f. which is both deadlock
free and executable.

Therefore, at a purely mathematical level, R/E′ seems to be what we want.
Assuming that we have an A-matching algorithm, the problem comes with
the following two executability questions about R/E′, which are essential for
K(R, k)Π/≡E′ to be computable, and therefore for model checking:

– Are the equations E∪E′ ground Church-Rosser and terminating modulo A?
– Are the rules R ground coherent relative to E ∪ E′ modulo A?

The answer to each of these questions may be positive or negative. In prac-
tice, sufficient care on the part of the user when specifying E′ should result in
an affirmative answer to the first question. In any case, we can always try to
check such a property with a tool such as Maude’s Church-Rosser checker [19];
if the check fails, we can try to complete the equations with a Knuth-Bendix
completion tool, for example [29, 30], to get a theory (Σ,E′′ ∪ A) equivalent to

(Σ,E ∪A∪E′) for which the first question has an affirmative answer. Likewise,
we can try to check whether the rules R are ground coherent relative to E ∪E′
(or to E′′) modulo A using the tools described in [20]. If the check fails we can
again try to complete the rules R to a semantically equivalent set of rules R′,
using also those tools [20]. By this process we can hopefully arrive at an exe-
cutable rewrite theory R′ = (Σ,E′′ ∪ A,R′) which is semantically equivalent to
R/E′. We can then use R′ to try to model check properties about R.

But we are not finished yet. What about the state predicates Π? Recall
(see the end of Sect. 4) that these (possibly parameterized) state predicates will
have been defined by means of equations D in a Maude module importing the
specification of R and also the MODEL-CHECKER module. The question is whether
the state predicates Π are preserved under the equations E′. This indeed may
be a problem. We need to unpack a little the definition of the innocent-looking
labeling function LΠ/≡E′

, which is defined by the intersection formula

LΠ/≡E′
([t]E∪A∪E′) =

⋂
[x]E∪A⊆[t]E∪A∪E′

LΠ([x]E∪A).

In general, computing such an intersection and coming up with new equational
definitions D′ capturing the new labeling function LΠ/≡E′

may not be easy. It
becomes much easier if the state predicates Π are preserved under the equations
E′. By definition, we say that the state predicates Π are preserved under the
equations E′ if for any [t]E∪A, [t′]E∪A ∈ TΣ/E∪A,k we have the implication

[t]E∪A∪E′ = [t′]E∪A∪E′ =⇒ LΠ([t]E∪A) = LΠ([t′]E∪A).

Note that in this case, assuming that the equations E ∪ E′ ∪ D (or E′′ ∪ D)
are ground Church-Rosser and terminating modulo A, we do not need to change
the equations D to define the state predicates Π on R/E′ (or its semantically
equivalent R′). Therefore, we have an isomorphism (given by a pair of invertible
bisimulation maps)

K(R, k)Π/≡E′ ∼= K(R/E′, k)Π ,

or, in case we need the semantically equivalent R′, an isomorphism

K(R, k)Π/≡E′ ∼= K(R′, k)Π .

The crucial point in both isomorphisms is that the labeling function of the
righthand side Kripke structure is now equationally defined by the same equa-
tions D as before. Since by construction either R/E′ or R′ are executable theo-
ries, for an initial state [t]E∪A∪E′ having a finite set of reachable states we can
use the Maude model checker to model check any LTL formula in this equational
quotient abstraction. Furthermore, since the quotient APΠ -simulation map

K(R, k)Π −→ K(R/E′, k)Π

is then by construction strict, it reflects satisfaction of arbitrary LTL formulas
by Thm. 1.

A practical problem remains: how can we actually try to prove the implication

[t]E∪A∪E′ = [t′]E∪A∪E′ =⇒ LΠ([t]E∪A) = LΠ([t′]E∪A)

to show the desired preservation of state predicates? A particularly easy case is
that of k-topmost rewrite theories, that is, theories in which the type k of states
only appears as the codomain of an operation f : k1 . . . kn −→ k. This is not a
very restrictive condition, since any rewrite theory R can be transformed into a
semantically equivalent k′-topmost one just by encapsulating the original type
of states k in a new type k′ through an operation { } : k −→ k′ [21].

Proposition 3. Suppose a k-topmost rewrite theory in which all (possibly con-
ditional) equations in E′ are of the form t = t′ if C with t, t′ ∈ TΣ,k, and that the
equations E∪E′∪D are Church-Rosser and terminating modulo A. Furthermore,
suppose that no equations between terms in TΣ,k appear in the conditions of any
equation in E′. If for each equation t = t′ if C in E′ and each state predicate p
we can prove the inductive property

E ∪A ∪D `ind (∀~x ∀~y) C → (t(~x) |= p(~y) = true ↔ t′(~x) |= p(~y) = true)

then we have established the preservation of the state predicates Π by the equa-
tions E′.

We can use a tool like Maude’s ITP [18] to mechanically discharge proof
obligations of this kind.

5.1 Case Studies

The Bakery Protocol Example Revisited. We can use the bakery protocol
example to illustrate how equational quotient abstractions can be used to verify
infinite-state systems. We can define such an abstraction by adding to the equa-
tions of BAKERY-CHECK a set E′ of additional equations defining a quotient of
the set of states. We can do so in the following module extending BAKERY-CHECK
by equations and leaving the transition rewrite rules unchanged:

mod ABSTRACT-BAKERY-CHECK is inc BAKERY-CHECK .

vars P Q : Mode . vars X Y : Nat .

eq < P, 0, Q, s s Y > = < P, 0, Q, s 0 > .

eq < P, s s X, Q, 0 > = < P, s 0, Q, 0 > .

ceq < P, s X, Q, s Y > = < P, s s 0, Q, s 0 >

if (Y < X) /\ not(Y == 0 and X == s 0) .

ceq < P, s X, Q, s Y > = < P, s 0, Q, s 0 >

if not (Y < X) /\ not (Y == 0 and X == 0) .

endm

Note that 〈P,N,Q,M〉 ≡ 〈P ′, N ′, Q′,M ′〉 according to the above equations iff
(1) P = P ′ and Q = Q′, (2) N = 0 iff N ′ = 0, (3) M = 0 iff M ′ = 0, (4) M < N
iff M ′ < N ′. Three key questions are: (1) Is the set of states now finite?; (2)

Does this abstraction correspond to a rewrite theory whose equations are ground
Church-Rosser and terminating?; (3) Are the rules still ground coherent?

The equations are indeed ground Church-Rosser and terminating. It is also
clear that the set of states is now finite, since in the canonical forms obtained
with these equations the natural numbers possible in the state can never be
greater than s(s(0)). This leaves us with the ground coherence question. We
have to analyze possible “relative critical pairs” between rules and equations.
For example, consider the following pair of a rule and an equation:

rl [p1_sleep] : < sleep, X, Q, Y > => < wait, s Y, Q, Y > .

eq < P, 0, Q, s s Y > = < P, 0, Q, s 0 > .

The only possible overlap corresponds to the unification (after making the vari-
ables disjoint) of the two lefthand sides yielding the term < sleep, 0, Q, s s
Y >, which is rewritten by the rule to < wait, s s s Y, Q, s s Y > and by
the equation to < sleep, 0, Q, s 0 >, with both terms being finally reduced
to < wait, s s 0, Q, s 0 >, in the first case by means of the third equation,
and in the second one by the rule [p1 sleep]. All the other rule-equation pairs
can likewise be proved coherent. A fourth pending question is the deadlock free-
dom of BAKERY-CHECK. This property holds and can be checked with the ITP.

What about state predicates? Are they preserved by the abstraction? Note
that, since the rewrite theory is State-topmost and the equations are all between
terms of sort State, according to Prop. 3 we only need to check that each of
the equations preserves the above state predicates. But this is trivial, since the
predicates only depend on Mode components that are left unchanged by the
equations. This can be mechanically checked using Maude’s ITP [21].

In other words, we have just shown that, for Π the state predicates declared
in BAKERY-CHECK, we have a strict quotient simulation map,

K(BAKERY-CHECK, State)Π −→ K(ABSTRACT-BAKERY-CHECK, State)Π .

Therefore, we can establish the mutual exclusion property of BAKERY-CHECK by
model checking in ABSTRACT-BAKERY-CHECK the following:

reduce modelCheck(initial, []~ (1crit /\ 2crit)) .

result Bool: true

Likewise, we can establish the liveness property of BAKERY-CHECK by model
checking in ABSTRACT-BAKERY-CHECK:

reduce modelCheck(initial, (1wait |-> 1crit) /\ (2wait |-> 2crit)) .

result Bool: true

Other Examples. In addition to the bakery protocol we have also dealt suc-
cessfully with a number of examples that have been used in the literature to
illustrate other abstraction methods, including a readers/writers system [11],
the alternating bit protocol [13, 6, 12], a mutual exclusion protocol discussed in

[7], and the bounded retransmission protocol [1, 2, 6]. The abstractions were ob-
tained simply by adding some equations to the specifications. Only in the last
two cases was it necessary to add some extra (but semantically equivalent) rules
to guarantee coherence; the details can be found in [21].

5.2 The Deadlock Difficulty

The reason why we have focused on deadlock-free rewrite theories is because
deadlocks can pose a problem due to a subtle point in the semantics of LTL.
As emphasized in its definition, the transition relation of a Kripke structure is
total, and this requirement is also imposed on the Kripke structures arising from
rewrite theories. Consider then the following specification of a rewrite theory,
together with the declaration of two state predicates:

mod FOO is inc MODEL-CHECKER .

ops a b c : -> State . ops p1 p2 : -> Prop .

eq (a |= p1) = true . eq (b |= p2) = true . eq (c |= p1) = true .

rl a => b . rl b => c .

endm

The transition relation of the Kripke structure corresponding to this specification
has three elements: a → b, b → c, and c → c, the last one consistently added
by the model checker according to the semantics given to LTL. Suppose now
that we wanted to abstract this system and that we decided to identify a and c
by means of a simulation map h. For that, according to the previous sections,
it would be enough to add the equation eq c = a to the above specification.
The resulting system is coherent, and a and c satisfy the same state predicates.
Note that the resulting Kripke structure has only two elements in its transition
relation: one from the equivalence class of a to that of b, and another in the
opposite direction. Now, since no deadlock can occur in any of the states, the
model checker does not add any additional transition steps. In particular, there
is no transition from the equivalence class of a to itself, but that means that the
resulting specification does not correspond to the minimal system associated to
h in which such a transition does exist. The lack of this idle transition is a serious
problem, because now we can prove properties about the simulating system that
are actually false in the original one, for example, 2 3 p2.

One simple way to deal with this difficulty is to just add idle transitions
for each of the states in the resulting specification by means of a rule of the
form x => x. The resulting system, in addition to all the rules that the minimal
system should contain, may in fact have some extra “junk” rules that are not
part of it. Therefore, we end up with a system that can be soundly used to
infer properties of the original system (it is immediate to see that we have a
simulation map) but that in general will be coarser than the minimal system.

A better way of addressing the problem is to characterize the set of deadlock
states. For this, given a rewrite theory R we can define a new operation enabled :
k −→ Bool? for each type k in R, where Bool? is a supersort of Bool. Then we

add, for each rule t→ t′ if C, the equation enabled(t) = true if C and, for each
operation f : k1 . . . kn −→ k, n equations of the form enabled(f(x1, . . . , xn)) =
true if enabled(xi) = true, so that (∃t′) t →1

R,k t′ iff enabled(t) = true. This
enabled predicate is the key point in the proof of the following proposition,
which allows us to transform an executable rewrite theory into a semantically
equivalent one that is both deadlock-free and executable.

Proposition 4. Let R = (Σ,E ∪ A,R) be an executable rewrite theory. Given
a chosen type of states k, we can construct an executable theory extension R ⊆
Rk

d.f. = (Σ′, E′ ∪A,R′) such that:

– Rk
d.f. is k′-deadlock free and k′-topmost for a certain type k′;

– there is a function h : TΣ′,k′ −→ TΣ,k inducing a bijection h : TΣ′/E′∪A,k′ −→
TΣ/E∪A,k such that for each t, t′ ∈ TΣ′,k′ we have

h(t)(→1
R,k)•h(t′) ⇐⇒ t→1

Rk
d.f.

,k′ t
′.

Furthermore, if Π are state predicates for R and k defined by equations D, then
we can define state predicates Π for Rk

d.f. and k′ by equations D′ such that the
above map h becomes a bijective APΠ-bisimulation

h : K(Rk
d.f., k

′)Π −→ K(R, k)Π .

6 Related Work and Conclusions

In [3] the simulation of a system M by another M′ through a surjective func-
tion h was defined and the optimal simulation Mh

min was identified. The idea
of simulating by quotient has been further explored in [4, 5, 2, 10, 12, 7] among
others, although the construction in [7] requires a Galois connection instead of
just a function. Theorem proving is proposed in [2] to construct the transition
relation of the abstract system, and in [12] to prove that a function is a repre-
sentative function that can be used as input to an algorithm to extract Mh

min

out of M. While those uses of theorem proving focus on the correctness of the
abstract transition relation, our method focuses on making the minimal transi-
tion relation (which is correct by construction) computable, and on proving the
preservation of the labeling function. In [3, 4], on the other hand, the minimal
model Mh

min is discarded in favor of less precise but easier to compute approxi-
mations; this would correspond, in our approach, to the addition of rewrite rules
to the specification to simplify the proofs of the proof obligations. In all the
papers mentioned two states can become identified only if they satisfy the same
atomic propositions; our definition of simulation is more general, but we have
not yet exploited this.

The equational abstraction method that we have presented seems to apply
in practice to a good number of examples discussed in the literature. But we
need to further test its applicability on a wider and more challenging range of
examples. Also, the method itself should be generalized along several directions.

For example, we should generalize the equational theory extension (Σ,E ∪A) ⊆
(Σ,E∪A∪E′) to an arbitrary theory interpretation H : (Σ,E∪A) −→ (Σ′, E′′),
allowing arbitrary transformations on the data representation of states. A par-
ticular instance of this seems to be predicate abstraction [14, 6]. Under this ap-
proach, the abstract domain is a Boolean algebra over a set of assertions and
the abstraction function, typically as part of a Galois connection, is symbolically
constructed as the conjunction of all expressions satisfying a certain condition,
which is proved using theorem proving. This would correspond to a theory in-
terpretation H : (Σ,E) −→ (Σ ∪ Σ′, E ∪ E′), with Σ′ introducing operations
of the form p : State −→ Bool, and with H mapping states S to Boolean tu-
ples 〈p1(S), . . . , pn(S)〉. Similarly, we should consider simulation maps between
different sets AP and AP ′ of state predicates, yielding another increase in gener-
ality when relating systems. Finally, equational abstractions that do not require
strict preservation of state predicates should also be investigated.

Acknowledgments. Research supported by ONR Grant N00014-02-1-0715, NSF
Grant CCR-0234524, and by DARPA through Air Force Research Laboratory
Contract F30602-02-C-0130; and by the Spanish project AMEVA CICYT TIC
2000–0701–C02–01. We warmly thank Saddek Bensalem, Yassine Lakhnech,
David Basin, Felix Klaedtke, Natarajan Shankar, Hassen Saidi, and Tomás Uribe
for many useful discussions that have influenced the ideas presented here, Manuel
Clavel and Francisco Durán for their help in the preparation of this paper, and
Roberto Bruni and Joe Hendrix for many useful comments on previous drafts.

References

1. Abdulla, P., Annichini, A., Bouajjani, A.: Symbolic verification of lossy channel
systems: Application to the bounded retransmission protocol. In Cleaveland, W.R.,
ed.: Tools and Algorithms for the Construction of Analysis of Systems, TACAS’99.
LNCS 1579., Springer (1999)

2. Bensalem, S., Lakhnech, Y., Owre, S.: Computing abstractions of infinite state sys-
tems compositionally and automatically. In Hu, A.J., Vardi, M.Y., eds.: Computer
Aided Verification, CAV’98. LNCS 1427., Springer (1998) 319–331

3. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Transactions on Programming Languages and Systems 16 (1994) 1512–1542

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided

abstraction refinement. In Emerson, E.A., Sistla, A.P., eds.: Computer Aided
Verification, CAV’00. LNCS 1855., Springer (2000) 154–169

6. Colón, M.A., Uribe, T.E.: Generating finite-state abstractions of reactive systems
using decision procedures. In Hu, A.J., Vardi, M.Y., eds.: Computer Aided Verifi-
cation, CAV’98. LNCS 1427., Springer (1998) 293–304

7. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems 19 (1997) 253–291

8. Havelund, K., Shankar, N.: Experiments in theorem proving and model checking
for protocol verification. In Gaudel, M.C., Woodcock, J., eds.: FME ’96: Industrial
Benefit and Advances in Formal Methods. LNCS 1051., Springer (1996) 662–681

9. Kesten, Y., Pnueli, A.: Control and data abstraction: The cornerstones of prac-
tical formal verification. International Journal on Software Tools for Technology
Transfer 4 (2000) 328–342

10. Kesten, Y., Pnueli, A.: Verification by augmentary finitary abstraction. Informa-
tion and Computation 163 (2000) 203–243

11. Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design 6 (1995) 1–36

12. Manolios, P.: Mechanical Verification of Reactive Systems. PhD thesis, Univ. of
Texas at Austin (2001)

13. Müller, O., Nipkow, T.: Combining model checking and deduction for I/O-
automata. In Brinksma, E., et al., eds.: Tools and Algorithms for the Construction
and Analysis of Systems, TACAS ’95. LNCS 1019., Springer (1995) 1–16

14. Säıdi, H., Shankar, N.: Abstract and model check while you prove. In Halbwachs,
N., Peled, D., eds.: Computer Aided Verification, CAV’99. LNCS 1633., Springer
(1999) 443–454

15. Uribe Restrepo, T.E.: Abstraction-Based Deductive-Algorithmic Verification of
Reactive Systems. PhD thesis, Dept. of Computer Science, Stanford Univ. (1998)

16. Clavel, M., Durán, F., Ecker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: Specification and programming in rewriting logic. Theoretical
Computer Science 285 (2002) 187–243

17. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In
Gadducci, F., Montanari, U., eds.: Rewriting Logic and its Applications, WRLA
2004. ENTCS 71., Elsevier (2002)

18. Clavel, M.: The ITP tool. In Nepomuceno, A., et al., eds.: Logic, Language, and
Information, Kronos (2001) 55–62

19. Durán, F., Meseguer, J.: A Church-Rosser checker tool for Maude equational
specifications. http://maude.cs.uiuc.edu/tools (2000)

20. Durán, F.: Coherence checker and completion tools for Maude specifications. http:
//maude.cs.uiuc.edu/tools (2000)

21. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Notes on model checking and abstrac-
tion in rewriting logic. http://formal.cs.uiuc.edu/texts/nmcarl.ps (2002)

22. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science 96 (1992) 73–155

23. Meseguer, J.: Membership algebra as a logical framework for equational specifi-
cation. In Parisi-Presicce, F., ed.: Recent Trends in Algebraic Development Tech-
niques WADT’97. LNCS 1376., Springer (1998) 18–61

24. Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.E.: ELAN from a rewriting
logic point of view. Theoretical Computer Science 285 (2002) 155–185

25. Futatsugi, K., Diaconescu, R.: CafeOBJ Report. World Scientific (1998)
26. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-

munications of the ACM 17 (1974) 453–455
27. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In van Leeuwen, J., ed.: Hand-

book of Theoretical Computer Science, Vol. B. North-Holland (1990) 243–320
28. Viry, P.: Equational rules for rewriting logic. Theoretical Computer Science 285

(2002)
29. Contejean, E., Marché, C.: The CiME system: tutorial and user’s manual.

Manuscript, Univ. Paris-Sud, Centre d’Orsay
30. Durán, F.: Termination checker and Knuth-Bendix completion tools for Maude

equational specifications. Manuscript, Computer Science Laboratory, SRI Interna-
tional, http://maude.cs.uiuc.edu/papers (2000)

