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Abstract

The complexity of parallel systems has produced a large collection of semantics for processes, a classification
of which is provided by Van Glabbeek’s linear time-branching time spectrum; however, no suitable unified
definitions were available. We have discovered the way to unify them, both in an observational framework
and by means of a quite small set of parameterized (in)equations that provide a sound and complete
axiomatization of the preorders that define them. In more detail, we have proved that we only need a
generic simulation axiom (NS), which defines the family of constrained simulation semantics, thus covering
the class of branching time semantics, and a generic axiom (ND) for reducing the non-determinism of
processes, by means of which we introduce the additional identifications induced by each of the linear time
semantics.
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1 Introduction

In order to study the behavior of concurrent processes, many different semantics

have been proposed. Most of them are defined starting from the interleaving model,

where the essence of concurrent computation collapses into that of non-deterministic

processes, modeled by means of labeled transition systems. Most of the popular

semantics in that category appear in Van Glabbeek’s linear time-branching time

spectrum [13]. They were introduced by different authors, using different semantic

frameworks; see Figure 1.

In his paper, Van Glabbeek aims for a uniform presentation of all these seman-

tics by using three different approaches (the observational or testing framework,
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(B) bisimulation

(RS) ready simulation

(PW) possible worlds

(CS) complete simulation (RT) ready trace

(FT) failure trace (R) readiness

(F) failure

(S) simulation (CT) complete trace

(T) trace

Fig. 1. Semantics in the linear time-branching time spectrum.

the logical one, and the algebraic characterization of the semantics) which provide

sufficiently general frameworks to present them. Once in a uniform setting, it is

much easier to compare the discriminating power of the different semantics, as is

done in the lattice representation of the spectrum. All of these frameworks can be

used to characterize not only the equivalences induced by the semantics but also

the corresponding natural preorders, that in the logical presentation correspond to

the “satisfy more formulas than” relation.

Even under a common framework, the semantics in the spectrum appear to be

haphazardly defined and distributed in it. In this paper we aim to show that this

is not the case: every process semantics can be understood as the combination of

two “design decisions” that define what we have called the dynamic and the static

behavior of processes.

By means of our unification we expect to cover the following three main goals:

• a new presentation of the spectrum of the process semantics justifying the special

interest of some of these semantics and clarifying the relations among them;

• a uniform presentation of the semantics that allows to prove results simultane-

ously for all of them;

• finally, we complete the picture with some “lost” semantics which, either were

proposed by other authors after the publication of Van Glabbeek’s spectrum, or

are introduced for the first time in this paper (as far as we know).

Our unification process has its roots in our coinductive characterizations [3,5] of

the semantics in the spectrum by means of (bi)simulations up-to, that characterize

both the equivalences and the preorders that define them. In particular, the dynamic

component is closely related with simulations. In [6] we were able to unify the

definitions of different simulation semantics, by means of constrained simulations,

and to describe a generic axiom that characterizes all of them.

Similarly, there is also a single axiom defining the static or non-deterministic

component of the semantics. In this case the number of choices for constraints is

larger so that we obtain several semantics under the same simulation part. The uni-
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fying framework arises because two basic axioms parametrized conveniently suffice

to define all the classic semantics in the spectrum, as well as many others.

We have also found a unified observational framework [7] where branching obser-

vations correspond to simulation semantics while linear ones capture the remaining.

In order to emphasize the axiomatic aspect, we have chosen to devote the next three

sections of this paper to relate the new equational framework with the known one,

and then in Section 5 to briefly introduce the joint presentation of the two new

unified frameworks.

2 Preliminaries

As is customary when studying algebraic characterizations of semantics, we will

concentrate here on the study of finite processes. We will thus consider the basic

process algebra BCCSP, that has repeatedly been used to algebraically represent

that class of processes; in particular, in [13].

Definition 2.1 Given a set of actions Act, the set BCCSP(Act) of processes is

defined by the following BNF-grammar:

p ::= 0 | ap | p + q

where a ∈ Act; 0 represents the process that performs no action; for every action

in Act, there is a prefix operator; and + is a choice operator.

The operational semantics for BCCSP terms is defined by:

ap
a

−→ p
p

a
−→ p′

p + q
a

−→ p′
q

a
−→ q′

p + q
a

−→ q′

We write p
a

−→ if there exists a process q such that p
a

−→ q and extend it to define
α

=⇒ for arbitrary traces α ∈ Act∗, as usual.

Many different semantics for these non-deterministic processes have been de-

fined in the literature. The most important and popular semantics appear in Van

Glabbeek’s spectrum [13]. One indirect way to capture any semantics is by means

of the equivalence relation induced by it: given a formal semantics J·K, we say

that processes p and q are equivalent iff they have the same semantics, that is,

p ≡ q ⇔ JpK = JqK. Also, these semantics can be defined by means of adequate

observational scenarios, or by logical characterisations that introduce natural pre-

orders whose kernels are the semantic equivalences.

Both equivalences and preorders have been axiomatized for most of these sce-

narios, as shown in [13], but in some cases only finite conditional axiomatization

are possible, as discussed in [2]. In particular, bisimilarity can be axiomatized by

means of the four simple axioms:

(B1) x + y ≃ y + x (B3) x + x ≃ x

(B2) (x + y) + z ≃ x + (y + z) (B4) x + 0 ≃ x

These axioms state that the choice operator is commutative, associative and idem-

potent, having the empty process as identity element. These axioms also justify the

use of the notation
∑

a

∑

i api
a for processes, where the commutativity and associa-

tivity of the choice operator is used to group together the summands whose initial
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action is a. We will also write p|a for the (sub)process we get by projecting all the

a-summands of p; that is, if p =
∑

a

∑

i api
a, then p|a =

∑

i api
a.

The initial offer of a process is the set I(p) = {a | a ∈ Act and p
a

−→}. This is

a simple, but quite important observation function that plays a central role in the

definition of the most popular semantics in the linear time-branching time spectrum.

We will also denote by I the relation expressing the fact that two processes have

the same initial offer: pIq (or I(p, q)) ⇔ I(p) = I(q).

Throughout the paper there appear different order relations. We use ⊑ to de-

note semantic preorders (behavior preorders) and, for the sake of simplicity, we use

the symbol ⊒ to represent the preorder relation ⊑−1. With ≡ we denote the corre-

sponding equivalence (that is, ⊑ ∩ ⊒). To refer to a specific preorder in the linear

time-branching time spectrum we shall append the initials of the intended semantics

as subscripts to the symbol ⊑ (⊑RS for ready simulation, ⊑F for failures and so on).

A similar convention applies to the kernels of the preorders (≡RS , ≡F , . . . ) and to

the bisimulation equivalence ≡B. We use the symbols � and ≃ for the inequalities

and equations, respectively, of the algebraic calculus by means of which we axioma-

tize the semantics. We write E ⊢ t � u or E ⊢ t ≃ u for the (in)equations that can

be derived from the (in)equations in E using the standard rules of (in)equational

logic, where the symmetry rule can be applied in the equational derivations, but

not in the inequational ones.

Lastly we recall our definition of behavior preorder [3], which is the adequate

notion to compare processes when all actions can be observed.

Definition 2.2 A preorder relation ⊑ over processes is a behavior preorder if

• it is weaker than bisimilarity, i.e. p ≡B q ⇒ p ⊑ q, and

• it is a precongruence with respect to the prefix and choice operators, i.e. if p ⊑ q

then ap ⊑ aq and p + r ⊑ q + r.

3 A new axiomatization of the most popular semantics

As we have already hinted in the introduction, the dynamic part of the semantics is

governed by the preorder generated by a simulation. On the one hand, bisimilarity

is too strong for this purpose because its symmetric definition gives rise to an

equivalence rather than a preorder; on the other hand, plain similarity is too weak

because most popular semantics are not coarser than simulation equivalence. By

contrast, ready similarity is a quite strong relation which can be easily defined as a

simulation that only relates processes with the same set of initial actions.

Definition 3.1 (i) A simulation S is a relation between processes such that when-

ever pSq and p
a

−→ p′, there exists some q
a

−→ q′ such that p′Sq′. We say that

process p is simulated by q, or that q simulates p, when there is a simulation

S containing (p, q); then, we write p ⊑S q.

(ii) An I-simulation S is a simulation included in I, that is, S ⊆ I. I-simulations

are also called ready simulations and we write p ⊑RS q whenever there is some

I-simulation S such that (p, q) ∈ S.

(iii) Given an arbitrary constraint N relating pairs of processes, an N -simulation,
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sometimes simply called constrained simulation if N is understood from the

context, is a simulation which only relates pairs in N . We write p ⊑NS q

whenever there is some N -simulation S such that (p, q) ∈ S.

Obviously, ordinary and ready simulations are particular cases of constrained

simulations; other classes will be considered later in the paper.

Proposition 3.2 (i) Plain similarity can be axiomatically defined by means of the

axiom (S) x � x + y, together with the axioms B1–B4 that define bisimilarity.

(ii) Ready similarity can be axiomatically defined by means of the conditional axiom

(RS) I(x, y) ⇒ x � x + y, together with B1–B4. It can also be axiomatized

by means of the axiom scheme ax � ax + ay, where a represents an arbitrary

action.

(iii) Whenever N is a behavior preorder, N -similarity can be axiomatically defined

by means of the conditional axiom (NS) N(x, y) ⇒ x � x + y, together with

B1–B4.

Proof. See [13,6]. 2

Let us now consider the diamond of semantics coarser than ready similarity in

the spectrum. It consists of the failures, readiness, failure traces, and ready trace

semantics. None of them is a simulation semantics, so their classic axiomatizations

contain an additional component:

Failures: (F ) a(x + y) � ax + a(y + w)

Readiness: (R) a(bx + by + u) � a(bx + u) + a(by + v)

Failure traces: (FT ) a(x + y) � ax + ay

Ready traces: (RT ) I(x) = I(y) ⇒ ax + ay ≃ a(x + y)

Since we are interested in capturing the reduction of non-determinism, our first

candidate for a general axiom covering all cases was (FT ), which captures the fact

that by delaying the choices we get “smaller” processes. However, since this axiom

characterizes the failure trace semantics and this is finer than failure semantics,

a more general axiom is needed: axiom (F ) became our next proposal because

failure semantics is the coarsest of the four semantics. More precisely, we expected

to achieve the axiomatization of the four semantics in the diamond by means of

concrete instances of the parameterized conditional axiom

(ND) M(x, y,w) ⇒ a(x + y) � ax + a(y + w) .

The conjecture turned out to be correct and the semantics in the diamond can

be characterized by the following instances:

(NDF ) MF (x, y,w) ⇐⇒ true

(NDR) MR(x, y,w) ⇐⇒ I(x) ⊇ I(y)

(NDFT ) MFT (x, y,w) ⇐⇒ I(w) ⊆ I(y)

(NDRT ) MRT (x, y,w) ⇐⇒ I(x) = I(y) and I(w) ⊆ I(y)
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Since MF is the universal relation containing all triples of processes, the cor-

responding instance of the conditional axiom (ND) is clearly equivalent to (F ).

Let us now prove that the remaining three semantics are also axiomatized by the

corresponding instances of the axiom (ND) together with (RS).

Proposition 3.3 (i) The readiness preorder ⊑R is axiomatized by {B1–B4, (RS),

(NDR)}.

(ii) The failure traces preorder ⊑FT is axiomatized by {B1–B4, (RS), (NDFT )}.

(iii) The ready traces preorder is axiomatized by the set {B1–B4, (RS), (NDRT )}.

Proof.

(i) Let us show that the set {B1–B4, (RS), (NDR)} is logically equivalent to {B1–B4,

(RS), (R)}. By taking x ::= bx′ + u, y ::= by, and w ::= v we have that

(NDR) implies (R). In the other direction, let x and y be arbitrary closed

BCCSP terms with I(y) ⊆ I(x): we will prove by structural induction on y

that {B1–B4, (RS), (R)} ⊢ a(x + y) � ax + a(y + w), for any term w.
• For y = 0, we have a(x + y) ≃ ax � ax + a(y + w), by application of (RS).
• For y = by′ + y′′, it must be x = bx′ + x′′ and taking v ::= y′′ + w in (R)

we obtain a(x + y) = a(bx′ + by′ + x′′ + y′′) � a(x + y′′) + a(y + w). We

then have I(y′′) ⊆ I(x) and we can apply the induction hypothesis to get

{B1–B4, (RS), (R)} ⊢ a(x + y) � ax + a(y + w).

(ii) Let us show that the set {B1–B4, (RS), (NDFT )} is logically equivalent to

{B1–B4, (RS), (FT )}. The implication from left to right follows by taking

w ::= 0. In the other direction, let w and y with I(w) ⊆ I(y), so that a(x+y) �
ax+ay using (FT ) and, since I(y) = I(y +w), we have y � y +w using (RS):

hence, a(x + y) � ax + a(y + w).

(iii) Let us show that the set {B1–B4, (RS), (NDRT )} is logically equivalent to

{B1–B4, (RS), (RT )}. We first note that {B1–B4, (RS), (RT )} is equivalent to

{B1–B4, (RS), (RT�)}, where (RT�) is the axiom MRT (x, y,w) ⇒ ax + ay �
a(x + y). This follows from the fact that, whenever I(x) = I(y), we can use

(RS) to get x � x + y and y � x + y, and then ax + ay � a(x + y). Now, the

implication from left to right follows by taking w ::= 0. From right to left, as

above, whenever I(w) ⊆ I(y) we have y � y + w and then, if I(x) = I(y) we

have a(x + y) � ax + ay and thus a(x + y) � ax + a(y + z).

2

Throughout this paper we are only considering ground complete axiomatizations

for proving inequalities relating BCCSP terms. We leave for future work the study

of the existence of ω-complete axiomatizations along the lines of [2].

Certainly, the use of arbitrary conditions in the axioms could be objected to since

they can be used to hide the complexity of the semantics; however, the conditions

needed to axiomatize the semantics in the spectrum are very simple. In any case,

our main interest lies in obtaining a uniform presentation of the axiomatizations

that simplifies their algebraic study.

Corollary 3.4 (i) ⊑FT is axiomatized by the set {B1–B4, (RS), (NDFT
0 )}, where

(NDFT
0 ) is the instance of (NDFT ) where w is 0.
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(ii) ⊑RT is axiomatized by {B1–B4, (RS), (NDRT
0 )}, where (NDRT

0 ) is the instance

of (NDRT ) where w is 0.

Proof. Note that for the proof of Proposition 3.3 only the case w = 0 is needed.2

Even if the simplifications above are possible, we prefer to maintain the general

forms of axioms (NDFT ) and (NDRT ) to keep all axiomatizations as similar as

possible, which will come in handy when proving general properties of the semantics.

Corollary 3.5 (i) ⊑F can be axiomatized by the axioms {B1–B4, (NDF )}.

(ii) ⊑R can be axiomatized by the axioms {B1–B4, (NDR)}.

Proof. Note that (NDF ) implies (RS) and therefore (NDR) implies (RS), by taking

y ::= 0 and w ::= y. 2

Note that the axiom controlling the reduction of non-determinism has been

presented as an inequational axiom. Certainly, it cannot simply be replaced by the

corresponding equation since, in general, it is not true that ax + ay ≃ a(x + y).

However, the two dimensions corresponding to (RS) and (NDX) that control the

“increase” of a process with respect to a preorder � are not orthogonal; for example,

a(x + y) � a(x + y) + ax can be derived both by an application of (NDFT ) and

of (RS). As a consequence of the relation between these two axioms, if (RS) is

assumed then the inequational axiom (ND) can be substituted by its (stronger)

equational form

(ND≡) M(x, y,w) ⇒ ax + a(y + w) + a(x + y) ≃ ax + a(y + w) .

As above, we write (NDX
≡ ) for the concrete instances of this axiom for X ∈ {F,R,

FT,RT}.

Proposition 3.6 (i) The set of axioms {B1–B4, (RS), (ND)} is logically equiva-

lent to {B1–B4, (RS), (ND+)}, where (ND+) is the axiom

M(x, y,w) ⇒ ax + a(y + w) + a(x + y) � ax + a(y + w) .

(ii) {B1–B4, (RS), (ND+)} is logically equivalent to {B1–B4, (RS), (ND≡)}.

Proof.

(i) We only need to prove the implication from right to left, since the other follows

from � being a precongruence. For that, from (RS) we get a(x + y) � a(x +

y) + ax + a(y + w) whence, using (ND+), a(x + y) � ax + a(y + w).

(ii) We only need to prove that, if M(x, y,w), then

{B1–B4, (RS), (ND+)} ⊢ ax + a(y + w) � ax + a(y + w) + a(x + y) ,

which follows from (RS).

2

This result can be interpreted as saying that the only way to “enlarge” a process

is by enhancing its possible behaviors by means of the “dynamic” simulation axioms;

the static rules, (ND) and its variants, instead simply generate new identifications

among processes.
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Actually, any complete axiomatization of a preorder that contains the axiom

(RS) can be turned into an equivalent axiomatization by replacing every inequality

u � v by u + v ≃ v.

Proposition 3.7 Let Q = {B1–B4, (RS)} ∪ Q′ be an axiomatization of ⊑ ⊆ I.

Then, the equational variant of Q, Q= = {B1–B4, (RS)} ∪ {M ⇒ u + v ≃ v | M ⇒
u � v ∈ Q′} is also an axiomatization of ⊑.

Proof. Analogous to the particular case considered in Proposition 3.6 above, which

we have preferred to present before because it corresponds to the most important

instance of the general result for this paper. 2

4 The coarsest semantics in the spectrum

In the bottom part of the spectrum we find the simulation semantics coarser than

ready simulation: plain and complete simulation, and the semantics coarser than

these. For the simulation semantics we obtain the corresponding axiomatizations

simply by considering the universal constraint for the case of plain simulations and

the complete constraint for complete simulations:

Simulation U(x, y) ::= true

Complete simulations C(x, y) ::= (x = 0 ⇐⇒ y = 0)

What about trace and completed trace semantics? It turns out that they can be

defined by simply adding our axiom (NDF )!

Proposition 4.1 (i) ⊑T is axiomatized by the axioms 6 {B1–B4, (S), (NDF )}.

(ii) ⊑CT is axiomatized by the axioms {B1–B4, (CS), (NDF )} where (CS) is the

instantiation of (NS) taking C(x, y) as N(x, y).

Proof.

(i) The classic axiomatization of trace semantics is given by {B1–B4, (S), (T )},
where (T ) is the axiom ax + ay ≃ a(x + y). Note that {B1–B4, (S), (T )} is

logically equivalent to {B1–B4, (S), (T⊑)}, where (T⊑) is the axiom a(x + y) �
ax + ay, because (S) can be used to obtain ax � a(x + y) and ay � a(x + y).

And it is immediate that (NDF ) implies (T⊑). Also, {(S), (T⊑)} ⊢ a(x + y) �
ax + a(y + w), since a(x + y) � ax + ay by (T⊑) and ax + ay � ax + a(y + w)

by (S).

(ii) Analogous to the previous case once we realize that the classic axiom for com-

plete traces, (CT ) a(bx + u) + a(cy + v) ≃ a(bx + cy + u + v), is equivalent

to the conditional axiom C(x, y) ⇒ ax + ay ≃ a(x + y). This follows because

bx + u and cy + v are two independent patterns describing non-null processes

and when the condition is instantiated with x and y equal to 0 the identity is

trivial: a0 + a0 ≃ a0.

2

6 Note that (S) is equivalent to (US), the instantation of (NS) with N = U .
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By an analogous argument to that in Proposition 3.6 we can obtain for ⊑T the

axiomatization {B1–B4, (S), (NDF
≡)}. Note that although (NDF

≡) is an equation,

this axiomatization is not the classic one; obviously, (T ) ax+ ay = a(x+ y) implies

(NDF
≡), but the converse is false.

It is easy to check that in the case of trace semantics, the particular instance

(ND0) of the axiom (ND) with w equal to 0 is powerful enough to generate the trace

preorder. This was certainly not the case when we were under ready simulation,

where (ND0) just generates the failure trace preorder instead of the coarser failures

preorder.

It is also interesting to note that for trace semantics the symmetric version of

(ND),

(NDvw) a(x + y) � a(x + v) + a(y + w) ,

is also valid, so we can take both {B1–B4, (S), (NDvw)} and {B1–B4, (S), (ND≡
vw)},

where

(ND≡
vw) a(x + v) + a(y + w) + a(x + y) ≃ a(x + v) + a(y + w) ,

as alternative axiomatizations of the trace preorder.

Should we expect another diamond of “reasonable” semantics under plain sim-

ulation in the spectrum? Were that to be the case, why have we only found trace

semantics?

In order to answer these questions, note that the diamond of semantics under

ready simulation was completely governed by the function I, which appears in the

constraints of the different instantiations of the axiom (ND). For plain simulations,

however, the trivially true predicate U(x, y) corresponds to the observation function

that can see nothing. As a consequence, if we substitute U for I in each of the four

constraints of the diamond they all collapse into a single one: trace semantics.

Nevertheless, an alternative can be explored to obtain new semantics: let us keep

the different axioms NDX the way they stand and simply replace (RS) by (S).

Proposition 4.2 {B1–B4, (S), (NDFT )} is another axiomatization of trace seman-

tics. Hence, under (S) the failures and the failure trace axioms generate the same

preorder, namely the trace preorder.

Proof. {B1–B4, (S), (ND0)} is a complete axiomatization of trace preorder, and

(ND0) is a particular case of (NDFT ). 2

The axioms corresponding to readiness and ready traces, however, give rise to

two new semantics that we shall name extended ready and extended ready trace

semantics. They are defined taking into account the offers of the processes, either

at the end of a trace or after each action within it: in order to have p ⊑ER q, for

each p
α

=⇒ p′ with I(p′) = R we need some q
α

=⇒ q′ with I(q′) ⊇ R; the extended

ready trace preorder ⊑ERT is defined analogously, but using ready traces.

Proposition 4.3 (1) The set {B1–B4, (S), (NDR)} is an axiomatization of ⊑ER;

(2) the set {B1–B4, (S), (NDRT )} is an axiomatization of ⊑ERT .

Let us now consider the versions of the axioms (NDR), (NDFT ), (NDRT ) where

the constraint I has been replaced by the completeness condition C defined by
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C(x) ⇔ x = 0:

(C-NDR) MCR(x, y,w) ⇐⇒ (C(x) ⇒ C(y))

(C-NDFT ) MCFT (x, y,w) ⇐⇒ (C(y) ⇒ C(w))

(C-NDRT ) MCRT (x, y,w) ⇐⇒ (C(x) ⇐⇒ C(y) and C(y) ⇒ C(w))

Once again, we only obtain three alternative axiomatizations of the complete trace

semantics.

Proposition 4.4 The following axiomatizations are equivalent: 1) {B1–B4, (CS),

(NDF )}; 2) {B1–B4, (CS), (C-NDR)}; 3) {B1–B4, (CS), (C-NDFT )}; 4) {B1–B4,

(CS), (C-NDRT )}.

Proof. Clearly, (1) ⇒ (2) ⇒ (3) ⇒ (4) and therefore it is enough to prove that

(4) ⇒ (1). If x and y are not 0 we can apply (C-NDRT ) to obtain the inequality in

(NDF ). If x is 0 but y is not, we need to obtain ay � a0+a(y+w). By (CS) we have

y � y + w and then ay � a(y + w); applying (CS) again, a(y + w) � a(y + w) + a0

and thus ay � a0+a(y +w). If y is 0 but x is not, we need to obtain ax � ax+aw,

which results from an immediate application of (CS). Finally, if both x and y are

0, a0 � a0 + aw. 2

As before, if we only consider the original axioms (NDR), (NDFT ), and (NDRT )

we obtain, together with an alternative axiomatization of the complete trace se-

mantics, two new semantics.

Proposition 4.5 The axiomatization {B1–B4, (CS), (NDFT )} is logically equiva-

lent to {B1–B4, (CS), (NDF )}. Hence, under (CS), the failures and the failure

trace axioms generate the same semantics.

Proof. It is enough to prove that (C-NDFT ) can be derived from {B1–B4, (CS),

(NDF )}.

• If y is 0 we then have w equal to 0 and can apply (NDFT ).

• If y is not 0 we can apply (NDFT
0 ) to obtain a(x + y) � ax + ay and then (CS)

to conclude that a(x + y) � ax + a(y + w).

2

By contrast, as happened also for plain simulations, under (CS) the axioms of

the ready semantics generate two slightly different versions of the extended ready

and extended ready trace semantics introduced before, that we call extended com-

plete ready and extended complete ready trace semantics. In order to have p ⊑ECR q,

whenever p
α

=⇒ p′ with I(p′) 6= ∅ we require some q
α

=⇒ q′ with I(q′) ⊇ I(p′), but

if I(p′) = ∅ then the corresponding q′ also has to satisfy I(q′) = ∅. The extended

complete ready trace preorder ⊑ECRT is defined in an analogous way, starting from

the ready traces of the processes.

Table 1 presents a first snapshot of the generic axiomatization of the semantics

coarser than ready simulation.

10
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Simulation axiom N(x, y) ⇒ x � x + y

Non-determinism axiom M(x, y,w) ⇒ a(x + y) � ax + a(y + w)

M(x, y,w)

BCCSP3 I(x) ⊇ I(y) I(w) ⊆ I(y) I(x) = I(y) ∃b, y′, x′.

I(w) ⊆ I(y) y = by

N(x, y) x = bx′ + w

true S T New T New New

x = 0 ⇔ y = 0 CS CT New CT New New

I(x) = I(y) RS F R FT RT PW

Table 1
Axiomatization for semantics coarser than ready simulation

5 Relating the new observational and equational frame-

works

In our companion paper [7] we have presented the new unified observational frame-

work that allows us to characterize all the semantics in the spectrum by either

branching or linear observations. They are defined as follows:

Definition 5.1 The sets LN of local observations corresponding to each of the

constrained simulations in the spectrum, and LN (p) of observations associated to a

process p, are defined as follows:

• Plain simulation: LU = {·}, LU (p) = ·.

• Ready simulation: LI = P(Act), LI(p) = I(p).

• Complete simulation: LC = Bool, LC(p) is true if I(p) = ∅ and false otherwise.

• Trace simulation 7 : LT = P(Act∗), LT (p) = T (p), the set of traces of p.

• 2-nested simulation: LS = {[[p]]S | p ∈ BCCSP}, LS(p) = [[p]]S , where [[p]]S
represents the class of p with respect to the simulation semantics.

Definition 5.2 (i) Given a constraint N , a branching general observation of a

process for that constraint is a finite, non-empty tree whose arcs are labeled

with actions in Act and whose nodes are labeled with local observations from

LN ; the corresponding set BGON is recursively defined as:
• 〈l, ∅〉 ∈ BGON for every l ∈ LN .
• 〈l, {(ai, bgoi) | i ∈ 1..n}〉 ∈ BGON for every n ∈ IN, ai ∈ Act and bgoi ∈

BGON .

(ii) The set BGON (p) of branching general observations of p corresponding to the

constraint N is

BGON (p) = {〈LN (p), S〉 | S ⊆ {(a, bgo) | bgo ∈ BGON (p′), p
a

−→ p′}} .

7 Trace simulations can be defined as T -simulations, with T (x, y) ::= T (x) = T (y).
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bgo1 bgo2

{a}
a
}}zz

zz
z a

""
DD

DD
D

{b}

b
��

{b}

b
��

{c} {d}

{a}
a
��

{b}
b

}}zz
zz

z b
""

DD
DD

D

{c} {d}

Fig. 2. Two branching observations

(iii) We write p ≤b
N q if BGON (p) ⊆ BGON (q).

In Figure 2 some simple examples of bgo’s for N = I are shown. We have repre-

sented bgo1 as 〈{a}, {(a, 〈{b}, {(b, 〈{c}, ∅〉)}〉), (a, 〈{b}, {(b, 〈{d}, ∅〉)}〉)}〉 and bgo2 as

〈{a}, {(a, 〈{b}, {(b, 〈{c}, ∅〉), (b, 〈{d}, ∅〉)}〉)}〉. We use braces for the set of children

of a node, parentheses to represent a branch of the tree as a pair (initial arc, subtree

below), and angle brackets to represent each tree as a pair 〈root, children〉.

We have already proved in [7] that N -simulation semantics can be characterized

by means of branching observations in BGON . Since the natural way of defining

the simulation semantics is by means of constrained simulations and we proved

in [6] that they can be axiomatized by the corresponding instance of the generic

simulation axiom (NS), we do not consider necessary to also present a direct proof

of the axiomatizations in terms of these semantics.

The observational characterization of the remaining semantics, except for pos-

sible futures, is achieved by means of linear observations:

Definition 5.3 (i) The set lBGON of linear branching general observations for a

local observer LN is the subset of BGON defined as:
• 〈l, ∅〉 ∈ lBGON for each l ∈ LN .
• 〈l, {(a, lbgo)}〉, whenever a ∈ A and lbgo ∈ lBGON .

(ii) The set of linear observations of a process p with respect to the local observer

LN is LGON (p) = BGON (p) ∩ lBGON .

Since lbgo’s are linear they can be presented as decorated traces, avoiding the

sets of descendants in the general bgo’s. Therefore, we will consider them as ele-

ments of the set LN × (Act×LN )∗. Moreover, it would be easy to generate the set

LGON (p) by means of SOS rules; this is not possible, however, for BGON (p), due

to the branching nature of its elements.

Proposition 5.4 The set LGON (p) of linear general observations of a process p is

recursively defined by LGON (p) ::= {〈LN (p)〉}∪{〈LN (p), a〉◦LGON (p′) | p
a

−→ p′},
where ◦ is the extension to sets of sequence concatenation.

Alternatively, and as usually done for decorated traces semantics, we could have

described the set LGON (p) as the computations defined by a structural operational

semantics; this is an important difference with respect to the constrained simula-

tion semantics due to their branching nature. For N = I the set LGOI(p) defines

the ready traces of p and the corresponding semantic order arises from set inclu-

sion. Therefore, to characterize the related coarser semantics we need to introduce

12
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suitable loose orders.

Definition 5.5 For T ,T ′ ⊆ LGON we define the orders ≤l
N , ≤l⊇

N , ≤lf
N , and ≤lf⊇

N :

• T ≤l
N T ′ ⇐⇒ T ⊆ T ′.

• T ≤l⊇
N T ′ ⇐⇒ ∀X0a1X1 . . . Xn ∈ T ∃Y0a1Y1 . . . Yn ∈ T ′ ∀i ∈ 0..n Xi ⊇ Yi.

• T ≤lf
N T ′ ⇐⇒ ∀X0a1X1 . . . Xn ∈ T ∃Y0a1Y1 . . . Yn ∈ T ′ Xn = Yn.

• T ≤lf⊇
N T ′ ⇐⇒ ∀X0a1X1 . . . Xn ∈ T ∃Y0a1Y1 . . . Yn ∈ T ′ Xn ⊇ Yn.

We will use ≤lY
N to denote in a generic way any of the orders obtained with Y ∈

{〈empty〉,⊇, f, f⊇}. Then, we write p ≤lY
N q if LGON (p) ≤lY

N LGON (q).

By abuse of notation, we have used the superset inclusion symbol ⊇ in the

definitions above for all N . That is the right interpretation for the cases N = I, T ;

for N = U,C the subset inclusions degenerate to equalities. For N = S, it should

be interpreted as [[p]]S ≥S [[q]]S . Then, it is easy to see that we could have used such

an inequality [[p]]N ≥N [[q]]N in all cases. We have proved in [7] that the orders ≤lY
N

with Y ∈ {〈empty〉,⊇, f, f⊇} characterize the semantics in the diamonds coarser

than each of the corresponding N -simulations semantics; we then define l(F ) = lf⊇,

l(FT ) = l⊇, l(R) = lf , and l(RT ) = l.

To simply use set inclusion to compare the sets of observations of processes,

appropriate closures can be defined.

Definition 5.6 For T ⊆ LGON , the following three closures are defined:

• T
⊇

= {X0a1X1 . . . anXn | ∃Y0a1Y1 . . . anYn ∈ T ∀i ∈ 0..n Xi ⊇ Yi}.

• T
f

= {X0a1X1 . . . anXn | ∃Y0a1Y1 . . . anXn ∈ T }.

• T
f⊇

= {X0a1X1 . . . anXn | ∃Y0a1Y1 . . . anYn ∈ T Xn ⊇ Yn}.

Then, if Y ∈ {⊇, f, f⊇}, for p ∈ BCCSP and N a constraint, we define LGOY
N (p) =

LGON (p)
Y

.

Proposition 5.7 For all Y ∈ {⊇, f, f⊇}, T ≤lY
N T ′ iff T

Y
⊆ T ′

Y
.

Let us now see how, from this uniform definition of the linear semantics, the

proofs of the correctness and completeness of the corresponding axiomatizations

can be obtained in a generic way avoiding the case analyses of Sections 3 and 4.

Although this could be done generically, with N ∈ {U,C, I, T}, we prefer to start

with the particular case N = I, which corresponds to the most popular semantics,

already studied in Section 3. To start with, we show how the axiomatizations can

be synthetized from the observational characterizations.

Our general axiom (ND) for the reduction of non-determinism specifies the hy-

pothesis M(x, y,w) under which the process ax + a(y + w) can be (syntactically)

expanded by adding a new summand a(x+y) without changing its semantics. Then,

let us compare the two sides of our general axiom. Since I(ax+a(y+w)) = I(ax) =

13
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I(a(y + w)) = {a}, we have

LGOI(ax + a(y + w)) = LGOI(ax) ∪ LGOI(a(y + w)) ,

LGOI(a(y + w)) = {〈{a}〉} ∪

{〈{a}, a, I(y + w)〉 ◦ S | 〈{a}, a, I(y)〉 ◦ S ∈ LGOI(ay) ∨

〈{a}, a, I(w)〉 ◦ S ∈ LGOI(aw)} .

Notice then that the observations of a(y + w) are exactly those of ay + aw

simply replacing I(y) or I(w), respectively, appearing in the expression above, by

I(y + w) = I(y) ∪ I(w). Obviously, the same relation exists between the global

observations of a(x + y) and those of ax + ay.

Now, in order to get the adequate condition MX(x, y,w) for each of the seman-

tics, let us examine the formulas that define the preorders ≤lY
I :

• ≤l
I . To have LGOI(a(x + y)) ⊆ LGOI(ax) ∪ LGOI(a(y + w)) it is enough to

require {〈{a}, a, I(x) ∪ I(y)〉 ◦ S | 〈I(x)〉 ◦ S ∈ LGOI(x)} ⊆ {〈{a}, a, I(x)〉 ◦ S |
〈I(x)〉 ◦ S ∈ LGOI(x)} and {〈{a}, a, I(x) ∪ I(y)〉 ◦ S | 〈I(y)〉 ◦ S ∈ LGOI(y)} ⊆
{〈{a}, a, I(y)∪ I(w)〉 ◦S | 〈I(y)〉 ◦S ∈ LGOI(y)}. Thus, a first proposal for MRT

would be

I(y) ⊆ I(x) ∧ I(x) = I(y) ∪ I(w) .

However, due to the fact that this axiom will be used in combination with (RS),

the following, more restrictive but simpler form, can be used instead:

MRT (x, y,w) ::= I(x) = I(y) ∧ I(w) ⊆ I(y) .

Clearly, this form is stronger than the condition synthetized above. Reciprocally,

a(x + y) � ax + a(y + w) can be proved from the assumptions I(y) ⊆ I(x) and

I(x) = I(y)∪I(w) using (RS) first to get a(x+y) � a(x+y +w), and then (ND)

instantiated with MRT to obtain a(x + y + w) � ax + a(y + w).

• ≤l⊇
I . We need the inclusion LGOI(a(x + y))

⊇
⊆ LGOI(ax + a(y + w))

⊇
to hold.

Since I(x) ∪ I(y) ⊇ I(x), the general observations in a(x + y) that arise from

x will be also in LGOI(ax)
l⊇

. For those that arise from y, it is required that

I(x)∪I(y) ⊇ I(y)∪I(w). Once again, (RS) can be used to simplify this condition

into the simpler

MFT ::= I(w) ⊆ I(y) .

The less restrictive variant of the axiom can be derived from the stronger one and

(RS) as follows. Taking w ::= 0, since I(0) ⊆ I(y) we obtain a(x + y) � ax + ay

from (NDFT ); in particular, a(x + y + w) � ax + a(y + w). Also, by (RS),

x + y � (x + y) + (x + y + w), from where it follows a(x + y) � a(x + y + w).

• ≤lf
I . We consider the inclusion LGOI(a(x + y))

f
⊆ LGOI(ax + a(y + w))

f
. We

only have to consider the lgo 〈{a}, a, I(x) ∪ I(y)〉 in LGOI(a(x + y))
f

and show

that it also belongs to LGOI(ax + a(y + w))
f
, since all lgo’s of length greater

than 1 start with the prefix 〈{a}, a〉. For that, either I(x) ∪ I(y) = I(x) or

I(x) ∪ I(y) = I(y) ∪ I(w), that is, I(y) ⊆ I(x) or I(x) ∪ I(y) = I(y) ∪ I(w).
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Again, we can remove the second condition and define

MR ::= I(y) ⊆ I(x)

since, whenever I(x) ∪ I(y) = I(y) ∪ I(w), a(x + y + w) � ax + a(y + w) can be

obtained by taking x ::= y + w, y ::= x, and w ::= 0, and then by applying (RS)

we conclude a(x + y) � ax + a(y + w).

• ≤lf⊇
I . An argument analogous to the previous one leads us to I(x) ∪ I(y) ⊇ I(x)

or I(x) ∪ I(y) ⊇ I(y) ∪ I(w), which is trivially true.

In order to prove the completeness of our axiomatizations we introduce the

following notions of head normal forms.

Definition 5.8 For p =
∑

a∈X0

∑

i∈Ia
api

a and X ∈ {F,R,FT,RT}, its X-head

normal form hnf X(p) is:

• For a ∈ X0, i ∈ Ia, and X1 ⊆
⋃

i∈Ia
I(pi

a) such that I(pi
a) ⊆ X1, we define

hnf X(p, a, i,X1) = a(pi
a +

∑
{pj

a|X1
| j 6= i,MX(pi

a, p
j
a|X1

, p
j
a|X1

)}.

• hnf X(p) = p +
∑

a∈X0

∑

i∈Ia

∑

X1⊆
S

I(pi
a) hnf X(p, a, i,X1).

It is clear that several redundancies arise in this definition: for example, if

X = RT then hnf X(p, a, i,X1) = hnf X(p, a, i, I(pi
a)), so that the argument X1

would not be needed in this case. We prefer to maintain the generic definition in

order to allow a homogeneous treatment of all the semantics.

Proposition 5.9 If X ∈ {RT,FT,R, F}, {B1–B4, (RS), (NDX)} ⊢ hnf X(p) � p.

Proof. Let p =
∑

a∈X0

∑

i∈Ia
api

a. By the definition of hnf X(p, a, i,X1), if p
j1
a

is a summand that contributes to it then, since MX(pi
a, p

j1
a |X1

, p
j1
a |X1

) holds, we

have {B1–B4, (RS), (NDX)} ⊢ a(pi
a + p

j1
a |X1

) � api
a + ap

j1
a . Now, if p

j2
a is another

summand, it is easy to check that MX(pi
a + p

j1
a |X1

, p
j2
a |X1

, p
j2
a |X1

) also holds and

then {B1–B4, (RS), (NDX)} ⊢ a(pi
a + p

j1
a |X1

+ p
j2
a |X1

) � a(pi
a + p

j1
a |X1

) + ap
j2
a ;

combining it with the previous derivation, {B1–B4, (RS), (NDX)} ⊢ a(pi
a +p

j1
a |X1

+

p
j2
a |X1

) � api
a+ap

j1
a +ap

j2
a . By repeating this procedure for all summands we obtain

{B1–B4, (RS), (NDX)} ⊢ hnf X(p, a, i,X1) � p|a. Finally, adding these inequalities

leads us to {B1–B4, (RS), (NDX)} ⊢ hnf X(p) � p. 2

In order to apply structural induction to prove the completeness of the axiom-

atizations we need that, whenever p =
∑

a∈X0

∑

i∈Ia
api

a and p ≤
l(X)
I q, there is a

summand ahk
a of hnf X(q) such that pi

a ≤
l(X)
I hk

a for each a ∈ Act, i ∈ Ia.

Proposition 5.10 Let X ∈ {F,FT,R,RT}, and let p =
∑

a∈X0

∑

i∈Ia
api

a, and

q =
∑

a∈X0

∑

j∈Ja
aq

j
a. If p ≤

l(X)
I q then there exists a summand ahk

a of hnf X(q)

such that pi
a ≤

l(X)
I hk

a.

Proof. We need to show that LGOI(pi
a)

l(X)
⊆ LGOI(hk

a)
l(X)

but, due to the

fact that ( )
l(X)

is a closure operator [7], it is enough to prove just LGOI(p
i
a) ⊆

LGOI(hk
a)

l(X)
. For 〈I(pi

a)〉 ∈ LGOI(p
i
a), since p ≤

l(X)
I q there is some q

j
a such that

〈I(pi
a)〉 ∈ LGOI(q

j
a)

l(X)
; we then consider hnf X(q, a, j, I(pi

a)) = ahk
a.
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If t ∈ LGOI(p
i
a) then 〈I(p), a〉 ◦ t ∈ LGOI(p) ⊆ LGOI(q)

l(X)
and there exists jt

such that t ∈ LGOI(q
jt

a )
l(X)

. In addition, MX(qj
a, q

jt

a |I(pi
a
), q

jt

a |
I(pi

a
)
):

• If X = RT , then t ∈ LGOI(q
jt

a ) and therefore I(qjt

a ) = I(pi
a) = I(qj

a). Hence,

MRT (qj
a, q

jt

a |I(pi
a
),0), and therefore MRT (qj

a, q
jt

a |I(pi
a
), q

jt

a |
I(pi

a
)
).

• If X = FT , from t ∈ LGOI(q
jt

a )
⊇

it follows that I(qjt

a ) ⊆ I(pjt

a ) and therefore

I(qjt

a |
I(pi

a)
) = ∅ ⊆ I(qjt

a |I(pi
a)). Hence, MFT (qj

a, q
jt

a |I(pi
a), q

jt

a |
I(pi

a)
).

• If X = R, from 〈I(pi
a)〉 ∈ LGOI(q

j
a)

f

we have that I(pi
a) = I(qj

a) and thus

I(qjt

a |I(pi
a
)) ⊆ I(qj

a) and MR(qj
a, q

jt

a |I(pi
a
), q

jt

a |
I(pi

a
)
).

• For X = F it is trivial since MF (x, y,w) is always true.

Therefore q
jt

a is one of the summands of hk
a and, since t ∈ LGOI(q

jt

a )
l(X)

, we have

pi
a ≤

l(X)
I hk

a. 2

Theorem 5.11 (Soundness and completeness) For all X ∈ {RT,FT,R, F},

p ≤
l(X)
I q iff {B1–B4, (RS), (NDX )} ⊢ p � q.

Proof. (Soundness) The axiomatizations are sound because of the way they have

been derived.

(Completeness) By structural induction on p.

• If p = 0, then p ≤
l(X)
I q implies that q is 0.

• If p =
∑

a∈X0

∑

i∈Ia
api

a, then p ≤
l(X)
I q implies that there exists a summand

ahk
a of hnf X(q) such that pi

a ≤
l(X)
I hk

a as indicated above. By induction hypoth-

esis, {B1–B4, (RS), (NDX)} ⊢ pi
a � hk

a and therefore {B1–B4, (RS), (NDX)} ⊢
api

a � ahk
a; adding all these inequalities and using (RS), which is allowed be-

cause I(p) = I(q), it follows that {B1–B4, (RS), (NDX)} ⊢ p � hnf X(q) and, by

Proposition 5.9, {B1–B4, (RS), (NDX)} ⊢ p � q.

2

6 The semantics that are not coarser than ready simu-

lation

Once we have a clear picture of the semantics that are coarser than ready simulation,

it is time to consider the rest of the semantics in the spectrum. Let us start with

the possible futures, already discussed in [13], and the impossible futures semantics

[14].

Definition 6.1 (i) The possible futures semantics is defined as: p ⊑PF q if for

all p
α

=⇒ p′ there exists q
α

=⇒ q′ with T (p′) = T (q′).

(ii) The impossible futures semantics is defined as: p ⊑IF q if for all S ⊆ P(Act∗),

if p
α

=⇒ p′ with T (p′) ∩ S = ∅ then there exists q
α

=⇒ q′ with T (q′) ∩ S = ∅.

The first definition above is that of readiness semantics but replacing the function

I with T . Although less evident, the same is the case for impossible futures and
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the failures semantics (see [7]). We have in fact shown that they can be described

by LGOT observations so that they are defined by ≤lf⊇
T and ≤lf

T respectively.

Next we introduce the T -versions of our (NDX) axioms: all of them are in-

stances of our general axiom for reduction of non-determinism and therefore are

defined by the adequate constraint MT
X(x, y,w). As expected, they are obtained by

substituting every occurrence of I in MX(x, y,w) by the observer T defining the

traces of processes.

Definition 6.2 The constraints MT
X that characterize the semantics coarser than

T -simulation semantics are:

(T-NDF ) MT
F (x, y,w) ⇐⇒ true

(T-NDR) MT
R (x, y,w) ⇐⇒ T (x) ⊇ T (y)

(T-NDFT ) MT
FT (x, y,w) ⇐⇒ T (w) ⊆ T (y)

(T-NDRT ) MT
RT (x, y,w) ⇐⇒ T (x) = T (y) and T (w) ⊆ T (y)

Note that the last two semantics do not appear in Van Glabbeek’s spectrum

and, as far as we know, they have not been previously studied nor defined. We

ignore whether they will be of practical interest in the future but, nonetheless, we

have decided to include them for the sake of completeness.

By the same arguments as in Section 5 we can prove that ≤
l(X)
T satisfies the

axiom (T-NDX) for X ∈ {RT,FT}. However this is not the case for X ∈ {R,F}
due to the following proposition.

Proposition 6.3 (MT
X(x, y,w) implies T (a(x + y)) = T (ax + a(y + w))) iff X ∈

{RT,FT}.

Proof. MT
RT implies MT

FT , and therefore T (y + w) = T (y), which leads to T (ax +

a(y + w)) = T (a(x + y)). Neither MT
R nor MT

F refer to w and therefore, in general,

T (ax + a(y + w)) 6= T (a(x + y)) in those cases. 2

Note that when proving the correctness of the corresponding axiom (NDX) for

≤
l(X)
I we had in all cases I(a(x + y)) = {a} = I(ax + a(y + w)). Now we have

T (a(x+y)) = T (ax+a(y+w)) only under the constraints corresponding to the finer

semantics ⊑FT and ⊑RT . The properties of the prefixes appearing in all the terms

in both sides of the axiom (ND) are not used anymore in the proofs in Section 5, so

they can be transferred to the T -semantics thus proving the correctness of (T-NDX)

for both ≤
l(RT )
T and ≤

l(FT )
T .

The introduction of the equational versions (ND≡) of the axiom (ND) now be-

comes crucial in order to preserve the genericity of our unifying study of the concur-

rency semantics. We saw that under (RS) these axioms were equivalent. However,

since now we are observing the set of traces T (x) of any process instead of just the

initial offer I(x), we consider T -simulations constrained by T (x, y) ::= T (x) = T (y);

under the corresponding axiom (TS), things are different.

Proposition 6.4 T (a(x + y) + ax + a(y + w)) = T (ax)∪ T (ay)∪ T (aw) = T (ax +

a(y + w)).
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As a consequence, for (T-NDX
+ ) and (T-ND≡), we can follow the same reasonings

used in Section 5 to show that (NDX) was satisfied by ≤X .

Proposition 6.5 For X ∈ {RT,FT,R, F}, the preorder ≤
l(X)
T satisfies the axiom

(T-NDX
+ ) and also (T-NDX

≡ ).

Proof. To show that ≤
l(X)
T satisfies (T-NDX

+ ) we just need to apply Proposition 6.4

and follow the line of thought in the second bullet on page 14, substituting the

observer T for I. For the other axiom, from T (a(x + y)) ⊆ T (ax + a(y + w)) it

follows that {(TS)} ⊢ ax + a(y + w) � (ax + a(y + w)) + a(x + y). 2

Notice that for X ∈ {RT,FT} we can also obtain the correctness of (T-NDX
≡ )

from that of (T-NDX) and vice versa, as a consequence of the following fact.

Proposition 6.6 The axiomatization {B1–B4, (TS), (T-NDX)} is equivalent to the

axiomatization {B1–B4, (TS), (T-NDX
≡ )} for X ∈ {RT,FT}.

Proof. Let us first show that {B1–B4, (TS), (T-NDX)} is equivalent to {B1–B4,

(TS), (T-NDX
+ )}. This holds because (T-NDX) implies (T-NDX

+ ) and, since T (w) ⊆
T (y) implies T (a(x + y)) = T (ax + a(y + w)) and then we have {B1–B4, (TS)} ⊢
a(x + y) � a(x + y) + (ax + a(y + w)).

To prove {B1–B4, (TS), (T-NDX
+ )} equivalent to {B1–B4, (TS), (T-NDX

≡ )} we

only need to show that {B1–B4, (TS), (T-NDX
+ )} ⊢ (MT

X(x, y,w) ⇒ ax+a(y+w) �
ax+a(y +w)+a(x+ y)), but we have that for X ∈ {RT,FT}, MT

X(x, y,w) implies

T (w) ⊆ T (y), so that T (a(x + y)) = T (ax + a(y + w)) and therefore {(TS)} ⊢
ax + a(y + w) � (ax + a(y + w)) + a(x + y). 2

The important fact about the obtained sets of correct axioms for the seman-

tics ≤
l(X)
T is that, although our proofs of completeness for the axiomatizations

{B1–B4, (RS), (NDX)} considered the inequational axioms (NDX), they were also

valid for the axiomatizations {B1–B4, (RS), (NDX
≡ )}.

The steps in the procedure that leads to the completeness of {B1–B4, (RS),

(NDX)} can be adapted by substituting each reference to the observer I by T ,

thus obtaining a proof of the completeness of {B1–B4, (RS), (T-NDX
≡ )} for ≤

l(X)
T .

However, the notion of head normal form for N = I uses the fact that the summands

hnf X(q, a, i,X1) can be defined in terms of the offers X1 ⊆ P(Act), which correspond

to the values produced by the observer I. For an arbitrary N , a more general

definition of hnf’s, valid for every observer, is needed.

Definition 6.7 For p =
∑

a∈X0

∑

i∈Ia
api

a, its totally expanded X-head normal

form tehnf X
N (p) is:

• For a ∈ X0, i ∈ Ia, and Ka ⊆ Ia we consider a decomposition pk
a = pk1

a +

pk2

a such that MN
X (pi

a, p
k1

a , pk2

a ). Then, tehnf X
N (p, a, i, 〈(pk1

a , pk2

a )〉k∈Ka
) = a(pi

a +
∑

k∈Ka
pk1

a ).

• tehnf X
N (p) =

∑
tehnf X

N (p, a, i, 〈(pk1

a , pk2

a )〉k∈Ka
).

It is clear that for K ′
a ⊆ Ka, or a decomposition pk

a = pk3

a + (pk4

a + pk2

a ) with

pk1

a = pk3

a + pk4

a , the corresponding tehnf X
N (. . .) is a subterm of tehnf X

N (p, a, i,

〈pk1

a , pk2

a 〉k∈Ka
) and thus contributes nothing to the expanded normal form. This is
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Fig. 3. Semantics in the new linear time-branching time spectrum.

the reason why we preferred the more compact definition of hnf X(p) for semantics

coarser than ready simulation.

Theorem 6.8 For X ∈ {RT,FT,R, F}, {B1–B4, (TS), (T-NDX
≡ )} ⊢ p � q if and

only if p ≤
l(X)
T q.

The extended spectrum can be depicted as in Figure 3, where all implications

are immediate from the axiomatizations of the corresponding semantics.

7 On the real diamond structure

Focusing on the diamonds coarser than each of the branching semantics in the

extended spectrum, it would be natural to expect them to have the structure of a

lattice. In particular, failure semantics would be the greatest lower bound of the

readiness and failure traces semantics while ready traces semantics would be the

corresponding lowest upper bound. Nevertheless, both intuitions are false and a

semantics finer than failures and another coarser than ready traces can be found.

Let us first consider the case of the glb. We postulate the axiomatization of the

corresponding semantics to be the conjuction of the two conditions MR and MFT ,

to obtain

MR∧FT (x, y,w) ⇐⇒ I(x) ⊇ I(y) and I(w) ⊆ I(y).

We denote with ⊑R∧FT the order axiomatized by the corresponding axiom (NDR∧FT ).

Definition 7.1 The readiness and failure traces semantics is defined by the order

⊑R∧FT generated by the set of axioms {B1–B4, (RS), (NDR∧FT )}.

Proposition 7.2 The ready traces semantics is strictly finer than the readiness and

failure traces semantics.

Proof. ⊑RT ⊆ ⊑R∧FT is an immediate consequence of Proposition 3.3 and the fact

that condition MRT implies both MR and MFT , and hence also MR∧FT . To show
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that ⊑RT 6⊆ ⊑R∧FT , let us take w ::= 0, y ::= b, and x ::= bB′ + c; then:

a(bB + bB′ + c)
︸ ︷︷ ︸

p

⊑R∧FT a(bB′ + c) + abB
︸ ︷︷ ︸

q

but, if I(B) 6= I(B′),

a(bB + bB′ + c) 6⊑RT a(bB′ + c) + abB

because {a}a{b, c}bI(B) ∈ ReadyTraces(p) \ ReadyTraces(q). 2

It is clear that the readiness and failure traces semantics is finer than both the

readiness and the failure traces semantics; to show that it is actually the coarsest

upper bound we need to prove that ⊑R∧FT = ⊑R ∩ ⊑FT , which cannot be easily

done with algebraic arguments. Instead, it is trivial to obtain the observational

characterization of the desired semantics by gathering together the failure traces and

the ready observations. Based on Definition 5.5, we can define the corresponding

order ≤l⊇∧f
N by

T ≤l⊇∧f
N T ′ ⇐⇒ T ≤l⊇

N T ′ and T ≤lf
N T ′.

A nicer characterization can be obtained as follows. We combine both kinds of

observations into a single family of traces that we call failure traces with final ready

sets by considering failure sets all along the trace but at the end of it, where we

obtain the exact ready set. Once again, using the notation in Definition 5.5 we can

present this characterization as

T ≤l⊇∧f
N T ′ ⇐⇒

∀X0a1 . . . Xn ∈ T ∃Y0a1 . . . Yn ∈ T ′ (∀i ∈ 0..n − 1 Xi ⊇ Yi) ∧ Xn = Yn.

Proposition 7.3 The semantics defined by the order ⊑R∧FT coincides with that

defined by ≤l⊇∧f
I and is thus the lub of the readiness and failure traces semantics.

Proof. Similar to that of Theorem 5.11. 2

The axiomatic characterization of the glb of the readiness and failure traces

semantics is much simpler: we simply put together the axioms for the orders defining

both semantics.

Definition 7.4 ⊑R∨FT is the relation defined by the set of axioms {B1–B4, (RS),

(NDR), (NDFT )}.

If we define MR∨FT ::= MR ∨MFT , that is, MR∨FT (x, y,w) holds if I(x) ⊇ I(y)

or I(w) ⊆ I(y), we have the following characterization of ⊑R∨FT .

Proposition 7.5 The order ⊑R∨FT is generated by the set of axioms {B1–B4, (RS),

(NDR∨FT )}, where (NDR∨FT ) is the instantiation of the generic axiom (ND) with

MR∨FT .

Proposition 7.6 The semantics defined by the order ⊑R∨FT is the finest semantics

that is coarser than both the readiness and the failure traces semantics.

Proof. Obvious, since any semantics coarser than the readiness semantics has

to satisfy {B1–B4, (RS), (NDR)}, any one coarser than failure traces must satisfy

{B1–B4, (RS), (NDFT )}, and MR∨FT is equivalent to MR ∨ MFT . 2
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Once again the semantics defined by ⊑R∨FT is not present in the ltbt spec-

trum and neither in the extended one; in particular, it is different from the failures

semantics.

Proposition 7.7 ⊑R∨FT  ⊑F .

Proof. The inclusion is obvious since the failures semantics is coarser than both

the readiness and the failure traces semantics. To show that the inclusion is strict,

note that any two processes related by ⊑R∨FT do not only have the same failures

but also the same revivals, as defined by Reed, Roscoe, and Sinclair [11]. Revivals

are sequences a1, . . . , an(X,a) where a1, . . . , an is a trace of the corresponding pro-

cess after which the action a is offered, but the set of actions X is refused. This is

indeed the case since all the axioms u � v in {B1–B4, (RS), (NDR), (NDFT )} pre-

serve the revivals, which means Revivals(σ(u)) ⊆ Revivals(σ(v)) for every ground

substitution σ, and the revivals order is a precongruence for the operators in

BCCSP. For instance, for (NDFT ) we need to prove that Revivals(σ(a(x + y))) ⊆
Revivals(σ(ax)) ∪ Revivals(σ(a(y + w))) whenever I(σ(w)) ⊆ I(σ(x)). It is clear

that the only non-trivial case occurs when a(X, b) ∈ Revivals(σ(a(x + y))); then we

have (X, b) ∈ Revivals(σ(x + y)) so that X ∈ Failures(σ(x)) ∩ Failures(σ(y)) and

b ∈ I(σ(X)) or b ∈ I(σ(y)). In the first case a(X, b) ∈ Revivals(σ(ax)) whereas, in

the second, X ∈ Failures(σ(x + y)) and therefore a(X, b) ∈ Revivals(σ(a(x + y))).

The case for (NDR) is simpler. Once we know that ⊑R∨FT preserves the re-

vivals we only need to observe that the revivals cannot be obtained from the fail-

ures of a process. In particular, we have ab ⊑F a + a(b + c), but a({c}, b) ∈
Revivals(ab) \ Revivals(a + a(b + c)). 2

(We warmly thank Bill Roscoe for pointing out to us his works on the stable

revivals semantics [11,12], where an endevor for an adequate presentation of the

notion of responsiveness for a CSP-like language is made. Responsiveness had been

previously studied by Fournet et al. in [9] under the name of stuck-freeness, for

CCS.)

The semantics ⊑R∨FT , though not in the ltbt spectrum, is not completely new

since it coincides with the revivals semantics (at least for BCCSP). To prove this, we

first give a characterization of the revivals semantics in terms of our observational

framework.

Definition 7.8 We define the order ≤l⊇∨f
N by

T ≤l⊇∨f
N T ′ ⇐⇒

∀X0a1 . . . Xn ∈ T ∃{Y0a1Y1 . . . Y
j
n | j ∈ J} ⊆ T ′ such that Xn =

⋃

j∈J Y
j
n .

Proposition 7.9 For all p, q ∈ BCCSP, Revivals(p) ⊆ Revivals(q) if and only if

LGOI(p) ≤l⊇∨f
I LGOI(q).

Proof. Note that ≤l⊇∨f
I can be equivalently defined as

T ≤l⊇∨f
I T ′ ⇐⇒

∀X0a1 . . . Xn ∈ T ∀a ∈ Xn ∃Y0a1 . . . Yn ∈ T ′ (a ∈ Yn ∧ Yn ⊆ Xn).
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Now, since a1 . . . an(X,a) ∈ Revivals(p) if and only if there exist X0a1 . . . Xn ∈
LGOI(p) such that a ∈ Xn and Xn ∩ X = ∅, we immediately obtain the desired

characterization. 2

Definition 7.10 Given T ⊆ LGON , T
⊇∨f

is defined as

T
⊇∨f

::= {X0a1 . . . Xn | ∃{Y0a1 . . . Y j
n | j ∈ J} ⊆ T with Xn =

⋃

j∈J

Y j
n}.

This clearly indicates that ≤l⊇∨f
I is in between ≤lf⊇

I , defining the failures se-

mantics, and ≤lf
I , defining readiness semantics. This is useful for the proof of the

axiomatic characterization of the revivals semantics.

Theorem 7.11 The revivals semantics defined by ⊑l⊇∨f
I can be axiomatized by the

set {B1–B4, (RS), (NDR∨FT )}.

Proof. It is similar to that of Theorem 5.11 for the case of failures semantics and,

thus, also similar to the characterization of that semantics by means of acceptance

trees [10] (and where the closure of the set of offers with respect to both union

and convex closure is a critical argument). In connection to that, recall that the

application of the particular case of (NDF ) corresponding to (NDFT ) allowed us

to join arbitrary states after the same trace, while that corresponding to (NDR)

allowed us to obtain a common continuation after the same action at any state

reachable by the same trace. All this can be done now using (NDR∨FT ); however,

we cannot add to an arbitrary state an action offered at another state reachable by

the same trace since to do that we needed the unlimited strength of axiom (NDF ).2

It is clear that we can generalize most of the results above to any reasonable

local observation function such as T or S, once we interpret ⊆ as the corresponding

order and = as the induced equivalence. However, in order to define the adequate

observational characterization of the revivals semantics for a local observation (or

constraint) N , we should look for the adequate “elements” of the universe of obser-

vations. This leads us to traces when N is T , but it is not so clear how to define

those “elements” for a non-extensional semantics such as that obtained when N is

S.

Let us conclude this section with a look to the beautiful picture in Figure 4

showing the real structure of the full (bidimensional!) diamond, that should be

included in all the upper levels of the extended ltbt spectrum.

8 Conclusions

Following the algebraic approach, we have proved in this paper that the multiplicity

of process semantics can be explained in quite a simple way as the combination of

a simulation axiom governed by a constraint N and four versions of another axiom

for reducing non-determinism. As already achieved in our first part of the study

devoted to the observational semantics, the classification into branching and linear

semantics has been clarified. More importantly, the similarities between all the

semantics have been unearthed, allowing a generic study without the need to resort

to case analysis proofs.
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Fig. 4. The real diamond below ready simulation.

Using an approach based on the isolation of some simple properties, which are

to be satisfied by any “natural” semantics (including, in particular, those in the

spectrum), we showed in [5,6] how to to obtain a canonical preorder induced by

a process equivalence and how to produce and axiomatization for this preorder

from that of the equivalence itself. And combining both algebraic and coinductive

approaches we have presented in [4,8] a generalization of the algorithm proposed in

[1] to obtain an axiomatization of the equivalence induced by a preorder from that

of the preorder itself.

As future work, it would be interesting to investigate the case in which recursive

definitions of processes are available in the language, thus allowing for the possi-

bility of infinite processes. Clearly, since all semantics (in the spectrum) are level

continuous [3], we could use the “axiom” p↓n ≃ q↓n ⇒ p ≃ q but, definitely, we

would like to avoid using the equivalence we are trying to capture in the condition

of the axiom. Another interesting direction is that of weak semantics, appropriately

taking into account silent transitions, for which we already have some preliminary

results.

Summing up, we expect that the universe of process semantics will be clarified

by our work, making it easier in the future to develop generic studies with shorter,

cleaner, and more elegant proofs.
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