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Abstract. Abstraction reduces the problem of whether an infinite state system satisfies
a temporal logic property to model checking that property on a finite state abstract
version. The most common abstractions are quotients of the original system. We present
a simple method of defining quotient abstractions by means of equations collapsing the
set of states. Our method yields the minimal quotient system together with a set of proof
obligations that guarantee its executability and can be discharged with tools such as
those in the Maude formal environment.

1 Introduction

Abstraction techniques (see for example [1, 2, 8–10, 14, 16, 25, 27, 28, 31, 32, 38, 40, 41]) allow
reducing the problem of whether an infinite state system, or a finite but too large one, satisfies
a temporal logic property to model checking that property on a finite state abstract version.
The most common way of defining such abstractions is by defining a quotient of the original
system’s set of states, together with abstract versions of the transitions and the predicates.
Many methods differ in their details but agree on their general use of a quotient map. There
is always a minimal system (Kripke structure) making this quotient map a simulation.

We present a simple method to build minimal quotient abstractions in an equational
way. The method assumes that the concurrent system has been specified by means of a
rewrite theory R = (Σ,E,R), with (Σ,E) an equational theory specifying the set of states as an
algebraic data type, and R specifying the system’s transitions as a set of rewrite rules. The
method consists in adding more equations, say E′, to get a quotient system specified by the
rewrite theory R/E′ = (Σ,E ∪ E′,R). We call such a system an equational abstraction of R. This
equational abstraction is useful for model checking purposes if:

1. R/E′ is an executable rewrite theory in an appropriate sense; and
2. the state predicates are preserved by the quotient simulation.

Requirements 1 and 2 are proof obligations that can be discharged by theorem proving methods.
Our approach can be mechanized using the rewriting logic language Maude [11, 12] and

its associated LTL model checker [22], inductive theorem prover [13], Church-Rosser checker
[19], termination tool [21], coherence checker [20], and sufficient completeness checker [26].
Our present experience with case studies, involving different abstractions discussed in the
literature, suggests a fairly wide applicability for this method.

After summarizing prerequisites on Kripke structures and linear temporal logic (LTL) in
Section 2 and discussing simulations in Section 3, we explain in Section 4 how a concurrent
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system specified by a rewrite theory R has an associated Kripke structure giving semantics
to its LTL properties; we also explain how Maude can model check such LTL properties for
initial states from which finitely many states are reachable. Equational abstractions and their
associated proof methods are discussed in Sections 5 and 6. Section 7 presents some case
studies, and Section 8 discusses related work and future research. A more complex example
is presented in Appendix A; more details about a collection of case studies using this method
can be found in [36].

2 Prerequisites on Kripke Structures and LTL

To specify the properties of interest about our systems we will use linear temporal logic,3 which
is interpreted in a standard way in Kripke structures. In what follows, we assume a fixed set
of atomic propositions AP.

Definition 1. A Kripke structure is a triple A = (A,→A,LA), where A is a set of states,→A ⊆
A × A is a total transition relation, and LA : A → P(AP) is a labeling function associating to each
state the set of atomic propositions that hold in it.

We will use the notation a →A b to say that (a, b) ∈ →A. Note that the transition relation
must be total, that is, for each a ∈ A there is a b ∈ A such that a →A b. Given an arbitrary
relation→, we write→• for the total relation that extends→ by adding a pair a→• a for each
a such that there is no b with a→ b. A path in a Kripke structureA is a function π :N −→ A
such that, for each i ∈N, π(i)→A π(i+ 1). We use πi to refer to the suffix of π starting at π(i);
explicitly, πi(n) = π(i + n).

The syntax of LTL(AP) is given by the following grammar:

ϕ = p ∈ AP | > | ϕ ∨ ϕ | ¬ϕ | ©ϕ | ϕU ϕ .

The semantics of LTL(AP) is defined as follows. Given a Kripke structure A = (A,→A,
LA) and an element a ∈ A,

A, a |= ϕ ⇐⇒ A, π |= ϕ for all paths π such that π(0) = a ,

where the satisfaction relationA, π |= ϕ is defined by structural induction on ϕ:

A, π |= p ⇐⇒ p ∈ L(π(0))
A, π |= > ⇐⇒ true
A, π |= ϕ ∨ ψ ⇐⇒ A, π |= ϕ orA, π |= ψ
A, π |= ¬ϕ ⇐⇒ A, π 6|= ϕ
A, π |= ©ϕ ⇐⇒ A, π1

|= ϕ
A, π |= ϕU ψ ⇐⇒ there exists n ∈N such thatA, πn

|= ψ and,
for all m < n,A, πm

|= ϕ

Other Boolean and temporal operators (e.g., ⊥, ∧, →, �, ^, R, and {) can be defined as
syntactic sugar.

It is sometimes useful to restrict ourselves to the negation-free fragment LTL−(AP) of
LTL(AP), defined as follows:

ϕ = p ∈ AP | > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | ϕU ϕ | ϕRϕ .

3 The choice of LTL is not essential: our main results and techniques apply also to the universal
fragment ACTL∗ of CTL∗ [10]; we use LTL as a core logic for the exposition because it is the logic
supported by the Maude system used in our case studies.
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Negation is no longer available in LTL−, and therefore the duals of the basic operators
must be considered as basic ones, too. Since LTL− is a sublogic of LTL, its semantics is the
same. Furthermore, in a very practical sense there is no real loss of generality by restricting
ourselves to formulas in LTL−, because we can always transform any LTL formula ϕ into a
semantically equivalent LTL− formula ϕ̂. For that, we consider the extended set of atomic
propositions ÂP = AP ∪ AP, where AP = {p̄ | p ∈ AP}, and construct ϕ̂ by first forming the
negation normal form of ϕ (i.e., all negations are pushed to the atoms), and then replacing
each negated atom ¬p by p̄. Given A = (A,→A,LA), we define Â = (A,→A,LÂ) where

L
Â

(a) = LA(a) ∪ {p̄ ∈ AP | p < LA(a)}. Then we have,A, a |= ϕ ⇐⇒ Â, a |= ϕ̂.

3 Simulations

We present a notion of simulation similar to that in [10], but somewhat more general (simu-
lations in [10] essentially correspond to our strict simulations).

Definition 2. Given Kripke structures A = (A,→A,LA) and B = (B,→B,LB), both having the
same set AP of atomic propositions, an AP-simulation H : A −→ B of A by B is given by a total
binary relation H ⊆ A × B such that:

– if a→A a′ and aHb, then there is b′ ∈ B such that b→B b′ and a′Hb′, and
– if aHb, then LB(b) ⊆ LA(a).

If the relation H is a function, then we call H an AP-simulation map. If both H and H−1 are AP-
simulations, then we call H an AP-bisimulation. Also we call H strict if aHb implies LB(b) = LA(a).
Note that all AP-bisimulations are strict.

The first condition guarantees that for each concrete path in A there is a corresponding
abstract path in B; the second condition guarantees that an abstract state in B can satisfy
only those atomic propositions that hold in all the concrete states inA that it simulates.

Definition 3. An AP-simulation H : A −→ B reflects the satisfaction of a formula ϕ ∈ LTL(AP)
iff B, b |= ϕ and aHb implyA, a |= ϕ.

Theorem 1. AP-simulations always reflect satisfaction of LTL−(AP) formulas. In addition, strict
AP-simulations also reflect satisfaction of LTL(AP) formulas.

Proof. Let H : A −→ B be a simulation. We extend H to paths by defining πHρ if π(i)Hρ(i)
for every i ∈N. The theorem is then an easy consequence of the following two results:

1. If aHb and π is a path inA starting at a, then there is a path ρ in B starting at b and such
that πHρ. This is proved by defining ρ recursively from π.

2. If aHb,π starts at a,ρ starts at b, andπHρ, thenB, ρ |= ϕ impliesA, π |= ϕ; furthermore, this
implication becomes an equivalence for strict simulations. The proof is straightforward
and proceeds by structural induction on ϕ. ut

Theorem 1 also holds for ACTL∗ formulas and, in that more general formulation, slightly
generalizes Theorem 16 in [10].

This theorem is the key basis for the method of model checking by abstraction: given an
infinite (or too large) system M, find a system A with a finite set of reachable states that
simulates it and use model checking to try to prove that ϕ holds in A; then, by Theorem 1,
ϕ also holds inM. In general, however, we typically only have our concrete systemM and
a surjective function h : M −→ A mapping concrete states to a simplified (usually with a
finite set of reachable states) abstract domain A. In these cases there is a canonical way of
constructing a Kripke structure out of h in such a way that h becomes a simulation.
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Definition 4. The minimal system Mh
min corresponding to M and the surjective function h :

M −→ A is given by the triple (A, (h × h)(→M),L
Mh

min
), where (h × h)(→M) is the image of →M

through h and L
Mh

min
(a) =

⋂
x∈h−1(a) LM(x).

The following proposition is an immediate consequence of the definitions.

Proposition 1. For all suchM and h, h :M −→Mh
min is a simulation map.

Minimal systems can also be seen as quotients. LetA = (A,→A,LA) be a Kripke structure
on AP, and let ≡ be an arbitrary equivalence relation on A. We can use ≡ to define a new
Kripke structure,A/≡ = (A/≡,→A/≡,LA/≡), where:

– [a1]→A/≡ [a2] iff there exist a′1 ∈ [a1] and a′2 ∈ [a2] such that a′1 →A a′2;
– LA/≡([a]) =

⋂
x∈[a] LA(x).

It is then trivial to check that the projection map to equivalence classes q≡ : a 7→ [a] is an
AP-simulation map q≡ : A −→ A/≡, which we call the quotient abstraction defined by ≡.
Hence, an equivalent presentation of the minimal system is expressed by the following.

Proposition 2. LetM = (M,→M,LM) be a Kripke structure and h : M −→ A a surjective function.
Then, there exists a bijective bisimulation map between the Kripke structuresMh

min andM/≡h, where
by definition x ≡h y iff h(x) = h(y).

Proof. Define f :Mh
min −→M/≡h by f (h(x)) = [x]; by definition of≡h, and since h is surjective,

f is a well-defined bijective function. We need to check that both f and f−1([x]) = h(x) are
strict simulations.

If a →
Mh

min
b, then there exist x and y inM such that h(x) = a, h(y) = b, and x →M y, and

therefore f (a) = [x]→M/≡h [y] = f (b). Similarly, if [x]→M/≡h [y], then there exists x′ such that
h(x) = h(x′), and y′ such that h(y) = h(y′), with x′ →M y′, and hence f−1([x]) = h(x′) →

Mh
min

h(y′) = f−1([y]).
Finally, p ∈ LM/≡h ([x]) iff p ∈ LM(x′) for all x′ with h(x′) = h(x), iff p ∈ L

Mh
min

(h(x)), and
therefore f and f−1 are strict. ut

That is, we can perform the abstraction either by mapping the concrete states to an abstract
domain or, as we will do in Section 5, by identifying some states and thereafter working with
the corresponding equivalence classes.

The use of the adjective “minimal” is appropriate since, as pointed out in [9], Mh
min is

the most accurate approximation to M that is consistent with h. However, it is not always
possible to have a computable description ofMh

min. The definition of→
Mh

min
can be rephrased

as x→
Mh

min
y iff there exist a and b such that h(a) = x, h(b) = y, and a→M b. This relation, even

if→M is recursive, is in general only recursively enumerable. However, Section 5 develops
equational methods that, when successful, yield a computable description ofMh

min.

4 Rewriting Logic Specifications and Model Checking

One can distinguish two specification levels: a system specification level, in which the compu-
tational system of interest is specified, and a property specification level, in which the relevant
properties are specified. The main interest of rewriting logic [34] is that it provides a very
flexible framework for the system-level specification of concurrent systems. Rewriting logic
is parameterized by an underlying equational logic. In this paper we will use membership
equational logic, whose main characteristics we now review.
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4.1 Membership Equational Logic

Membership equational logic is an expressive version of equational logic. A full account of
its syntax and semantics can be found in [5, 35]; here we define the basic notions needed
in this paper. The logic’s expressiveness is due to its rich type structure, that supports
sorts, subsorts, and operator overloading, and also errors and partiality through kinds and
conditional membership axioms.

A signature in membership equational logic is a triple (K, Σ,S) (just Σ in the following),
with K a set of kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K a
pairwise disjoint K-kinded family of sets of sorts. The kind of a sort s is denoted by [s]. We
write TΣ,k and TΣ,k(~x) to denote respectively the set of ground Σ-terms with kind k and of
Σ-terms with kind k over variables in ~x, where ~x = {x1 : k1, . . . , xn : kn} is a set of K-kinded
variables. Sometimes we use the notation t(~x) to make explicit the set of variables that appear
in the term t.

The atomic formulas of membership equational logic are either equations t = t′, where t
and t′ are terms of the same kind, or membership assertions of the form t : s, where the term t
has kind k and s ∈ Sk. Sentences are Horn clauses on these atomic formulas, i.e., sentences of
the form

(∀~x) A0 if A1 ∧ . . . ∧ An ,

where each Ai is either an equation or a membership assertion, and ~x is a set of K-kinded
variables4 that contains all the variables occurring in A0, A1, . . . , An. In membership equa-
tional logic, subsort relations and operator overloading are just a convenient way of writing
corresponding Horn clauses. For example, assuming that Nat and Int are sorts of the same
kind and that we have an operator + : [Int] [Int] −→ [Int] in Σ, then the subsort relation
Nat < Int is convenient notation for the conditional membership (∀x : [Int]) x : Int if x : Nat,
and the overloaded operator declarations

+ : Nat Nat −→ Nat + : Int Int −→ Int

are logically equivalent to

(∀x : [Int], y : [Int]) x + y : Nat if x : Nat ∧ y : Nat
(∀x : [Int], y : [Int]) x + y : Int if x : Int ∧ y : Int .

A theory in membership equational logic is a pair (Σ,E), where E is a finite set of sentences
in membership equational logic over the signature Σ. We write (Σ,E) ` φ, or just E ` φ if Σ is
clear from the context, to denote that (Σ,E) entails the sentence φ using the rules in Figure 1.
The basic intuition is that correct or well-behaved terms are those that can be proved to have
a sort, whereas error or undefined terms are terms that have a kind but do not have a sort. For
example, assuming difference − and integer division / operators with the appropriate
declarations, 3 + 2 : Nat and 3 − 4 : Int, but 7/0 is a term of kind [Int] with no sort.

AΣ-algebra A consists of a set Ak for each k ∈ K, a function A f : Ak1×. . .×Akn −→ Ak for each
operator f ∈ Σk1...kn,k, and a subset As ⊆ Ak for each sort s ∈ Sk. An algebra A and a valuation σ,
assigning to each variable x : k in ~x a value in Ak, satisfy an equation (∀~x) t = t′ iff σ(t) = σ(t′),
where we use the same notation σ for the valuation and its homomorphic extension to
terms. We write A, σ |= (∀~x) t = t′ to denote such a satisfaction. Similarly, A, σ |= (∀~x) t : s
holds iff σ(t) ∈ As. A Σ-algebra satisfies a conditional axiom (∀~x) A0 if A1 ∧ . . . ∧ An, written

4 Note that, as usual in typed logics in which types can be empty, it is necessary to keep track of the
variables that can be instantiated in order to avoid inconsistencies [24, 29]. In particular, this situation
arises in many-sorted, order-sorted, and membership equational logic [35, 5]. The notation (∀~x) is
used in our formulas to make such variables explicit and follows typical conventions in this field.
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t ∈ TΣ(~x)
(∀~x) t = t

Reflexivity (∀~x) t′ : s (∀~x) t = t′

(∀~x) t : s
Membership

(∀~x) t′ = t
(∀~x) t = t′

Symmetry (∀~x) t1 = t2 (∀~x) t2 = t3

(∀~x) t1 = t3
Transitivity

f ∈ Σk1 ...kn ,k (∀~x) ti = t′i ti, t′i ∈ TΣ,ki (~x) 1 ≤ i ≤ n
(∀~x) f (t1, . . . , tn) = f (t′1, . . . , t

′

n)
Congruence

(∀~x) A0 if A1 ∧ . . . ∧ An ∈ E
θ : ~x→ TΣ(~y) (∀~y)θ(Ai) 1 ≤ i ≤ n

(∀~y)θ(A0)
Replacement

Fig. 1. Deduction rules for membership equational logic.

A |= (∀~x) A0 if A1 ∧ . . .∧An, if A, σ |= A0 for each valuation σ such that A, σ |= (∀~x) Ai for each
1 ≤ i ≤ n; we then say that A is a model of φ. As usual, we write (Σ,E) |= φ when all the
models of the set E of sentences are also models of φ. The rules in Figure 1 specify a sound
and complete calculus [35], that is, we have the equivalence (Σ,E) ` φ ⇐⇒ (Σ,E) |= φ.

A theory (Σ,E) in membership equational logic has an initial model [35], denoted by TΣ/E,
whose elements are equivalence classes [t]E of ground terms. In the initial model, sorts are
interpreted as the smallest sets satisfying the axioms in the theory, and equality is interpreted
as the smallest congruence satisfying those axioms. We write E `ind φ when φ holds in the
initial model of E.

4.2 Rewriting Logic

Concurrent systems are axiomatized in rewriting logic by means of rewrite theories [34] of the
form R = (Σ,E,R). The set of states is described by a membership equational theory (Σ,E) as
the algebraic data type TΣ/E,k associated to the initial algebra TΣ/E of (Σ,E) by the choice of a
kind k of states in Σ. The system’s transitions are axiomatized by the conditional rewrite rules
R which are of the form

λ : (∀~x) t −→ t′ if
∧
i∈I

pi = qi ∧
∧
j∈J

w j : s j ∧
∧
l∈L

tl −→ t′l ,

with λ a label, pi = qi and w j : s j atomic formulas in membership equational logic for i ∈ I and
j ∈ J, and for appropriate kinds k and kl, t, t′ ∈ TΣ,k(~x), and tl, t′l ∈ TΣ,kl (~x) for l ∈ L. Throughout
this paper we assume that vars(t′) ∪ vars(cond) ⊆ vars(t); this could be relaxed to allow extra
variables in the condition and in t′, provided they are added incrementally by “matching
equations” in cond as explained in [11, 12]. Under reasonable assumptions about E and R,
rewrite theories are executable (more on this below). Indeed, there are several rewriting logic
language implementations, including CafeOBJ [23], ELAN [4], and Maude [11, 12].

We can illustrate rewriting logic specifications by means of an example, namely a simpli-
fied version of Lamport’s bakery protocol [30]. This is an infinite state protocol that achieves
mutual exclusion between processes by dispensing a number to each process and serving
them in sequential order according to the number they hold. A simple Maude specification
for the case of two processes and atomic transitions is as follows:

mod BAKERY is
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protecting NAT .

sorts Mode BState .

ops sleep wait crit : -> Mode [ctor] .

op <_,_,_,_> : Mode Nat Mode Nat -> BState [ctor] .

op initial : -> BState .

vars P Q : Mode .

vars X Y : Nat .

eq initial = < sleep, 0, sleep, 0 > .

rl [p1_sleep] : < sleep, X, Q, Y > => < wait, s Y, Q, Y > .

rl [p1_wait] : < wait, X, Q, 0 > => < crit, X, Q, 0 > .

crl [p1_wait] : < wait, X, Q, Y > => < crit, X, Q, Y > if not (Y < X) .

rl [p1_crit] : < crit, X, Q, Y > => < sleep, 0, Q, Y > .

rl [p2_sleep] : < P, X, sleep, Y > => < P, X, wait, s X > .

rl [p2_wait] : < P, 0, wait, Y > => < P, 0, crit, Y > .

crl [p2_wait] : < P, X, wait, Y > => < P, X, crit, Y > if Y < X .

rl [p2_crit] : < P, X, crit, Y > => < P, X, sleep, 0 > .

endm

This specification corresponds to a rewrite theory R = (Σ,E,R), where (Σ,E) imports
the equational theory NAT of the natural numbers and where Σ has additional sorts Mode
and BState, with Mode consisting of just the constants sleep, wait, and crit. States are
represented by terms of sort BState, which are constructed by a 4-tuple operator <_,_,_,_> ;
the first two components describe the status of the first process (the mode it is currently in,
and its priority as given by the number according to which it will be served) and the last
two the status of the second process. E consists of just the equations imported from NAT, plus
the above equation defining the initial state. R consists of eight rewrite rules, four for each
process. These rules describe how each process passes from being sleeping to waiting, from
waiting to its critical section, and then back to sleeping. In this case, the chosen kind k for
states is of course the kind [BState] associated with the sort BState. Note that in Maude
each entity in (Σ,E,R) is introduced by a corresponding keyword, such as sorts for sorts, op
for an operator, eq (resp. ceq) for equations (resp. conditional equations), and rl (resp. crl)
for rules (resp. conditional rules) that optionally can be labeled.

Rewriting logic then has the inference rules in Figure 2 to infer all the possible concurrent
computations in a system [34, 7], in the sense that, given two states [u], [v] ∈ TΣ/E,k, we can
reach [v] from [u] by some possibly complex concurrent computation iffwe can prove u −→ v
in the logic; we denote this provability by R ` u −→ v. In particular we can easily define the
one-step R-rewriting relation, which is a binary relation→1

R,k on TΣ,k that holds between terms
u, v ∈ TΣ,k iff there is a one-step proof of u −→ v. More precisely, u →1

R,k v if either there is
a derivation of u −→ v whose last rule is (Replacement), or (Equality) applied to a pair of
terms already in the relation, or if, for some f ∈ Σk1...kn,k, u = f (t1, . . . , tn) and v = f (t′1, . . . , t

′
n),

and there exists i such that ti →
1
R,ki

t′i and t j = t′j for all j , i. (Transitivity) is thus allowed, but
only to solve the conditions that may arise in (Replacement). We can get a binary relation
(with the same name)→1

R,k on TΣ/E,k by defining [u] →1
R,k [v] iff u′ →1

R,k v′ for some u′ ∈ [u],
v′ ∈ [v]. This then makes unnecessary the (Equality) rule, because [u] →1

R,k [v] is defined at
the level of E-equivalence classes.

The relationship with Kripke structures is now almost obvious: we can associate to a
concurrent system axiomatized by a rewrite theory R = (Σ,E,R) with a chosen kind k of
states a Kripke structure

K (R, k)Π = (TΣ/E,k, (→1
R,k)•,LΠ) .
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t ∈ TΣ(~x)
(∀~x) t −→ t

Reflexivity (∀~x) t1 −→ t2 (∀~x) t2 −→ t3

(∀~x) t1 −→ t3
Transitivity

E ` (∀~x) t = u (∀~x) u −→ u′ E ` (∀~x) u′ = t′

(∀~x) t −→ t′
Equality

f ∈ Σk1 ...kn ,k (∀~x) ti −→ t′i ti, t′i ∈ TΣ,ki (~x) 1 ≤ i ≤ n
(∀~x) f (t1, . . . , tn) −→ f (t′1, . . . , t

′

n)
Congruence

(∀~x)λ : t −→ t′ if
∧
i∈I

pi = qi ∧

∧
j∈J

w j : s j ∧

∧
l∈L

tl −→ t′l ∈ R

θ : ~x→ TΣ(~y) (∀~y)θ(tl) −→ θ(t′l ) l ∈ L
E ` (∀~y)θ(pi) = θ(qi) i ∈ I E ` (∀~y)θ(w j) : s j j ∈ J

(∀~y)θ(t) −→ θ(t′)
Replacement

Fig. 2. Deduction rules for rewrite theories.

We say “almost obvious,” because nothing has yet been said about the choice of state pred-
icates Π and the associated labeling function LΠ. The reason for this is methodological: Π,
LΠ, and the LTL formulas ϕ describing properties of the system specified by R belong to the
property specification level. Indeed, for the same system specification R we may come up with
different predicates Π, labeling functions LΠ, and properties ϕ, depending on the properties
of interest.

The question of when a rewrite theoryR is executable is closely related with wanting TΣ/E,k
to be a computable set, and (→1

R,k)• to be a computable relation in the above Kripke structure
K (R, k)Π, an obvious precondition for any model checking. We say that R = (Σ,E ∪ A,R) is
executable if:

1. there exists a matching algorithm modulo the equational axioms A;5

2. the equational theory (Σ,E ∪ A) is (ground) Church-Rosser and terminating modulo A [18];
and

3. the rules R are (ground) coherent [42] relative to the equations E modulo A.

Conditions 1 and 2 ensure that TΣ/E∪A,k is a computable set, since each ground term t can be
simplified by applying the equations E from left to right modulo A to reach a canonical form
canE/A(t) which is unique modulo the axioms A. We can then reduce the equality problem
[u]E∪A = [v]E∪A to the decidable equality problem [canE/A(u)]A = [canE/A(v)]A.

Condition 3 means that for each ground term t, whenever we have t →1
R

u we can
always find canE/A(t)→1

R
v such that [canE/A(u)]A = [canE/A(v)]A. This implies that (→1

R,k)• is a
computable binary relation on TΣ/E∪A,k, since we can decide [t]E∪A →

1
R

[u]E∪A by enumerating
the finite set of all one-step R-rewrites modulo A of canE/A(t), and for any such rewrite, say v,
we can decide [canE/A(u)]A = [canE/A(v)]A. It also implies sort-decreasingness [5]. Intuitively, this
means that the canonical form canE/A(t) should have the least sort possible among the sorts
of all the terms equivalent to it by the equations and that it should be possible to compute it
from the canonical form itself, using only the operator declarations and the memberships.

5 In the rewriting logic language Maude, the axioms A for which the rewrite engine supports matching
modulo are any combination of associativity, commutativity, and identity axioms for different binary
operators.
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Coherence can be checked by critical-pair-like techniques similar to those used for check-
ing equational confluence and performing Knuth-Bendix completion; the general theory is
developed in [42]. Intuitively, the idea is to first establish that E is Church-Rosser and termi-
nating modulo A, and then check the coherence of “relative critical pairs” (that is, overlaps
on nonvariable subterms obtained by unification) between the equations E and the rules R
modulo the axioms A; see Section 7 for examples.

4.3 LTL Properties of Rewrite Theories and Model Checking

One appealing feature of rewriting logic is that it provides a seamless integration of the
system specification level and the property specification level, because we can specify the
relevant state predicatesΠ equationally, and this then determines the labeling function LΠ and
the semantics of the LTL formulas ϕ in a unique way. Indeed, to associate LTL properties to a
rewrite theory R = (Σ,E ∪A,R) with a chosen kind k of states we only need to make explicit
the relevant state predicatesΠ, which need not be part of the system specificationR. The state
predicates Π can be defined by means of equations D in an equational theory (Σ′,E∪A∪D)
that protects (Σ,E∪A); specifically, the uniqueΣ-homomorphism TΣ/E∪A → TΣ′/E∪A∪D induced
by the theory inclusion (Σ,E ∪ A) ⊆ (Σ′,E ∪ A ∪D) should be bijective at each sort s in Σ.

The syntax defining the state predicates consists of a subsignature Π ⊆ Σ′ of operators p
of the general form p : s1 . . . sn −→ Prop (with Prop the sort of propositions), reflecting the fact
that state predicates can be parametric. The semantics of the state predicates Π is defined by
D with the help of an operator |= : k [Prop] −→ [Bool] in Σ′. By definition, given ground
terms u1, . . . ,un, we say that the state predicate p(u1, . . . ,un) holds in the state [t] iff

E ∪ A ∪D `ind t |= p(u1, . . . ,un) = true .

We can now associate to R a Kripke structure K (R, k)Π, whose atomic predicates are
specified by the set APΠ = {θ(p) | p ∈ Π,θ ground substitution}.6

Definition 5. The Kripke structure associated to a rewrite theory R is given by K (R, k)Π =
(TΣ/E,k, (→1

R,k)•,LΠ), where

LΠ([t]) = {θ(p) ∈ APΠ | θ(p) holds in [t]} .

In practice we want the equality t |= p(u1, . . . ,un) = true to be decidable. This can be
achieved by giving equations in E ∪ D that are Church-Rosser and terminating modulo A.
Then, if we begin with an executable rewrite theory R and define decidable state predicates
Π by the method just described, we obtain a computable Kripke structure K (R, k)Π which, if
it has finite sets of reachable states, can be used for model checking.

Since its 2.0 version, the Maude system has an on-the-fly, explicit-state LTL model checker
[22] which supports the methodology just mentioned. Given an executable rewrite theory
specified in Maude by a module M, and an initial state, say initial of sort StateM, we can
model check different LTL properties beginning at this state. For that, a new module M-PREDS
must be defined importing both M and the predefined module SATISFACTION, and a subsort
declaration StateM < State must be added (this declaration can be omitted if State =
StateM). Then, the syntax of the state predicates must be declared by means of operators of
sort Prop and their semantics must be given by equations involving the satisfaction operator
op _|=_ : [State] [Prop] -> [Bool]. Once the semantics of the state predicates has been
defined, and assuming that the set of states reachable from initial is finite, we define a new
module M-CHECK that imports both M-PREDS and the predefined module MODEL-CHECKER; then
we can model check any LTL formula in LTL(APΠ) by giving to Maude the command:

6 By convention, if p has n parameters, θ(p) denotes the term θ(p(x1, . . . , xn)).
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reduce modelCheck(initial, formula) .

Continuing with our bakery protocol example, two basic properties that we may wish to
verify are:

1. mutual exclusion: the two processes are never simultaneously in their critical section; and
2. liveness: any process in waiting mode will eventually enter its critical section.

In order to specify these properties it is enough to specify in Maude the following set Π of
state predicates:

mod BAKERY-PREDS is

protecting BAKERY .

including SATISFACTION .

subsort BState < State .

ops 1wait 2wait 1crit 2crit : -> Prop [ctor] .

vars P Q : Mode .

vars X Y : Nat .

eq < wait, X, Q, Y > |= 1wait = true .

eq < sleep, X, Q, Y > |= 1wait = false .

eq < crit, X, Q, Y > |= 1wait = false .

eq < P , X, wait, Y > |= 2wait = true .

eq < P , X, sleep, Y > |= 2wait = false .

eq < P , X, crit, Y > |= 2wait = false .

eq < crit , X, Q, Y > |= 1crit = true .

eq < sleep, X, Q, Y > |= 1crit = false .

eq < wait, X, Q, Y > |= 1crit = false .

eq < P , X, crit, Y > |= 2crit = true .

eq < P , X, sleep, Y > |= 2crit = false .

eq < P , X, wait, Y > |= 2crit = false .

endm

Mutual exclusion is then expressed by the formula []˜(1crit /\ 2crit), and liveness
by (1wait |-> 1crit) /\ (2wait |-> 2crit), where [], ˜, and |-> are respectively the
symbols used by the model checker to represent �, ¬, and{.

Since the set of states reachable from initial (defined in the BAKERY module) is infinite,
we should not model check the above specification as given. Instead, we should first define
an abstraction of it where initial has only finitely many reachable states and then model
check the abstraction.

5 Equational Abstractions

Let R = (Σ,E∪A,R) be a rewrite theory. A quite general method for defining abstractions of
the Kripke structure K (R, k)Π = (TΣ/E∪A,k, (→1

R,k)•,LΠ) is by specifying an equational theory
extension of the form

(Σ,E ∪ A) ⊆ (Σ,E ∪ A ∪ E′).

Since this defines an equivalence relation ≡E′ on TΣ/E∪A,k, namely,

[t]E∪A ≡E′ [t′]E∪A ⇐⇒ E ∪ A ∪ E′ ` t = t′ ⇐⇒ [t]E∪A∪E′ = [t′]E∪A∪E′ ,

we can obviously define our quotient abstraction as K (R, k)Π/≡E′ . We call this the equational
quotient abstraction ofK (R, k)Π defined by E′.

10



But can K (R, k)Π/≡E′ , which we have just defined in terms of the underlying Kripke
structureK (R, k)Π, be understood as the Kripke structure associated to another rewrite theory?
Let us take a closer look at

K (R, k)Π/≡E′ = (TΣ/E∪A,k/≡E′ , (→1
R,k)•/≡E′ ,LΠ/≡E′ ).

The first observation is that, by definition, we have TΣ/E∪A,k/≡E′ � TΣ/E∪A∪E′,k. A second
observation is that if R is k-deadlock free, that is, if we have→1

R,k = (→1
R,k)•, then the rewrite

theory R/E′ = (Σ,E ∪ A ∪ E′,R) is also k-deadlock free and we have, under some mild
requirements (see Lemma 2 later):

(→1
R/E′,k)• =→1

R/E′,k = (→1
R,k)•/≡E′ .

Therefore, for R k-deadlock free, our obvious candidate for a rewrite theory having
K (R, k)Π/≡E′ as its underlying Kripke structure is the rewrite theoryR/E′ = (Σ,E∪A∪E′,R).
That is, we just add to R the equations E′ and do not change at all the rules R.

How restrictive is the requirement that R is k-deadlock free? There is no essential loss of
generality: in Section 6 we show how we can always associate to an executable rewrite theory
R with no rewrites appearing in the conditions of its rules a semantically equivalent (from
the LTL point of view) theory Rd f which is both deadlock free and executable. All theories
we have come across for our case studies satisfy that requirement.

In this way, at a purely mathematical level, R/E′ seems to be what we want. Assuming
that we have an A-matching algorithm, two problems may arise from the following two
executability questions about R/E′, which are essential forK (R, k)Π/≡E′ to be computable and
therefore for model checking:

– Are the equations E ∪ E′ ground Church-Rosser and terminating modulo A?
– Are the rules R ground coherent relative to E ∪ E′ modulo A?

The answer to each of these questions may be affirmative or negative. In practice, sufficient
care on the part of the user when specifying E′ should result in an affirmative answer to the
first question. In any case, we can always try to check such a property with a tool such as
Maude’s Church-Rosser checker [19]; if the check fails, we can try to complete the equations
with a Knuth-Bendix completion tool, for example [15], to get a theory (Σ,E′′∪A) equivalent
to (Σ,E ∪ A ∪ E′) for which the first question has an affirmative answer. Likewise, we can
try to check whether the rules R are ground coherent relative to E ∪ E′ (or to E′′) modulo
A using the tool described in [20]. If the check fails, we can again try to complete the rules
R to a semantically equivalent set of rules R′, using also that tool [20]. By this process we
can hopefully arrive at an executable rewrite theory R′ = (Σ,E′′ ∪A,R′) which is semantically
equivalent to R/E′. We can then use R′ to try to model check properties about R.

But we are not finished yet. What about the state predicatesΠ? Recall (see Section 4.3) that
these (possibly parameterized) state predicates will have been defined by means of equations
D in a Maude module importing the specification of R and also the module SATISFACTION.
The question is whether the state predicates Π are preserved under the equations E′. This
indeed may be a problem. We need to unpack a little the definition of the labeling function
LΠ/≡E′ , which is defined by the intersection formula

LΠ/≡E′ ([t]E∪A∪E′ ) =
⋂

[x]E∪A⊆[t]E∪A∪E′

LΠ([x]E∪A).

In general, computing such an intersection and coming up with new equational defini-
tions D′ capturing the new labeling function LΠ/≡E′ may not be easy. It becomes much easier

11



if the state predicates Π are preserved under the equations E′. By definition, we say that the
state predicatesΠ are preserved under the equations E′ if for any [t]E∪A, [t′]E∪A ∈ TΣ/E∪A,k we
have the implication

[t]E∪A∪E′ = [t′]E∪A∪E′ =⇒ LΠ([t]E∪A) = LΠ([t′]E∪A).

Note that in this case, assuming that the equations E∪E′∪D (or E′′∪D) are ground Church-
Rosser and terminating modulo A, we do not need to change the equations D to define the state
predicatesΠ onR/E′ (or its semantically equivalentR′). Therefore, we have an isomorphism
(given by a pair of invertible bisimulation maps)

K (R, k)Π/≡E′ � K (R/E′, k)Π,

or, in case we need the semantically equivalent R′, an isomorphism

K (R, k)Π/≡E′ � K (R′, k)Π.

The crucial point in both isomorphisms is that the labeling function of the righthand side
Kripke structure is now equationally defined by the same equations D as before. Since by
construction either R/E′ or R′ are executable theories, for an initial state [t]E∪A∪E′ having
a finite set of reachable states we can use the Maude model checker to model check any
LTL formula in this equational quotient abstraction. Furthermore, since the quotient APΠ-
simulation map

K (R, k)Π −→ K (R/E′, k)Π

is then by construction strict, by Theorem 1 it reflects satisfaction of arbitrary LTL formulas.
(Indeed, also of arbitrary ACTL∗ formulas.)

A practical problem remains: how can we actually try to prove the implication

[t]E∪A∪E′ = [t′]E∪A∪E′ =⇒ LΠ([t]E∪A) = LΠ([t′]E∪A)

to show the desired preservation of state predicates? A first result in solving that problem is
the following, where BOOL is the predefined theory of Boolean values.

Theorem 2. Let R = (Σ,E ∪ A,R) be a k-deadlock free rewrite theory and let D be equations
defining (possibly parametric) state predicates Π fully defined for all states of kind k as either true or
false, and assume that (Σ′,E ∪ A ∪D) protects BOOL. Let then E′ be a set of Σ-equations such that
(Σ′,E ∪ A ∪ E′ ∪D) also protects BOOL. Then, the state predicates Π are preserved under E′.

Proof. We have to check that ≡E′ is label-preserving, which is equivalent to proving the
following equivalences for each p ∈ Π and ground substitution θ:

E ∪ A ∪D `ind t |= θ(p) = true ⇐⇒ E ∪ A ∪ E′ ∪D `ind t |= θ(p) = true

E ∪ A ∪D `ind t |= θ(p) = false ⇐⇒ E ∪ A ∪ E′ ∪D `ind t |= θ(p) = false

The implications from left to right follow by monotonicity of equational reasoning. The
converse implications follow from the protecting BOOL assumption, since we can reason by
contradiction. Suppose, for example, that E∪A∪E′∪D `ind t |= θ(p) = true but E∪A∪D 0ind
t |= θ(p) = true; by the protecting BOOL assumption this forces E∪A∪D `ind t |= θ(p) = false,
which implies E ∪ A ∪ E′ ∪D `ind t |= θ(p) = false, contradicting the protection of BOOL. ut

The fact that BOOL is protected can be automatically checked with the sufficient complete-
ness checker (SCC) for Maude [26]. This tool accepts a module as input and checks whether
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it is sufficiently complete, in the intuitive sense that enough equations are specified so that
every term can be reduced to a canonical form in which only constructor operators are used;
for BOOL, these constructors are true and false. The SCC tool assumes that the specification
is terminating and confluent, which can also be proved automatically with tools like the
Church-Rosser Checker (CRC) [19] and Maude Termination Tool (MTT) [21] if all equations
are unconditional; otherwise, conditional critical pairs appear that complicate the proof. So
Theorem 2 is especially useful in the unconditional case. We show an example of its applica-
tion in Section 7.2; [12, Chapter 13] contains an abstraction for the bakery protocol different
from the one discussed in Section 7.1, which can be proved correct with this theorem.

We now present a more general and powerful condition to prove preservation of predi-
cates. A signature Σ is k-encapsulated if the kind k only appears as the codomain of a single
operator f : k1 . . . kn −→ k, and does not appear as an argument in any operator in Σ. Then,
a particularly easy case for proving the preservation of predicates is that of k-encapsulated
rewrite theories, for k the kind of states. This condition is very mild, since any rewrite theory
R can be transformed into a semantically equivalent k′-encapsulated one by enclosing the
original states in the kind k into new states in a kind k′ through an operator { } : k −→ k′, as
made precise by the following lemma.

Lemma 1. Given a rewrite theory R = (Σ,E,R) and a kind k ∈ Σ, define the rewrite theory R′ =
(Σ′,E,R) with Σ′ extending Σ with a new kind k′ and an operator { } : k −→ k′. R′ so defined is
k′-encapsulated.

Furthermore, if Π is a set of state predicates for R defined by a set of equations D, define state
predicates Π for R′ by transforming each equation7 (t |= p) = b if C in D into ({t} |= p) = b if C.
Then, the function h : TΣ′/E,k′ −→ TΣ/E,k given by h([{t}]E) = [t]E defines a bijective bisimulation
K (R, k)Π � K (R′, k′)Π.

Proof. Since no new rules or equations are added to R′, it is immediate that {t} →1
R′,k′ {t

′
}

iff t →1
R,k t′. But then, since h maps the term {t} to t, we have that the transition relation

is preserved in both directions. As for the state predicates, by the transformation applied
to the equations in D and, again, since no new equations have been added to R′, we have
LΠ({t}) = LΠ(t), and the result follows. ut

Besides being useful for the study of preservation of properties, encapsulation offers a
way to tackle the deadlock freedom of theories.

Lemma 2. Suppose that R = (Σ,E ∪ A,R) is a k-encapsulated rewrite theory and that E′ is a set of
equations of the form t = t′ if C, with t, t′ ∈ TΣ,k(~x). Then, if R is k-deadlock free and no terms of kind
k appear in the conditions of the rewrite rules in R, the rewrite theory R/E′ = (Σ,E ∪ A ∪ E′,R) is
also k-deadlock free and we have

→
1
R/E′,k′ =→

1
R,k′ /≡E′ .

for all kinds k′ in Σ.

Proof. It is clear that R/E′ is k-deadlock free because every rewrite in R is also a rewrite in
R/E′. For the same reason, the second relation is included in the first one. Now, assume that
[t]→1

R/E′,k′ [t
′]. By induction on the definition of→1

R/E′,k′ :

7 As already pointed out in footnote 4, the explicit tracking of variables in equations is necessary to
avoid inconsistencies when there are kinds with no ground terms [24, 35]. In all our proofs we take
that into account but, in order to ease the presentation, we will omit the notation (∀~x) whenever it is
more convenient.
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– If there is a rule l −→ r if C in R and a ground substitution θ such that [t] = [θ(l)],
[t′] = [θ(r)], and E ∪ A ∪ E′ ` θ(C) then, because of the restrictions on E′ and R, we
have E ∪ A ` θ(C) (see Lemma 3 for the details of a similar proof) and therefore [t] =
[θ(l)]→1

R,k′ /≡E′ [θ(r)] = [t′].
– If [t] = [ f (u1, . . . ,un)], [t′] = [ f (u′1, . . . ,u

′
n)], and [ui]→1

R/E′,ki
[u′i ] for some i, the result follows

by induction hypothesis. ut

Now, a useful fact about k-encapsulated theories, easy to prove from the rules of equational
deduction and needed in the proof of our main result, is:

Lemma 3. Let (Σ,E) be k-encapsulated and let E′ be a set of (possibly conditional) equations whose
left and righthand sides are terms of kind k. Then, if no terms of kind k appear in any conditions in E,
we have TΣ/E,k′ = TΣ/E∪E′,k′ for each kind k′ different from k.

Proof. We will prove that

E ∪ E′ ` (∀~x) u = v implies E ` (∀~x) u = v

by structural induction on the derivation:

– (Reflexivity), (Symmetry), (Transitivity), and (Membership). Trivial.
– (Congruence). If

u1 = v1 . . . un = vn

f (u1, . . . ,un) = f (v1, . . . , vn)

is the last step of a derivation in E ∪ E′ then, since the theory is k-encapsulated, none of
the ui or vi is of kind k and we can apply the induction hypothesis to get E ` ui = vi,
whence the result follows.

– (Replacement). If
θ(C)

θ(t = t′)

is the last step of a derivation in E ∪ E′ for some equation t = t′ if C in E (note that by
hypothesis it cannot belong to E′), we can apply the induction hypothesis to θ(C) since it
cannot contain equations between terms of kind k, and the result follows. ut

We can now give a sufficient condition under which preservation of atomic predicates
is guaranteed. Actually, the following result proves much more since it shows that BOOL is
protected and that the resulting theory is sort-decreasing and terminating.

Theorem 3. Let (Σ′,E ∪D) be the extension of (Σ,E) with the operator |= and equations for the
state predicates. Assume that (Σ′,E ∪D) and (Σ,E ∪ E′) are both ground confluent, sort-decreasing,
and terminating, and both protect BOOL. Assume also that for any f : k1 . . . kn −→ k′ in Σ′, if [Bool]
appears among the argument kinds k1, . . . , kn, then k′ is not [Bool].

Furthermore, assume that (Σ,E) is k-encapsulated, the left and righthand side terms of the equations
in E′ are of kind k, and no terms of kind k appear in any conditions in E or E′. Then, if for each equation
(∀~x) t = t′ if C in E′ and each p ∈ Π we have

(†) E ∪D `ind (∀~x, ~y) C→ (t(~x) |= p(~y) = t′(~x) |= p(~y))

then (Σ′,E ∪ E′ ∪D) is ground confluent, sort-decreasing, and terminating, and protects BOOL.
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Proof. Sort-decreasingness is obvious, since all the equations in E∪E′∪D are sort-decreasing
by hypothesis.

We show confluence and termination for each kind. Note that, by the above assumptions,
for any kind k other than [Bool] or [Prop]we have TΣ′,k = TΣ,k. Therefore, the only equations
applying to ground terms of those kinds are those in E∪E′, which are ground confluent and
terminating by hypothesis. Similarly, any ground term p(t1, . . . , tn) has subterms t1, . . . , tn
with kinds different from [Bool] or [Prop], and the ground confluence and termination for
each of those kinds, plus the absence of equations for p, easily yields ground confluence and
termination. So we are left with terms in TΣ′,[Bool] which, by the assumptions, are either:

1. terms in TΣ,[Bool], or
2. ground terms of the form t |= p(~u), or
3. Boolean combinations of true, false, and terms of the forms (1)–(2) above.

Since for terms of type (1) only equations in E ∪ E′ apply, their ground confluence and
termination follows by hypothesis. It all then boils down to showing ground confluence and
termination of terms of type (2), because then the type (3) case follows easily by case analysis
and a non-overlap confluence argument from types (1)–(2).

Note that termination for terms of type (2) follows from the observation that all sequences
rewriting a term of the form t |= p(~u) must be either of the form t |= p(~u) −→∗E∪E′ t′ |= p(~u′),
or of the form t |= p(~u) −→∗E∪E′ t′ |= p(~u′) −→D b, with b either true or false. The second
kind of sequences are already terminating, and since E ∪ E′ is by hypothesis terminating,
we cannot have infinite sequences of the first kind: they must all eventually reach a unique
normal form.

Confluence now follows easily from the fact that, given any two E ∪ E′ ∪ D-rewrite
sequences starting at a ground term t |= p(~u), we can always extend them to terminating
sequences of the form t |= p(~u) −→∗E∪E′ t′ |= p(~u′) −→D b, t |= p(~u) −→∗E∪E′ t′′ |= p( ~u′′) −→D b′.
If b equals b′, we are done. Otherwise, we have, say, t |= p(~u) −→∗E∪E′ t′ |= p(~u′) −→D true,
t |= p(~u) −→∗E∪E′ t′′ |= p( ~u′′) −→D false. But, since E∪E′ is ground confluent and terminating,
we also have a sequence of the form t |= p(~u) −→∗E∪E′ canE∪E′ (t |= p(~u)) −→D b′′, with b′′ either
true or false, say b′′ = true (the other case is analogous). Graphically:

t′ |= p(~u′)
∗

E∪E′
,,XXXXXX // true

t |= p(~u)

∗

E∪E′
33hhhhhh

∗

E∪E′
++VVVVV canE∪E′ (t |= p(~u))

D
33ggggggg

++
t′′ |= p( ~u′′)

∗

E∪E′
22fffff

D
// false

Since we also have a sequence t′′ |= p( ~u′′) −→∗E∪E′ canE∪E′ (t |= p(~u)), we will reach a contra-
diction (against the protecting BOOL hypothesis for E ∪ D) if we show that we must have
E ∪ D `ind canE∪E′ (t |= p(~u)) = false. This we can easily prove by induction on the number
of steps in the sequence t′′ |= p( ~u′′) −→∗E∪E′ canE∪E′ (t |= p(~u)). For a single step resulting
from an equation ϕ of the form l = r if C and substitution θ, it must be E ∪ E′ ` θ(C);
the conditions in Lemma 3 are satisfied and hence E ` θ(C). If ϕ ∈ E, it follows that
E ∪ D ` t′′ |= p( ~u′′) = canE∪E′ (t |= p(~u)) and we are done. Otherwise, because of the main
hypothesis we have

E ∪D `ind (∀~x, ~y) C→ (l |= p(~y) = r |= p(~y)) ;

then, since E∪D ` θ(C), also E∪D `ind θ(u |= p(~y)) = θ(v |= p(~y)), perhaps extending θ to the
variables in ~y. The result now follows by induction. ut
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Summing up, to prove the preservation of state predicates when the abstraction equations
E′ are unconditional, often Theorem 2 will be enough. In the conditional case, however, we
need to resort to the more powerful Theorem 3. As a consequence of this theorem, to prove
that the state predicates Π are preserved in an equational abstraction we can use a tool like
Maude’s ITP [13] to mechanically discharge proof obligations of the form (†), under the
above assumptions on R, E′, and D. In particular, the theory has to be k-encapsulated but,
as Lemma 1 has shown, this implies no loss of generality. We illustrate the use of this more
general theorem with the abstraction for the bakery protocol presented in Section 7.1.

Notice that the fact that the state kind is encapsulated does not preclude the use of
recursive data structures in state components, for example a history variable. For instance,
the case study in Section 7.2 shows indeed encapsulated states involving such recursive
structures. In fact, the encapsulation requirement poses no real restriction in practice since
Lemma 1 allows us to transform any rewrite theory R with state kind k into an equivalent
k′-encapsulated one.

6 The Deadlock Difficulty

The reason why we have focused on deadlock-free rewrite theories is because deadlocks
can pose a problem, due to a technical point in the Kripke structure semantics of LTL. As
emphasized in its definition, the transition relation of a Kripke structure is total, and this
requirement is also imposed on the Kripke structures arising from rewrite theories. Consider
then the following specification of a rewrite theory, together with the declaration of two state
predicates:

mod FOO is

inc SATISFACTION .

ops a b c : -> State [ctor] .

ops p1 p2 : -> Prop [ctor] .

eq (a |= p1) = true . eq (a |= p2) = false .

eq (b |= p2) = true . eq (b |= p1) = false .

eq (c |= p1) = true . eq (c |= p2) = false .

rl a => b .

rl b => c .

endm

The transition relation of the Kripke structure corresponding to this specification has three
elements: a→ b, b→ c, and c→ c, the last one consistently added as a deadlock transition
according to the definition of (→1

R,[State])
•.

Suppose now that we wanted to abstract this system and that we decided to identify
states a and c by means of a simulation map h. For that, according to the method presented
in the previous sections, it would be enough to add the equation eq c = a to the above
specification. The resulting system is coherent, and a and c satisfy the same state predicates.
Note that the corresponding Kripke structure has only two elements in its transition relation:
one from the equivalence class of a to that of b, and another in the opposite direction. Now,
since no deadlock can occur in any of the states, we have (→R/E′,[State])• =→R/E′,[State] for E′ the
equation eq c = a so that no additional deadlock transitions are added. In particular, there
is no transition from the equivalence class of a to itself, but that means that the resulting
specification does not correspond to the minimal system associated to h in which such a
transition does exist. The lack of this idle transition is a serious problem, because now we
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can prove properties about the supposedly simulating system that are actually false in the
original one, for example, �^ p2.

One simple way to deal with this difficulty is to just add idle transitions for each of the
states in the resulting specification by means of a rule of the form x => x. The resulting
system, in addition to all the rules that the minimal system should contain, may in fact have
some extra “junk” transitions that are not part of it. Therefore, we would end up with a
system that can be soundly used to infer properties of the original system (it is immediate to
see that we have a simulation map) but that in general would be coarser than the minimal
system.

A better way of addressing the problem is to characterize the set of deadlock states. For
this, given a rewrite theory R with no rewrites appearing in the conditions of its rules, we
introduce a new predicate enabled : k −→ [Bool] for each kind k in R that will be true for a
term iff there is a rule that can be applied to it.

Proposition 3. Given a rewrite theory R = (Σ,E,R) such that for every l −→ r if C in R there are
no rewrites in C, we define an extension (Σ′,E′) of its equational part by adding:

1. for each kind k in Σ, a new operator enabled : k −→ [Bool] in Σ′;
2. for each rule l −→ r if C in R, an equation enabled(l) = true if C in E′, and
3. for each operator f : k1 . . . kn −→ k in Σ and for each i with 1 ≤ i ≤ n, the equation

enabled( f (x1, . . . , xn)) = true if enabled(xi) = true.

Then, for each term t ∈ TΣ,

E′ `ind enabled(t) = true ⇐⇒ there exists t′ ∈ TΣ such that t→1
R,k t′ .

Proof. Notice first that since the terms are ground, the equation holds in the initial model
iff it holds in every model. We prove the implication from left to right by induction on
the derivation. The only nontrivial cases are when the last rule of inference used is either
(Replacement) or (Transitivity). In the case of (Replacement), since enabled is a new operator,
the equation used must have been one of those added to E. Assume then that, for enabled(l) =
true if C in E′ and a substitution θ,

θ(C)
θ(enabled(l)) = true

is the last step of a derivation in E′ where l −→ r if C is a rule in R. Then, by Lemma 4 below,
E ` θ(C) and therefore θ(l) →1

R,k θ(r). When the equation used is enabled( f (x1, . . . , xn)) =
true if enabled(xi) = true, the result follows by induction hypothesis and the (Congruence)
rule of the rewriting logic calculus. Finally, in the case of (Transitivity),

enabled(t) = t′ t′ = true
enabled(t) = true

.

By Lemma 5 below we can distinguish two cases. If t′ is true or if there is a smaller derivation
of enabled(t) = true, we can apply the induction hypothesis. If t′ is enabled(t′′) for some t′′ such
that E′ ` t = t′′, the result follows by the induction hypothesis applied to E′ ` t′ = true, and
the fact that E ` t = t′′ by Lemma 4.

The implication in the other direction is proved by induction on the definition of→1
R,k. If

t = θ(l) and t′ = θ(r) for some substitution θ and rule l → r if C in R, the result follows by
instantiating the appropriate equation among those added to E′. If E ` t = u, E ` t′ = v, and
u →1

R,k v, by induction hypothesis E′ ` enabled(u) = true and therefore E′ ` enabled(t) = true.
Finally, if t = f (t1, . . . , tn), t′ = f (t′1, . . . , t

′
n), and ti →

1
R,k t′i for some i, by induction hypothesis

we have E′ ` enabled(ti) = true and, again, the result follows by instantiating the appropriate
equation in E′. ut
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Lemma 4. Under the conditions in Proposition 3, for all terms t, t′ ∈ TΣ(~x),

E′ ` (∀~x) t = t′ implies E ` (∀~x) t = t′ .

Proof. It is straightforward to prove by induction that if there is a derivation of t = t′ in E′

then there is also a derivation, with no occurrences of enabled, of u = u′, where u and u′ are
obtained from t and t′ by replacing all subterms of the form enabled(w) by true. Hence, when
t, t′ ∈ TΣ(~x) what we get is a derivation in E. ut

Lemma 5. Under the conditions in Proposition 3, for all ground terms t and t′, if there is a derivation
of enabled(t) = t′ or of t′ = enabled(t) in E′, then either:

(a) t′ is true,
(b) there is a derivation of enabled(t) = true in E′ whose depth is less or equal, or
(c) t′ is enabled(t′′) for some t′′ such that E′ ` t = t′′.

Proof. By induction on the derivation. Only (Transitivity) is not immediate. Given

enabled(t) = t′′ t′′ = t′

enabled(t) = t′
,

we apply the induction hypothesis to enabled(t) = t′′. If it is the case that either (a) or (b) holds,
then (b) also holds for the original equation. Otherwise, t′′ is enabled(t′′′) and we can apply
the induction hypothesis to t′′ = t′. The cases (a) and (c) are immediate. Now, if (b) holds,
there is a derivation of enabled(t′′′) = true whose depth is less than or equal to the one for
enabled(t′′′) = t′, and we can use it together with enabled(t) = enabled(t′′′) to build a derivation
of enabled(t) = true not deeper than the original derivation. ut

The enabled predicate and its properties are the key ingredients in the proof of the following
proposition, which allows us to transform an executable rewrite theory into a semantically
equivalent one that is both deadlock-free and executable.

Proposition 4. Let R = (Σ,E ∪ A,R) be an executable rewrite theory. Given a chosen kind of states
k, we can construct an executable theory extension R ⊆ Rk

d f = (Σ′,E′ ∪ A,R′) such that:

– Rk
d f is k′-deadlock free and k′-encapsulated for a certain kind k′;

– there is a function h : TΣ′,k′ −→ TΣ,k inducing a bijection h : TΣ′/E′∪A,k′ −→ TΣ/E∪A,k such that
for each t, t′ ∈ TΣ′,k′ we have

h(t)(→1
R,k)•h(t′) ⇐⇒ t→1

Rk
d f ,k

′
t′.

Furthermore, if Π are state predicates for R and k defined by equations D, then we can define state
predicates Π for Rk

d f and k′ by equations D′ such that the above map h becomes a bijective APΠ-
bisimulation

h : K (Rk
d f , k

′)Π −→ K (R, k)Π .

Proof. Define Rk
d f by extending the equational theory (Σ,E) in R with an enabled predicate as

explained in Proposition 3, and by adding a new kind k′, a new operator { } : k −→ k′, and
the rule

{x} → {x} if enabled(x) , true

to R.
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By construction, it is clear that Rk
d f is k′-encapsulated. Given a ground term {t} with t of

kind k, if there is t′ in R such that t →1
R,k t′ then {t} →1

Rk
d f ,k

′
{t′}; otherwise, by Proposition 3,

E′ ` enabled(t) , true and, by the rule we have just added, {t} →1
Rk

d f
{t}. HenceRk

d f is k′-deadlock

free. The function h can be defined as h({t}) = t and, since no equations between terms of
kind k′ have been introduced, it induces a bijection and clearly satisfies the equivalence in
the second item.

Finally, regarding the state predicates, we transform each equation (t |= p) = b if C into
({t} |= p) = b if C, as in Lemma 1. This implies that LΠ({t}) = LΠ(t) and, together with the
previous results, that h is a strict bisimulation. ut

This transformation can be carried out automatically within Maude; see [12, Chapter 15]
for details.

Note that we have used an inequality in the condition of the new rule. This is allowed
in the implementation of rewriting logic in Maude under appropriate Church-Rosser and
termination assumptions, but not in rewriting logic itself. However, by a metatheorem of
Bergstra and Tucker [3], under the conditions of the proposition it is always possible to
define such inequality in an equational way. The reason not to do it here is because it is
more convenient and concise to express the rule this way, which in addition is supported by
Maude in a built-in way as the inequality predicate =/= .

7 Case Studies

We show in detail the application of the techniques introduced in this paper with two
examples: the bakery protocol presented in Section 4 and a communication protocol.

In addition to the cases presented here we have also dealt successfully with a number
of examples that have been used in the literature to illustrate other abstraction methods,
including a readers/writers system [31] (see also [12, Chapter 12]), the alternating bit protocol
[38, 14, 32], a mutual exclusion protocol discussed in [16], and the bounded retransmission
protocol [1, 2, 14], which is included in Appendix A. The abstractions were obtained simply
by adding some equations to the specifications. Only in the last two cases was it necessary
to add some extra rewrite rules (allowing idle/stuttering transitions of the form x −→ x) to
guarantee coherence; the case studies not included in this paper can be found in [36].

7.1 The Bakery Protocol Example Revisited

We can use the bakery protocol example to illustrate how equational quotient abstractions
can be used to verify infinite-state systems. We can define such an abstraction by adding to
the equations of BAKERY (see page 6) a set E′ of additional equations defining a quotient of
the set of states. We can do so in the following module extending BAKERY by equations and
leaving the transition rewrite rules unchanged:

mod ABSTRACT-BAKERY is

including BAKERY .

vars P Q : Mode .

vars X Y : Nat .

eq < P, 0, Q, s s Y > = < P, 0, Q, s 0 > .

eq < P, s s X, Q, 0 > = < P, s 0, Q, 0 > .

ceq < P, s X, Q, s s Y > = < P, s s 0, Q, s 0 > if (s Y < X) .

ceq < P, s s s X, Q, s Y > = < P, s s 0, Q, s 0 > if (Y < s s X) .

ceq < P, s X, Q, s s Y > = < P, s 0, Q, s 0 > if not (s Y < X) .
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ceq < P, s s X, Q, s Y > = < P, s 0, Q, s 0 > if not (Y < s X) .

endm

Note that 〈P,N,Q,M〉 ≡ 〈P′,N′,Q′,M′
〉 according to the above equations iff:

1. P = P′ and Q = Q′,
2. N = 0 iff N′ = 0,
3. M = 0 iffM′ = 0,
4. M < N iffM′ < N′.

Intuitively, we do not care about the actual values of the variables, but only about which one
is greater, and whether they are equal to zero. (The equations in the module are more complex
than necessary at first sight to rule out nontermination by means of looping rewrites.)

Three key questions are:

– Is the set of states now finite?
– Does this abstraction correspond to a rewrite theory whose equations are ground Church-

Rosser and terminating?
– Are the rules still ground coherent?

The check of termination follows from that for the bigger moduleABSTRACT-BAKERY-PREDS,
which is discussed later.

To check local confluence we give to the Maude Church-Rosser Checker (CRC) tool a
version without built-ins of this module, in which true and false are replaced by tt and ff,
respectively:

Maude> (check Church-Rosser ABSTRACT-BAKERY .)

Church-Rosser checking of ABSTRACT-BAKERY

Checking solution :

ccp

< P@:Mode, s 0, Q@:Mode, s 0 >

= < P@:Mode, s s 0, Q@:Mode, s 0 >

if not(s Y@:Nat < s X*@:Nat)= tt /\ s Y@:Nat < s X*@:Nat = tt .

ccp

< P@:Mode, s s 0, Q@:Mode, s 0 >

= < P@:Mode, s 0, Q@:Mode, s 0 >

if s Y@:Nat < X@:Nat = tt /\ not(s Y@:Nat < X@:Nat) = tt .

We can conclude local ground confluence if we show that the conditions in these condi-
tional critical pairs are unsatisfiable. This follows trivially if we can show thatABSTRACT-BAKERY
protects both NAT and BOOL. This, in turn, follows from the following two facts:

– BAKERY itself has no equations and therefore trivially protects NAT and BOOL;
– ABSTRACT-BAKERY is [BState]-encapsulated and all its equations are of kind [BState];

therefore, by Lemma 3 all other kinds have identical data in the initial models of BAKERY
and of ABSTRACT-BAKERY.

This leaves us with the ground coherence question. Checking a version without built-ins
with Maude’s Coherence Checker gives us:

Maude> (check coherence ABSTRACT-BAKERY .)

Coherence checking of ABSTRACT-BAKERY

Checking solution :

cp

< sleep, 0, Q@:Mode, s 0>
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=> < wait, s s s Y*@:Nat, Q@:Mode, s s Y*@:Nat > .

cp

< P@:Mode, s 0, sleep, 0 >

=> < P@:Mode, s s X*@:Nat, wait, s s s X*@:Nat > .

ccp

< wait, s X*@:Nat, Q@:Mode, s s Y*@:Nat >

=> < crit, s X*@:Nat, Q@:Mode, s s Y*@:Nat >

if s Y*@:Nat < X*@:Nat = tt /\ s s Y*@:Nat < s X*@:Nat = ff .

ccp

< wait, s X*@:Nat, Q@:Mode, s s Y*@:Nat >

=> < crit, s X*@:Nat, Q@:Mode, s s Y*@:Nat >

if not(s Y*@:Nat < X*@:Nat) = tt /\ s s Y*@:Nat < s X*@:Nat = ff .

ccp

< wait, s s X*@:Nat, Q@:Mode, s Y*@:Nat >

=> < crit, s s X*@:Nat, Q@:Mode, s Y*@:Nat >

if not(Y*@:Nat < s X*@:Nat) = tt /\ s Y*@:Nat < s s X*@:Nat = ff .

ccp

< wait, s s s X*@:Nat, Q@:Mode, s Y*@:Nat >

=> < crit, s s s X*@:Nat, Q@:Mode, s Y*@:Nat >

if Y*@:Nat < s s X*@:Nat = tt /\ s Y*@:Nat < s s s X*@:Nat = ff .

ccp

< P@:Mode, s X*@:Nat, wait, s s Y*@:Nat >

=> < P@:Mode, s X*@:Nat, crit, s s Y*@:Nat >

if s Y*@:Nat < X*@:Nat = tt /\ s s Y*@:Nat < s X*@:Nat = tt .

ccp

< P@:Mode, s X*@:Nat, wait, s s Y*@:Nat >

=> < P@:Mode, s X*@:Nat, crit, s s Y*@:Nat >

if not(s Y*@:Nat < X*@:Nat) = tt /\ s s Y*@:Nat < s X*@:Nat = tt .

ccp

< P@:Mode, s s X*@:Nat, wait, s Y*@:Nat >

=> < P@:Mode, s s X*@:Nat, crit, s Y*@:Nat >

if not(Y*@:Nat < s X*@:Nat) = tt /\ s Y*@:Nat < s s X*@:Nat = tt .

ccp

< P@:Mode, s s s X*@:Nat, wait, s Y*@:Nat >

=> < P@:Mode, s s s X*@:Nat, crit, s Y*@:Nat >

if Y*@:Nat < s s X*@:Nat = tt /\ s Y*@:Nat < s s s X*@:Nat = tt .

This output means that, for the module to be coherent, it is enough to show that the lefthand
side of each of the critical pairs can be rewritten in one step to a term equationally equal
to the righthand side, whenever the corresponding condition holds. Since NAT and BOOL are
protected, the only pairs with satisfiable conditions are:

cp

< sleep, 0, Q@:Mode, s 0 >

=> < wait, s s s Y*@:Nat, Q@:Mode, s s Y*@:Nat > .

cp

< P@:Mode, s 0, sleep, 0 >

=> < P@:Mode, s s X*@:Nat, wait, s s s X*@:Nat > .

ccp

< wait, s X*@:Nat, Q@:Mode, s s Y*@:Nat >

=> < crit, s X*@:Nat, Q@:Mode, s s Y*@:Nat >

if not(s Y*@:Nat < X*@:Nat) = tt /\ s s Y*@:Nat < s X*@:Nat = ff .

ccp

< wait, s s X*@:Nat, Q@:Mode, s Y*@:Nat >

=> < crit, s s X*@:Nat, Q@:Mode, s Y*@:Nat >
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if not(Y*@:Nat < s X*@:Nat) = tt /\ s Y*@:Nat < s s X*@:Nat = ff .

ccp

< P@:Mode, s X*@:Nat, wait, s s Y*@:Nat >

=> < P@:Mode, s X*@:Nat, crit, s s Y*@:Nat >

if s Y*@:Nat < X*@:Nat = tt /\ s s Y*@:Nat < s X*@:Nat = tt .

ccp

< P@:Mode, s s s X*@:Nat, wait, s Y*@:Nat >

=> < P@:Mode, s s s X*@:Nat, crit, s Y*@:Nat >

if Y*@:Nat < s s X*@:Nat = tt /\ s Y*@:Nat < s s s X*@:Nat = tt .

Since we are only interested in ground coherence, we do not need to show that the critical
pairs can always be rewritten but only when instantiated with ground terms, inductively,
which is the case. We can illustrate the method of inductive proof with the first unconditional
and the first conditional pair.

The first unconditional pair is:

cp < sleep, 0, Q@:Mode, s 0 > =>

< wait, s s s Y*@:Nat, Q@:Mode, s s Y*@:Nat > .

We can first inductively prove the equation

eq < wait, s s s Y:Nat, Q:Mode, s s Y:Nat > = < wait, 2, Q, 1 > .

in the module ABSTRACT-BAKERY, by induction on Y:Nat, which gives us the following two
goals:

eq < wait, s s s 0, Q:Mode, s s 0 > = < wait, 2, Q, 1 > .

ceq < wait, s s s s Y:Nat, Q:Mode, s s s Y:Nat > = < wait, 2, Q, 1 >

if < wait, s s s Y:Nat, Q:Mode, s s Y:Nat >

= < wait, 2, Q, 1 > .

These two goals can be easily proved either using the ITP [13], or directly in Maude by
simplifying the first goal to a syntactic identity, and by applying the Theorem of Constants to
the second goal and adding the premise (instantiated with a constant) as an extra lemma to
simplify the conclusion (also instantiated with a constant) to a syntactic identity.

We can then check that the above critical pair fills in by using the search command with
the modifier =>1, which returns all one-step rewrites.

Maude> search in ABSTRACT-BAKERY : < sleep, 0, Q, 1 > =>1 X:BState .

Solution 1 (state 1)

X:BState --> < wait, 2, Q, 1 >

No more solutions.

Similarly, consider the first conditional critical pair, where, using the first equation among
the inductive lemmas below

eq s X < s Y = X < Y .

eq 0 < s X = true .

eq s X < 0 = false .

eq X < s X = true .

eq s X < X = false .

ceq X < s Y = true if X < Y .

ceq s X < Y = false if X < Y = false .
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we can simplify its condition as follows:

ccp < wait, s X:Nat, Q:Mode, s s Y:Nat > =>

< crit, s X:Nat, Q:Mode, s s Y:Nat >

if s Y:Nat < X:Nat = ff .

Using the Theorem of Constants, we can convert the variables X and Y into constants a and
b and assume s b < a = ff. Then the state < crit, s a, Q:Mode, s s b > has canonical
form < crit, 1, Q, 1 >, and we can fill in this conditional critical pair by giving the search
command:

Maude> search < wait, s a, Q:Mode, s s b > =>1 X:BState .

Solution 1 (state 1)

X:BState --> < crit,1,Q,1 >

No more solutions.

Another pending question is the deadlock freedom of ABSTRACT-BAKERY. To prove that
it indeed holds we can specify an enabled predicate, as explained in Section 6, that returns
true when applied to a term iff that term represents a non-deadlocked state. We need the
following equations:

eq enabled(< sleep, X, Q, Y >) = true .

eq enabled(< wait, X, Q, 0 >) = true .

ceq enabled(< wait, X, Q, Y >) = true if not (Y < X) .

eq enabled(< crit, X, Q, Y >) = true .

eq enabled(< P, X, sleep, Y >) = true .

eq enabled(< P, 0, wait, Y >) = true .

ceq enabled(< P, X, wait, Y >) = true if Y < X .

eq enabled(< P, X, crit, Y >) = true .

Then, the equation we have to prove to ensure deadlock freedom is

eq enabled(S) = true .

where S is a variable of sort State. The proof proceeds by induction on the first and third
components of the state and can be done straighforwardly with the ITP. Alternatively, we
could also prove the result in a more automated way by using the SCC tool. In our case the
tool returns that the module is sufficiently complete which means, in particular, that all terms
of the form enabled(t) can be reduced to a canonical term in the sort Bool and, due to the
equations used, this term must be true as required.

What about state predicates? Are they preserved by the abstraction? State predicates are
imported, together with ABSTRACT-BAKERY, in the module

mod ABSTRACT-BAKERY-PREDS is

pr ABSTRACT-BAKERY .

inc BAKERY-PREDS .

endm

What remaining tasks do we have left to show that we have an executable quotient
equational abstraction? First of all, we need to show that the equations in BAKERY-PREDS are
ground confluent, sort-decreasing, and terminating, and that BAKERY-PREDS protects BOOL.
The check of termination follows from that of ABSTRACT-BAKERY-PREDS, which is discussed
later. The local confluence test gives us:
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Maude> (check Church-Rosser BAKERY-PREDS .)

Checking solution:

All critical pairs have been joined. The specification is

locally-confluent.

The specification is sort-decreasing.

and the sufficient completeness test gives us:

Maude> (scc BAKERY-PREDS .)

Success: BAKERY-PREDS is sufficiently complete under the assumption

that it is weakly-normalizing, confluent, and sort-decreasing.

and since true and false are in canonical form this shows that BAKERY-PREDS protects BOOL.
Next we have to show that ABSTRACT-BAKERY-PREDSprotects BOOL (which will ensure that the
state predicates are preserved by the abstraction), and is ground confluent, sort-decreasing,
and terminating. Since the equations in ABSTRACT-BAKERY are all of the kind [BState], we
can apply Theorem 3. All the equalities in Theorem 3’s hypothesis can be easily proved by
induction, either manually or with the ITP, using case analysis on the constants of sort Mode,
since: (i) the equations in ABSTRACT-BAKERY leave modes unchanged; and (ii) the value of
each state predicate only depends on the mode of one of the two processes.

All we have left is checking termination of the equations in the modulesBAKERY-PREDS and
ABSTRACT-BAKERY. But since their union are the equations in ABSTRACT-BAKERY-PREDS, it is
enough to check ABSTRACT-BAKERY-PREDS is terminating. This check succeeds with the MTT
tool [21], after replacing the predefined modules NAT and BOOL by equivalent specifications
(predefined modules are not handled by the MTT tool at present).

In other words, we have just shown that, forΠ the state predicates declared in the module
BAKERY-PREDS (page 10), we have a strict quotient simulation map,

K (BAKERY-PREDS, State)Π −→ K (ABSTRACT-BAKERY-PREDS, State)Π.

Therefore, we can establish the mutual exclusion property of BAKERY-PREDS by model check-
ing in ABSTRACT-BAKERY-CHECK the following:

Maude> reduce modelCheck(initial, []˜ (1crit /\ 2crit)) .

result Bool: true

Likewise, we can establish the liveness property of BAKERY-PREDS by model checking in
ABSTRACT-BAKERY-CHECK:

Maude> reduce modelCheck(initial, (1wait |-> 1crit) /\ (2wait |-> 2crit)) .

result Bool: true

7.2 A Communication Protocol

Our second example is a protocol for in-order communication of messages between a sender
and a receiver in an asynchronous communication medium. To guarantee that the messages
are received in the correct order, messages include a sequence number and both sender and
receiver keep a counter that refers to the message they are currently working with. The sender
can, at any moment, nondeterministically choose the next value (in the set {a, b, c} in this
presentation) which is then paired with the sender’s counter to compose a message that is
then released to the medium; the value itself is also appended to a list of sent values owned
by the sender. The receiver has a corresponding list of received values: the purpose of these
lists is basically to allow us to state the property we are interested in proving for the system.
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When the receiver “sees” a message with a sequence number equal to its current counter, it
removes it from the medium and adds its value to its list of received values.

The following is the specification in Maude of the protocol, where there are only three
different types of messages. States are represented as triples < S, MS, R >, where S repre-
sents the status of the sender, R that of the receiver, and MS the asynchronous medium (a soup
of messages).

mod PROTOCOL is

protecting NAT .

sorts Value ValueList LocalState Message MessageSoup State .

subsort Value < ValueList .

subsort Message < MessageSoup .

ops a b c : -> Value [ctor] .

op nil : -> ValueList [ctor] .

op _:_ : ValueList ValueList -> ValueList [ctor assoc id: nil] .

op ls : Nat ValueList -> LocalState [ctor] .

op msg : Nat Value -> Message [ctor] .

op null : -> MessageSoup [ctor] .

op _;_ : MessageSoup MessageSoup -> MessageSoup [ctor assoc comm id: null] .

op <_,_,_> : LocalState MessageSoup LocalState -> State [ctor] .

op initial : -> State .

vars N M : Nat .

var X : Value .

vars L L1 L2 : ValueList .

var MS : MessageSoup .

vars R S : LocalState .

eq initial = < ls(0, nil), null, ls(0, nil) > .

rl < ls(N, L), MS, R > => < ls(s(N), L : a), MS ; msg(N, a), R > .

rl < ls(N, L), MS, R > => < ls(s(N), L : b), MS ; msg(N, b), R > .

rl < ls(N, L), MS, R > => < ls(s(N), L : c), MS ; msg(N, c), R > .

rl < S, msg(N, X) ; MS, ls(N, L) > => < S, MS, ls(s(N), L : X) > .

endm

In this specification, terms of sort LocalState, constructed with the operator ls, are
used to represent the local states of the sender and the receiver. The first argument of ls
corresponds to the counter while the second one is the list of messages already sent or
received. Note the important use of matching and rewriting modulo axioms of associativity
(assoc) and identity (id) for the append operator : on lists, and modulo associativity
(assoc), commutativity (comm), and identity (id) for the multiset union operator ; that
builds soups of messages. These axioms correspond to the axioms A in our theoretical
description of a rewrite theory R = (Σ,E ∪ A,R) and are used by Maude to apply equations
and rules modulo such declared axioms A.

The property we would like our system to have is that messages are delivered in the
correct order. Thanks to the sender’s and receiver’s lists this can be formally expressed by
the formula � prefix, where prefix is an atomic proposition that holds in those states in
which the receiver’s list is a prefix of the sender’s list. In Maude, this can be expressed as
follows:
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mod PROTOCOL-PREDS is

inc SATISFACTION .

inc PROTOCOL .

op prefix : -> Prop [ctor] .

vars M N : Nat .

var V : Value .

vars L1 L2 : ValueList .

var MS : MessageSoup .

eq (< ls(N, L1 : L2), MS, ls(M, L1) > |= prefix) = true .

eq (< ls(N, nil), MS, ls(M, V : L1) > |= prefix) = false .

eq (< ls(N, b : L2), MS, ls(M, a : L1) > |= prefix) = false .

eq (< ls(N, c : L2), MS, ls(M, a : L1) > |= prefix) = false .

eq (< ls(N, a : L2), MS, ls(M, b : L1) > |= prefix) = false .

eq (< ls(N, c : L2), MS, ls(M, b : L1) > |= prefix) = false .

eq (< ls(N, a : L2), MS, ls(M, c : L1) > |= prefix) = false .

eq (< ls(N, b : L2), MS, ls(M, c : L1) > |= prefix) = false .

endm

As was the case with the bakery protocol, model checking cannot be directly applied
because the set of states reachable from initial is infinite. There are, indeed, two different
sources of infiniteness in this example. The first one corresponds to the counters, that are
natural numbers that can reach arbitrarily large numbers and hence arbitrarily long lists
of sent and received messages. The second one is the communication medium, which is
unbounded and can contain an arbitrary number of messages. To deal with this infiniteness
and to be able to apply model checking, we need to define an abstraction; the corresponding
proof obligations are discharged in a way similar to that for the bakery example and hence
we do not go into as much detail.

First of all, a state whose corresponding sender’s and receiver’s lists have the same value
as their first element can be identified with the state resulting from removing that value from
both lists. This can be expressed by means of the equation:

eq < ls(N, X : L1), MS, ls(M, X : L2) > = < ls(N, L1), MS, ls(M, L2) > .

Secondly, if at a certain time both counters are equal and there are no messages in the
medium, then the counters can be reset to zero.

eq < ls(s(N), L1), null, ls(s(N), L2) > = < ls(0, L1), null, ls(0, L2) > .

(The pattern s(N) in this equation is used to ensure termination.)
Finally, if in the medium of the current state there is a message msg(N, X) and the

receiver’s counter is N, we can identify this state with one in which the message has been
read by the receiver.

eq < ls(M, L1 : X : L2), msg(N, X) ; MS, ls(N, L1) > =

< ls(M, L1 : X : L2), MS, ls(s(N), L1 : X) > .

The equation is unconditional, but note that in order to enforce that either both states satisfy
prefix or none does, the term corresponding to the sender is required to match a certain
pattern on the lefthand side of the equation.

Before applying model checking to this new system we must again ask ourselves whether
the equations are still Church-Rosser and terminating, the rules are ground coherent, and
the predicates are preserved. Termination is clear because the number of messages keeps
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decreasing and deadlock freedom too because it is always possible to add a new element to
the list of sent messages.

The Church-Rosser property is not so straightforward due to the overlapping of the first
and the third equations: if the next message to be delivered appears also as the head of the
lists of messages associated to the sender and the receiver, we can either append it to the
end of the receiver’s list using the third equation, or remove it from both lists using the first
one, and in this last case it does not seem possible to further reduce (equationally) the state.
Nonetheless, the Church-Rosser property indeed holds; informally, what happens is that in
order for the third equation to apply the sender and the receiver have to be such that we are
going to be able to remove all messages from the receiver’s list; after that, the message can
be appended to the end of the receiver’s list as wanted.

However, the resulting rewrite theory is not coherent. On the one hand, note that the last
equation in the abstraction is actually a particular case of the last rewrite rule. The term

< ls(5, a : b : c), msg(3, b), ls(3, a) >

for example, can be reduced to

< ls(5, a : b : c), null, ls(4, a : b) >

by applying either the equation or the rule, but this term, in turn, cannot be rewritten by any
rule to a term to which it is provably equal, as should be the case to have coherence. To solve
this, it is enough to add the following idle rule:

rl < ls(M, L1 : X : L2), MS, ls(s(N), L1 : X) > =>

< ls(M, L1 : X : L2), MS, ls(s(N), L1 : X) > .

On the other hand, the second equation can also raise a coherence problem. For example:

< ls(5,L1), null, ls(5,L2) > → < ls(6,L1 : a), msg(5,a), ls(5,L2) >

‖ ‖ ?
< ls(0,L1), null, ls(0,L2) > → < ls(1,L1 : a), msg(0,a), ls(0,L2) >

Suppose now that L1 and L2 are equal: then, both terms on the righthand side can be reduced
by the equations to the term

< ls(0, nil), null, ls(0, nil) >

and hence we have coherence. This, however, is not true in general but can be enforced by
requiring L1 and L2 to be nil, and thus equal, for the second equation to be applied:

eq < ls(s(N), nil), null, ls(s(N), nil) > = < ls(0, nil), null, ls(0, nil) > .

The resulting abstraction is then given as follows:

mod ABSTRACT-PROTOCOL-PREDS is

inc PROTOCOL-PREDS .

vars M N : Nat .

vars L1 L2 : ValueList .

var MS : MessageSoup .

var X : Value .

eq < ls(N, X : L1), MS, ls(M, X : L2) > = < ls(N, L1), MS, ls(M, L2) > .

eq < ls(s(N), nil), null, ls(s(N), nil) > = < ls(0, nil), null, ls(0, nil) > .
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eq < ls(M, L1 : X : L2), msg(N, X) ; MS, ls(N, L1) > =

< ls(M, L1 : X : L2), MS, ls(s(N), L1 : X) > .

--- coherence

rl < ls(M, L1 : X : L2), MS, ls(s(N), L1 : X) > =>

< ls(M, L1 : X : L2), MS, ls(s(N), L1 : X) > .

endm

Using, for example, the SCC tool shows that both the modules PROTOCOL-PREDS and
ABSTRACT-PROTOCOL-PREDS are sufficiently complete. In particular, they both preserve BOOL
and then, by Theorem 2, the state predicate prefix is preserved.

Our desired property can now be finally checked:

Maude> reduce modelCheck(initial, [] prefix) .

result Bool: true

It is worth noting the following remark about the previous lines. The reason why we
achieve coherence is because the abstraction collapses almost everything! In particular, every
reachable state is simplified by the abstraction equations to the term

< ls(0, nil), null, ls(0, nil) > .

8 Related Work and Conclusions

In [9] the simulation of a systemM by anotherM′ through a surjective function h was defined
and the optimal simulation Mh

min was identified. The idea of simulating by a quotient has
been further explored in [10, 8, 2, 28, 32, 16] among others, although the construction in [16]
requires a Galois connection instead of just a function. Theorem proving is proposed in [2]
to construct the transition relation of the abstract system, and in [32] to prove that a function
is a representative function that can be used as input to an algorithm to extractMh

min out of
M. While those uses of theorem proving focus on the correctness of the abstract transition
relation, our method focuses on making the minimal transition relation (which is correct by
construction) computable, and on proving the preservation of the labeling function. In [9, 10],
on the other hand, the minimal modelMh

min is discarded in favor of less precise but easier to
compute approximations; this would correspond, in our approach, to the addition of rewrite
rules to the specification to simplify the proofs of the proof obligations (which can indeed
be a reasonable alternative way of applying some of the techniques presented here within a
“lighter” methodology). In all the papers mentioned, two states can become identified only
if they satisfy the same atomic propositions; our definition of simulation is more general, but
we have not yet exploited this.

The equational abstraction method that we have presented seems to apply in practice
to a good number of examples discussed in the literature. But we need to further test its
applicability on a wider and more challenging range of examples. Also, the method itself
can be generalized along several directions. For example, the equational theory extension
(Σ,E ∪ A) ⊆ (Σ,E ∪ A ∪ E′) is generalized in [33] to an arbitrary theory interpretation H :
(Σ,E ∪ A) −→ (Σ′,E′′), allowing arbitrary transformations on the data representation of
states. A particular instance of this is predicate abstraction [40, 14]. Under this approach, the
abstract domain is a Boolean algebra over a set of assertions and the abstraction function,
typically as part of a Galois connection, is symbolically constructed as the conjunction of
all expressions satisfying a certain condition, which is proved using theorem proving. This
corresponds in our framework to a theory interpretation H : (Σ,E) −→ (Σ∪Σ′,E∪E′), withΣ′
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introducing operators of the form p : State −→ Bool, and with H mapping states S to Boolean
tuples 〈p1(S), . . . , pn(S)〉. Similarly, simulation maps between different sets AP and AP′ of state
predicates can be considered, yielding another increase in generality when relating systems.
Yet another direction along which our methods can be generalized is considering stuttering
notions of simulation and bisimulation [6, 39, 32] allowing changes in the atomicity levels
of transitions when relating systems. All these extensions, together with the more general
representations of simulations in rewriting logic by means of equationally defined functions
or rewrite relations, are studied in [37].

Acknowledgements. We warmly thank Saddek Bensalem, Yassine Lakhnech, David Basin, Felix
Klaedtke, Natarajan Shankar, Hassen Saidi, and Tomás Uribe for many useful discussions
that have influenced the ideas presented here, Manuel Clavel and Francisco Durán for their
help in the preparation of this paper, and Roberto Bruni and Joe Hendrix for many comments
on previous drafts. We also thank the anonymous referees who made several suggestions
that improved the final presentation of this paper.

References

1. Parosh Abdulla, Aurore Annichini, and Ahmed Bouajjani. Symbolic verification of lossy channel
systems: Application to the bounded retransmission protocol. In W. R. Cleaveland, editor, Tools
and Algorithms for the Construction of Analysis of Systems, 5th International Conference, TACAS’99, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS’99, Amsterdam, The
Netherlands, March 22-28, 1999, Proceedings, volume 1579 of Lecture Notes in Computer Science, pages
208–222. Springer, 1999.

2. Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing abstractions of infinite state
systems compositionally and automatically. In Alan J. Hu and Moshe Y. Vardi, editors, Computer
Aided Verification. 10th International Conference, CAV’98, Vancouver, BC, Canada, June 28-July 2, 1998,
Proceedings, volume 1427 of Lecture Notes in Computer Science, pages 319–331. Springer, 1998.

3. Jan Bergstra and John Tucker. Characterization of computable data types by means of a finite
equational specification method. In J. W. de Bakker and J. van Leeuwen, editors, 7th International
Conference on Automata, Languages and Programming, volume 81 of Lecture Notes in Computer Science,
pages 76–90. Springer, 1980.
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A The Bounded Retransmission Protocol

In this appendix we discuss in some detail a more complex example, the bounded retrans-
mission protocol (BRP) [25, 17]. The BRP is an extension of the alternating bit protocol where
a limit is placed on the number of transmissions of the messages; the following description
is borrowed from [1].

At the sender side, the protocol requests a sequence of data s = d1, . . . , dn (action REQ) and
communicates a confirmation which can be either SOK, SNOK, or SDNK. The confirmation
SOK means that the file has been transferred successfully, SNOK means that the file has not
been transferred completely, and SDNK means that the file may not have been transferred
completely. This occurs when the last datum dn is sent but not acknowledged.

Now, at the receiver side, the protocol delivers each correctly received datum with an
indication which can be RFST, RINC, ROK, or RNOK. The indication RFST means that the
delivered datum is the first one and more data will follow, RINC means that the datum is
an intermediate one, and ROK means that this was the last datum and the file is completed.
However, when the connection with the sender is broken, an indication RNOK is delivered
(without datum).

In Maude, the different status of sender and receiver, messages, sequences of messages,
and the labels of the transitions can be represented as follows:
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fmod DATA is

sorts Sender Receiver .

sort Label .

sorts Msg MsgL .

subsort Msg < MsgL .

ops 0s 1s 2s 3s 4s 5s 6s 7s : -> Sender [ctor] .

ops 0r 1r 2r 3r 4r : -> Receiver [ctor] .

ops none req snok sok sdnk rfst rnok rinc rok : -> Label [ctor] .

ops 0 1 fst last : -> Msg [ctor] .

op nil : -> MsgL [ctor] .

op _;_ : MsgL MsgL -> MsgL [ctor assoc id: nil] .

endfm

Properties that the service should satisfy include the following:

1. A request REQ must be followed by a confirmation (SOK, SNOK, or SDNK) before the
next request.

2. An RFST indication must be followed by one of the two indications ROK or RNOK before
the beginning of a new transmission (new request of a sender).

3. An SOK confirmation must be preceded by an ROK indication.
4. An RNOK indication must be preceded by an SNOK or SDNK confirmation (abortion).

The BRP is modelled in [1], after some simplifications to make the system untimed, as a
lossy channel system. Our following Maude specification is adapted from theirs. States of the
system are represented by terms of sort State constructed with a 7-tuple operator < ,..., >.
The first and the fifth components describe the current status of the sender and the receiver,
respectively. The second and the sixth are Boolean values used by the sender and the receiver
for synchronization purposes. The third and fourth components of the tuple correspond to
the two lossy channels through which the sender and the receiver communicate. The last
component keeps track of the name of the last transition used to reach the current state
(hence the name of the constants of sort Label: req, snok, sok, . . . ). We only make explicit
the name of these transitions for the cases we are interested in (namely, those required by the
properties); in the rest of the cases, none is used.

For a more detailed description of the protocol, we refer to [1]. In Maude, the protocol
can be specified as follows:

mod BRP is

protecting DATA .

op <_,_,_,_,_,_,_> : Sender Bool MsgL MsgL Receiver Bool Label -> State [ctor] .

op initial : -> State .

var S : Sender .

var R : Receiver .

var M : Msg .

vars K L KL : MsgL .

vars A RT : Bool .

var LA : Label .

eq initial = < 0s, false, nil, nil, 0r, false, none > .
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rl [REQ] : < 0s, A, nil, nil, R, false, LA > =>

< 1s, false, nil, nil, R, false, req > .

rl [K!fst] : < 1s, A, K, L, R, RT, LA > =>

< 2s, A, K ; fst, L, R, RT, none > .

rl [K!fst] : < 2s, A, K, L, R, RT, LA > =>

< 2s, A, K ; fst, L, R, RT, none > .

rl [L?fst] : < 2s, A, K, fst ; L, R, RT, LA > =>

< 3s, A, K, L, R, RT, none > .

crl [L?-fst] : < 2s, A, K, M ; L, R, RT, LA > =>

< 2s, A, K, L, R, RT, none > if M =/= fst .

rl [K!0] : < 3s, A, K, L, R, RT, LA > =>

< 4s, A, K ; 0, L, R, RT, none > .

rl [K!last] : < 3s, A, K, L, R, RT, LA > =>

< 7s, A, K ; last, L, R, RT, none > .

rl [K!0] : < 4s, A, K, L, R, RT, LA > =>

< 4s, A, K ; 0, L, R, RT, none > .

crl [L?-0] : < 4s, A, K, M ; L, R, RT, LA > =>

< 4s, A, K, L, R, RT, none > if M =/= 0 .

rl [L?0] : < 4s, A, K, 0 ; L, R, RT, LA > =>

< 5s, A, K, L, R, RT, none > .

rl [SNOK] : < 4s, A, K, nil, R, RT, LA > =>

< 0s, true, K, nil, R, RT, snok > .

rl [K!1] : < 5s, A, K, L, R, RT, LA > =>

< 6s, A, K ; 1, L, R, RT, none > .

rl [K!last] : < 5s, A, K, L, R, RT, LA > =>

< 7s, A, K ; last, L, R, RT, none > .

rl [K!1] : < 6s, A, K, L, R, RT, LA > =>

< 6s, A, K ; 1, L, R, RT, none > .

crl [L?-1] : < 6s, A, K, M ; L, R, RT, LA > =>

< 6s, A, K, L, R, RT, none > if M =/= 1 .

rl [SNOK] : < 6s, A, K, nil, R, RT, LA > =>

< 0s, true, K, nil, R, RT, snok > .

rl [K!last] : < 7s, A, K, L, R, RT, LA > =>

< 7s, A, K ; last, L, R, RT, none > .

crl [L?-last] : < 7s, A, K, M ; L, R, RT, LA > =>

< 7s, A, K, L, R, RT, none > if M =/= last .

rl [SOK] : < 7s, A, K, last ; L, R, RT, LA > =>

< 0s, A, K, L, R, RT, sok > .

rl [SDNK] : < 7s, A, K, nil, R, RT, LA > =>

< 0s, true, K, nil, R, RT, sdnk > .

rl [RFST] : < S, false, fst ; K, L, 0r, RT, LA > =>

< S, false, K, L ; fst, 1r, true, rfst > .

rl [K?fstL!fst] : < S, A, fst ; K, L, 1r, RT, LA > =>

< S, A, K, L ; fst, 1r, RT, none > .

rl [RNOK] : < S, true, nil, L, 1r, RT, LA > =>

< S, true, nil, L, 1r, false, rnok > .

rl [RINC] : < S, false, 0 ; K, L, 1r, RT, LA > =>

< S, false, K, L ; 0, 2r, RT, rinc > .

rl [ROK] : < S, false, last ; K, L, 1r, RT, LA > =>

< S, false, K, L ; last, 4r, RT, rok > .

rl [K?0L!0] : < S, A, 0 ; K, L, 2r, RT, LA > =>

< S, A, K, L ; 0, 2r, RT, none > .

rl [RINC] : < S, false, 1 ; K, L, 2r, RT, LA > =>

< S, false, K, L ; 1, 3r, true, rinc > .
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rl [RNOK] : < S, true, nil, L, 2r, RT, LA > =>

< S, true, nil, L, 0r, false, rnok > .

rl [ROK] : < S, false, last ; K, L, 2r, RT, LA > =>

< S, false, K, L ; last, 4r, RT, rok > .

rl [RINC] : < S, false, 0 ; K, L, 3r, RT, LA > =>

< S, false, K, L ; 0, 2r, RT, rinc > .

rl [K?1L!1] : < S, A, 1 ; K, L, 3r, RT, LA > =>

< S, A, K, L ; 1, 3r, RT, none > .

rl [ROK] : < S, false, last ; K, L, 3r, RT, LA > =>

< S, false, K, L ; last, 4r, RT, rok > .

rl [RNOK] : < S, true, nil, L, 3r, RT, LA > =>

< S, true, nil, L, 0r, false, rnok > .

rl [K?lastL!last] : < S, A, last ; K, L, 4r, RT, LA > =>

< S, A, K, L ; last, 4r, RT, none > .

rl [empty] : < S, A, last ; K, L, 4r, RT, LA > =>

< S, A, nil, L, 0r, false, none > .

endm

The properties that the system should satisfy impose requirements typically of the form
that certain transitions should happen before certain other transitions do. To formulate
requirements of this general form, we declare a parametric atomic proposition, tr(L), that
is true in those states resulting from the application of a transition labeled by L.

mod BRP-PREDS is

inc SATISFACTION .

inc BRP .

op tr : Label -> Prop [ctor] .

var S : Sender . var R : Receiver .

var M : Msg . vars K L : MsgL .

vars A RT : Bool . vars LA : Label .

eq (< S, A, K, L, R, RT, LA > |= tr(LA)) = true .

endm

The required four properties can then be expressed in Maude as follows:

1. [](tr(req) -> O (˜ tr(req) W (tr(sok) \/ tr(snok) \/ tr(sdnk))));
2. [](tr(rfst) -> (˜ tr(req) W (tr(rok) \/ tr(rnok))));
3. [](tr(req) -> (˜ tr(sok) W tr(rok)));
4. [](tr(req) -> (˜ tr(rnok) W (tr(snok) \/ tr(sdnk)))).

Note that both negations and implications appear in these formulas. Therefore, for Theorem 1
to apply, we must ensure that the abstraction we define is strict, i.e., that it preserves the atomic
propositions.

The system is infinite but one easily realizes, by running some small examples, that the
contents of the channels are always of the form m∗1m∗2, where m1, m2 range over {first,
last, 0, 1}. Therefore we can use the idea of merging adjacent equal messages, which can
be specified by means of the following two equations, to collapse the set of states to a finite
number.

eq < S, A, KL ; M ; M ; K, L, R, RT, LA > = < S, A, KL ; M ; K, L, R, RT, LA > .

eq < S, A, K, KL ; M ; M ; L, R, RT, LA > = < S, A, K, KL ; M ; L, R, RT, LA > .
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Note that we need not prove that the contents of the channels are actually of the form m∗1m∗2.
This is only used as an intuition to guide us in the choice of the abstraction equations, which
can still be used regardless of the validity of that claim (though they may not be very useful
if the claim is not really true).

It is immediate to check, since the abstraction equations do not affect the label of a state,
that only states satisfying the same atomic propositions are identified. We therefore meet
the requirements of Theorem 1. And since the equations apply to disjoint components of the
state and there is only a finite number of messages that can be removed, we also have the
Church-Rosser and termination properties.

What about the deadlock difficulty? By inspection of the lefthand sides of the rules in
BRP, it is easy to see that the equation

enabled(< S, A, KL ; M ; K, L, R, RT, LA >) = true

does not hold (consider the case in which S is equal to 0s) for the enabled operator as defined
in Section 6, so that the rule

rl < S, A, KL ; M ; K, L, R, RT, LA > => < S, A, KL ; M ; K, L, R, RT, LA > .

should be added; similarly for the second equation defining the abstraction. Notice that this
is not the best we can do. By direct inspection of the rules, it is easy to check that, except for
the case in which S is equal to 0s, all terms of those forms are enabled. Hence, instead of the
previous one, we only add the rules

rl [deadlock] : < 0s, A, KL ; M ; K, L, R, RT, LA > =>

< 0s, A, KL ; M ; K , L, R, RT, LA > .

rl [deadlock] : < 0s, A, K, KL ; M ; L, R, RT, LA > =>

< 0s, A, K, KL ; M ; L, R, RT, LA > .

Finally, the last proof obligation to check is that of coherence and this, too, happens to
fail. Consider for example the term

< 2s, true, nil, fst ; fst, 0r, true, none >

This term can be rewritten using the first of the [L?fst] rules to a term t of the form

< 3s, true, nil, fst, 0r, true, none >

However, if we had first reduced it using the equations we would have got

< 2s, true, nil, fst, 0r, true, none >

which can no longer be rewritten to t, or to any other term provably equal to it (an extra
message fst has been consumed following this way). To fix this problem, the following rule
must be added:

rl [L?fst’] : < 2s, A, K, fst ; L, R, RT, LA > =>

< 3s, A, K, fst ; L, R, RT, none > .

Note that this rule does not raise a new coherence problem.
The same situation occurs with all those other rules in which a message is removed from

one of the lists; the solution is the same in all cases, resulting in the addition of the following
rules:

35



crl [L?-fst’] : < 2s, A, K, M ; L, R, RT, LA > =>

< 2s, A, K, M ; L, R, RT, none > if M =/= fst .

crl [L?-0’] : < 4s, A, K, M ; L, R, RT, LA > =>

< 4s, A, K, M ; L, R, RT, none > if M =/= 0 .

rl [L?0’] : < 4s, A, K, 0 ; L, R, RT, LA > => < 5s, A, K, 0 ; L, R, RT, none > .

crl [L?-1] : < 6s, A, K, M ; L, R, RT, LA > => < 6s, A, K, M ; L, R, RT, none >

if M =/= 1 .

crl [L?-last] : < 7s, A, K, M ; L, R, RT, LA > =>

< 7s, A, K, M ; L, R, RT, none > if M =/= last .

rl [SOK] : < 7s, A, K, last ; L, R, RT, LA > => < 0s, A, K, last ; L, R, RT, sok > .

rl [RFST’] : < S, false, fst ; K, L, 0r, RT, LA > =>

< S, false, fst ; K, L ; fst, 1r, true, rfst > .

rl [K?fstL!fst’] : < S, A, fst ; K, L, 1r, RT, LA > =>

< S, A, fst ; K, L ; fst, 1r, RT, none > .

rl [RINC’] : < S, false, 0 ; K, L, 1r, RT, LA > =>

< S, false, 0 ; K, L ; 0, 2r, RT, rinc > .

rl [ROK’] : < S, false, last ; K, L, 1r, RT, LA > =>

< S, false, last ; K, L ; last, 4r, RT, rok > .

rl [K?0L!0’] : < S, A, 0 ; K, L, 2r, RT, LA > =>

< S, A, 0 ; K, L ; 0, 2r, RT, none > .

rl [RINC’] : < S, false, 1 ; K, L, 2r, RT, LA > =>

< S, false, 1 ; K, L ; 1, 3r, true, rinc > .

rl [ROK’] : < S, false, last ; K, L, 2r, RT, LA > =>

< S, false, last ; K, L ; last, 4r, RT, rok > .

rl [RINC’] : < S, false, 0 ; K, L, 3r, RT, LA > =>

< S, false, 0 ; K, L ; 0, 2r, RT, rinc > .

rl [K?1L!1’] : < S, A, 1 ; K, L, 3r, RT, LA > =>

< S, A, 1 ; K, L ; 1, 3r, RT, none > .

rl [ROK’] : < S, false, last ; K, L, 3r, RT, LA > =>

< S, false, last ; K, L ; last, 4r, RT, rok > .

rl [K?lastL!last’] : < S, A, last ; K, L, 4r, RT, LA > =>

< S, A, last ; K, L ; last, 4r, RT, none > .

We then get our desired executable abstraction module ABSTRACT-BRP-CHECK by import-
ing BRP-CHECK and including the abstraction equations, the two [deadlock] rules, and the
above rules.

We can then model check the abstract system specified in ABSTRACT-BRP-CHECK and verify
that all the properties hold in it. Since all of our proof obligations are fulfilled, we can soundly
infer that they hold in the concrete system, too.

Maude> red modelCheck(initial, [](tr(req) ->

O (˜ tr(req) W (tr(sok) \/ tr(snok) \/ tr(sdnk))))) .

result Bool: true

Maude> red modelCheck(initial, [](tr(rfst) -> (˜ tr(req) W (tr(rok) \/ tr(rnok))))) .

result Bool: true

Maude> red modelCheck(initial, [](tr(req) -> (˜ tr(sok) W tr(rok)))) .

result Bool: true

Maude> red modelCheck(initial, tr(req) -> (˜ tr(rnok) W (tr(snok) \/ tr(sdnk)))) .

result Bool: true
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