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Covariant-contravariantsimulation is a combination of standard (covariant) simulation, its contravari-
ant counterpart and bisimulation. We have previously studied its logical characterization by means of
the covariant-contravariant modal logic. Moreover, we have investigated the relationships between
this model and that of modal transition systems, where two kinds of transitions (the so-called may
and must transitions) were combined in order to obtain a simple framework to express a notion of
refinement over state-transition models. In a classic paper, Boudol and Larsen established a precise
connection between thegraphicalapproach, by means of modal transition systems, and thelogical
approach, based on Hennessy-Milner logic without negation, to system specification. They obtained
a (graphical) representation theorem proving that a formula can be represented by a term if, and
only if, it is consistent and prime. We show in this paper thatthe formulae from the covariant-
contravariant modal logic that admit a “graphical” representation by means of processes, modulo
the covariant-contravariant simulation preorder, are also the consistent and prime ones. In order to
obtain the desired graphical representation result, we first restrict ourselves to the case of covariant-
contravariant systems without bivariant actions. Bivariant actions can be incorporated later by means
of an encoding that splits each bivariant action into its covariant and its contravariant parts.

1 Introduction

Modal transition systems(MTSs) were introduced in [9, 10] as a model of reactive computation based
on states and transitions that naturally supports a notion of refinement. This is connected with the use
of Hennessy-Milner Logic without negation as a specification language: a specification describes the
collection of (good) properties that any implementation has to fulfil. More generally, a processp is
considered to be better thanq if the set of formulae satisfied byq is included in the set of formulae
satisfied byp. The tight connections between these two ways of expressingthe notions of specification
and refinement were studied in [4]. There the authors talked about “graphical” representation (by means
of one or several MTSs) of logical specifications, and completely characterized the collection of logical
specification that can be “graphically represented”. Theseare the so-called prime, consistent formulae.

There are two types of modal operators in Hennessy-Milner Logic: 〈a〉 and [a], for each actiona.
Intuitively, a formula〈a〉ϕ indicates that it must be possible to executea and reach a state that satisfies
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ϕ , while [a]ϕ imposes that this will happen after any execution ofa from the current state. It is well
known that these two operators reflect the duality∃-∀, so that any process satisfying a〈a〉ϕ formulamust
include somea-labelled transition reaching a state satisfyingϕ , whereas the constraint expressed by a
[a]ϕ formula is better understood in a negative way: a process satisfying it may notcontain ana-labelled
transition reaching a state that does not satisfyϕ . In particular, the formula[a]⊥ indicates that a process
cannot executea in its initial state, and therefore, using these formulae, we can limit the set of actions
offered at any state.

In order to reflect these two kinds of constraints at the “operational” level, MTSs contain two kinds
of transitions: themaytransitions and themusttransitions. Then we can use MTSs both as specifications
or as implementations, and the notion of refinement imposes that, in order to implement correctly a
specification, an implementation should exhibit all themusttransitions in the MTS that describes the
specification and may not include any transition that is not allowed by the specification: we cannot add
any newmaytransition, although those in the specification could either disappear, be preserved or turned
into musttransitions. The relation betweenmayandmustis reflected in the formal definition of MTSs
by requiring that each must transition is also a may transition.

The conditions defining the notion of refinement between MTSsobviously resemble those defining
simulation and bisimulation. For may transitions we have a contravariant simulation condition, express-
ing the fact that no new (non-allowed)may transition can appear when refining a specification. Since
we impose thatmusttransitions induce the correspondingmaytransitions, we could think that they are
related in a “bisimulation-like” style. However, this is not the case since the contravariant simulation
condition imposed on the may part can be covered by amaytransition withoutmustcounterpart. In fact,
this is crucial in order to capture the principle that amaytransition can be refined by amusttransition.

Some of the authors of this paper thought that a more direct combination of simulation and bisim-
ulation conditions could capture in a more flexible way all the ideas on which the specification of sys-
tems by means of modal systems and modal logics is based, and we looked for the clearest and most
general framework to express those modal constraints. We found that covariant-contravariant systems
(sometimes abbreviated to cc-systems) are a possible answer to this quest, combining pure (covariant)
simulation, its contravariant counterpart and bisimulation.

We started the study ofcovariant-contravariant simulationin [5], and the modal logic characterizing
it was presented in [7]. (In what follows, we refer to this logic as cc-modal logic.) In the most general
case, we consider a partition of the set of actions into threesets: the collection of covariant actions, that of
contravariant actions, and the set of bivariant actions. Intuitively, one may think of the covariant actions
as being under the control of the specification LTS, and transitions with such actions as their label should
be simulated by any correct implementation of the specification. On the other hand, the contravariant
actions may be considered as being under the control of the implementation (or of the environment) and
transitions with such actions as their label should be simulated by the specification. The bivariant actions
are treated as in the classic notion of bisimulation.

We will see in this paper that, as in the MTS setting, the consistent and prime formulae from the
cc-modal logic are exactly those that admit a “graphical” representation by means of processes modulo
the covariant-contravariant simulation preorder. Moreover, each formula in the cc-modal logic can be
represented “graphically” by a (possibly empty) finite set of processes.

The proofs of these representation results are inspired by the developments in [4]. There are, how-
ever, subtle differences because, in covariant-contravariant systems, each action has a single modality
(covariant, contravariant, bivariant), while in MTSs we can combine bothmayandmusttransitions.

In fact, in order to obtain the desired graphical representation, for technical reasons we first restrict
ourselves to the case of covariant-contravariant systems without bivariant actions. The reason that justi-
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fies this constraint is that bivariant actions cannot be approximated in a non-trivial way (either we have
one of them as itself, or we do not have it at all). Instead, covariant and contravariant actions behave in a
more flexible way and we can obtain the desired characterization result by following the lead of the work
done for MTSs.

Then we observe that bivariant actions can be seen as the combination of a covariant and a contravari-
ant action. In fact, this also corresponds with the idea usedin [1] when relating MTSs and cc-systems.
Indeed, the constraint imposed onmusttransitions in MTSs, where they should always be accompanied
by theirmaycounterparts, tells us somehow that they have a “nearly” bivariant behaviour. (To be more
precise, they are first covariant, but they are also “semi”-contravariant because when comparing two pro-
cessesp andq, anymusttransition inq should fit with either a correspondingmusttransition inp, or at
least with amaytransition there.)

We could say that the very recent development of the notion ofpartial bisimulation in the setting
of labelled transition systems (LTSs) presented in [3] has completed the spectrum of modal simulations.
Partial bisimulation combines plain bisimulation [14, 15]and simulation, also by means of a partition of
the set of actions. For the actions in the distinguished setB we have bisimulation-like conditions, while
for the others we only impose simulation. Note that, instead, maytransitions in MTSs corresponded to
contravariant simulation conditions, and therefore, partial bisimulation can be seen as a dual of MTSs,
and covariant-contravariant systems (cc-systems) as a unifying framework where we can combine the
refinement ideas in the theory of MTSs with the explicit consideration of the constraints imposed by the
environment, which is possible when partial bisimulation is used. Once we know that the formulae from
the modal logic for cc-systems also afford a graphical representation, we will be able to integrate the
logical formulae into the development of systems using any of the models discussed above.

The remainder of the paper is organized as follows. Section 2is devoted to the necessary background
on covariant-contravariant simulations, whereas in Section 3 we summarize the results on covariant-
contravariant modal formulae. In Section 4 we develop the study of the graphical representation of
cc-modal formulae for processes without bivariant actions. Afterwards, in Section 5, we show how we
can work with cc-systems with bivariant actions. Finally, Section 6 concludes the paper and describes
some future research that we plan to pursue.

2 Covariant-contravariant systems

We start the technical part of the paper by defining the covariant-contravariant simulation semantics for
processes. Our semantics is defined overLabelled Transition Systems(LTS) S= (P,A,−→), whereP
is a set of process states,A is a set of actions and−→⊆ P×A×P is a transition relation on processes.
We follow the standard practice and writep

a
−→ q instead of(p,a,q) ∈−→. Because of the covariant-

contravariant view, we assume thatA is partitioned intoAl andAr , expressed asA= Al ⊎Ar . As we have
already mentioned in the introduction, we will delay the consideration of the general case where we have
also bivariant actions in a third classAbi until Section 5.

Covariant-contravariant simulation can now be defined as follows:

Definition 1 Let S=(P,Al ⊎Ar
,−→) be an LTS. Acovariant-contravariant simulationover S is a relation

R⊆ P×P such that, whenever p,q∈ P and p R q, we have:

• For all a ∈ Ar and all p
a

−→ p′, there exists some q
a

−→ q′ with p′ R q′.

• For all a ∈ Al and all q
a

−→ q′, there exists some p
a

−→ p′ with p′ R q′.

We will write p.ccq if there exists a covariant-contravariant simulation R such that p R q.
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Remark 1 Note that we call the actions inAr like that, because for those there is a “plain simulation”
from left to right; whereas for the actions inAl there is an “anti-simulation” from right to left.

It is well known that the relation.cc is a preorder.
In this study we will be mainly concerned with “finite” properties of systems, which will be either

captured by (finite) logic formulae, or by finite processes that can be described by means of process
terms.

Definition 2 Assume that A= Al ⊎Ar . Then the collection ofprocess terms, ranged over by p,q etc. is
given by the following syntax:

p ::= 0 | ω | a.p | p+ p,

where a∈ A. We denote the set of process terms byP.
The size of a process term is its length in symbols.

We note that our setP of process terms is basically the set ofBCCSPterms introduced in [8]. The
only addition to the signature of BCCSP is the constantω , which will be used to denote the least LTS
modulo.cc. However, we assume a classification of the actions in two (disjoint) sets, although this is
not reflected in the syntactic structure of the terms. Even ifP only contains finite terms, by means ofω
we will obtain the full contravariant process which can execute any action at any time.

In [5, 6, 7] we used a more general definition for covariant-contravariant simulations which includes
also bivariant actions, but since in the presence of these bivariant actions some technical problems appear
(in particular the processω will not be the least process with respect to the covariant-contravariant
simulation preorder), we have preferred to first develop allthe results without bivariant actions and, in
Section 5, we will describe how they can be extended to a setting with bivariant actions.

Definition 3 Theoperational semanticsof P is defined by the following rules:

• ω b
−→ ω for all b ∈ Al ,

• a.p
a

−→ p for all a∈ A,

• p
a

−→ p′ implies p+q
a

−→ p′,

• q
a

−→ q′ implies p+q
a

−→ q′.

Observe that ifp 6= ω andp
a

−→ p′, then the size ofp′ is smaller than the size ofp.
It is clear thatω is the least possible element with respect to the cc-simulation preorder. That is, we

haveω .cc p for any p.
In what follows we assume thatA is finite.

3 The covariant-contravariant modal logic

Covariant-contravariant modal logic has been introduced and studied in [7].

Definition 4 Covariant-contravariant modal logicL has the following syntax:

ϕ ::=⊥ | ⊤ | ϕ ∧ϕ | ϕ ∨ϕ | [b]ϕ | 〈a〉ϕ (a∈ Ar
,b∈ Al ).

The operators⊥, ⊤, ∧ and∨ have the standard meaning whereas the semantics for the modal operators
is defined as follows:
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p |= [b]ϕ if p′ |= ϕ for all p
b

−→ p′,

p |= 〈a〉ϕ if p′ |= ϕ for some p
a

−→ p′.

We say that a formulaϕ is consistentif there is some p such that p|= ϕ .
Themodal depthof a formula is the maximum nesting of modal operators in it.

The covariant-contravariant logic characterizes the covariant-contravariant simulation semantics over
image-finite processes. Before we state this result formally we introduce some notation. We define the
set of formulae that a processp satisfies byL (p) = {φ | p |= φ} and the logical preorder⊑L as follows:
p⊑L q iff L (p)⊆ L (q). Recall that an LTS isimage finiteiff the set{p′ | p

a
−→ p′} is finite for each

processp and actiona.
Now we have the following theorem:

Theorem 1 ([7]) If the LTS S is image finite then.cc =⊑L over S.

Clearly the processes inP are image finite.

4 Graphical representation of formulae

Whenever we have a (modal) logic characterizing some semantics for processes, we could look for a
single formula that characterizes completely the behaviour of a process logically; this is a so-called
characteristic formula. This subject has been studied by many authors in the literature, but we will just
refer here to the book [2] for more details and further references to the original literature.

It is clear that, since we only allow for finite formulae without any fixed-point operator, we can
only treat “finite” processes, such as those definable by our simple process algebraP. However, the
recursive definition of the characteristic formulae in whatfollows gives us immediately the framework
for extending our results to finite-state processes following standard lines.

Definition 5 A formulaφ ∈ L is a characteristic formulafor a process p iff p|= φ and∀q.(q |= φ ⇒
p.ccq).

In what follows, we writeφ ≤ ψ if {p ∈ P | p |= φ} ⊆ {p∈ P | p |= ψ}. We say thatφ andψ are
logically equivalent, writtenφ ≡ ψ , iff φ ≤ ψ andψ ≤ φ .

Lemma 1 The following statements hold.

1. A formulaφ ∈ L is a characteristic formula for a process p iff∀q.(q |= φ ⇔ p.ccq).

2. Assume thatχ(p) andχ(q) are characteristic formulae for processes p and q, respectively. Then,
we have that

p.ccq iff χ(q)≤ χ(p).

3. A characteristic formula for a process p is unique up to logical equivalence.

Proof.

1. First assume thatφ is a characteristic formula for a processp. By definition∀q.(q |= φ ⇒ p.ccq)
holds. We have to prove that∀q.(p.cc q⇒ q |= φ). To this end, assume thatp.cc q. As p |= φ ,
by Theorem 1 we have thatq |= φ and we are done.

For the converse, asp.cc p we have thatp |= φ and the result follows.
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2. Assume thatχ(p) andχ(q) are characteristic formulae for processesp andq, respectively. First
assume thatp.cc q and thatr |= χ(q). By Definition 5,q.cc r and thusp.cc r. By the previous
clause of the Lemma, alsor |= χ(p). As r was arbitrary, this shows thatχ(q) ≤ χ(p). Next,
assume thatχ(q) ≤ χ(p). As q |= χ(q) then q |= χ(p), and by definition of the characteristic
formula, p.ccq.

3. This claim follows directly from statement 2 above.2

As a characteristic formula for a processp is unique up to logical equivalence, we can denote it by
χ(p) unambiguously. The next lemma tells us thatχ(p) exists for each processp∈ P.

Lemma 2 The characteristic formula for a process p∈ P can be obtained recursively as

χ(p) =
∧

p
a

−→p′,a∈Ar

〈a〉χ(p′)∧
∧

b∈Al

[b](
∨

p
b

−→p′

χ(p′)) , if p 6= ω .

χ(ω) = ⊤.

Proof. First we prove thatp |= χ(p), for eachp. This follows by a simple induction on the size ofp.
Next we prove that, for anyq, q |= χ(p) implies p.ccq by induction on the size ofq.
First we note that ifp= ω thenχ(ω) = ⊤ andω .cc q; hence we obtain the result. Also, for the

casep= 0, we have thatχ(0) is equivalent to
∧

b∈Al [b]⊥. Thus if q |= χ(0), then the processq cannot
perform anyb∈ Al . This yields that 0.ccq.

Now, let p be a process different from 0 andω , and assume thatq |= χ(p). First suppose thatp
a

−→ p′

for somep′ and somea∈ Ar . As q |=
∧

p
a

−→p′,a∈Ar 〈a〉χ(p′), this implies that there is someq
a

−→ q′ with
q′ |= χ(p′). Then, by induction,p′.ccq′.

Next, assume thatq
b

−→ q′, for someq′ andb∈Al . Asq |=
∧

b∈Al [b](
∨

p
b

−→p′
χ(p′)), we can conclude

thatq′ |= χ(p′), for somep′ with p
b

−→ p′. Again, by induction, we concludep′.ccq′. 2

Next we consider the converse problem, we want to represent aformula by a process, or at least by a
finite set of processes.

Definition 6 A formulaφ is represented by a (single) processp if

∀q∈ P. [q |= φ iff p.ccq].

A formulaφ is represented by a finite setM ⊆ P of processes if

∀q∈ P. [q |= φ iff ∃p∈ M. p.ccq].

It is clear thatp representsφ iff {p} representsφ . Moreover, the empty set of processes represents
the formula⊥.

The following lemma connects the notion of “graphical representation” of formulae with that of
characteristic formula for processes.

Lemma 3 We have the following properties:

1. p representsφ iff φ ≡ χ(p).
2. If M ⊆ P is finite andφ is a formula then

M representsφ iff φ ≡
∨

p∈M

χ(p).
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Proof.

1. It follows directly from the definitions of these two concepts and Lemma 1.

2. For anyq∈ P we proceed as follows:

∃p∈ M.p.ccq⇔∃p∈ M.q |= χ(p)⇔ q |=
∨

p∈M

χ(p).

Now the statement of the lemma follows easily from this fact and Definition 6.2

We want to characterize the set of formulae that can be represented by a finite set of processes, and
in particular by a single process. For this purpose we introduce some notions of normal form for logical
formulae.

Definition 7 1. A formulaφ is in normal formif it has the form

φ =
∨

i∈I

(
∧

j∈Ji

〈ai
j〉φ i

j ∧
∧

k∈Ki

[bi
k]ψ

i
k).

where allφ i
j andψ i

k are also in normal form. In particular,⊥ is obtained when I= /0 and⊤ when
I = {1} and J1 = K1 = /0.

2. A formulaψ is in strong normal formif it has the form

ψ =
∨

i∈I

φi ,

where eachφi is in unary strong normal form. A formulaφ is in unary strong normal formif it is
⊤ or it has the form

φ =
∧

j∈J

〈a j〉φ j ∧
∧

b∈Al

[b]ψb,

where everyφ j is in unary strong normal form and everyψb is in strong normal form.

We note that any unary strong normal form different from⊤ can equivalently be written as

φ =
∧

j∈J

〈a j〉φ j ∧
∧

b∈Al

[b]
∨

k∈Kb

ψk
b,

where everyφ j and everyψk
b are in unary strong normal form, thus avoiding the introduction of strong

normal forms.

Remark 2 It is not hard to see that each unary strong normal form is consistent. See also Theorem 2 to
follow.

Clearly the characteristic formulae of processes are in unary strong normal form. Therefore, by
Lemma 3, it is a necessary condition for a formula to be representable by a single process that it has an
equivalent unary strong normal form. We will show that this is also a sufficient condition for this to hold
for any consistent formula.
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Theorem 2 A unary strong normal form

φ =
∧

j∈J

〈a j〉φ j ∧
∧

b∈Al

[b]
∨

k∈Kb

ψk
b

is represented by the process defined recursively by

θ(φ) = ∑
j∈J

a j .θ(φ j )+ ∑
b∈Al

∑
k∈Kb

b.θ(ψk
b), if φ 6=⊤

θ(⊤) = ω .

In particular φ is the characteristic formula forθ(φ) (up to logical equivalence). Note that even if
in the formal expression above there is a summand for each b∈ Al , only those b’s such that Kb 6= /0 will
finally appear as summands ofθ(φ).

Proof. First we prove thatθ(φ) |= φ by induction on the modal depth ofφ . If φ = ⊤ we have that

obviouslyθ(φ) = ω |= φ = ⊤. For the inductive step first we note thatθ(φ)
aj
−→ θ(φ j ) for all j ∈ J.

By induction, θ(φi) |= φi . Next assume thatθ(φ) b
−→ p for someb ∈ Al and somep. We have that

p= θ(ψk
b) for somek∈ Kb. By inductionθ(ψk

b) |= ψk
b and thereforeθ(ψk

b) |=
∨

k∈Kb
ψk

b.
Next we prove that ifq |= φ thenθ(φ).cc q. Towards proving this claim, assume thatq |= φ . Again

we proceed by induction on the modal depth ofφ .
First assume thatθ(φ) a

−→ p′ for somea∈ Ar and process termp′. Thena= a j for some j ∈ J and

p′ = θ(φ j ). As q |= φ , we have thatq
aj
−→ q′ for someq′ with q′ |= φ j . By induction,θ(φ j ).cc q′, as

required.

Now assume thatq
b

−→ q′ for someb∈ Al . As q |= φ we have thatq′ |= ψk
b for somek ∈ K. Now

θ(φ) b
−→ θ(ψk

b) and, by the induction hypothesis, we haveθ(ψk
b).ccq′, as required.

This proves thatφ is the characteristic formula forθ(φ) and therefore, by Lemma 3, thatθ(φ)
representsφ . 2

Next, we will show that any formula has an equivalent strong normal form and therefore can always
be represented by a (possibly empty) finite set of processes.To derive this result we will use several
standard equivalences between formulae.

Lemma 4 The following statements hold.

1. ∧ and∨ are associative, commutative and idempotent.

2. ∧ distributes over∨, and∨ distributes over∧.

3. φ ∨⊤≡⊤, φ ∨⊥≡ φ , φ ∧⊤≡ φ , andφ ∧⊥≡⊥.

4. [b]⊤≡⊤.

5. [b]φ ∧ [b]ψ ≡ [b](φ ∧ψ) for b∈ Al .

6. 〈a〉φ ∨〈a〉ψ ≡ 〈a〉(φ ∨ψ) for a∈ Ar .

Proof. The first three collections of equalities are straightforward and well known, so we omit their
proofs.

• [b]⊤ ≡ ⊤. We havep |= [b]⊤ iff p′ |= ⊤ for all p
b

−→ p′. Therefore, the condition is satisfied

wheneverp
b

−→ p′, and it is vacuously true whenp
b

6−→.
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• [b]φ ∧ [b]ψ ≡ [b](φ ∧ψ). We havep |= ([b]φ ∧ [b]ψ) iff p′ |= φ for all p
b

−→ p′ andp′ |= ψ for all

p
b

−→ p′, iff p′ |= (φ ∧ψ) for all p
b

−→ p′, iff p |= [b](φ ∧ψ).

• 〈a〉φ ∨〈a〉ψ ≡ 〈a〉(φ ∨ψ). We havep |= 〈a〉φ ∨〈a〉ψ iff there existsp
a

−→ p′ such thatp′ |= φ or
there existsp

a
−→ p′′ such thatp′′ |= ψ , that is, iff there exists somep

a
−→ p′0 such thatp′0 |= φ or

p′0 |= ψ . This holds iffp |= 〈a〉(φ ∨ψ). 2

Lemma 5 Every formulaφ has an equivalent strong normal form with no larger modal depth.

Proof. First we prove by induction on the modal depth, using 1-3 of Lemma 4, thatφ has an equivalent
normal form with the same modal depth. To prove the main statement we can therefore assume thatφ is
in normal form. We proceed by induction on the modal depthmd(φ). The base casemd(φ) = 0 (φ ≡⊥
andφ ≡⊤) follows immediately.

Next let us assume that
φ =

∨

i∈I

(
∧

j∈Ji

〈ai
j〉φ i

j ∧
∧

k∈Ki

[bi
k]ψ

i
k).

By Lemma 4, using 4 and 5 and the standard laws described in 1-3, φ can be rewritten into an equivalent
formula of the form

φ =
∨

i∈I

(
∧

j∈Ji

〈ai
j〉φ i

j ∧
∧

b∈Al

[b]ψ i
b)

wheremd(ψ i
b)≤ sup{md(ψ i

k) | k∈ Ki} (we note that some of the[b]ψ i
bs may have the form[b]⊤, which

is equivalent to⊤). Therefore, by the induction hypothesis, we may assume that φ i
j andψ i

b are in strong
normal form. Next we use Lemma 4.6 to remove all the occurrences of∨ that are guarded by〈a〉, for
somea∈Ar in each

∧
j∈Ji

〈ai
j〉φ i

j . The result for eachi is of the form
∧

j∈Ji
(
∨

l∈L j
〈ai

j〉φ
l ,i
j ), where eachφ l ,i

j
is in a unary strong normal form. By repeated use of distributivity, the whole formula can be rewritten as

φ =
∨

r∈R

(
∧

s∈Sr

〈ar
s〉α r

s ∧
∧

b∈Al

[b]
∨

t∈T r
b

β r
b,t)

where eachαs
r andβ b,t

r is a unary strong normal form. Finally we note that the operations described
above do not increase the modal depth.2

Now we will relate our result to the one in Boudol and Larsen’spaper [4].

Definition 8 A formulaφ is prime if the following holds:

∀φ1,φ2 ∈ L . φ ≤ φ1∨φ2 impliesφ ≤ φ1 or φ ≤ φ2.

Theorem 3 A formulaφ can always be represented by a finite set of processes. It can be represented by
a single process if and only if it is consistent and prime.

Proof. By Lemma 5,φ ≡ φ1 ∨ . . .∨ φn where eachφi , 1≤ i ≤ n, is in unary strong normal form. By
Theorem 2,φi ≡ χ(pi) for somepi for each 1≤ i ≤ n, and thereforeφ ≡ χ(p1)∨ . . .∨ χ(pn). The first
statement now follows from Lemma 3.2.

Towards proving the second statement, first assume thatφ ≡ χ(p1)∨ . . .∨ χ(pn) is prime. This
implies thatφ ≤ χ(pi)≤ φ , for somei ∈ {1, . . . ,n}, which in turn implies thatφ ≡ χ(pi).

Next assume thatφ is represented by some processp or equivalently thatφ ≡ χ(p). Now assume
that χ(p) ≤ φ1∨ φ2. As p |= χ(p), this implies thatp |= φ1 ∨ φ2 or equivalently that eitherp |= φ1 or
p |= φ2. Without loss of generality, we can assume thatp |= φ1. Now assume thatr |= χ(p). Thenp.ccr
and by Theorem 1 this implies thatr |= φ1. Sincer was arbitrary, this proves thatφ ≡ χ(p)≤ φ1. Hence
φ is prime, which was to be shown. 2
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5 Considering bivariant actions

Originally [5, 6, 7], the theory of covariant-contravariant semantics also considered bivariant actions in
Abi, so that we had a partition ofA into {Ar

,Al
,Abi} (called the signature of the LTS), and the definition

of covariant-contravariant simulations imposed the following two conditions:

• For all a∈ Ar ∪Abi and allp
a

−→ p′, there exists someq
a

−→ q′ with p′ R q′.

• For all a∈ Al ∪Abi and allq
a

−→ q′, there exists somep
a

−→ p′ with p′ R q′.

When we have in our signature bivariant actions we cannot getdirectly the graphical representation
results that we have presented in Section 4. This is so because bivariant actions cannot be under approx-
imated, as a consequence of the well known result that bisimilarity is an equivalence relation and not a
plain preorder. In order to maintain our results we mandatorily need that notion of approximation. We
obtain it by decomposing each bivariant actiona into a pair of actions, one covariant,ar , and another
contravariant,al . Technically, we define an embedding of the set of processes over an arbitrary signature
A= {Ar

,Al
,Abi} into that corresponding to a new signatureĀ= {Ār

, Āl
, /0}. The latter does not include

any bivariant action, and then we can apply to it our graphical representation results, that then can be
transfered to the original signature by means of the defined embedding.

In [1] we presented transformations from LTSs to Modal Transition Systems (MTSs), and vice versa,
namedM andC , respectively. We proved that both preserve and reflect the covariant-contravariant logic
and simulation preorder. Applying these two transformations in a row we did not obtain the identity
function, but instead a transformationT0 = C ◦M that transforms an LTS with bivariant actions into
another LTS without them. Since composition preserves the good properties ofC andM , T0 also has
these properties.

Next we give a direct definition ofT0.

Definition 9 Let T be an LTS with the signature A= {Ar
,Al

,Abi}. The LTST0(T) with signatureÂ=
{Âr

, Âl
, /0}, whereÂr = {dr | d ∈ Ar ∪Abi} andÂl = {dl | d ∈ Ar ∪Al ∪Abi}, is constructed as follows:

• The set of states ofT0(T) is the same as the one of T plus a new state u.

• For each transition p
d

−→ p′ in T , add a transition p
dl

−→ p′ in T0(T).

• For each transition p
d

−→ p′ in T with d∈ Ar ∪Abi, add a transition p
dr

−→ p′ in T0(T).

• For each a∈ Ar and state p, add the transition p
al

−→ u to T0(T), as well as transitions u
dl

−→ u,
for each action d∈ A.

Note that eachc ∈ Abi is “encoded” by means of a pair of new actions(cr
,cl ). Moreover, as a

consequence of the general definition ofM , for eacha ∈ Ar , together withar , which is its “natural”
encoding an additionalal ∈ Al , coupled with it, is introduced. Finally, the behaviour of the “extra” state
u is defined byω .

Based on this transformation, we have designed a direct encoding of LTSs over a signatureA =
{Ar

,Al
,Abi} by means of LTSs over an adequate signatureĀ= {Ār

, Āl
, /0}. As above, for eachc∈ Abi in

the original signature, we introduce a pair of (new) actions, as the following definition makes precise.

Definition 10 Let T be an LTS with signature A= {Ar
,Al

,Abi}. The LTST (T), with signatureĀ =
{Ār

, Āl
, /0}, whereĀr = Ar ∪{cr | c∈ Abi} andĀl = Al ∪{cl | c∈ Abi}, is constructed as follows:

• The set of states ofT (T) is the same as that of T .

10



X Y Z
a

c

b
C ◦M
7−→

X Y Z

u

ar
,al

cr
,cl

bl

al al

al

al
,cl

,bl

Figure 1: The original transformation of a LTS with bivariant actions into another
without them, assumingAr = {a}, Al = {b} andAbi = {c}.

• All the transitions from T with label in Ar ∪Al are inT (T).

• For each transition p
c

−→ p′ in T with c∈ Abi, we add p
cr

−→ p′ and p
cl

−→ p′ to T (T).

The transformation above produces an LTS without bivariantactions more closely related to the
original covariant-contravariant LTS than that produced by T0 (compare Figure 2 with Figure 1). Note

that the class of LTSs with signaturēA that satisfy thatp
cr

−→ p′ if and only if p
cl

−→ p′, for all p, p′ ∈ P,
and allc∈ Abi; is exactly the class of processes that are the representation of some LTS with signatureA.

To translate modal formulae we have just to adopt the right modality for each action, as the following
definition makes precise.

Definition 11 Let us extendT to translate modal formulae over the modal logic for LTS overA into
modal formulae over the modal logic for LTS overĀ, as follows:

• T (⊥) =⊥.

• T (⊤) =⊤.

• T (ϕ ∧ψ) = T (ϕ)∧T (ψ).

• T (ϕ ∨ψ) = T (ϕ)∨T (ψ).

• T (〈a〉ϕ) = 〈a〉T (ϕ), if a ∈ Ar .

• T (〈c〉ϕ) = 〈cr〉T (ϕ), if c∈ Abi.

• T ([b]ϕ) = [b]T (ϕ), if b ∈ Al .

• T ([c]ϕ) = [cl ]T (ϕ), if c∈ Abi.

X Y Z
a

c

b
T
7−→ X Y Z

a

cr
,cl

b

Figure 2: The new transformationT (T) of an LTS with bivariant actions into an-
other without them, assumingAr = {a}, Al = {b} andAbi = {c}.

In order to show thatT preserves and reflects the cc-simulation preorder, we compare T (T) with
T0(T) and we prove a more general result.
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Definition 12 Given a signature{Ar
,Al

, /0} and cl ∈ Al we define the transformationT +
cl as that which

given an LTS T with that signature adds a new state u whose behaviour is that defined byω , and a new
transition labelled by cl from each state of T to u.

Proposition 1 T
+

cl preserves and reflects the cc-simulation preorder when applied to a system that does
not contain any cl transition.

Proof. We will see thatR is a cc-simulation inT if and only if R∪{(u,u)} is a cc-simulation inT +
cl (T).

The result is immediate by simply observing that fora-transitions, witha 6= cl , the leaving of any state

p with p 6= u are exactly the same inT andT
+

cl (T), while for any such state we always havep
cl

−→ u in
T

+
cl (T). 2

Corollary 1 Let T be an LTS with signature{Ar
,Al

,Abi}. Then, for any two states p and q of T , we
have p.ccq in T (T) if and only if p.ccq in T0(T).

Proof. Note thatT (T) is a{Ār
, Āl

, /0}-LTS, while T0(T) is an{Âr
, Âl

, /0}-LTS, whereÂr = {ar | a∈
Ar ∪Abi} and Âl = Āl ∪{al | a ∈ Ar}. This means that we can also seeT (T) as an{Âr

, Âl
, /0}-LTS if

we rename eacha ∈ Ar into the correspondingar ∈ Âr . Then, we can applyT +
al for eacha ∈ Ar in a

row, thus getting a transformed systemT +(T). All along these applications we are under the hypothesis
of Proposition 1. Moreover, the only differences betweenT +(T) andT0(T) are the collection ofal -
transitions paired with thear -transitions inT, with a∈ Ar . But since for any statep of T +(T) we have

p
al

−→ u, for all al ∈ {al | ar ∈ Ar}, we immediately conclude that the identity is a cc-simulation in both
directions (up-to the indicating renaming) between the states ofT +(T) and those inT0(T), from which
we finally obtain thatp.ccq in T (T) iff p.ccq in T0(T). 2

Corollary 2 Our transformationT preserves and reflects the cc-simulation preorder, that is,for each
LTS T and for all states p and q in T , it holds that p.ccq in T if, and only, if p.ccq in T (T).

Proof. We just need to combine Proposition 1 and Corollary 1.2

Proposition 2 T preserves and reflects the cc-logic, that is, for each LTS T, any state p and all
covariant-contravariant formulaϕ in T , it holds that p|= ϕ in T if, and only if, p|= T (ϕ) in T (T).

Proof. We proved in [1] the corresponding result forT0 and the transformationT0 which is defined on
logic formulae exactly asT , but renaming again eacha∈ Ar into ar . From the definitions ofT andT0

we immediately conclude thatal -transitions witha∈ Ar do not play any role in the satisfaction of any
formulaT (ϕ), and then the result follows from that proved in [1].2

After the representation of a bivariant actionc∈ Abi as a pair(cr
,cl ) with cr ∈ Ār andcl ∈ Āl , we

have thatcl under-approximatesc, whereascr over-approximatesc. This means in particular that we
havecl 0.cc cl 0+ cr0.cc cr0 and, more generally,cl p.cc cl p+ crq.cc crq, for all processesp and
q. Therefore, once we have separated the covariant and contravariant characters of bivariant actions
we achieve a greater flexibility which allows us to consider “non-balanced” processes where these two
characters do not go always together, thus producing over and under-approximations when needed.

Discussion It is interesting to compare our new transformationT with the original transformationT0

from [1]. The first aims to obtain a representation over the signature{Ār
, Āl

, /0} that is as simple as
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possible, and this is why we do not introduceal whena ∈ Ar . Instead, we can see the result of the
transformationT0 as a process in the “uniform” signatureÃ= {Ãr

, Ãl
, /0}, with Ãr = {ar | a∈ Ar ∪Al ∪

Abi} andÃl = {al | a∈Ar ∪Al ∪Abi}. It is true that the actionsbr with b∈ Al do not appear inT0(T), but
even so we can consider anyT0(T) as a process for̃A. Obviously, this is also the case forT (T), where
the actionsal with a∈ Ar do not appear either. BothT0(T) andT (T) were “good” representations of
T, as stated above, however it is clear that we do not haveT0(T)≡cc T (T). Instead,T0(T).ccT (T),
and in factT0(T) is the least process with respect to.cc, for the uniform signaturẽA that has the good
properties stated in the paper. Note that, instead,br -transitions forb∈ Al do not need to be introduced at
all, since any addition of a covariant transitions producesa.cc-greater process.

Therefore, the original transformationT0 would be indeed the adequate one if we wanted to obtain
an embedding of the class of processes for any signature intothat corresponding to the uniform signature
Ã defined above, where all the actions can be interpreted as thecovariant and contravariant parts of the
actions in a setA.

To conclude the section we explore the set of systems for any signatureĀ = {Ār
, Āl

, /0}. Some of
them, but not all, are equivalent to the representation of a system for the original alphabetA. Whenever
that is not the case we would need to remove (or add) some transitions labelled by the created actions
in {cr

,cl | c∈ Abi} in order to obtain a system that is equivalent to the representation of some process.
In the following proposition we give an algorithm for obtaining a system for the original signatureA to
which a given system for the signaturēA is equivalent, whenever such a system exists. To make possible
a proof by (structural) induction, we will only present the result for process terms inP.

Proposition 3 Let A= {Ar
,Al

,Abi} be a signature and̄A= {Ār
, Āl

, /0} be the associated signature with-
out bivariant actions. Let p,q ∈ P be process terms for̄A such that q is the representation of some
process for the signature A. Let us assume that p≡cc q. Then it is possible to transform p into the
representation pbi of some process term for A, simply by adding or removing some transitions labelled
by actions in{cr

,cl | c∈ Abi}.

Proof. The proof is done by structural induction.

• If p= 0 or p= ω we can takepbi = p.

• In the general case, we exploit the fact that whenevera ∈ Ār , if q′ .cc p′ thenap′ + aq′ ≡cc ap′

(and dually, whenb∈ Āl , bp′+bq′ ≡cc bq′). This means that from any term for̄A we can remove
all the summandsaq′′ (resp. bp′′) such thatap′′ is not a maximala-summand ofp′ with respect
to .cc (resp.bp′′ is not a minimala-summand), obtaining a≡cc-equivalent process. So, we start
by removing all the non-maximala-summands witha∈ Ār , and all the non-minimalb-summands
with b∈ Āl of any subterm ofp. By abuse of notation, we will still denote the obtained process by
p, and we still havep≡cc q.

Now, for anya-summand ofp with a∈ Ār , p= p′+ap′′, there is someq
a

−→ q′′ with p′′.cc q′′.
But also, sincep≡cc q, starting withq

a
−→ q′′ there must exist somep

a
−→ p′′′ with q′′.cc p′′′, but

then p′′.cc p′′′, and sincep′′ was maximal we can assume thatp′′′ = p′′, and then we also have
p′′ ≡cc q′′. The same is true for all theb-summands withb∈ Āl , and this means that we can apply
the induction hypothesis to all the derivatives ofp.

Moreover, for eachap′ summand witha = cr we can add top the summandcl p′ and we obtain
p≡cc p+cl p′. Indeed, we have triviallyp+cl p′.cc p, and to prove thatp.cc p+cl p′ we check

q.cc p+ cl p′. We only need to see that for any transitionp+ cl p′
cl

−→ p′ there is someq
cl

−→ q′
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with q′.cc p′. We use again the maximality of the summandcr p′ and we obtain, as above, that
there is somecrq′ summand ofq with q′.cc p′. But sinceq was the representation of some process
for A, it has also a summandcl q′ as required above.

The obtained process has already itscr andcl transitions, withc∈ Abi, paired at its first level, and
then we simply need to apply the induction hypothesis to conclude the proof.2

Remark 3 Although the proposition above assumes that the consideredprocess was equivalent to the
representation of some process forA, it is easy to use it as a decision algorithm to check that property:
we apply the algorithm to the given processp and check if the obtained processp′ is ≡cc-equivalent to
it, if that is not the case thenp is not equivalent to the representation of any process for the signatureA.

6 Conclusions and future work

In [1] we studied the relationships between the notion of refinement over modal transition systems, and
the notions of covariant-contravariant simulation and partial bisimulation over labelled transition sys-
tems. Here we have continued that work by looking for the “graphical” representation of the covariant-
contravariant modal formulae by means of terms, as it was done in [3] for the case of modal transition
systems. For technical reasons, we had first to restrict ourselves to the case in which we have no bivari-
ant actions. Afterwards, we argued that the general case can, in some sense, be “reduced” to the one we
dealt with in Section 4 by defining a semantic-preserving transformation between covariant-contravariant
systems with bivariant actions, and covariant-contravariant systems without them.

The idea was to separate each bivariant action into its covariant and its contravariant parts. As a
matter of fact, we believe that this idea might be useful not only for obtaining theoretical results, as we
have done here, but also for applications. Most of the studies on process algebras and their semantics
assume the bivariant behaviour of all the actions. It is truethat in some studies (see for example [13]) we
have a classification of actions, as we have also done in [1] and in this paper. But now we are proposing
to exploit the relationships between the different classesof actions.

As future work, it would be interesting to obtain a direct characterization of the formulae that are
graphically representable in a setting with bivariant actions. Such a direct characterization will also pave
the way towards a more general theory of “graphical characterizations” of formulae in modal logics of
processes, of which the result by Boudol and Larsen and ours are special cases.

Of course, one of the directions in which we plan to continue our studies is that related with the
logical characterization of the semantics, and in particular the connections between logical formulae and
terms established by characteristic formulae and graphical representations. The combination of these
two frameworks is also an interesting challenge. In particular, we plan some extensions of the recent
work by Lüttgen and Vogler [11, 12] to the case of covariant-contravariant systems.
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