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Covariant-contravariant simulation and conformance simulation generalize plain simulation and try
to capture the fact that it is not always the case that ”the larger the number of behaviors, the better”.
We have previously studied their logical characterizations and in this paper we present the axiomati-
zations of the preorders defined by the new simulation relations and their induced equivalences. The
interest of our results lies in the fact that the axiomatizations help us to know the new simulations
better, understanding in particular the role of the contravariant characteristics and their interplay with
the covariant ones; moreover, the axiomatizations provideus with a powerful tool to (algebraically)
prove results of the corresponding semantics. But we also consider our results interesting from a
metatheoretical point of view: the fact that the covariant-contravariant simulation equivalence is in-
deed ground axiomatizable when there is no action that exhibits both a covariant and a contravariant
behaviour, but becomes non-axiomatizable whenever we havetogether actions of that kind and either
covariant or contravariant actions, offers us a new subtle example of the narrow border separating ax-
iomatizable and non-axiomatizable semantics. We expect that by studying these examples we will
be able to develop a general theory separating axiomatizable and non-axiomatizable semantics.

1 Introduction and some related work

Simulations are a very natural way to compare systems definedby labeled transition systems or other
related mechanisms based on describing the behavior of states by means of the actions they can execute
[20]. They aim at comparing processes based on the simple premise “you are better if you can do as
much as me, and perhaps some other new things”. This assumes that all the executable actions are
controlled by the user (no difference between input and output actions) and does not take into account
that whenever the system has several possibilities for the execution of an action it will choose in an
unpredictable internal way, so that more possibilities means less control.

In order to cope with these limitations one should consider adequate versions of simulation where
the characteristics of actions and the idea of preferring processes that are less non-deterministic are
taken into account. This leads to two new notions of simulation: covariant-contravariant simulation
and conformance simulation that we roughly sketched in [11]and presented in detail in [13], where we
proved that they can be presented as particular instances ofthe general notion of categorical simulation
developed by Hughes and Jacobs [15].

Certainly, the distinction between input and output actions or similar classifications is not meant to
be new at all and, for instance, they were present in modal transition systems as early as the end of the
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eighties. They also play a central role in I/O-automata [19]and more recently appear as component of
several works on interface automata [8, 16], where one finds the covariant-contravariant distinction when
the guarantees of the specification can only be assumed if theconditions of the specification are satisfied.
Also, supervisory control theory [22] distinguishes (covariant) controllable and (bivariant) uncontrollable
actions.

Concerning conformance simulation, the first related references are also quite old [18, 23], corre-
sponding to the notion of conformance testing, which is close to failure semantics [5]. However, it is a
bit surprising that in both cases we lack a basic theory wherethese notions are presented in a simplified
scenario, stressing their main characteristics and properties. We think that the theory of semantics for
processes, and particularly the simulation semantics, is aperfect field in which to develop that basic
theory. This has been already proved in [13], where our new simulation semantics were shown to be
categorical simulations, thus inheriting all their good properties for free.

In [12] we have also briefly presented the logical characterizations of the two semantics. Now that we
already know quite well the behaviour of the two new notions of simulation we can give their algebraic
presentation. By the way, although in our previous works on the unified study of process semantics the
(classical) covariant character of all the actions had several important consequences, mainly represented
by the extremely simple and easy to apply basic axiom for simulation (S) x⊑ x+y (or equivalently, just
0 ⊑ y), we have been able to borrow from [10, 1, 9] several ideas about the axiomatization of process
semantics that, although not directly applicable due to thespecial characteristics of the new semantics,
can be adequately adapted.

However, not all of the simple and nice results for the algebraic theory of plain (covariant) simulation
can be extended to the general covariant-contravariant case. In particular, in order to obtain the maximal
genericity, when we defined covariant-contravariant simulations in [13] we admitted not only both co-
variant and contravariant actions, but also other actions with a bivariant nature. This decision was taken
because when presenting a general theory of categorical simulations in [15], J. Hughes and B. Jacobs
already noticed that bisimulation was a particular (in fact, trivial) example of simulation semantics. It
was also clear that inverse simulation (namely, contravariant simulation) was also another example, and
then we were able to prove that our general covariant-contravariant simulation was another categorical
simulation that smoothly combines bisimulation, plain (covariant) simulation and inverse (contravariant)
simulation.

Obviously, plain bisimulation has a simple axiomatization, as is the case for plain simulation; we will
see in this paper that the preorder defined by our covariant-contravariant simulation can also be finitely
axiomatized. When we considered the induced equivalence, we found indeed a finite axiomatization for
the case in which there are no bivariant actions (actions that can be considered as both input and output) in
our alphabet. The axiomatization and its completeness proof were obtained by adapting the general tech-
niques in [9, 10] for the covariant case to our more general covariant-contravariant scenario. However, as
soon as a single bivariant action is introduced, and at leastone non-bivariant one is also present, then the
equational theory of covariant-contravariant simulationequivalence becomes non-finitely axiomatizable,
and in fact the proof of this result is extraordinarily simple.

Even if this is a negative result, we think that it will contribute to enlight the narrow border separating
axiomatizable and non-axiomatizable process theories, which we expect to continue exploring in the
future.

There is a large collection of recent papers where notions close to those studied here are either
developed or applied; a detailed comparison will appear elsewhere. However, we insist on the fact that
we were not able to find a basic study where the main results on process theory had been extended to a
framework containing any contravariant characteristics,although it is true that some small contributions
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along this direction can be found in some of these papers. We plan to develop a thorough compilation
of the works on this topic by isolating the places where our foundational study could help to understand
the different developments, as well as looking for applications and new enhancements to our theory that
could be of use to relate all the disconnected work on the area. In turn, we hope that this will also provide
us with some intuition to understand those results and produce new formal techniques to obtain proofs
of those, or other interesting results in the area. So, simply to give a hint, a sample of those works would
include [2, 4, 17, 21].

2 Preliminaries

In this section we summarize some definitions and concepts from [7, 13] and introduce the notation we
are going to use. Let us recall our two new simulation notions:

Definition 1 Given P= (P,A,→P) and Q= (Q,A,→Q), two labeled transition systems (LTS) for the
alphabet A, and{Ar ,Al ,Abi} a partition of this alphabet, a(Ar ,Al )-simulation (or just a covariant-
contravariant simulation) between them is a relation S⊆ P×Q such that for every pSq we have:

• For all a ∈ Ar ∪Abi and all p
a

−→ p′ there exists q
a

−→ q′ with p′Sq′.

• For all a ∈ Al ∪Abi, and all q
a

−→ q′ there exists p
a

−→ p′ with p′Sq′.

We will write p.CC q if there exists a covariant-contravariant simulation S such that pSq.

This definition combines the requirements of plain simulation, for some of the actions, with those of
plain “anti-simulation”, for some of the remaining actions, imposing both on so-called bivariant actions.

Definition 2 Given P= (P,A,→P) and Q= (Q,A,→Q) two labeled transition systems for the alphabet
A, aconformance simulation between them is a relation R⊆ P×Q such that whenever pRq, then:

• For all a ∈ A, if p
a

−→, then q
a

−→ (this means, using the usual notation for process algebras,that
I(p) ⊆ I(q)).

• For all a ∈ A such that q
a

−→ q′ and p
a

−→, there exists some p′ with p
a

−→ p′ and p′Rq′.

We will write p.CSq if there exists a conformance simulation R such that pRq.

The first clause of the definition guarantees thatQ has at least all the behaviors ofP, allowing to “im-
prove” a process by extending the set of actions it offers, whereas the second clause establishes that a
process can be “improved” by reducing the nondeterminism init.

Let us recall that the setBCCSP(A)of basic processes for the alphabetA is defined by theBNF-
grammar

p ::= 0 | ap | p+ p

wherea∈ A. The operational semantics for BCCSP terms is defined by

ap
a

−→ p p
a

−→ p′

p+q
a

−→ p′
q

a
−→ q′

p+q
a

−→ q′

With these operators we can only define finite processes; however, it is well known that these operators
capture the essence of any transition system, which can be defined by a system of equations specifying
the behavior of each state. (The axioms for recursive processes, other interesting extensions including
the communication operators, and possibly some others, areleft for future work.)
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3 Axiomatization of the new simulation preorders

In this section we present a finite axiomatization of the two preorders for basic finite processes induced
by our new kinds of simulation.

3.1 Covariant-contravariant semantics

We consider a partition{Ar ,Al ,Abi} of the alphabetA, with actions that have either a covariant nature,
or contravariant, or both at the same time. Contravariant simulation .−1

S is just the inverse of plain
simulation and therefore can be trivially axiomatized by inverting the axiom for plain simulation

(S) x⊑ x+y,

thus obtaining

(S−1) x+y⊑ x.

In order to produce an axiomatization of covariant-contravariant simulation we need to combine in
an adequate way these two axioms, by constraining each of them to the case in which the added process
y only offers actions with the corresponding covariant or contravariant character. Hence we obtain:

(Sr) I(y) ⊆ Ar =⇒ x⊑ x+y.

(S−1,l) I(y) ⊆ Al =⇒ x+y⊑ x.

We can omit the conditions in these two axioms by consideringtwo generic actionsar ∈ Ar andal ∈ Al :

(Sr
p) x⊑ x+ary.

(Sl
p) x+al y⊑ x.

Note that actions inAbi do not appear in the axioms above, although they could be included in the
processes instantiating the variablesx andy. This is an immediate consequence of the fact that their
behavior corresponds to that governed by bisimulation, so that we need not add any new axiom to those
capturing the bisimilarity relation:

(B1) x+y = y+x.

(B2) (x+y)+z= x+(y+z).

(B3) x+x = x.

(B4) x+0 = x.

We will use these axioms implicitly in the remainder of this paper.

Proposition 1 The (Ar ,Al )-simulation preorder can be axiomatically defined by means of the set of
axioms{B1,B2,B3,B4,S

r
p,S

l
p}.

Proof. First we prove that the axioms(Sr
p) and(Sl

p) are sound for the(Ar ,Al )-similarity relation.CC.
Indeed:

• For all a∈ Ar ∪Abi, if x
a

−→ x′ thenx+ary
a

−→ x′ andx′ .CC x′.

• For alla∈ Al ∪Abi, if x+ary
a

−→ x′, thenx
a

−→ x′ andx′ .CC x′. Note thata 6= ar sinceAr ∩ (Al ∪
Abi) = /0.

• For all a∈ Ar ∪Abi, if x+al y
a

−→ x′ thenx
a

−→ x′ andx′ .CC x′ as above, becausea 6= al again.
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• For all a∈ Al ∪Abi, if x
a

−→ x′, thenx+al y
a

−→ x′ andx′ .CC x′.

To prove completeness we considerp .CC q and reason by structural induction onp.

• If p is 0 thenI(q) ⊆ Ar , sincep cannot simulate any action inAl ∪Abi. Thenq = ∑arqr and we
can apply(Sr

p) to each summand in turn to get 0⊑ q.

• Let us considerp= (∑ar pr +∑al pl +∑abpb), distinguishing the summands ofp which start with
actions in eitherAr , Al or Abi. We decomposeq in the same way to obtainq = (∑brqr + ∑bl ql +

∑bbqb). Then:

– For everyar there existsbr , with ar = br , such thatpr .CC qr and, by induction hypothesis,
pr ⊑ qr . Then∑ar pr ⊑ ∑brqr . It could be the case that some summands of∑brqr are never
used to simulate any of the transitions ofp, but then we can add all those summand by using
(Sr

p), to derive∑ar pr ⊑ ∑brqr .

– For the summands∑al pl and∑bl ql we can argue in exactly the same way, but starting with
the righhand side and using(Sl

p) instead of(Sr
p), to conclude now∑al pl ⊑ ∑bl ql .

– Finally, using standard arguments for bisimulation, we canestablish a full correspondence
between the summands∑abpb and∑bbqb, havingab = bb andpb .CC qb, and by induction
hypothesis we prove∑abpb ⊑ ∑bbqb, thus concluding the proof.2

3.2 Conformance semantics

Conformance simulation combines in a curious manner the features of both ordinary (covariant) and
inverse (contravariant) simulation: the addition of new capabilities is always considered beneficial but,
when an action is already offered, new ways to execute it are avoided since this leads to a more non-
deterministic process.

To capture the first situation we need a variant of the axiom(S) characterizing ordinary simulation:

(SCS) I(p)∩ I(q) = /0 =⇒ p⊑ p+q.

For the latter, we instantiate the axiom(S−1) obtaining

(S−1
CS) I(q) ⊆ I(p) =⇒ p+q⊑ p,

which can be equivalently stated as

(S−1
CS,p) ap+aq⊑ ap.

There is, however, an important drawback: conformance simulation is not a precongruence because
it is not always preserved by+. Indeed, 0.CS ab andac.CS ac, but notac.CS ab+ ac. Fortunately,
to obtain a satisfactory algebraic treatment of the conformance order it is enough to consider the weak-
est precongruence contained in it, as is done for weak bisimulation and the corresponding observation
congruence. Let us simply replace the axiom(SCS) by its guarded version

(SCS,g) I(p)∩ I(q) = /0 =⇒ ap⊑ a(p+q).

Definition 3 We define the conformance precongruence relation p.
p
CSq by

p .
p
CSq ⇐⇒ (p .CSq and I(p) ⊇ I(q)).
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Note that the conditionI(p) ⊇ I(q) is not imposed recursively but just on the initial states of the
processes, which corresponds to the fact that the (once) guarded axiom(SCS,g) becomes sound for the
classical substitution calculus, in order to characterizethe conformance precongruence.

p
CS.

Proposition 2 If the set of actions A is infinite, then the precongruence relation .
p
CS is the coarsest

precongruence contained in.CS.

Proof. Obviously, we have.p
CS⊆ .CS. If there were a larger precongruence, there would existp and

q with p .CS q but I(q) 6⊆ I(p): then, takinga∈ I(q) \ I(p) andb∈ A such thatq
a·b
6−→ we would have

ab+ p 6.CSab+q (sinceab 6.CSq).
Finally, both the prefix operator and+ preserve.p

CS:

• If p .
p
CS q, thenap.

p
CS aq sinceI(ap) = I(aq) = {a}, and foraq

a
−→ q we haveap

a
−→ p with

p .
p
CSq.

• If p .
p
CS q, thenap+ r .

p
CS aq+ r sinceI(ap+ r) = I(aq+ r) = I(r)∪{a}, and foraq+ r

a
−→ q

we haveap+ r
a

−→ p with p .
p
CS q and, wheneveraq+ r

b
−→ r ′ with r

b
−→ r ′, we trivially have

ap+ r
b

−→ r ′. 2

Proposition 3 The set of axiomsACS = {B1,B2,B3,B4,SCS,g,S
−1
CS,p} is complete for the conformance

precongruence relation.p
CS.

Proof. We show by induction on the depth ofp that, wheneverp .
p
CS q (resp. bp.

p
CS bq), we have

ACS⊢ p⊑ q (resp.ACS⊢ bp⊑ bq).

• If 0 .
p
CS q, then alsoq = 0 and 0⊑ 0 using(S−1

CS,p).

• If b0 .
p
CSbq, then we can apply(SCS,g) with p = 0.

Let us now considerp = ∑ai∈I(p) ai pi j andq = ∑ai∈I(q) aiqik.

• If p .
p
CS q then I(p) = I(q) and p .CS q, so for eachqik there is somepi j with pi j .CS qik and

therefore we can apply the second induction hypothesis to conclude thatai pi j ⊑ aiqik. It is possible
that some summandspi j will be paired with noqik in the step above, but then we can apply the
axiom(S−1

CS,p) to them to conclude the proof.

• Assume thatbp .
p
CS bq. If I(p) = I(q) then we also havep .

p
CS q and this corresponds to the

situation above. However, in this case we could haveI(p) ( I(q); then q = q′ + r, with r the
summands∑ai∈I(q)\I(p) aiqik, I(p) = I(q′), andp .

p
CS q′ and hencep⊑ q′. Now, we conclude the

proof by applying the axiom(SCS,g) to q′ andr. 2

4 Axiomatization of the new simulation equivalences

Next we discuss the axiomatizability of the equivalences induced by covariant-contravariant and confor-
mance simulations, obtaining a finite axiomatization for the latter, and also for the first, but only when
the setAbi of bivariant actions is empty. Instead, we also present the impossibility result proving that
covariant-contravariant simulation is not axiomatizableif we haveAbi 6= /0 andAr ∪Al 6= /0.
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4.1 Covariant-contravariant simulation

Let us first consider the case in whichAbi = /0. In order to axiomatize the equivalence≡r,l
CC induced by

(Ar ,Al)-simulation we apply the general procedure introduced in [10, 1, 9], based on the characterization

p≡S p+q⇐⇒ q .S p .

Thus we obtain:

(S1
r,l
≡ ) ar(x+bry) = ar(x+bry)+arx.

(S2
r,l
≡ ) arx = arx+ar(x+bl y).

Obviously, the characterization above becomes unsound when contravariant prefixes appear because the
pure contravariant simulation satisfies

q≡−1
S p+q⇐⇒ q .−1

S p .

Therefore, we must reverse the inequalities above to obtainthe adequate axioms for contravariant pre-
fixes:

(S3
r,l
≡ ) al x = al x+al (x+bry).

(S4
r,l
≡ ) al (x+bl y) = al (x+bl y)+al x.

Now we would expect the set of axiomsA
≡

CC = {B1,B2,B3,B4,S1
r,l
≡ ,S2

r,l
≡ ,S3

r,l
≡ , S4

r,l
≡} to axiomatize

(Ar ,Al)-simulation equivalence. Certainly, all the axioms in thisset are sound; in order to prove com-
pleteness in the absence of actionsAbi, we start by stating the following lemma that gives us two useful
derived axioms.

Lemma 1 The following equalities are derivable:

{S1
r,l
≡ ,S2

r,l
≡} ⊢ ar(x+ pr) = ar(x+ pr)+ar(x+ pl ) (DS1

r,l
≡ )

{S3
r,l
≡ ,S4

r,l
≡} ⊢ al (x+ pl ) = al (x+ pl )+al (x+ pr) (DS2

r,l
≡ )

where pr (resp. pl ) denotes any process prefixed by actions in Ar (resp. Al ); more formally, pr = ∑i∈I ai
r pi

(resp. pl = ∑ j∈J a j
l p j ).

Proof. We only show the case of(DS1
r,l
≡ ). We start by proving thatar(x+ pr) = ar(x+ pr)+ arx by

induction over the size|I | of I .

• If |I | = 0, the result is trivial.

• If |I | = 1, we immediately obtain the result by applying the axiom(S1
r,l
≡ ).

• For |I | > 1, we takeI = I ′∪{i} with |I ′| = |I |−1. Note thatar(x+ pr ) = ar((x+ p′r )+ ai
r pi) so

that, applying axiom(S1
r,l
≡ ), we obtain

ar(x+ pr) = ar((x+ p′r)+ai
r pi)+ar(x+ p′r) = ar(x+ pr)+ar(x+ p′r).

Using the induction hypothesis with the termar(x+ p′r) leads to

ar(x+ pr) = ar(x+ pr)+ar(x+ p′r)+arx,

and, reusing the equalityar(x+ pr)+ar(x+ p′r) = ar(x+ pr) above, we obtain

ar(x+ pr) = ar(x+ pr)+arx (1)

as desired.
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Now, we can analogously prove the equality

arx = arx+ar(x+ pl ). (2)

Replacingarx in equation 1 by the righthand side of equation 2 produces

ar(x+ pr) = ar(x+ pr)+arx+ar(x+ pl )

and, applying equation 1 again, we finally obtain(DS1
r,l
≡ ):

ar(x+ pr) = ar(x+ pr)+ar(x+ pl ).

2

For the main proof we have to adapt the classic technique for the completeness of the axiomatization
of the plain simulation semantics (p .S q implies AS ⊢ q = p+ q), taking into account the difference
between covariant and contravariant actions. For technical reasons we need to consider a “free” arbitrary
term r.

Proposition 4 If p .CC q then, for all processes r:

A
≡

CC ⊢ ar(q+ r) = ar(q+ r)+ar(p+ r)

and
A

≡
CC ⊢ al (p+ r) = al (p+ r)+al(q+ r).

Proof. We proceed by induction on the depth ofp. We start by decomposing bothp andq as follows:
p = pr + pl , q = qr + ql , wherepr = ∑i∈Ipr

ai
r pi , pl = ∑i∈Ipl

ai
l pi , qr = ∑i∈Iqr

ai
rqi andql = ∑i∈Iql

ai
l qi .

Then, it is clear that the depths of bothpr and pl are less or equal than the depth ofp and besides we
havep .CC q⇐⇒ pr .CC qr ∧ pl .CC ql .

Next, let us considerpr .CC qr : this is an instance of the hypothesis of the statement to prove, which
corresponds to the particular case in whichI(p)∪ I(q) ⊆ Ar . Then, we need to prove both

A
≡

CC ⊢ ar(q+ r) = ar(q+ r)+ar(p+ r)

and
A

≡
CC ⊢ al (p+ r) = al (p+ r)+al(q+ r).

Let us consider in detail the second statement.

• If p= 0, it follows thatA ≡
CC ⊢ al r = al r +al (q+ r) by an application of the equation(DS2

r,l
≡ ), with

pl = 0, x = r, andpr = q.

• If p = ∑i∈I ai
r p′i andq = ∑i∈J ai

r p′i , from p .CC q it follows, without loss of generality, thatI ⊆
J = I ∪ J′ and then we takeJ = I ∪ J′ with J′ chosen such thatJ′ ∩ I = /0, with p′i .CC q′i for all
i ∈ I . Now, by induction hypothesis,A ≡

CC ⊢ ai
rq

′
i = ai

rq
′
i +ai

r p′i . Next we obtainA ≡
CC ⊢ ∑i∈I ai

rq
′
i =

∑i∈I ai
rq

′
i + p and hence, by adding∑i∈J′ a

i
rq

′
i to both sides,A ≡

CC ⊢ q = q+ p, by congruence, we
haveA

≡
CC ⊢ q+ r = q+ p+ r. Now, by applying(DS2

r,l
≡ ) with x = p+ r, pl = 0, andpr = q, we

obtainA
≡

CC ⊢ al (p+ r) = al (p+ r)+ al (p+ r + q) which, combined with the previous equation,
finally leads toA ≡

CC ⊢ al (p+ r) = al (p+ r)+al(q+ r).
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The first statement above is proved in a similar way, and the ones arising frompl . ql can be dealt
with analogously.

To conclude, we consider the general casep .CC q. By applying the results obtained above, starting
from bothpr .CC qr andpl .CC ql , we have

A
≡

CC ⊢ ar(qr + r) = ar(qr + r)+ar(pr + r)

and
A

≡
CC ⊢ ar(ql + r) = ar(ql + r)+ar(pl + r).

In particular, makingr equal toql + r ′ in the first equality:

A
≡

CC ⊢ ar(qr +ql + r ′) = ar(qr +ql + r ′)+ar(pr +ql + r ′).

(It is at this point that the “free” variabler in the statement is needed, so as to be able to proceed by
instantiating it in a suitable manner). Now, instantiatingr with pr + r ′ in the second derived equation:

A
≡

CC ⊢ ar(pr +ql + r ′) = ar(pr +ql + r ′)+ar(pr + pl + r ′).

If we now combine the last two equations we can obtain

A
≡

CC ⊢ ar(qr +ql + r ′) = ar(qr +ql + r ′)+ar(pr + pl + r ′),

and, sincer ′ is arbitrary, we finally get

A
≡

CC ⊢ ar(q+ r) = ar(q+ r)+ar(p+ r).

We can proceed in a similar way foral , thus obtaining

A
≡

CC ⊢ al (p+ r) = al (p+ r)+al(q+ r).

And this concludes the proof.2

The main theorem is now at hand.

Theorem 1 Whenever A= Ar ∪Al , the set of axiomsA ≡
CC = {B1,B2,B3,B4,S1

r,l
≡ ,S2

r,l
≡ ,S3

r,l
≡ , S4

r,l
≡} is

complete for(Ar ,Al )-simulation equivalence.

Proof. Let p≡CC q: we need to proveA ≡
CC ⊢ p = q. The proof will follow by induction on the depth of

p.

• If p = 0 we obviously haveq = 0.

• Let p = ∑i∈I ai
r pi

r + ∑ j∈J a j
l p j

l andq = ∑i∈I ′ a
i
rq

i
r + ∑ j∈J′ a

j
l q

j
l . Then,

– for eachi ∈ I , there exists somei′ ∈ I ′ with ai
r = ai′

r andpi
r .CC qi′

r , and

– for eachi′ ∈ I ′ there exists somei′′ ∈ I with ai′
r = ai′′

r andqi′
r .CC pi′′

r .

Obviously, it could be the case thati 6= i′′. Then, we could repeat the same argument withi1 = i′′,
and with i2 = i′′1, . . . , to obtain a sequence(i, i1, i2, . . .). Since|I | < ∞, eventually we will find
im = in and, hence,

– for eachi ∈ I we obtaini′ ∈ I ′ andi′′ ∈ I such thatai
r = ai′

r = ai′′
r , pi

r .CC qi′
r andpi′′

r ≡CC qi′
r .
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Of course, we can repeat the same reasoning starting withi′ ∈ I ′ as well as for the contravariant
summands in a dual way, to obtain the following decompositions:

p = ∑
i∈I

ai
r pi

r + ∑
k∈K

ak
r pk

r + ∑
k′∈K′

ak′
l pk′

l + ∑
m∈M

am
l pm

l

and,
q = ∑

i′∈I ′
ai′

r qi′
r + ∑

k∈K

ak
r q

k
r + ∑

k′∈K′

ak′
l qk′

l + ∑
m′∈M′

am′

l qm′

l

where:

– for all i ∈ I , there existsk∈ K such thatai
r = ak

r andpi
r .CC pk

r ; and

– for all m∈ M, there existsk′ ∈ K′ such thatam
l = ak′

l andpk′
l .CC pm

l ; and

– for all i′ ∈ I ′, there existsk∈ K such thatai′
r = ak

r andqi′
r .CC qk

r ; and

– for all m′ ∈ M′, there existsk′ ∈ K′ such thatam′

l = ak′
l andqk′

l .CC qm
l ; and

– for all k∈ K, pk
r ≡CC qk

r ; and

– for all k′ ∈ K′, pk′
l ≡CC qk′

l .

Then we can apply the induction hypothesis to any pair(pk
r ,q

k
r ) and also to any pair(pk′

l ,qk′
l ). To

conclude the proof we only need to apply Proposition 4, taking r = 0, to any such pairs(pi
r , pk

r )
and(pk′

l , pm
l ), and analogously for the components ofq. 2

The addition of bivariant actions (assuming that there are already other actions present) changes the
picture completely. Now, it is no longer possible to axiomatize the equivalence.

Theorem 2 If Abi 6= /0 and Ar ∪Al 6= /0, then(Ar ,Al)-simulation equivalence is not finitely axiomatizable.

Proof. Let us takeabi ∈ Abi and, without loss of generality,ar ∈ Ar . We consider the two families of
processes

pn = ara
n
biar0 and qn = ara

n
biar0+ara

n
bi0,

where, as usual, we denote byan
bi (with n ≥ 0) the repeated application of the prefix operatorabi (n

times).
It is easy to check thatpn ≡CC qn. On the one hand,pn .CC qn trivially; on the other hand, checking

thatqn .CC pn simply amounts to checking that 0.CC ar . (However, note that takingp−n = an
biar0 and

q−n = an
biar0+an

bi0 does not lead top−n ≡CC q−n ; indeed,p−n 6.CC q−n because if we start with the firstabi

from the second summand ofq−n thenan−1
bi ar0 6.CC an−1

bi 0.) Now, for any finite axiomatizationA , let n
be bigger than the depth of any term appearing inA ; we are going to show that ifA is sound for≡CC

then we cannot haveA ⊢ pn = qn.
We will show that if we start withpn and obtain a sequence of equivalent termspn = p1

n = p2
n = . . .,

where each term is obtained from the previous one by an application of a single axiom inA , then no
p j

n can beqn. If we apply an axiom topn in a position different from its root, then we are transforming
a subprocessp′ = am

biar0, with m≤ n, into some equivalent processq≡CC p′. If we defineq ↓ m as the
process obtained by “pruning”q at depthm, the result will be bisimilar toam

bi0, sinceq cannot execute
any other action until it executes the prefixabi m times and, moreover, it cannot stop in the meantime. In a
similar way, fromq≡CC p′ we also infer thatq↓ (m+1)∼ p′ ↓ (m+1) and then the obtainedp1

n satisfies
p1

n ↓ (n+2) ∼ pn. The same argument can be applied starting from anyp j
n such thatp j

n ↓ (n+2) ∼ pn,
so that this invariant is preserved as long as there is no application of an axiom inA at the root of any
p j

n.
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Therefore, the only possible way to break this invariant, that obviously is not satisfied byqn, is
to apply an axiom fromA at the root of somep j

n. In that case, the lefthand side of such an axiom
would match several prefixes of the processaram

bi0 and then, following [14], it is easy to see that the
corresponding axiom has to be correct under bisimulation, too. As a consequence, the processp j

n+1

resulting after the application of the axiom also satisfiesp j
n+1 ↓ (n+ 2) ∼ pn. Therefore by repeated

application of the axioms inA we will never reach a term such asqn, thus concludingA 0 pn = qn. 2

Note that the proof would remain valid even if we allowed conditional axioms whose conditions only
observed the process locally, since the key fact in the proofabove is that in order to generate the choice
at qn we need to “see from the top” that the two branches below, evenif different from each other, can
be joined to obtain a process equivalent topn. But the branches cannot be joined bottom up, in a step
by step fashion, sincep−n 6≡CC q−n . Therefore, a conditional axiomatization whose conditions observe the
processes locally would suffer the same problems as a purelyequational one.

Interestingly, the infinite collection of equations that appear in our proof of Theorem 2 has also been
used in [3] to support a conjecture that partial bisimulation equivalence (a particular case of covariant-
contravariant simulation equivalence) is not finitely axiomatisable either.

4.2 Conformance simulation

As before, we start by applying to the axioms characterizing.
p
CS the general procedure presented in

[10, 1, 9]. In this case we obtain the following two axioms:

(SCS
≡ ) I(p)∩ I(q) = /0 =⇒ ap= ap+a(p+q).

(S−1,CS
≡ ) I(q) ⊆ I(p) =⇒ a(p+q) = a(p+q)+ap.

Note that we have used the contravariant version of the procedure because once we compare two
processes offering the same set of actions the behavior of.

p
CS is contravariant since we have

ap&
p
CS ap+aq.

Therefore, we cannot apply the general results in [10, 9] to prove the completeness of the proposed
axiomatization. However, a beautiful variant of the classical proof for plain simulation will do the job.

Theorem 3 The set of axiomsA ≡
CS= {B1,B2,B3,B4,S

CS
≡ ,S

−1,CS
≡ } is a complete axiomatization for the

simulation equivalence≡CS.

Proof. First note thatp≡CS q implies I(p) = I(q) andp≡p
CS q, and therefore we can use either≡CS or

≡p
CS, indistinctly. It is also routine to check the correctness of the axioms for≡CS. To prove completeness,

we show thatp .
p
CS q impliesA

≡
CS⊢ p = p+ q. Obviously, then we are done becausep≡CSq implies

p .
p
CSq andq .

p
CS p.

We proceed by induction on the depth ofp:

• p = 0 impliesq = 0 trivially.

• Let p.
p
CSq with p

a
−→. Then we also haveq

a
−→ and for allq′ with q

a
−→ q′ there existsp

a
−→ p′

such thatp′ .CS q′. Note that we cannot concludep′ .p
CS q′ since it is possible thatI(p′) I(q′),

but then we can writeq′ = q′′+ r with I(q′′) = I(p′) andI(r)∩ I(q′′) = /0. It is clear thatp′ .p
CSq′′,

so that by induction hypothesis we obtainA
≡

CS⊢ p′ = p′ +q′′. Then, we haveA ≡
CS⊢ ap′ = a(p′ +

q′′) and applying(S−1,CS
≡ ), A

≡
CS⊢ ap′ = a(p′ +q′′)+aq′′, and thenA ≡

CS⊢ ap′ = ap′ +aq′′. Now,
by applying(S,CS

≡ ) we haveA ≡
CS⊢ aq′′ = aq′′ +a(q′′ + r), to conclude thatA ≡

CS⊢ ap′ = ap′ +aq′

and thereforeA ≡
CS⊢ p = p+q. 2
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Note that(S−1,CS
≡ ) is the axiom characterizing the ready simulation equivalence, from which we

conclude that≡RS⊆ ≡CS. Obviously, the reverse inclusion is false since(SCS
≡ ) is not sound for≡RS.

For instance,ab=CS ab+ a(b+ c), but a(b+ c) 6.RSab. In fact, we also havea(b+ c) 6.S ab, proving
that≡CS* ≡S. In order to obtain≡RS from ≡CS we should strengthen the definition of the latter by
considering ready conformance simulations defined as plainconformance simulations, but only allowing
pairs of processes satisfyingI(p) = I(q). If we denote by.RCS the generated preorder we have the
following result.

Proposition 5 .RCS= .−1
RS, and therefore≡RCS= ≡RSand.−1

RS ⊆ .CS.

Since (S−1,CS
≡ ) is the axiom that defines ready simulation equivalence, it can be presented in an

equivalent way avoiding the condition and thus obtaining a pure algebraic axiom. However, it is not
clear whether axiom(SCS

≡ ) allows such a finite pure algebraic presentation, and in factthe same happens
with the axiom(SCS) in the axiomatization of the conformance preorder. Hence, it could be the case that
both the conformance preorder and the induced equivalence are not finitely axiomatizable using pure
equational axioms, as is the case for ready trace semantics.

5 Conclusions

We have continued with the study of covariant-contravariant simulation and conformance simulation
semantics started in [13, 12] by considering the axiomatization of the preorders and equivalences that
they define.

We have showed that the desired axiomatizations can be obtained from that of the plain simula-
tion preorder, whose completeness proof can be adapted in a simple, but elegant manner to obtain the
completeness of the new axiomatizations. Also, by applyinga suitable variation of our “ready to pre-
order” techniques [10] we have obtained the axiomatizations of the corresponding conformance sim-
ulation equivalence. Surprisingly, we also succeeded in axiomatizating the equivalence for covariant-
contravariant simulations but only in the particular case whereAbi = /0; otherwise, we proved that the
covariant-contravariant simulation equivalence has turned out to be the second known example of a se-
mantics whose defining preorder can be finitely axiomatized,but the induced equivalence cannot. The
first example of such a borderline situation can be found in [6]. It is curious to notice that although the
two semantics are completely different (the semantics hereis quite simple since it is a plain semantics,
while the one in [6] is much more complicated), and in our caseit is clear that the difficulties stem from
the interference between bivariant and monovariant actions, the structure of the considered “counterex-
amples” in both cases is essentially the same: there is a choice betweeen two quite long branches which
can be can joined into a single one, but this should be done in asingle step because the choice cannot
be delayed at all, even if the beginnings of the two branches are the same. Therefore, in order to capture
the equivalence, we would need an axiom able to “see” the (toofar away) ends of the two branches,
but this is of course impossible with a finite number of axiomssince the lengths of the branches in the
counterexamples can be arbitrarily long.

We expect our work on the subject to contribute to a better understanding of all the complex situations
that arise when covariant and contravariant concepts coexist. This, for example, is the case in all the
recent works on modal, input-output or interface formalisms, that try to clarify the relationships betwen
specifications and implementations. In fact, it is our intention to continue with this line of research by
trying to discover, and take benefit from all the connectionsbetween our work and those cited in this
paper.

12



References
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