
A Categorical Approach to Simulations�
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Abstract. Simulations are a very natural way of relating concurrent systems,
which are mathematically modeled by Kripke structures. The range of available
notions of simulations makes it very natural to adopt a categorical viewpoint in
which Kripke structures become the objects of several categories while the mor-
phisms are obtained from the corresponding notion of simulation. Here we define
in detail several of those categories, collect them together in various institutions,
and study their most interesting properties.

1 Introduction

Simulations are a very natural way of relating concurrent systems. They are particularly
useful for proving temporal logic properties, because we can use simulations to shift our
ground; that is, to prove that a system A satisfies a property ϕ by considering a per-
haps much simpler system (for example a finite-state abstraction) B, proving that B
satisfies ϕ , and showing that B simulates A . This transfer result holds for the univer-
sal fragment ACTL∗ of CTL∗, and in particular for all linear temporal logic formulas.
Similarly, we may want to prove that a possibly more complex but more efficient con-
current system C is a correct implementation of another system A ; again this amounts
to showing that A simulates C , and will then allow transferring all ACTL∗ properties
already established for A to its implementation C . Obviously, the more flexibly we can
shift our ground by means of suitable simulations, the more easily we can reason about
concurrent systems, their abstractions, and their implementations. There are therefore
good practical reasons to look for the most general notions of simulation possible, as a
way to support very general and flexible reasoning methods.

The point of this paper is to systematically exploit a categorical point of view in
the quest for general notions of simulation. That is, we consider increasingly more gen-
eral categories whose objects are Kripke structures, and whose morphisms are adequate
simulations between them. There are several orthogonal dimensions along which sim-
ulations can be generalized as discussed in detail in [13,11]. We can extend them: (1)
from functions to relations; (2) from strictly preserving state predicates to only doing
so in a looser way; (3) from simulations in which one step is simulated by another to
“stuttering” simulations in which several steps in one system can correspond to several
steps in the other; and (4) from the case in which all systems we relate share the same

� Research supported by ONR Grant N00014-02-1-0715, NSF Grant CCR-0234524, by DARPA
through Air Force Research Laboratory Contract F30602-02-C-0130, and by the Spanish CI-
CYT projects MELODIAS TIC 2002-01167 and MIDAS TIC 2003–0100.

J.L. Fiadeiro et al. (Eds.): CALCO 2005, LNCS 3629, pp. 313–330, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



314 M. Palomino, J. Meseguer, and N. Martı́-Oliet

set AP of atomic predicates to one in which systems with different atomic predicates
can be related among each other. All these extensions (1)–(4), and their possible com-
binations are mathematically characterized in this paper by increasingly more general
categories.

A theme running in parallel with such generalizations is characterizing correspond-
ing sets of temporal logic formulas that can be “reflected” by (that is, lifted along) in-
creasingly more general simulation maps. This is closely related to another theme also
developed in detail, namely the different temporal logic institutions involved. Indeed,
Kripke structures are the most frequently used models for temporal logic. From an in-
stitutional viewpoint we will expect, for a given signature, a corresponding category of
Kripke structures, which is precisely what we are investigating. The point then is that
different choices of increasingly more general categories give rise to a corresponding
family of temporal logic institutions, for which we study under what conditions the
amalgamation property (semi-exactness) holds.

Another theme also studied in detail is the issue of categorical constructions, in-
cluding limits, colimits, and epi-mono factorizations. As far as we know, most of the
constructions we give are new. They shed further light on Kripke structures and the
morphisms that we have available for relating them.

An extended version of this paper can be found at http://maude.sip.ucm.es/
miguelpt/papers/cap.pdf.

2 Kripke Structures and Simulations

When reasoning about computational systems, it is convenient to abstract from as many
details as possible by means of simple mathematical models that can be used to reason
about them. For a state-based system we can represent its behavior by means of a tran-
sition system, which is a pair A = (A,→A ) with A a set of states and →A ⊆ A × A
a binary relation called the transition relation. A transition system, however, does not
include any information about the relevant properties of the system. In order to reason
about such properties it is necessary to add information about the atomic properties that
hold in each state. In what follows, we assume a fixed set AP of atomic propositions and
define a Kripke structure as a triple A = (A,→A ,LA ), where (A,→A ) is a transition
system with →A a total relation (this is a customary requirement, which simplifies the
semantics of the temporal logic), and LA : A → P(AP) is a labeling function associat-
ing to each state the set of atomic propositions that hold in it.

We use the notation a →A b to state that (a,b) ∈ →A . A path in A is a function
π : IN −→ A such that, for each n ∈ IN, π(n) →A π(n + 1).

To specify system properties we use the logic ACTL∗(AP), which is a sublogic of
the branching-time temporal logic CTL∗(AP) (see for example [5, Sect. 3.1]). There
are two types of formulas in CTL∗(AP): state formulas, denoted by State(AP), and path
formulas, denoted by Path(AP). The semantics of the logic, specifying the satisfaction
relations A ,a |= ϕ and A ,π |= ψ for a Kripke structure A , an initial state a ∈ A, a state
formula ϕ , a path π , and a path formula ψ , is defined as usual [5]. ACTL∗(AP) is the
restriction of CTL∗(AP) to those formulas such that their negation-normal forms (with
negations pushed to atoms) do not contain any existential path quantifiers. To avoid

∼
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introducing existential quantifiers implicitly, it is more convenient to restrict ourselves
to the negation-free fragment ACTL∗\¬(AP) of ACTL∗(AP), defined as follows:1

state formulas: ϕ = p ∈ AP | � | ⊥ | ϕ ∨ϕ | ϕ ∧ϕ | Aψ
path formulas: ψ = ϕ | ψ ∨ψ | ψ ∧ψ | Xψ | ψUψ | ψRψ | Gψ | Fψ .

We write State\¬(AP) and Path\¬(AP) for the sets of state and path formulas in
ACTL∗\¬(AP), respectively. When working with stuttering simulations, we also use
ACTL∗ \ X, respectively ACTL∗\{¬,X}, for the fragment of the logic without the op-
erator X, respectively X and ¬.

2.1 Generalized Stuttering Simulations

In general, we are not only interested in the study of isolated systems, but would also
like to be able to study their interrelationships. To do that we introduce a very general
notion of simulation in increasingly more general steps; in a first step, we slightly extend
the simulations in [5] (which essentially correspond to our strict simulations). Examples
of simulations can be found in [13,12].

Given transition systems A = (A ,→A ) and B = (B,→B), a simulation of tran-
sition systems H : A −→ B is a binary relation H ⊆ A × B such that if a →A a′ and
aHb then there is b′ such that b →B b′ and a′Hb′. A map of transition systems H is a
simulation such that H is a function. If both H and H−1 are simulations, then we call H
a bisimulation. We can extend a simulation of transition systems H to paths by defining
πHρ if π(n)Hρ(n) for each n ∈ IN.

Similarly, for Kripke structures A = (A,→A ,LA ) and B = (B,→B,LB) over the
same set AP of atomic propositions, an AP-simulation H : A −→ B of A by B is
given by a simulation H : (A,→A ) −→ (B,→B) between the underlying transition
systems such that if aHb, then LB(b) ⊆ LA (a). We say that H is an AP-map if its
underlying simulation of transition systems is a map. We call H strict if aHb implies
LB(b) = LA (a). Also, we call H an AP-bisimulation if H and H−1 are AP-simulations.

Simulations of transition systems and of Kripke structures compose and the identity
function 1A : A −→ A is trivially a simulation of transition systems and of Kripke
structures. Therefore, transition systems together with their simulations define a cat-
egory TSys with corresponding subcategories for maps and bisimulations. Similarly,
Kripke structures together with AP-simulations define a category KSimAP, with two
corresponding subcategories KMapAP and KBSimAP whose morphisms are, respec-
tively, AP-maps and AP-bisimulations. Of course, there is also a subcategory KSimstr

AP
of strict AP-simulations, and corresponding subcategories KMapstr

AP and KBSimstr
AP =

KBSimAP. Note that if H is an isomorphism in KSimAP then it must be a map and
a bisimulation. Note, finally, that the mapping (A,→A ,LA ) 
→ (A,→A ) extends to a
forgetful functor TS : KSimAP −→ TSys, with corresponding restrictions to the appro-
priate subcategories.

The definition of simulation can be extended by allowing the presence of stuttering
[3,14,10]. For A = (A,→A ) and B = (B,→B) transition systems and H ⊆ A × B

1 X, G, and F stand for the classic next (©), henceforth (�), and eventually (�) LTL operators.
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a relation, we say that a path ρ in B H-matches a path π in A if there are strictly
increasing functions α,β : IN −→ IN with α(0) = β (0) = 0 such that, for all i, j,k ∈ IN,
if α(i)≤ j < α(i+1) and β (i) ≤ k < β (i+1), it holds that π( j)Hρ(k). For example, the
following diagram shows the beginning of two matching paths, where related elements
are joined by dashed lines and α(0) = β (0) = 0, α(1) = 2, β (1) = 3, α(2) = 5.

π • ��

�
� • ��

�
� • �� • ��

�
� • �� · · ·

ρ • ��

�
�

� • ��

�
�

�
• ��

�
�

�

� � � � � � � • ��

�
�

�
�

�
� • �� · · ·

Then, a stuttering simulation of transition systems H : A −→ B is a binary relation
H ⊆ A × B such that if aHb, then for each path π in A starting at a there is a path ρ
in B starting at b that H-matches π . If H is a function we say that H is a stuttering
map of transition systems. If both H and H−1 are stuttering simulations, then we call
H a stuttering bisimulation. Stuttering simulations of transition systems compose [10]
and together with transition systems define a category that we denote STSys and which
contains TSys as subcategory.

Given Kripke structures A = (A,→A ,LA ) and B = (B,→B,LB) over AP, a stut-
tering AP-simulation H : A −→ B is a stuttering simulation of transition systems
H : (A,→A ) −→ (B,→B) such that if aHb then LB(b) ⊆ LA (a). We call it strict if
aHb implies LB(b) = LA (a). Again, stuttering AP-simulations compose and define a
category KSSimAP with corresponding subcategories of strict and stuttering AP-maps.

We can generalize simulations even further by allowing them to relate Kripke struc-
tures over different sets of atomic propositions. This provides a very flexible way of re-
lating Kripke structures and will allow us to gather all the previous categories KSSimAP,
for different choices of AP, into a single one.

Given a function α : AP −→ State(AP′) and a Kripke structure A = (A,→A , LA )
over AP′, we define the reduct Kripke structure A |α = (A,→A ,LA |α ) over AP, with
labeling function LA |α (a) = {p ∈ AP | A ,a |= α(p)}. α is extended in the expected,
homomorphic way to formulas ϕ ∈ CTL∗(AP), replacing each atomic proposition p
occurring in ϕ by α(p); we denote this extension by α(ϕ).

Proposition 1. Let α : AP → State(AP′) be a function and ϕ be a formula in CTL∗(AP).
Then, for all Kripke structures A = (A,→A ,LA ) over AP′, states a ∈ A, and paths π:

– if ϕ is a state formula, A ,a |= α(ϕ) ⇐⇒ A |α ,a |= ϕ , and
– if ϕ is a path formula, A ,π |= α(ϕ) ⇐⇒ A |α ,π |= ϕ .

The definition of generalized stuttering simulations is now immediate. For Kripke
structures A over a set AP of atomic propositions and B over a set AP′, a stuttering
simulation (resp. strict stuttering simulation) (α,H) : (AP,A ) −→ (AP′,B) consists
of a function α : AP −→ State\{¬,X}(AP′) (resp. α : AP −→ State \ X(AP′)) and a
stuttering AP-simulation (resp. strict stuttering AP-simulation) H : A −→ B|α .

To simplify notation, from now on we will write (α,H) : A −→ B instead of
(α,H) : (AP,A ) −→ (AP′,B), except in those cases where it could lead to confusion.

Composition of generalized stuttering simulations can be defined by (β ,G)◦(α,F)=
(β ◦α,G◦F). Using as objects pairs (AP,M ) with AP a set of atomic propositions and
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M a Kripke structure over AP, this immediately gives rise to categories KSSim and
KSMap of Kripke structures and stuttering simulations and simulation maps, respec-
tively. However, generalized strict simulations between Kripke structures over different
sets of atomic propositions do not compose, unless we only use functions of the form
α : AP −→ Bool(AP′), where Bool(AP′) is the set of Boolean formulas over AP′. (This
situation will recur in Sections 5 and 6.)

The relationships between some of the different categories of Kripke structures in-
troduced can be summarized in the following diagram, where the horizontal arrows are
inclusions while the vertical ones are the expected forgetful functors.

KMapAP
��

��

KSimAP
��

��

KSSimAP
��

��

KSSim

��
TSys �� TSys �� STSys �� STSys

The important fact about stuttering simulations is that they reflect satisfaction of ap-
propriate classes of formulas. Given Kripke structures A over AP and B over AP′, we
say that a stuttering simulation (α,H) : A −→ B reflects the satisfaction of a formula
ϕ ∈ CTL∗(AP) if either:

– ϕ is a state formula, and B,b |= α(ϕ) and aHb imply that A ,a |= ϕ ; or
– ϕ is a path formula, and B,ρ |= α(ϕ) and ρ H-matches π imply that A ,π |= ϕ .

Theorem 1 ([11]). Stuttering simulations always reflect satisfaction of ACTL∗\{¬,X}
formulas. Strict stuttering simulations also reflect satisfaction of ACTL∗ \ X formulas.

Appendix B contains a summary of the categories presented in this section. The
“best” one is KSSim, the most general one, in that it provides the greater flexibility for
relating arbitrary Kripke structures which otherwise could not be related; on the other
hand, as we will see in Section 7, we know less about its categorical properties than for
most of the others.

3 Some Categorical Concepts

Almost all the notions from category theory [9,2] that we use are rather basic and we
only review those concepts that may not be so familiar. To try to avoid confusions with
simulation morphisms, we refer to the morphisms in a category simply as arrows.

Opfibrations. What determines an opfibration [8] is the capacity of “lifting” an arrow
in a base category to another category in an “initial” (and hence minimal) manner in an
appropriate sense.

Let F : C −→ D be a functor. An arrow f : X −→ Y in C is opcartesian over u
if F( f ) = u and for every arrow g : X −→ Z in C such that F(g) = v ◦ u for some v :
F(Y ) −→ F(Z) there exists a unique arrow h : Y −→ Z such that g = h◦ f and F(h) = v.
The functor F is an opfibration if there exists an opcartesian morphism over every arrow
u : F(X) −→ J. The dual notions are those of cartesian morphism and fibration.

Institutions. The notion of institution is due to Goguen and Burstall’s seminal work
[6]; their goal was to capture the notion of model in a formalism independent way. An
institution is a 4-tuple I = (Sign,sen,Mod, |=) such that:
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– Sign is a category whose objects are called signatures,
– sen : Sign −→ Set is a functor that associates to each signature Σ a set of Σ -

sentences,
– Mod : Signop −→ Cat is a functor that associates to each signature Σ a category

whose objects are called Σ -models, and
– |= is a function that associates to each Σ ∈ |Sign| a binary relation |=Σ ⊆ |Mod(Σ)|×

sen(Σ) called Σ -satisfaction, in such a way that the following property holds for
every H : Σ −→ Σ ′, M′ ∈ |Mod(Σ ′)|, and every ϕ ∈ sen(Σ): M′ |=Σ ′ sen(H)(ϕ) ⇐⇒
Mod(H)(M′) |=Σ ϕ .

A theory morphism H : (Σ ,Γ ) −→ (Σ ′,Γ ′) is a signature morphism H : Σ −→ Σ ′

such that every model in Mod(Σ ′) that satisfies Γ ′ also satisfies sen(H)(ϕ), for all
ϕ ∈ Γ . By defining Mod(Σ ,Γ ) as the full subcategory of Mod(Σ) determined by those
models that satisfy Γ , we can extend Mod to a functor Mod : Thop −→ Cat, where Th
is the category of theories and theory morphisms.

A property expressing the possibility of “putting theories together” by colimits is
the exactness of an institution. An institution is exact if its category of signatures is
cocomplete and the model functor Mod preserves limits, and is semiexact if Sign has
pushouts and Mod sends pushouts in Sign to pullbacks in Cat.

Monads and Kleisli categories. A monad (called a triple in [2]) is a tuple (T,η ,µ),
where T : C −→ C is a functor, and η : 1C −→ T and µ : T ◦ T −→ T are natural
transformations satisfying µ ◦ ηT = µ ◦ Tη = 1T and µ ◦ µT = µ ◦ T µ .

All monads can be obtained from adjunctions. One possible construction makes
use of the so-called Kleisli category. The Kleisli category CT of a monad (T,η ,µ) has
as objects those of C . If X and Y are objects of C , an arrow X −→ Y in the Kleisli
category is an arrow X −→ T (Y ) in C . Composition of two arrows f : X −→ T (Y ) and
g : Y −→ T (Z) is defined as µZ ◦ Tg ◦ f .

Grothendieck construction. Often we are interested in considering all the components
of an indexed category together in a “flat” category obtained by taking the disjoint
union of the components and adding some new arrows. This is called, for example in
[15], the Grothendieck construction. Given a functor C : I op −→ Cat, the associated
Grothendieck construction is defined by:

– its objects are pairs (I,X), where I is an object of I and X is an object of C(I);
– an arrow (I,X) −→ (J,Y ) is a pair (u, f ) with u : I −→ J in I and f : X −→

C(u)(Y ) in C(I);
– the composition of arrows (u, f ) : (I,X) −→ (J,Y ) and (v,g) : (J,Y ) −→ (K,Z) is

given by (v,g)◦ (u, f ) = (v ◦ u,C(u)(g)◦ f ).

Regular epis and monos. As defined in [7], an arrow m : X −→Y is a regular monomor-
phism if there exist arrows f and g such that m is the equalizer of f and g. Dually,
e : X −→ Y is a regular epimorphism if it is the coequalizer of two arrows.

Given two classes E and M of epimorphisms and monomorphisms respectively,
closed under composition with isomorphisms, a (E ,M )-factorization of an arrow f is
a factorization f = m◦ e with e in E and m in M . A category is (univocally) (E ,M )-
factorizable if every arrow has a (unique up to isomorphism) (E ,M )-factorization.
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A category is a (E ,M )-category if it is univocally factorizable and both E and M are
closed under composition.

4 Minimal Kripke Structures

Theorem 1 is the basis of the method of model checking by abstraction: given an infinite
(or too large) system M , one tries to find a system A with a finite set of reachable states
that simulates it and uses a model checker to prove properties of M by means of A .
But usually, one only has the concrete system M and a surjective function h : M −→ A
mapping concrete states to a simplified abstract domain A. In this situation, we are
interested in using h to find a Kripke structure that best simulates M under certain
conditions. In [4] the minimal transition system associated to a transition system M
and a surjective function h : M → A was defined; using our notion of simulation this can
be extended to the level of Kripke structures.

Definition 1. The minimal Kripke structure M h
min corresponding to a Kripke structure

M and the surjective function h : M −→ A is given by the triple (A,(h × h)(→M ),
LM h

min
), where LM h

min
(a) =

⋂
x∈h−1(a) LM (x).

The following proposition is an immediate consequence of the definitions.

Proposition 2 ([13]). For any Kripke structure M and any surjective function h, h :
M −→ M h

min is an AP-map.

The use of the adjective “minimal” is appropriate since, as pointed out in [4], M h
min

is the most accurate approximation to M that is consistent with h. Within our frame-
work, the notion of minimality can be expressed in a precise categorical sense by means
of an opcartesian morphism.

Proposition 3. For a Kripke structure M and surjective function h : M −→ A, the AP-
map h : M −→ M h

min is an opcartesian morphism in the context of the forgetful functor
U : KMapAP −→ Set mapping a Kripke structure M = (M,→M ,LM ) to its underlying
set M and an AP-map to itself.

Proof. Given f : M −→ N in KMapAP such that it can be factorized in Set as f =
g ◦ h for some function g : A −→ N, we have to find a unique g′ in KMapAP such that
g′ : M h

min −→ N , f = g′ ◦ h, and U(g′) = g. By definition of U , it must be g′ = g; we
have to check that g is actually an AP-map.

By definition of M h
min, if a →M h

min
b there exist x and y in M such that h(x) = a,

h(y)= b, and x →M y. Hence, since f is an AP-map, g(a)= g(h(x))= f (x) →N f (y) =
g(h(y)) = g(b). In addition, using again the fact that f is an AP-map, if p ∈ LN (s) then
p ∈ LM (x) for all x in M such that f (x) = s. Let then a ∈ A such that g(a) = s: for
all y in M such that h(y) = a, since f (y) = g(h(y)) = s, it is the case that p ∈ LM (y).
Therefore, p ∈ LM h

min
(a), and for all a with g(a) = s we have LN (s) ⊆ LM h

min
(a). ��

Note that this result can be extended to the category KSMapAP: then, whenever f
is a stuttering AP-map, so will be g. The result also holds for generalized simulations in
which the set of atomic propositions may vary.
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Proposition 4. The simulation (ηAP,h) : M −→ M h
min, where h : M −→ A is a surjec-

tive function and ηAP is the inclusion AP ↪→ State\¬(AP), is an opcartesian morphism
for the forgetful functor U : KMap −→ Set mapping a pair (AP,M ) to the underlying
set M and a simulation map (α,h) to the corresponding function h.

Proof. The proof follows the same steps as the one for Proposition 3, despite the fact
that the set of atomic propositions now may vary from one Kripke structure to another.

��

5 Borrowing

Simulations, in all their different variants, require suitable preservation of transitions
and of atomic propositions. Sometimes, however, it is more natural and easier to think
just in terms of the underlying transition systems; in those cases we can still recover
a full-fledged simulation by borrowing the Kripke structure of the domain using the
labeling function of the codomain.

Definition 2. Let A = (A,→A ) be a transition system and let B = (B,→B ,LB) be
a Kripke structure over a set AP of atomic propositions. If h : A −→ B is a stuttering
map between the underlying transition systems, then A can be extended to a Kripke
structure over AP with LA = LB ◦ h. We say that A borrows its properties from B.

Proposition 5. If A = (A,→A ) borrows its properties from a Kripke structure B =
(B,→B, LB) over a set AP of atomic propositions through a stuttering map of transition
systems h : (A,→A ) −→ (B,→B), then h becomes a strict stuttering AP-map. Further-
more, h is a cartesian morphism for the forgetful functor U : KSMapAP −→ STSys
mapping a Kripke structure to its underlying transition system.

Proof. h is clearly a strict stuttering AP-map because, by definition of LA , atomic
propositions are preserved. To show that it is a cartesian morphism, assume a stuttering
AP-map f : C −→ B and a stuttering map of transition systems g : U(C ) −→ (A,→A )
such that f = h ◦ g: we have to show that there is a unique stuttering AP-map g′ such
that h ◦ g′ = f and U(g′) = g. The only possible candidate is g, and we have to check
that g : C −→ A is indeed a stuttering AP-map. By hypothesis, g is a map of transition
systems. Now, assume that g(c) = a and p ∈ LA (a). It follows that p ∈ LB(h(a)), and
since f (c) = (h◦g)(c) = h(a) and f is a stuttering AP-map, p ∈ LC (c) as required. ��

It is interesting to note that this proposition also holds even if h is not a function
(but the resulting AP-simulation may not be strict).

One could ask whether this result can be extended to the Grothendieck category
KSMap so that (ηAP,h) becomes a cartesian morphism for the forgetful functor U :
KSMap −→ STSys. The answer is no and the reason lies in the generality of the
functions α : AP −→ State(AP′) used to relate Kripke structures over different sets
of atomic propositions. However, the result can be recovered by working in the subcat-
egory KSMapbool of KSMap in which the codomain of the functions α is restricted to
Bool(AP′). That is the content of the following proposition.
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Proposition 6. If A = (A,→A ) borrows its properties from B = (B,→B,LB) through
a stuttering map of transition systems h : (A,→A ) −→ (B,→B), then (ηAP,h) becomes
a strict stuttering map. Furthermore, (ηAP,h) is a cartesian morphism for the forget-
ful functor U : KSMapbool −→ STSys mapping a Kripke structure to its underlying
transition system.

Proof. (ηAP,h) is clearly a strict stuttering map because, by definition of LA , atomic
propositions are preserved. To show that it is a cartesian morphism, assume a stuttering
map (α, f ) : C −→ B and a stuttering map of transition systems g : U(C ) −→ (A,→A )
such that f = h ◦ g. We have to show that there is a unique stuttering map (α ′,g′) such
that (ηAP,h)◦(α ′,g′) = (α, f ) and U(α ′,g′) = g. The only possible candidate is (α,g),
and therefore we have to check that g : C −→ A |α is indeed a stuttering AP′-map,
where AP′ is the set of atomic propositions of C . By hypothesis, g is a map of transition
systems. Now, assume that g(c) = a and p ∈ LA |α (a); it follows that A ,a |= α(p).
Since LA (a) = LB(h(a)), it is immediate to show that for all ϕ ∈ Bool(AP), A ,a |= ϕ
iff B,h(a) |= ϕ . Therefore, B,h(a) |= α(p), and since f (c) = (h ◦ g)(c) = h(a) and
(α, f ) is a stuttering map, C ,c |= p by Theorem 1, that is, p ∈ LC (c) as required. ��

6 Temporal Logic Institutions

It is not hard to notice that the result in Proposition 1 has a distinct institutional flavor.
Indeed, Kripke structures can be organized as the models of a temporal logic institu-
tion [6] in which Proposition 1 corresponds to the property required of the satisfaction
relation. Other institutions for temporal logics are discussed in [1], but their notions of
signature morphism and of simulation are more restricted. Some of the ideas in this
section were presented in [11]: we also include them here for the sake of completeness.

Let us first define the category of signatures. For that, let State\¬ : Set −→ Set be the
functor mapping a set AP to the set of state formulas State\¬(AP), and a function α :
AP −→ AP′ to its homomorphic extension α : State\¬(AP) −→ State\¬(AP′). Then,
the triple 〈State\¬,η ,µ〉 is a monad (Section 3), where η : IdSet ⇒ State\¬ and µ :
State\¬ ◦ State\¬ ⇒ State\¬ are natural transformations such that ηAP(p) = p and
µ “unnests” a formula into its basic atomic propositions. Our category of signatures
will be SetState\¬, the Kleisli category of the monad; its objects are just sets, and the
morphisms AP −→ AP′ are functions α : AP −→ State\¬(AP′).

Definition 3. The institution of Kripke structures is given by:

– SignK = SetState\¬.
– senK is the functor mapping a set AP to State\¬(AP), and a function α : AP −→

State\¬(AP′) to its homomorphic extension α : State\¬(AP) −→ State\¬(AP′).
– ModK : SetState\¬ −→ Catop is given by ModK(AP) = KSimAP and, for α : AP −→

AP′ in SetState\¬, ModK(α)(A ) = A |α and ModK(α)(H) = H.
– The satisfaction relation is defined as A |= ϕ iff A ,a |= ϕ for all a ∈ A.

Proposition 7. IK = (SignK,senK,ModK, |=) is an institution.
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Analogously, we could think of defining an institution for Kripke structures and
strict morphisms. However, the fact that α can map an atomic proposition to an arbitrary
formula makes it impossible. The problem is that the putative model functor is not such:
the reduct of a strict simulation may not itself be strict. As happened in Sections 2.1 and
5, to solve this problem and get an institution for strict simulations it is enough to restrict
the signature morphisms to be functions of the form α : AP −→ Bool(AP).

Notice also that the category KSim can be obtained by means of the Grothendieck
construction [15]. Indeed, KSim is just the Grothendieck category corresponding to the
indexed category ModK. (The same would happen for strict simulations if we were to
work with the restricted α functions.) Similarly, KMap and KBSim can be obtained by
modifying ModK so that AP is mapped to KMapAP and KBSimAP, respectively.

Of course, analogous results exist for the general case of stuttering simulations. Now
the functor used to define the Kleisli category of signatures is State\{¬,X}, mapping
AP to the set of state formulas State\{¬,X}(AP) (and to Bool(AP) for the strict case).
Similarly, the model functor maps the set of atomic propositions AP to the correspond-
ing category of sttutering AP-simulations, KSSimAP. Actually, as the proof reveals, the
construction also applies to any temporal logic whose formulae are reflected by simu-
lations; in particular, we could restrict the institutions to the LTL sublogic of ACTL∗.

The institutions just introduced use the most general notion of signature morphism
compatible with the reflection of suitable temporal formulas. But precisely because of
this generality, they do not have the exactness property. To see this, it is enough to
consider the set of atomic propositions AP = {p,q} and signature morphisms α1,α2 :
AP −→ State\¬(AP) such that α1(p) = p ∧ q and α2(p) = p ∨ q. Then, for any sig-
nature morphisms β1,β2 : AP −→ State\¬(AP′), (β1 ◦ α1)(p) = β1(p)∧ β1(q), which
is different from (β2 ◦ α2)(p) = β2(p)∨ β2(q). This shows that SignK does not have
pushouts. The situation, however, changes when the signature morphisms are restricted
to mapping atomic propositions to atomic propositions. Note that the counterexample
shows also that this time it is not enough to consider Bool(AP): we have to map atomic
propositions to atomic propositions.

Proposition 8. Let I ′
K be obtained from the institution IK by replacing SetState\¬ by

Set as the category of signatures. Then I ′
K is a semiexact institution.

The same result also applies to the institutions of strict and stuttering simulations
described above.

7 Limits and Colimits in Categories of Simulations

We collect in this section categorical properties about existence of limits and colimits
in some of the categories of Kripke structures that have been presented in Section 2. We
focus on the categories over a fixed set of atomic propositions. For the Grothendieck cat-
egories, colimits can be obtained by mimicking the constructions presented below; how-
ever, we conjecture that in such Grothendieck categories limits do not exist in general.

7.1 Products and Coproducts

Proposition 9. For all sets of atomic propositions AP, the category KMapAP has finite
products.
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Proof. Given Kripke structures A and B, define A ×B = (A × B,→A ×B,LA ×B),
where (a,b) →A ×B (a′,b′) iff a →A a′ and b →B b′, and LA ×B(a,b) = LA (a) ∪
LB(b), with the usual projections πA : A ×B −→ A and πB : A ×B −→ B. The
relation →A ×B is total and thus A ×B is well-defined, and it is immediate to check
that πA and πB are AP-maps.

Now, if f : C −→ A and g : C −→ B are AP-maps, the unique arrow 〈 f ,g〉 : C −→
A ×B such that πA ◦〈 f ,g〉 = f and πB ◦〈 f ,g〉= g is given by 〈 f ,g〉(c) = ( f (c),g(c)).
Uniqueness is clear: we have to check that 〈 f ,g〉 is indeed an AP-map. If c →C c′ then
f (c) →A f (c′) and g(c) →B g(c′), and therefore 〈 f ,g〉(c) →A ×B 〈 f ,g〉(c′). And if
p ∈ LA ×B(〈 f ,g〉(c)) then p ∈ LA ( f (c)) or p ∈ LB(g(c)): either way, p ∈ LC (c). ��

Note that this construction can be extended to infinite products in the expected way
and, since the Kripke structure with a single state *, single transition ∗ → ∗, and L(∗) =
/0 is a final object, KMapAP has arbitrary products.

This result is also true for the category of strict AP-maps, but the constructions
are slightly more involved. The final object in KMapstr

AP is (P(AP),P(AP)×P(AP),
idP(AP)). The construction of finite products is shown in the proof of the next result;
this is sometimes called the synchronous product of Kripke structures in the literature.

Proposition 10. For all sets of atomic propositions AP, the category KMapstr
AP has finite

products.

Proof. Given Kripke structures A and B, let A ×B be the Kripke structure defined
in the proof of Proposition 9. Let us define

Path(A ×B)= = {π ∈ Path(A ×B) | for all i, LA (πA (π(i))) = LB(πB(π(i)))} ,
D = {(a,b) | there exists π ∈ Path(A ×B)= and i ∈ IN such that (a,b) = π(i)} .

The product of A and B in KMapstr
AP is given by A ×st B = (D,→A ×B|D2 ,LA ×B|D)

with the expected projections. By construction, →A ×B|D2 is total. Note that for arbi-
trary strict AP-maps f : C −→ A and g : C −→ B, the function 〈 f ,g〉 : C −→ A ×st B
is well-defined. For each c ∈C, let π be a path with π(0) = c (it must exist because →C

is total). Since both f and g are strict, LA ( f (π(i))) = LB(g(π(i))) and the path

( f (π(0)),g(π(0))) →A ×B ( f (π(1)),g(π(1))) →A ×B · · ·

belongs to Path(A ×B)=; thus, ( f (c),g(c)) ∈ D. And 〈 f ,g〉 is clearly strict. ��

Note that in some cases we may have A ×str B = /0 even though neither A nor B
are empty. This simply means that the only Kripke structure C from which there exist
strict AP-simulations to both A and B is the empty one. Note also that the construction
can be extended in the expected way to infinite products.

If we take a look at what happens when considering AP-simulations instead of just
maps, it turns out that finite producs also exist in KSimAP although its definition is quite
different from the previous ones.

Proposition 11. For all sets of atomic propositions AP, the category KSimAP has finite
products.
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Proof. Define the product of A and B to be A × B = (A � B,→A � →B,LA ×B),
where LA ×B(x) is LA (x) if x ∈ A or LB(x) if x ∈ B, with projections ΠA and ΠB

defined by aΠA a for all a ∈ A and bΠBb for all b ∈ B. Then, for AP-simulations F :
C −→ A and G : C −→ B, the unique 〈F,G〉 is defined by c〈F,G〉a iff cFa, and
c〈F,G〉b iff cGb. ��

Again, the above construction can be extended to arbitrary families {Ai}i∈I of
Kripke structures, and since the empty Kripke structure is trivially a final object, the
category KSimAP has arbitrary products.

By contrast, there are no products in the category KSMapAP of stuttering AP-
simulations. To see this, consider A given by a1 →A a2 →A . . . and B by b1 →B

b2 →B . . ., where both labeling functions are empty. Now, assume C is given by c1 →C

c2 →C . . .. Consider now stuttering AP-simulations f : C −→ A with f (c1) = a1,
f (c2∗i) = ai+1, and f (c2∗i+1) = ai+1 for i ≥ 1, and g : C −→ B with g(c2∗i+1) = ai+1

and g(c2∗i+2) = ai+1 for i ≥ 0. Assume that D is the product of A and B with projec-
tions πA and πB, and let d1 →D d2 →D . . . be the path in D 〈 f ,g〉-matching the path
in C that starts at c1. We have 〈 f ,g〉(c1) = d1, πA (d1) = a1, and πB(d1) = b1. Now,
〈 f ,g〉(c2) must be equal to d1 or to d2. But the first alternative cannot hold because then
πA (〈 f ,g〉(c2)) �= f (c2); therefore 〈 f ,g〉(c2) = d2, and πA (d2) and πB(d2) have to be
a2 and b1, respectively. And we are done, because if we swap the definitions of f and g
the same argument leads to πA (d1) = πB(d2) = a1: a contradiction.

Coproducts exist in all the categories mentioned in the previous section and their
definition is the same in all cases. Here we present the details for KSimAP.

Proposition 12. For all sets of atomic propositions AP, the category KSimAP has finite
coproducts.

Proof. Given Kripke structures A and B, define A +B as (A�B,→A � →B,LA +B),
where LA +B(x) is LA (x) if x ∈ A or LB(x) if x ∈ B, and with inclusions IA and IB
defined by aIA a for all a ∈ A and bIBb for all b ∈ B. A + B is clearly well-defined
and it is trivial to check that IA and IB are AP-simulations. Now, for F : A −→ C and
G : B −→ C arbitrary AP-simulations, define [F,G] : A +B by a[F,G]c iff aFc, and
b[F,G]c iff bGc. It is easy to check that [F,G] so defined is the only AP-simulation that
satisfies IA ◦ [F,G] and IB ◦ [F,G]. ��

Note that the Kripke structure A +B is the same as the Kripke structure A ×B
of Proposition 11, and that the construction also applies to infinite families. The initial
object corresponds to the empty Kripke structure.

7.2 Equalizers and Coequalizers

Proposition 13. For all sets of atomic propositions AP, the category KMapAP has
equalizers.

Proof. Let f ,g : A −→ B be AP-maps. Let us define

Path(A ) f ,g = {π ∈ Path(A ) | f ◦ π = g ◦ π} ,

E = {a ∈ A | there exists π ∈ Path(A ) f ,g and i ∈ IN such that a = π(i)} .
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The equalizer of f and g is given by the Kripke structure E = (E,→A |E2 ,LA |E) and
the inclusion e : E −→ A . By definition, →E is total and thus E is a well-defined
Kripke structure; e is trivially a (strict) AP-map. Now, suppose that h : D −→ A is
an AP-map such that f ◦ h = g ◦ h. Define m : D −→ E by m(d) = h(d). Obviously
f (h(d)) = g(h(d)) and, since →D is total, there is a path π in D such that π(0) = d:
its image by h belongs to Path(A ) f ,g and therefore h(d) ∈ E and m is well-defined.
It is clear that m is unique and that h = e ◦ m. Finally, m is an AP-map: if d →D d′

then h(d) →A h(d′) and by definition of m and →E it is m(d) →E m(d′); and if p ∈
LE (m(d)) then p ∈ LA (h(d)) and hence p ∈ LD(d). ��

It is easy to check that the same construction gives equalizers in the categories
KMapstr

AP and KSMapAP. As for KSimAP, we have not been able to prove or disprove
the existence of equalizers.

Proposition 14. For all sets of atomic propositions AP, the category KMapAP has co-
equalizers.

Proof. Assume that f ,g : A −→ B are AP-simulations, and define ≡ to be the least
equivalence relation over B containing {( f (a),g(a)) | a ∈ A}. Then the coequalizer of f
and g is given by the quotient Kripke structure B/≡ and the projection c : B −→ B/≡.
For assume that h : B −→ D is an AP-map such that h ◦ f = h ◦ g; we can define
m : B/≡ −→ D by m([b]) = h(b) with h = m ◦ c. We have to check that m is well-
defined and that it is an AP-map. The first part is proved by showing that if b1 ≡ b2

then h(b1) = h(b2), by induction on the definition of ≡. The base case corresponds to
f (a) ≡ g(a), and by hypothesis it is h( f (a)) = h(g(a)). And it is immediate that the
result also holds for b ≡ b, for b2 ≡ b1 if it holds for b1 ≡ b2, and for b1 ≡ b3 if it holds
for b1 ≡ b2 and for b2 ≡ b3. For the second part, if [b1] →B/≡ [b2] it must be b′

1 →B b′
2

for some b′
1 ≡ b1 and b′

2 ≡ b2 and hence h(b′
1) →D h(b′

2). And if p ∈ LD(m([b])) then
p ∈ LB(b′) for all b′ ∈ [b] and therefore p ∈ LB/≡([b]). ��

Again, this construction also applies to the category KMapstr
AP but we do not know

what happens in KSimAP or KSMapAP.

7.3 Satisfaction for Products and Coproducts

At this point, it is interesting to ask ourselves whether there is any relation between
the formulas satisfied by two Kripke structures A and B and those satisfied by their
product A ×B, or more generally, whether there is any relation between the properties
satisfied by a family of Kripke structures and those of their corresponding limits and
colimits. Unfortunately, there is no general pattern.

Let us consider products. In one direction, the relation is immediate: there exist
simulations from A ×B to both A and B (the projections) and therefore any property
that holds in any of the latter will also be true of A ×B. In the other direction, since
products and coproducts coincide in KSimAP there are also simulations from A and
B to A ×B (the inclusions) and thus properties of A ×B can be transferred to both
A and B. This relation however does not hold when simulations are restricted to be
maps. For example, in the category KMapAP for AP = {p,q}, if A = ({a},a →A
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a,LA ) with LA (a) = {p}, and B = ({b},b →B b,LB) with LB(b) = {q}, we have
A ×B,(a,b) |= G(p ∧q) but A ,a �|= G(p ∧q) and B,b �|= G(p ∧q).

The same reasoning applies in general and hence it follows that limits inherit the
properties of their objects while these satisfy those of their colimits, but the converse
implications do not always hold.

8 Factorizations in Categories of Simulations

First we characterize the classes of AP-simulations that correspond to the (regular) epi-
morphisms and monomorphisms.

Proposition 15. A morphism in KMapAP, KMapstr
AP, or KSMapAP is an epimorphism

if and only if it is a surjective function.

Proof. Assume that f : A −→ B is surjective. Then, if g◦ f = h◦ f it must be the case
that g = h, and hence f is epi, because the range of f is B.

Conversely, assume now that f is an epimorphism. If f were not surjective there
would be an element b ∈ B not in the image of f . Define a Kripke structure B′ which
is like B but with b replaced by b1 and b2 with the same labeling as b and such that
bi →B′ b′ iff b →B b′ and b′ →B′ bi iff b′ →B b. Now, if g : B −→ B′ maps b to
b1 and the other elements to themselves, and h : B −→ B′ maps b2 to b and is the
identity elsewhere, we have that g and h are well-defined (strict/stuttering) AP-maps,
g◦ f = h◦ f , but g �= h: a contradiction with the assumption that f was an epimorphism.

��

Proposition 16. A morphism in KMapAP, KMapstr
AP, or KSMapAP is a monomorphism

if and only if it is injective over paths (which is weaker than just injectivity).

Proof. Assume that f : A −→ B is injective over paths, that is, that the function f
from Path(A ) to Path(B) defined by f (π) = f ◦ π is injective. Let g,h : C −→ A be
morphisms such that f ◦ g = f ◦ h. Let c ∈ C and π be a path starting at c: then it is
f (g(π)) = f (h(π)) from where it follows g(π) = h(π) and therefore g(c) = h(c).

Conversely, assume that f is mono but there are paths π and π ′ in A such that
f (π) = f (π ′) and π �= π ′. Let us define a Kripke structure C with a single path c1 →C

c2 →C . . . and with LC (ci) = LA (π(i))∪LA (π ′(i)). Then, if g,h : C −→ A are defined
by f (ci) = π(i) and g(ci) = π ′(i), g and h are AP-maps by construction (and strict, if f
is so), and it is f ◦ g = f ◦ h and g �= h: a contradiction. ��

The characterization of regular monomorphisms is now immediate.

Proposition 17. A morphism f : A −→ B is a regular mono in KMapAP, KMapstr
AP,

or KSMapAP if and only if f is injective, LA (a) = LB( f (a)) for all a ∈ A, and a →A a′

iff f (a) →B f (a′).

Proof. The implication from left to right follows from the construction in the proof
of Proposition 13. In the other direction, let C be the Kripke structure obtained from
B by splitting each state b into b1 and b2, with LC (b1) = LC (b2) = LB(b), and with
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bi →C b′
j iff b →B b′. Now, define f ,g : B −→ B′ by g(b) = b1 and h(b) = b1 if

b ∈ f (A) and h(b) = b2 otherwise: f and g so defined are (strict) AP-maps and, since
f (A ) is a Kripke substructure of B and it is isomorphic to A due to the assumptions,
it is easy to check that the result of the construction of the equalizer in Proposition 13
is (isomorphic to) f . ��

There is also a rather more involved characterization of regular epis which is de-
scribed in the next proposition.

Proposition 18. A morphism f : A −→ B is a regular epi in KMapAP or KMapstr
AP if

and only if: (1) f (a) = f (a′) implies that there are paths π and π ′ such that π(0) = a,
π ′(0) = a′, and f (π) = f (π ′); (2) if b →B b′ there exist a,a′ ∈ A with f (a) = b, f (a′) =
b′, and a →A a′; (3) for all b, LB(b) =

⋂
f (a)=b LA (a).

Proof. The implication from left to right follows from Proposition 14; item (2) is proved
by induction over ≡. In the other direction, we define a Kripke structure C and two AP-
maps g,h : C −→ A as follows. For each pair of states a,a′ such that f (a) = f (a′) let π
and π ′ be paths as in (1). Now, add to C a fresh path ρ in such a way that g(ρ(i)) = π(i)
and h(ρ(i)) = π ′(i). Then, if we apply the construction in Proposition 14 that returns
the coequalizer of g and h through a quotient Kripke structure A /≡, the result is, by
items (2) and (3), isomorphic to f : A −→ B. ��

Proposition 19. KMapAP,KMapstr
AP,andKSMapAP are(epi, regularmono)-categories.

Proof. Let f : A −→ B be a morphism in any of these categories, and let us write
f (A ) for ( f (A),→B | f (A),LB| f (A)). Then, define e : A −→ f (A ) to be like f and
m : f (A ) −→ B to be the obvious inclusion: (e,m) is the unique (epi, regular mono)-
factorization of f (up to isomorphism).

By Propositions 15 and 17, e and m are indeed epi and regular mono respectively.
Now, assume that e′ : A −→ C , m′ : C −→ B is another (epi, regular mono)-factorization
of f . Define g : f (A ) −→ C by g(b) = e′(a) where e(a) = b (recall that e is surjective),
and h : C −→ f (A ) by h(c) = e(a) where e′(a) = c. Let us check that they are well-
defined. If e(a) = e(a′) then m(e(a)) = m(e(a′)) and therefore m′(e′(a)) = m′(e′(a′));
now, since m′ is regular mono, e′(a) = e′(a′) and g is well-defined, and analogously
for h. It is also clear that they are inverses of each other and that g ◦ e = e′ and m′ ◦ g,
so we are only left with checking that they are simulations; we present the arguments
for g: those for h are symmetric. If b → f (A ) b′, where e(a) = b and e(a′) = b′, then
m(e(a)) →B m(e(a′)) or, equivalently, m′(e′(a)) →B m′(e′(a′)) and thus, since m′ is a
regular mono, e′(a) →B e′(a′) and hence g(a) −→ f (A ) g(a′). In the case of stuttering
simulations, a path π in f (A ) translates to a path m(π) in B which is m′-matched by
ρ in C ; this same ρ also h-matches π . Finally, Lf (A )(b) = LB(e(a)) = LB(m(e(a))) =
LB(m′(e′(a))) = LC (e′(a)) = LC (g(b)). The first equality assumes that b = e(a), and
the second and the fourth one hold because m and m′ are regular monos. ��

Although we do not have a counterexample we believe that (regular epi, mono)
factorizations do not exist in general. When they do, however, they are unique: the
argument is similar to that for (epi, regular mono)-factorizations.
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9 Conclusions

In previous papers [13,11] we have studied the suitability of different kinds of simula-
tions between transition systems and Kripke structures for the study of the relationships
between formal models of concurrent systems. The range of available notions of simu-
lations makes it very natural to adopt a categorical viewpoint in which Kripke structures
become the objects of several categories while the morphisms are obtained from the cor-
responding notion of simulation. In this paper we have defined in detail several of those
categories and studied their most interesting properties: minimal Kripke structures as
opcartesian morphisms, borrowing of properties as cartesian morphisms, temporal logic
institutions, constructions of limits and colimits, and factorizations.

There are two main directions left open for future work. On the one hand, we would
like to finally prove or disprove the existence of limits in the Grothendieck categories.
On the other hand, as briefly discussed in [11], rewriting logic theories representing
Kripke structures can also be organized in categories: we plan to organize them in an
institution and to study its relationship with IK.

Acknowledgments. We would like to thank the anonymous referees for very interesting
and useful comments.
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Recherches Mathématiques, 1999.
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A Proofs of Some of the Results

Proposition 7. IK = (SignK,senK,ModK, |=) is an institution.

Proof. It is a routine exercise to check that the purported functors are actually so. For
example, let us check that ModK is well-defined. Given α : AP −→ AP′, ModK(α)
is a functor. It is well-defined over objects and preserves identities and composition:
we only need to check that ModK(α)(H) : A |α −→ B|α is an AP-simulation when-
ever H : A −→ B is an AP′-simulation. Since the transition systems do not change,
ModK(α)(H) preserves the transition relation. Now, if aHb and p ∈ LB|α (b), then by
definition we have B,b |= α(p) and, by Theorem 1, this yields A ,a |= α(p), which
again by definition implies that p ∈ LA |α (a), as required. Thus, ModK is well-defined
over both objects and morphisms. It clearly preserves identities, so we are only left
with showing that it preserves composition, for which it is enough to show that, given
arrows α : AP −→ AP′ and β : AP′ −→ AP′′, and a Kripke structure A over AP′′,
Aβ◦α = (A |β )|α . The equality at the level of transition systems is immediate. For the

labeling function, p ∈ LA |β◦α
(a) iff A ,a |= β (α(p)) (by definition) iff A |β |= α(p)

(by Proposition 1) iff p ∈ L(A |β )|α (a) (by definition). Finally the property required of
the satisfaction relation follows from Proposition 1. ��

Proposition 8. Let I ′
K be obtained from the institution IK by replacing SetState\¬ by

Set as the category of signatures. Then I ′
K is a semiexact institution.

Proof. That I ′
K is an institution is immediate, and since the category of signatures is

Set we know that it has pushouts. Therefore, we are left with checking that pushouts
are transformed into pullbacks by the model functor. Consider then a pushout

AP0
α2 ��

α1

��

AP2

β2
��

AP1
β1 �� AP3 = (AP1 �AP2)/ ≡

where ≡ is the least equivalence relation on AP1 �AP2 verifying α1(p) ≡ α2(p), and β1

and β2 take each element to its quotient class. To see that it is mapped to a pullback, let
F1 : C −→ KSimAP1 and F2 : C −→ KSimAP2 be functors such that |α1 ◦ F1 = |α2 ◦ F2;
we have to find a unique functor F :C −→ KSimAP3 such that |β1

◦F = F1 and |β2
◦F =

F2.
Let c be an object in C and f : c −→ c′ an arrow, with F1(c) = A and F2(c) = B.

It follows from the hypothesis that A is equal to B, →A equal to →B , and F1( f ) equal
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to F2( f ). This leads us to define F(c) = (A,→A ,LF(c)) and F( f ) = F1( f ), where we
choose to define the labeling function as LF(c) = β1(LA )∪β2(LB). Since it is straight-
forward to check that F( f ) is an AP3-simulation, F is well-defined, and it is a functor
because F1 (or F2) is so.

We are left with checking that F satisfies the commutativity condition and proving
that it is the only one that does it. For the first part, note that by the definition of the
pushout it is not possible for any two p and p′ in AP1 to be such that β1(p) = β1(p′) and
p ∈ LA (a) but p′ /∈ LA (a) (a detailed proof proceeds by induction on the definition of
≡). We need to use this property to show that F(c)|β1

= F1(c). We already know that
their objects and transition relations are the same; as for the atomic predicates:

p ∈ LF(c)|β1
(a) ⇐⇒ F(c),a |= β1(p) ⇐⇒ β1(p) ∈ LF(c)(a) ⇐⇒ p ∈ LF1(c)(a) ,

where the property is required for the last implication to the right. The result for F2 is
symmetric. Uniqueness follows from the definitions of the functors and the previous
equivalences. ��

B Summary of Categories

The following table summarizes most of the categories introduced in this paper; for
each of them, the third column contains the (co)limits for which explicit constructions
have been given.

Categories Objects Arrows (Co)limits
TSys transition systems simulations of transition systems (Co)products

KSimAP Kripke str. over AP AP-simulations (Co)products
KMapAP Kripke str. over AP AP-simulation maps (Co)products, (co)equalizers
KMapstr

AP Kripke str. over AP strict AP-simulations (Co)products, (co)equalizers
KSSimAP Kripke str. over AP stuttering AP-simulations ?
KSMapAP Kripke str. over AP stuttering AP-simulation maps Equalizers

KSim arbitrary Kripke str. simulations ?/colimits as above
KSSim arbitrary Kripke str. stuttering simulations ?/colimits as above
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