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Abstract

By means of several examples of structural operational semantics for a variety of
languages, we justify the importance and interest of using the notions of strategies
and simulations in the semantic framework provided by rewriting logic and imple-
mented in the Maude metalanguage. On the one hand, we describe a basic strategy
language for Maude and show its application to CCS, the ambient calculus, and the
parallel functional language Eden. On the other hand, we show how the concept
of stuttering simulation can be used inside Maude to show that a stack machine
correctly implements the operational semantics of a simple functional language.
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1 Introduction

A unique point of view, formalism, or abstraction level is not sufficient to rep-
resent a system and reason about its behavior. Hence it is essential to move
from one formalism to another to be able to specify different aspects and
requirements of a system: functional correctness, concurrency, security, fault
tolerance, etc. This requires the development of formal methods and tools to
achieve formal interoperability, so that we can relate in a mathematically rig-
orous way the different and complementary formalizations of a system. Thus,
a key step towards formal interoperability is the study of logical and semantic
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frameworks where we can define, execute, and interoperate different logics,
languages, and formalisms.

One such framework is rewriting logic [25], which provides a semantic frame-
work where we can express different languages and models of computation.
The initial work in this area is [22], which studies the representation of differ-
ent operational semantics in rewriting logic. 1 Later, we extended the notion
of semantic framework to executable semantic framework [34,37], obtaining
representations for several operational semantics that can be executed in the
declarative language Maude [6,7], based on rewriting logic; thus, Maude be-
comes a metalanguage to specify different kinds of languages.

In this paper we review how to use Maude to specify operational semantics.
We will see that the need to add mechanisms that allow for more control of the
execution becomes readily apparent and describe a basic strategy language we
have proposed for Maude [24,9], which will be made available in the next ver-
sion of the system; several examples of operational semantics where strategies
play an essential role are presented, including CCS [29], the ambient calcu-
lus [4], and the parallel functional language Eden [20]. This is an updated
presentation of work that previously has been described only in conference
papers.

Using two different operational semantics for the same functional language,
we also motivate the need to relate semantics that work at different levels of
abstraction. The notion of simulation is appropriate for this, but we notice
that the mismatch in atomicity requires the additional flexibility provided by
the notion of stuttering simulation, that we also introduced in the context of
rewriting logic in previous conference papers [23,10]. Here we use this concept
to show that a stack machine correctly implements the operational semantics
of a functional language. The motivation and application of the simulation
notions to proving properties of operational semantics is a new contribution
of this paper, which also appears in [30] (in Spanish).

These two strands of work, on strategies and simulations, are relatively in-
dependent of each other, but we treat them together here because both of
them take place in the context of the rewriting logic framework and because
we want to emphasize their common application to the specification of oper-
ational semantics in such framework.

1 Of course, this work did not take place in isolation and it was influenced both by
previous work on algebraic semantics in OBJ (including, among others, [12,17,13]),
and by contemporaneous work by other researchers on similar ideas (such as, for
example, [26,18,19]).
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2 Ingredients of rewriting logic

A system is axiomatized in rewriting logic [25] by a rewrite theory R =
(Σ, E, R), where (Σ, E) is an equational theory describing its set of states
(the static part) as the algebraic data type TΣ/E associated to the initial al-
gebra (Σ, E). The system’s transitions (the dynamic part) are axiomatized by
the conditional rewrite rules R which are of the form l : t −→ t′ if cond, with l
a label, t and t′ Σ-terms, possibly with variables, and cond a condition involv-
ing equations and rewrites. Deduction in the logic corresponds to computation
with those transitions. Under reasonable assumptions about E and R, rewrite
theories are executable; in particular, Maude [6,7] offers support for multiple
sorts, subsort relations, operator overloading, and much more. Elan [2,3] and
CafeOBJ [11] are other rewriting logic implementations.

To illustrate both these ideas and Maude syntax consider the following ex-
ample. We have some natural numbers written on a blackboard and we are
allowed, at any given time, to replace any two of them by their arithmetic
mean. In this case the static part corresponds to the representation of the
blackboard and the numbers themselves. To represent the numbers we simply
import the predefined module NAT, which contains a type Nat and operators 0,
s, + , and quo that represent zero, succesor, addition, and integer division,
respectively. As for the blackboard, it can be represented as a (nonempty)
multiset, or bag, of numbers.

mod BLACKBOARD is
including NAT .
sort Blackboard .
subsort Nat < Blackboard .
op __ : Blackboard Blackboard -> Blackboard [assoc comm] .
vars M N : Nat .
rl [play] : M N => (M + N) quo 2 .

endm

The subsort declaration tells Maude that a single number constitutes a valid
representation for the blackboard. Multiset union is represented with empty
syntax ; note that this operator has two attributes, assoc and comm, so that
terms of sort Blackboard are considered modulo associativity and commu-
tativity (e.g., s(0) 0 and 0 s(0) become indistinguishable). The system’s
dynamics is specified by a single rule; the word in brackets after the keyword
rl is the rule’s name and is optional. Note that it is enough to specify the
behavior of the two numbers that are going to be erased, without considering
the rest of the numbers in the blackboard.

Finally, since it will be used in later sections, let us extend this module with
two operations for calculating the maximum and minimum of the numbers
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on the blackboard, and one operation for removing a given number. All these
operations are defined equationally by means of equations introduced by the
keyword eq.

mod EXT-BLACKBOARD is
including BLACKBOARD .
ops max min : Blackboard -> Nat .
op remove : Nat Blackboard -> Blackboard .
vars M N : Nat .
var B : Blackboard .
eq max(N) = N .
eq max(N M) = if (N > M) then N else M fi .
eq max(N M B) = if (N > M) then max(N B) else max(M B) fi .
*** similar equations for min
eq remove(N, N B) = B .
eq remove(N, B) = B [otherwise] .

endm

3 Operational semantics

Structural operational semantics for different languages are described by means
of inference rules of the form

P1 → Q1 . . . Pn → Qn

P0 → Q0

,

where Pi and Qi represent states of the execution, and Pi → Qi represents
transitions between such states [31]. Such an inference rule can be seen as a
conditional rewrite rule of the form

P0 −→ Q0 if P1 −→ Q1 ∧ . . . ∧ Pn −→ Qn ;

in this way the operational semantics becomes a rewriting logic specification
in Maude. The intuitive idea is that a given expression is rewritten until we
obtain the value to which this expression is reduced according to the opera-
tional semantics. If this representation of the semantics is executable, then we
automatically get an interpreter prototype for the language in question; this
method is studied in detail and applied in [37,34].
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3.1 A simple functional language: Fpl--

To illustrate these ideas let us consider a simple functional language called
Fpl-- (which is Hennessy’s Fpl language [14] without function declarations and
application 2 ) and show what its operational semantics looks like in Maude.

The grammar defining the language (operations, Boolean operations, expres-
sions, and Boolean expressions) is:

op ::= + | − | ∗

bop ::= And | Or

e ::= n | x | e′ op e′′ | If be Then e′ Else e′′ | let x = e′ in e′′

be ::= bx | T | F | be′ bop be′′ | Not be′ | Equal(e, e′)

where n is a number, x a numerical variable, and bx a Boolean variable.

A state in the operational semantics is a pair 〈ρ, e〉, where ρ is an environment
assigning values to variables and e is an Fpl-- expression. A final state is a
pair 〈ρ, v〉, where v is a value, i.e., either a number n or a Boolean constant T
or F. The operational semantics in Figure 1 (where we have omitted similar
rules defining the relation →B for the evaluation of Boolean expressions) then
defines a step in the evaluation of an expression

〈ρ, e〉 →A 〈ρ′, e′〉.

These steps are repeated until the final value of a given expression is ob-
tained. 3

The translation to Maude of these operational semantics rules (again, we omit
the rules for Boolean expressions) is then straightforward:

rl [Var] : < rho, x > => < rho, rho(x) > .
rl [Op] : < rho, v op v’ > => < rho, Ap(op,v,v’) > .
crl [Op] : < rho, e op e’ > => < rho’, e’’ op e’ >

if < rho, e > => < rho’, e’’ > .
crl [Op] : < rho, e op e’ > => < rho’, e op e’’ >

2 The representation of the complete Fpl language in a way more similar to that in
[14] can be found in [37], which also includes the algebraic signature corresponding
to the language grammar below.
3 Here the transitions are presented in the form 〈ρ, e〉 →A 〈ρ′, e′〉 instead of the
form ρ ` e →A e′ as in Hennessy’s book [14] in order to ease the comparison with
the stack machine semantics in Section 6.
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Var
〈ρ, x〉 →A 〈ρ, ρ(x)〉

Op
〈ρ, v op v′〉 →A 〈ρ, Ap(op, v, v′)〉

〈ρ, e〉 →A 〈ρ′, e′′〉
〈ρ, e op e′〉 →A 〈ρ′, e′′ op e′〉

〈ρ, e′〉 →A 〈ρ′, e′′〉
〈ρ, e op e′〉 →A 〈ρ′, e op e′′〉

If
〈ρ, be〉 →B 〈ρ′, be′〉

〈ρ, If be Then e Else e′〉 →A 〈ρ′, If be′ Then e Else e′〉

〈ρ, If T Then e Else e′〉 →A 〈ρ, e〉 〈ρ, If F Then e Else e′〉 →A 〈ρ, e′〉

Loc
〈ρ, e〉 →A 〈ρ′, e′′〉

〈ρ, let x = e in e′〉 →A 〈ρ′, let x = e′′ in e′〉

〈ρ, let x = v in e′〉 →A 〈ρ, e′[v/x]〉

Fig. 1. Fpl-- operational semantics

if < rho, e’ > => < rho’, e’’ > .
crl [If] : < rho, If be Then e Else e’ > =>

< rho’, If be’ Then e Else e’ >
if < rho, be > => < rho’, be’ > .

rl [If] : < rho, If T Then e Else e’ > => < rho, e > .
rl [If] : < rho, If F Then e Else e’ > => < rho, e’ > .
crl [Loc] : < rho, let x = e in e’ > =>

< rho’, let x = e’’ in e’ >
if < rho, e > => < rho’, e’’ > .

rl [Loc] : < rho, let x = v in e’ > => < rho, e’[v / x] > .

The substitution operation used in rule [Loc] can be defined equationally as
follows:

op _[_/_] : Exp Val Var -> Exp .
eq n [v / x] = n .
eq y [v / x] = if x == y then v else y fi .
eq (e1 op e2) [v / x] = (e1 [v / x]) op (e2 [v / x]) .
eq (If be Then e1 Else e2) [v / x] =

If (be[v / x]) Then (e1[v / x]) Else (e2[v / x]) .
eq (let x = e1 in e2) [v / x] = let x = (e1 [v / x]) in e2 .
ceq (let y = e1 in e2) [v / x] =

let y = (e1 [v / x]) in (e2 [v / x])
if x =/= y .

Due to the simplicity of the language and the way the left and right-hand sides
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α.P
α−→ P

P
α−→ P ′

P + Q
α−→ P ′

P
α−→ P ′

P [f ]
f(α)−→ P ′[f ]

P
α−→ P ′

P |Q α−→ P ′|Q
P

a−→ P ′ Q
a−→ Q′

P |Q τ−→ P ′|Q′

P
α−→ P ′

P\L α−→ P ′\L
α 6∈ L ∪ L

P
α−→ P ′

X
α−→ P ′

X =def P

Fig. 2. CCS operational semantics

of the rules have been represented, they can be used directly as an interpreter
prototype. This is not always the case, as we will see below.

We have shown here a (small-step) computation semantics for a functional
language. Maude can be used in the same way to represent (big-step) evalu-
ation semantics as well as different semantics for imperative languages [37].
More recent work on operational semantics in Maude includes Meseguer and
Roşu’s continuation-based approach [28].

3.2 CCS

As another example we present the operational semantics for the process al-
gebra CCS [29]. Its defining rules appear in Figure 2.

First we define the CCS syntax in Maude. Quoted identifiers are used to rep-
resent labels and process identifiers. Notice the attributes assoc and comm for
the summation and parallel composition operators. The operators’ precedence
is set by means of the attribute prec.

fmod CCS-SYNTAX is
protecting QID .
sorts Label Act ProcessId Process .
subsorts Qid < Label < Act .
subsorts Qid < ProcessId < Process .
op ~_ : Label -> Label .
eq ~ ~ L:Label = L:Label .
op tau : -> Act .
op 0 : -> Process .
op _._ : Act Process -> Process [prec 25] .
op _+_ : Process Process -> Process [assoc comm prec 35] .
op _|_ : Process Process -> Process [assoc comm prec 30] .
op _[_/_] : Process Label Label -> Process [prec 20] .
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op _\_ : Process Label -> Process [prec 20] .
endfm

Full CCS is represented, including (possibly recursive) process definitions by
means of contexts. A context is well-formed if a process identifier is defined
at most once (the union of contexts _&_ is a partial operation, as shown by
the arrow ~>). We use a conditional membership axiom (cmb) to establish
which terms are well-formed contexts (of sort Context). The evaluation of
def(X, C) returns the process associated to process identifier X if it exists;
otherwise, such term does not reduce, remaining as an error term [7].

fmod CCS-CONTEXT is
protecting CCS-SYNTAX .
sort Context .
op _=def_ : ProcessId Process -> Context [prec 40] .
op nil : -> Context .
op _&_ : Context Context ~> Context [assoc comm id: nil prec 42] .
op _definedIn_ : ProcessId Context -> Bool .
op def : ProcessId Context ~> Process .
op context : -> Context .
var X : ProcessId .
var P : Process .
var C : Context .
cmb (X =def P) & C : Context if not(X definedIn C) .
eq X definedIn (X =def P & C) = true .
eq X definedIn C = false [otherwise].
eq def(X, (X =def P) & C) = P .

endfm

This module includes a constant context used to keep the definitions of the
process identifiers appearing in a CCS specification.

In order to implement the CCS semantics in Maude we want to interpret a CCS
transition P

α−→ P ′ as a rewrite. However, rewrites have no labels, which are
essential in the CCS semantics; therefore, we instead make the label a part of
the resulting term, obtaining in this way a rewrite of the form P −→ {α}P ′,
where {α}P ′ is a value of sort ActProcess, a supersort of Process. The
following module includes the CCS semantics implementation.

mod CCS-SEMANTICS is
protecting CCS-CONTEXT .
sort ActProcess . subsort Process < ActProcess .
op {_}_ : Act ActProcess -> ActProcess .
vars L M : Label . var X : ProcessId . var A : Act .
vars P P’ Q Q’ : Process . var AP : ActProcess .
rl [prefix] : A . P => {A}P .
crl [sum] : P + Q => {A}P’ if P => {A}P’ .
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crl [par1] : P | Q => {A}(P’ | Q) if P => {A}P’ .
crl [par2] : P | Q => {tau}(P’ | Q’)

if P => {L}P’ /\ Q => {~ L}Q’ .
crl [rel1] : P[M / L] => {M}(P’[M / L]) if P => {L}P’ .
crl [rel2] : P[M / L] => {~ M}(P’[M / L]) if P => {~ L}P’ .
crl [rel3] : P[M / L] => {A}(P’[M / L])

if P => {A}P’ /\ A =/= L /\ A =/= ~ L .
crl [res] : P \ L => {A}(P’ \ L)

if P => {A}P’ /\ A =/= L /\ A =/= ~ L .
crl [def] : X => {A}P if (X definedIn context) /\

def(X,context) => {A}P .
*** transitive closure

crl [trans] : P => {A}AP if P => {A}Q /\ Q => AP .
endm

The first nine rules correspond to the CCS operational semantic rules, while
the rule trans represents the transitive closure of the CCS transition rela-
tion. 4 In Section 5.1 we will present a strategy that specifies how these rules
have to be combined.

It is important to realize that there exist fundamental differences between
both examples:

• The semantics of the functional language is deterministic and its rules can
be applied in several different ways to always reach the same final result.

• The semantics of CCS is nondeterministic: depending on the way the rules
are applied we usually obtain different results, or nontermination.

• Moreover, there are rewrite computations that do not make sense. In the
case of CCS, for example, rewriting should only occur at the top; this can
be achieved using several techniques (like using the frozen attribute that
forbids rewriting of an operator’s arguments), as described in [34,37]. We
will see in Section 5.1 how strategies can also help in this respect.

4 Strategies to control rewriting

Since there are no confluence or termination requirements on the rules in a
rewrite theory, in many cases the rewriting process has to be controlled so that
it does not become “lost.” The Maude system provides commands to explore
either a single rewriting computation (rewrite) or all of them (search), but

4 The rewrites allowed by the rule trans include the one-step rewrites allowed by
the other rules (applied to solve the first rewrite condition), because the second
rewrite condition of rule trans can be solved with no rewrites when process Q and
variable AP match directly.
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many times we would like to have strategies to explore only those computations
satisfying some constraints. Indeed, the need to use strategies to control the
rewriting process was recognized from the beginning in the development of
rewriting logic and of systems implementing rewriting logic computation. In
particular, strategies are an essential part of the Elan system, that provides
a basic set of strategies that can be used when writing rewrite rules, so that
at the specification level it is not enforced a separation between rules and
strategies [2,3].

Such strategies are “above” the computations they control, i.e., they belong
to the metalevel. The Maude system implements its own metalevel, allowing
in this way the internal definition of strategies [7]; however, there are many
users who do not want to use such powerful techniques at the metalevel.
Motivated by this, we have designed and prototyped, in joint work with J.
Meseguer, a basic strategy language to be used at the object level [24,9].
This language allows the definition of strategies to control the way in which
rewrite rules are applied. We have benefitted from our own previous experience
designing strategy languages in Maude, and also from the experience of other
languages like Elan [3,2] and Stratego [38,39]. TOM [1] is also a recently
proposed language for programming by means of transformations that can be
controlled by using strategies.

Our design is based on a strict separation between the rule level and the
strategy level. This is achieved by means of strategy modules which associate
strategies with a given system module.

4.1 Strategy language

In this section we briefly present most of the elements of the strategy language
for Maude. For more details, the reader can see the papers [24,9].

4.1.1 Idle and fail

The simplest strategies are the constants idle and fail. The first always
succeeds, but without modifying the term t to which it is applied, while the
second always fails.

4.1.2 Basic strategies

A basic strategy L[S] instructs Maude to apply a rule (given its label L and
a substitution S providing values for its variables) to a term, in any position.
If the rule is conditional, we can use strategies to indicate how the rewrite
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conditions have to be checked. Thus, L[S]{E1,...,En} denotes a basic strat-
egy that tries to apply the rule L with the substitution S using the strategy
expressions E1, . . . , En to check the n rewrite conditions of the conditional rule
L. To restrict the application of a rewrite rule to the top of a term (without
descending into subterms), the operator top is provided.

4.1.3 Tests

There are strategies that work as tests to check a property of a term, by means
of pattern matching. amatch T s.t. C is a strategy that, when applied to a
term T’, is successful if there exists a subterm of T’ that matches the pattern
T (that is, matching is allowed anywhere in the state term) and such matching
satisfies the condition C. Otherwise, it fails. match T s.t. C corresponds to
matching only at the top. The such that fragment can be omitted when the
condition C is simply true.

4.1.4 Operators over strategies

Basic strategies are combined so that strategies are applied to execution paths.
The first strategy combinators we consider are the typical regular expressions
constructions: concatenation, union, and iteration.

〈Strat〉 ::= 〈Strat〉 ; 〈Strat〉 concatenation

| 〈Strat〉 | 〈Strat〉 union

| 〈Strat〉 * iteration (0 or more)

| 〈Strat〉 + iteration (1 or more)

4.1.5 Conditional strategies

The if-then-else combinator ? : allows the definition of conditional strate-
gies, such that its first argument is also a strategy. If the first argument is
successful, computation continues with the second argument (also a strategy);
otherwise, the first strategy is discarded and the strategy given as third argu-
ment is applied.

Using the if-then-else combinator, we can define many other useful strategy
combinators as derived operations. E orelse E’ evaluates E in a given state;
if such evaluation is successful, its results are the final ones, but if it fails, then
E’ is evaluated in the initial state.

E orelse E’ = E ? idle : E’
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not(E) reverses the result of evaluating E, so that not(E) fails when E is
successful and vice versa.

not(E) = E ? fail : idle

An interesting use of not(E) is the following “normalization” (or “repeat until
the end”) operation E !:

E ! = E * ; not(E)

try(E) evaluates E in a given state; if it is successful, the corresponding result
is given, but if it fails, the initial state is returned.

try(E) = E ? idle : idle

Evaluation of test(E) checks the success/failure result of E, but it does not
change the given initial state.

test(E) = not(E) ? fail : idle

Notice that test(E) = not(not(E)).

4.1.6 Decomposition strategies

With the previous combinators we cannot force the application of a strategy
to a specific subterm of the given initial term. The operator amatchrew allows
finer control by means of strategies that rewrite subterms of a given term.
When the strategy expression amatchrew T s.t. C by T1 using E1, ...,

Tn using En is applied to a state term T’, first a subterm of T’ that matches T
and satisfies C is selected. Then, the terms T1,...,Tn (which must be disjoint
subterms of T), instantiated appropriately, are rewritten as described by the
strategy expressions E1,...,En, respectively. The results are combined in T

and then substituted in T’.

The version matchrew works in the same way, but performing matching only
at the top. The congruence operators used in Elan and Stratego [3,39] are
special cases of this matchrew combinator, as shown in [24].

4.1.7 Recursion

Recursion is achieved by naming a strategy expression and using this name in
the expression itself or in other expressions defining related strategies (exam-
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ples will be shown in the following sections). Moreover, strategy names can
also have arguments [9].

4.2 Implementations of the strategy language

Using the mechanisms provided by the Maude system as a metalanguage, we
have implemented a prototype of the basic strategy language [24]. The met-
alevel features of Maude allow the definition of operations to work with mod-
ules and computations as objects, as is the case with strategies. The prototype
works internally with a labelled version of the computation tree obtained by
applying a strategy to a term. The prototype is completed with a user in-
terface providing commands to load modules, execute strategy expressions on
states, and show results.

After validating the language experimentally and reaching a mature language
design, a direct implementation of our strategy language at the C++ level, at
which the Maude system itself is implemented, is currently being developed
[9]. This will make the language a stable new feature of Maude and will allow
a more efficient execution.

4.3 Simple examples

4.3.1 The blackboard

Recall our blackboard example from Section 2. Now assume that our goal
is, by applying the single rule of the system, to get at the end the greatest
possible number on the blackboard.

Some possible strategies, among others, consist in always taking the two great-
est numbers, or the two smallest, or taking the greatest and the smallest, and
are respectively specified by the following strategy definitions: 5

sd maxmax := (matchrew B s.t. X := max(B) /\ Y := max(remove(X,B)) by
B using play[M <- X ; N <- Y] ) ! .

sd minmin := (matchrew B s.t. X := min(B) /\ Y := min(remove(X,B)) by
B using play[M <- X ; N <- Y] ) ! .

sd maxmin := (matchrew B s.t. X := max(B) /\ Y := min(B) by
B using play[M <- X ; N <- Y] ) ! .

5 Incidentally, the strategy minmin is optimal. This follows from the fact that to
maximize the sum of all the elements on the blackboard after a single step, the two
smallest numbers have to be chosen.
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The keyword sd (from strategy definition) is used to define strategies in a
strategy module.

Strategy expressions E can be utilized in a command srew T using E, which
rewrites a term T using a strategy expression E. We can compare the above
strategies’ behavior over the same initial configuration:

Maude> (srew 2000 20 2 200 10 50 using maxmin .)
result NzNat : 178
Maude> (srew 2000 20 2 200 10 50 using maxmax .)
result NzNat : 77
Maude> (srew 2000 20 2 200 10 50 using minmin .)
result NzNat : 1057

4.3.2 Insertion sort

Let us now show how to write a strategy that implements the insertion sort
algorithm. In the module SORTING, an array is represented as a set of pairs
(index, value), and the rule switch simply swaps the values in two positions
of the array.

mod SORTING is
protecting NAT .
sorts Pair PairSet .
subsort Pair < PairSet .
op (_,_) : Nat Nat -> Pair .
op empty : -> PairSet .
op __ : PairSet PairSet -> PairSet

[assoc comm id: empty] .
op length : PairSet -> Nat .
vars I J V W : Nat . var PS : PairSet .
eq length(empty) = 0 .
eq length((I, V) PS ) = length(PS) + 1 .
rl [switch] : (J, V) (I, W) => (J, W) (I, V) .

endm

The imperative pseudocode for the insertion sort algorithm is shown in Fig-
ure 3 (for sorting an array V [1..N ]).

The strategies insort and insert below rewrite terms of sort PairSet and
represent the loops in the algorithm in a recursive way. Both strategies have
a natural number as data argument, which represent the indices used by the
algorithm. The expression X − 1 is represented as sd(X, 1), where sd is the
predefined symmetric difference operation in the NAT module (do not confuse
it with the keyword sd for strategy definitions). Notice that the conjunction
in the inner loop is separated in two conditions, and that the last strategy def-
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Y := 2

while Y ≤ N do

X := Y

while X > 1 ∧ V [X − 1] > V [X] do

switch V [X − 1] and V [X]

X := X − 1

Y := Y + 1

Fig. 3. Insertion sort

inition is conditional (introduced by the keyword csd), with condition X > 1.

sd insort(Y) := try(match PS s.t. Y <= length(PS) ;
insert(Y) ;
insort(Y + 1)) .

sd insert(1) := idle .
csd insert(X) := try(amatch (sd(X,1), V) (X, W) s.t. V > W ;

switch[J <- sd(X,1) ; I <- X] ;
insert(sd(X,1)))

if X > 1 .

5 Operational semantics with strategies

In this section we first present a strategy for rewriting CCS processes that
controls the rewrite rules presented in Section 3.2. Then the representation of
a slightly more complex semantics, namely that for the ambient calculus, is
described. Finally, a much more complex case study dealing with the semantics
of the parallel functional language Eden is summarized.

5.1 CCS semantics

The transitive closure of the CCS transition relation can be defined in a math-
ematical way by

P → P ′ P ′ →∗ Q

P →∗ Q

where two kinds of transitions are used, → and →∗. When trying to solve
the first premise we know that the rules to be used are the ones defining
CCS “one-step” transitions, and that these rules should be applied only at
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the top of a process term. But when both kinds of transitions are represented
in Maude, the same rewrite relation is used (=>). That is the reason why we
need to control which rules are used when solving the rewrite conditions in
rule trans in the CCS-SEMANTICS module (Section 2). The following strategies
control that the rules in the operational semantics of CCS are only applied in
the intended way.

sd ccs := top(prefix) |
top(sum{ccs}) |
top(par1{ccs}) |
top(par2{ccs, ccs}) |
top(rel1{ccs}) |
top(rel2{ccs}) |
top(rel3{ccs}) |
top(res{ccs}) |
top(def{ccs}) .

sd refl-trans := idle | top(trans{ccs, refl-trans}) .

The use of strategies to control how the rewrite rules representing the seman-
tics are applied presents an advantage over the techniques explored in [37],
where the frozen attribute and dummy operators had to be used to avoid
undesired rewrites. Now, the rewrite rules are more similar to the semantic
rules and the control is completely separated from the transition rules.

5.2 Ambient calculus

In the ambient calculus [4] an ambient is a place limited by a boundary where
computations take place. Its contents are a parallel composition of sequential
processes and subambients; communication between processes is local, through
a blackboard.

The operational semantics for the ambient calculus consists of a set of struc-
tural congruence rules and a set of reduction rules, which can be represented
in Maude, as detailed in [32]. It gives us some congruence rules for free, due
to the congruence metarule of rewriting logic and the possibility of defining
some syntax operators as commutative and associative. The rest of the con-
gruence rules are implemented as Maude equations. The reduction rules are
represented as rewrite rules in Maude, as we have shown for the CCS case:

rl [RedIn] : n[in[m] . P | Q] | m[R] => m[n[P | Q] | R] .
rl [RedOut] : m[n[out[m] . P | Q] | R] => n[P | Q] | m[R] .
rl [RedOpen] : open[n] . P | n[Q] => P | Q .
rl [RedComm] : ((I)P) | < O > => bound(I,O) P .
crl [RedRes] : new[k : T] P => new[k : T] Q if P => Q .
crl [RedAmb] : n[P] => n[Q] if P => Q .
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crl [RedPar] : NSP | NSR => Q | NSR if NSP => Q .

We have the interleaving of congruence and reduction rules for free as Maude
itself interleaves the application of equations with rewrite rules.

However, the reduction relation of the calculus is not a congruence for all
the operators. For example, the fact that P −→ P’ does not imply that
in[m] . P −→ in[m] . P’. This means that we cannot freely use the rewrite
rules, as Maude would apply them anywhere in a term; and we do not want
them to be applied after some operators. This is one of the reasons why the
definition of a strategy that controls the application of these rules is necessary.

sd norep := top(RedIn) | top(RedOut) | top(RedOpen) | top(RedComm) |
top(RedAmb{norep}) |
top(RedPar{norep}) |
top(RedRes{norep}) .

The replication operator raises some problems. It is defined by the following
congruence rule: !P ≡ P |!P . We cannot write it as an equation as for the
others because none of the orientations is convenient. This has led us to write
this congruence rule as two rewrite rules:

rl [Rep] : P => rep(P) .
rl [UnRep] : P | ! P => ! P .

that have to be applied by means of a strategy, where rep is a function that
intuitively replicates processes whenever necessary. We want to apply rule Rep
only when necessary for subsequent interactions; we have proved that each
replicated process has to be unfolded twice for each time we want replication,
so rep(!P ) = P | P |!P . Rule UnRep deletes isolated unnecessary copies of the
replicated process.

The user provides the desired number of semantic reduction steps, thus con-
trolling termination. In this way, the main strategy for executing an ambient
calculus process is the following:

sd cg(0) := UnRep ! .
sd cg(s(N)) := (top(Rep) ; norep ; cg(N)) orelse (UnRep !) .

5.3 Eden

Eden [20] is a parallel extension of the functional language Haskell. On behalf
of parallelism, Eden overrides Haskell’s pure lazy approach, combining a non-
strict functional application with eager process creation and communication.
The operational semantics of Eden [15] is defined by means of a two-level
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transition system:

• The lower level handles local effects within processes.
· Individual thread evolution −→.
· Parallel thread evolution

par−→S.
• The upper level describes the effects global to the whole system, like process

creation and data communication.
· Parallel process evolution

par
=⇒.

· Process creation
pc−→, communication

com−→, scheduling
wUnbl−→ ,

bpc−→, etc.

· Transitive closures
pc

=⇒,
com
=⇒,

wUnbl
=⇒ ,

bpc
=⇒, etc.

· System evolution =⇒ obtained from the above.

The system then evolves globally as follows. The iteration of the scheduling
rules and their sequential composition produces a new global rule:

unbl
=⇒ =

wUnbl
=⇒ ;

deact
=⇒ ;

bpc
=⇒ ;

pcd
=⇒ ;

vComd
=⇒ .

The global system evolves by applying the global transition rules:

sys
=⇒ =

com
=⇒ ;

pc
=⇒ ;

unbl
=⇒ .

Finally, each transition step of the system is defined as follows:

=⇒ =
par
=⇒ ;

sys
=⇒ .

Thus the definition of the semantics itself imposes an order in the application
of the semantic rules and the use of strategies is mandatory. How to represent
in Maude all these rules and relations is studied in [16]. Most of the semantic
rules are represented as rewrite rules following the same approach used above
for CCS or the ambient calculus. The transition relations that are defined
as the concatenation or repetition of other relations are defined by means of
strategies as shown by the following examples:

sd =wUnbl=> := wUnbl ! .
sd =deact=> := deact ! .

sd =unbl=> := =wUnbl=> ; =deact=> ; =bpc=> ; =pcd=> ; =vComd=> .

sd =sys=> := =com=> ; =pc=> ; =unbl=> .

sd ==> := (matchrew S:System by
S:System using =par=>(ET(S:System))

) ; =sys=> .
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(parallel)
{Hp

par−→S H ′
p}〈p,Hp〉∈S

S
par
=⇒ {〈p, H ′

p〉}〈p,Hp〉∈S

Fig. 4. Parallel rule for Eden

But there are a few semantic rules that are more abstract in their mathematical
formulation so they cannot be directly translated to rewrite rules. They are
represented as (usually recursive) strategies that combine other strategies or
rewrite rules. For example, the (parallel) rule shown in Figure 4 has a variable
number of premises, one for each process in the system S. Each premise makes
the corresponding process to evolve exactly once through the transition

par−→S.
We implement this rule by means of the strategy =par=> that applies the
strategy -par-> to each process in a system. This strategy is recursive and it
terminates when the rest of the system (represented by the variable S:System
below) is empty.

sd =par=>(VS:VarSet) :=
(match empty) ? idle :
(matchrew P:Process S:System by

P:Process using -par->(inters(P:Process,VS:VarSet)) ,
S:System using =par=>(VS:VarSet) ) .

The strategy =par=> receives as argument the variables corresponding to the
threads returned by the function ET (that returns the set of evolvable threads
of a system) applied to the whole system. Strategy -par-> is called with the
set of evolvable variables of process P, calculated by function inters. For all
the details about the representation in Maude of the Eden semantics we refer
the reader to [16].

We have been able to represent the operational semantics rules at a quite
abstract level, independently from factors such as the eagerness degree in the
creation of new processes or the speculation degree. We have also been able
to extend this representation to include different measures (such as paral-
lelism degree, speculative computing, communications) without modifying the
semantics rules. This has been made possible by the separation between rules
and strategies and also by the use of arguments in the defined strategies.

6 Abstraction, implementation, and simulation

The Maude system includes a model checker to prove temporal properties of
systems. Model checking is a very appealing verification technique but, as is
well-known, suffers from the state explosion problem so that in many cases
it is necessary to abstract a system in order to obtain another with a small
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enough number of states amenable to automatic verification. Symmetrically,
some times we have to provide more concrete details in the specification of
a system, for example when implementing a specification and showing its
correctness. In general, thus, we see that there is a need to have concepts and
methods justifying that a system simulates another.

6.1 A stack machine for Fpl--

Recall the functional language Fpl-- introduced in Section 3.1 along with its
operational semantics and let us borrow from [14] another operational seman-
tics for it based on an abstract stack machine. A state of the stack machine is
a triple

< ST, rho, C >

where ST is a stack of values, rho is an environment assigning values to vari-
ables, and C is a stack of expressions and operators. An initial state is a triple
< empty, rho, e > whereas a final state is a triple < v, rho, empty >. The
transition relations defined in [14] were translated to rewriting logic in [36] and
appear in Figure 5.

We want to show that the stack machine implements correctly the operational
semantics summarized in Figure 1. In both semantics the evaluation of a given
expression requires the computation of several steps or transitions; therefore,
it seems appropriate to study the relationship between the stepwise compu-
tations of both semantics. This is a particular example of the general idea
of relating an abstract system with a more concrete one: the tools needed to
study them in general are presented in the following sections.

6.2 Transition systems and Kripke structures

When reasoning about computational systems, it is usually convenient to ab-
stract from as many details as possible by means of simple mathematical
models that can be used to reason about them [23]. For a state-based system
we can represent its behavior by means of a transition system, which is a pair
A = (A,→A), where A is a set of states and →A ⊆ A×A is a binary relation
called the transition relation.

A transition system, however, does not include any information about the
relevant properties of the system. In order to reason about such properties it
is necessary to add information about the atomic properties that hold in each
state. For that we use a Kripke structure A = (A,→A, LA), where (A,→A) is

20



• Analysis rules for the stack machine.
rl [Opm1] : < ST, rho, e op e’ . C > => < ST, rho, e . e’ . op . C > .
rl [Opm1] : < ST, rho, be bop be’ . C > =>

< ST, rho, be . be’ . bop . C > .
rl [Ifm1] : < ST, rho, If be Then e Else e’ . C > =>

< ST, rho, be . if(e, e’) . C > .
rl [Locm1] : < ST, rho, let x = e in e’ . C > =>

< ST, rho, e . < x, e’ > . C > .
rl [Notm1] : < ST, rho, Not be . C > => < ST, rho, be . not . C > .
rl [Eqm1] : < ST, rho, Equal(e, e’) . C > =>

< ST, rho, e . e’ . equal . C > .
• Application rules for the stack machine

rl [Opm2] : < v’ . v . ST, rho, op . C > =>
< Ap(op,v,v’) . ST, rho, C > .

rl [Opm2] : < bv’ . bv . ST, rho, bop . C > =>
< Ap(bop,bv,bv’) . ST, rho, C > .

crl [Varm] : < ST, rho, x . C > => < v . ST, rho, C >
if v := lookup(rho,x) .

crl [Varm] : < ST, rho, bx . C > => < bv . ST, rho, C >
if bv := lookup(rho,bx) .

rl [Valm] : < ST, rho, v . C > => < v . ST, rho, C > .
rl [Valm] : < ST, rho, bv . C > => < bv . ST, rho, C > .
rl [Notm2] : < T . ST, rho, not . C > => < F . ST, rho, C > .
rl [Notm2] : < F . ST, rho, not . C > => < T . ST, rho, C > .
crl [Eqm2] : < v . v’ . ST, rho, equal . C > =>

< T . ST, rho, C > if v = v’ .
crl [Eqm2] : < v . v’ . ST, rho, equal . C > =>

< F . ST, rho, C > if v =/= v’ .
rl [Ifm2] : < T . ST, rho, if(e, e’) . C > => < ST, rho, e . C > .
rl [Ifm2] : < F . ST, rho, if(e, e’) . C > => < ST, rho, e’ . C > .
rl [Locm2] : < v . ST, rho, < x, e > . C > =>

< ST, (x,v) . rho, e . pop . C > .
rl [Pop] : < ST, (x,v) . rho, pop . C > => < ST, rho, C > .

Fig. 5. Semantics rules for the Fpl-- stack machine

a transition system such that →A is a total relation and LA : A → P(AP ) is
a labelling function associating each state with a set of atomic properties in
AP that it satisfies.

For example, the behaviour of a simple periodic system could be represented by
means of a transition system with three states, s0, s1, and s2, and transitions
si → s(i+1)%3. Now, to distinguish among the different states and to reason
about the system, this transition system can be extended to a Kripke structure
by making explicit some atomic properties satisfied by the states, say L(s0) =
{sleeping}, L(s1) = {waiting}, and L(s2) = {working}. Note that the
relevant properties may vary based on the interest at hand; thus, a less precise
alternative would be L(s0) = L(s1) = {off} and L(s2) = {on}.
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Kripke structures are specified in rewriting logic by a rewrite system R =
(Σ, E, R) so that:

• States are the terms TΣ/E,k in the equational theory (Σ, E) with a distin-
guished type k.

• Transitions are defined from the rules in R: a transition consists in applying
a rewrite rule to a unique subterm of the source state.

• We add state predicates Π defined by means of equations D in an equational
theory (Σ′, E ∪D) conservatively extending (Σ, E).

6.3 Simulations

Systems are related using the notion of simulation. Given two transition sys-
tems A = (A,→A) and B = (B,→B), a simulation of transition systems
H : A −→ B is a binary relation H ⊆ A × B such that if a →A a′ and aHb
then there exists b′ ∈ B with b →B b′ and a′Hb′. For two Kripke structures
A = (A,→A, LA) and B = (B,→B, LB) over the same set AP of atomic propo-
sitions, an AP -simulation furthermore requires that LB(b) ⊆ LA(a) if aHb.
Graphically, the simulation requirement can be represented as follows:

a −→A a′

H H

b −→B b′

However, this requirement is too strong when we try to relate systems of dif-
ferent granularity, such as our two functional semantics. Intuitively, the stack
machine requires many steps to implement a single step of the operational
semantics in Section 3.1. What we need is a concept of simulation that allows
us to group appropriately several steps.

Let A = (A,→A) and B = (B,→B) be transition systems and H ⊆ A × B a
relation. Given a path π in A and a path ρ in B, we say that ρ H-matches π
if there are strictly increasing functions α, β : IN −→ IN with α(0) = β(0) = 0
such that, for all i, j, k ∈ IN, if α(i) ≤ j < α(i + 1) and β(i) ≤ k < β(i + 1),
then π(j)Hρ(k). For example, the following diagram shows the beginning of
two matching paths, with related elements joined by broken lines and where
α(0) = β(0) = 0, α(1) = 2, β(1) = 3, α(2) = 5, etc.

π • //

�

� • //

�

� • // • //

�

� • // · · ·

ρ • //

z
z

z
z • //

D
D

D
D

• //

D
D

D
D

R R R R R R R • //

D
D

D
D

z
z

z
z • // · · ·
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Given two transition systems A and B, a stuttering simulation of transition
systems H : A −→ B is a binary relation H ⊆ A × B such that if aHb then
for each path π in A beginning in a there exists a path ρ in B beginning in b
which H-matches π. Again, for Kripke structures A = (A,→A, LA) and B =
(B,→B, LB) over AP , a stuttering AP -simulation H : A −→ B additionally
requires that if aHb then LB(b) ⊆ LA(a).

Stuttering simulations resemble the notion of weak (bi)simulation in process
algebra, but they do not hide any “actions” from the user. Besides, the latter
are defined over labelled transition systems whereas transitions for stuttering
simulations are unlabelled, which makes it nontrivial to place them in van
Glabbeek’s hierarchy [33].

Simulations are important because they reflect properties so that we can study
the behavior of a system through another one that simulates it. A stuttering
AP -simulation H : A −→ B reflects the satisfaction of a temporal logic for-
mula ϕ ∈ CTL∗(AP ) [5] when either

• ϕ is a state formula and then B, b |= ϕ and aHb imply A, a |= ϕ; or
• ϕ is a path formula and then B, ρ |= ϕ and ρ H-matches π imply A, π |= ϕ.

Theorem 1 (reflection theorem) Stuttering AP -simulations reflect the sat-
isfaction of temporal logic formulas not containing negation or next operators,
more specifically, all formulas in the logic ACTL∗\{¬,X}(AP ), see [5].

PROOF. (Sketch) Given a stuttering AP -simulation H : A −→ B, assume
that aHb and that ρ H-matches π through α and β. For an atomic proposition
p, if B, b |= p then p ∈ LB(b) ⊆ LA(a), and thus A, a |= p. In the remaining
cases, we proceed by induction on the structure of state and path formulas. 2

The above definition characterizes stuttering simulations in terms of infi-
nite paths. In [21], an alternative more finitary characterization, called well-
founded simulation, is presented, which can also be adapted to our framework
and can be easier to work with.

Let A = (A,→A) and B = (B,→B) be transition systems. A relation H ⊆
A×B is a well-founded simulation of transition systems from A to B if there
exist functions µ : A × B −→ W and µ′ : A × A × B −→ IN, with (W, <) a
well-founded order, such that if aHb and a →A a′, then either

• there exists b′ such that b →B b′ and a′Hb′, or
• a′Hb and µ(a′, b) < µ(a, b), or
• there exists b′ such that b →B b′, aHb′, and µ′(a, a′, b′) < µ′(a, a′, b).
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Functions µ and µ′ play a role similar to bound functions in the proofs of
termination of while loops. Notice that when H is a function only the first two
conditions are applicable, and in such case the function µ′ can be dispensed
with. For Kripke structures A = (A,→A, LA) and B = (B,→B, LB) over AP ,
a well-founded AP -simulation also requires that aHb implies LB(b) ⊆ LA(a).

Theorem 2 [21] Let A = (A,→A, LA) and B = (B,→B, LB) be two Kripke
structures over AP and H ⊆ A×B. Then, H is a well-founded AP -simulation
if and only if it is a stuttering AP -simulation.

7 Fpl-- revisited

We can associate two transition systems, namely, C = (C,→C) and S = (S,→S),
to the operational semantics introduced in Section 3.1 and the stack machine
described in Section 6.1, respectively. In order to show that the stack ma-
chine correctly implements the former operational semantics, we will prove
that there exists a stuttering simulation of transition systems h : S −→ C.

Intuitively, the state < empty, rho, e > in S, where empty denotes the empty
stack of values, should be related with the state < rho, e > in C. Now con-
sider, for example, the following derivation for the stack machine:

< empty, empty, 2 + 3 > →S < empty, empty, 2 . 3 . + >

→S < 2, empty, 3 . + >

→S < 3 . 2, empty, + >

→S < 5, empty, empty >

All the states from the first to the fourth carry the same information, although
in different positions; they are obtained by means of analysis rules (see Fig-
ure 5). Therefore, it seems appropriate to relate all of them with the same state
< empty, 2 + 3 >. However, in the fifth state the information has changed
and it seems more appropriate to relate this state with < empty, 5 >. This
last step is an example of an application rule.

So we define h : S −→ C by h(a) = < rho, e > if a can be obtained from
< empty, rho, e > with zero or more applications of the analysis rules for
the stack machine together with Valm and Locm2. Notice that h is a function,
precisely because not all of the rules can be applied. Moreover, h is partial ;
indeed, it is only defined for reachable states, which form a complete substruc-
ture of S wherein h is total.
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Alternatively, by “undoing” the steps taken by the rules, h can be defined by
the following set of Maude equations.

eq [Base] : h(< empty, rho, e>) = < rho, e > .
eq [Opm1] : h(< ST, rho, e . e’ . op . C >) =

h(< ST, rho, e op e’ . C >) .
eq [Opm1] : h(< ST, rho, be . be’ . bop . C >) =

h(< ST, rho, be bop be’ . C >) .
eq [Ifm1] : h(< ST, rho, be . if(e, e’) . C >) =

h(< ST, rho, If be Then e Else e’ . C >) .
eq [Locm1] : h(< ST, rho, e. <x, e’> . C >) =

h(< ST, rho, let x = e in e’ . C >) .
eq [Notm1] : h(< ST, rho, be . not. C >) =

h(< ST, rho, Not be . C >) .
eq [Eqm1] : h(< ST, rho, e . e’ . equal . C >) =

h(< ST, rho, Equal(e, e’) . C >) .
eq [Locm2] : h(< ST, (x, v) . rho, e . pop . C >) =

h(< v . ST, rho, < x, e > . C >) .
ceq [Valm] : h(< v . ST, rho, C >) = h(< ST, rho, v . C >)

if not(enabled(C)) .
ceq [Valm] : h(< bv . ST, rho, C >) = h(< ST, rho, bv . C >)

if not(enabled(C)) .

The auxiliary predicate enabled used in Valm checks that none of the other
equations can be applied.

In the proofs that follow we use e|p to denote the subterm of e at position p,
defined in the standard way, and e[e′]p for the term that results from substi-
tuting e′ for e|p in e.

Lemma 3 If h(< ST, rho, e . C >) = < rho, e’ >, then there exists a
position p in e′ such that e′|p = e and, if e is not a value, then it is a subexpres-
sion that can be reduced in e′ with the rules of the first operational semantics
(in Section 3.1) in the next step.

PROOF. Note that the transition relation →S is deterministic and that,
given a state < ST, rho, C >, there is a single way of undoing all the steps
to reach a state of the form < empty, rho, e >. Therefore, for the purpose
of the proof we consider the equations defining h to be oriented rules and
proceed by induction on the number of steps used to reach < rho, e’ >.

When the number of steps is 1 we have h(< empty, rho, e >) → < rho, e >

and the result is trivial. Assume that n is greater than 1; we distinguish cases
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according to the equation (seen as a rule) used for the first step.

• If the first Opm1 has been applied,

h(< ST, rho, e1 . e2 . op . C >) → h(< ST, rho, e1 op e2 . C >) .

By induction hypothesis, there is a position p such that e′|p is e1 op e2

and then our required position is p.1. In addition, since e1 op e2 is not a
value it can be reduced, which implies that e’ is actually e1 op e2 and
thus e1 can also be reduced if it is not a value. The same reasoning applies
to the other Opm1, Ifm1, Notm1, and Eqm1.

• If Locm1 has been applied,

h(< ST, rho, e1 . < x, e2 > . C >)

→ h(< ST, rho, let x = e1 in e2 . C >) .

By induction hypothesis, e′|p is let x = e1 in e2 and we can take p.1
as the desired position.

• For Locm2,

h(< ST, (x,v) . rho, e . pop . C >)

→ h(< v . ST, rho, < x, e > . C >)

→ h(< ST, rho, v . < x, e > . C >)

→ h(< ST, rho, let x = v in e . C >) .

By induction hypothesis, e′|p is let x = v in e and we can take p.3.
• For Valm, we have h(< v . ST, rho, e . C >) → h(< ST, rho, v . e . C >).

Now, the only rules that can be applied to the last term are Opm1 and
Eqm1; Valm is not a valid alternative because it would give rise to three
consecutive expressions, which is not possible since there are no ternary op-
erators. Assume that Eqm1 is used (analogously for the two Opm1 rules): C
is of the form equal . C’ and h(< ST, rho, v . e . equal . C’ >) →
h(< ST, rho, Equal(v,e) . C’ >). Now, by induction hypothesis, e′|p is
Equal(v,e) and the required position is p.2.

2

Theorem 4 The partial function h : S −→ C defines a stuttering simulation
of transition systems.

PROOF. We will use the finitary characterization of stuttering simulations
given in Theorem 2. Since h is a (partial) function, it is only necessary to
define a function µ : S × C −→ IN, and we assign to µ(a, c) the length of the
longest path starting at a that only uses analysis rules, Valm, or Locm2.
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Assume that a →S a′ and that h(a) = c. If a′ has been obtained by applying an
analysis rule, Valm, or Locm2, then h(a′) = c and µ(a′, c) < µ(a, c). Otherwise,
we must find a c′ such that c →C c′ and h(a′) = c′; we distinguish cases
depending on the rule used.

• Opm2. In this case, a is < v’ . v . ST, rho, op . C > and therefore
h(a) is equal to h(< ST, rho, v op v’ . C >) = < rho, e > where, by
Lemma 3, there is a position p in e such that e|p is v op v’ and v op v’ is
a subexpression of e that can be reduced by the rules of the computation se-
mantics in the next step. We can then take c′ to be < rho, e[Ap(op,v,v’)]p>.
Similarly for Notm2, Eqm2, and Ifm2.

• Varm. Then a must be equal to < ST, rho, x . C > and h(a) to < rho, e >

with e|p = x an expression in e that can be reduced. Thus, we can take c′

to be < rho, e[rho(x)]p>.
• Pop. In this case a must be of the form < ST, (x,v) . rho, pop . C >.

The only equation that applies to h(a) is Valm, and therefore there exists
a value v’ such that ST is v’ . ST’. Applying now the other equations it
turns out that h(a) is equal to h(< ST’, rho, let x = v in v’ . C >),
that has to be equal to < rho, e > with e|p = let x = v in v’ a subex-
pression of e that can be reduced. We now take c′ to be < rho, e[v’]p>.

Therefore, the conditions of Theorem 2 are satisfied and h is a stuttering
simulation of transition systems. 2

Notice that h is not a bisimulation, i.e., h−1 is not a simulation. In the first
operational semantics, for a given expression of the form e op e’ we can
choose whether to evaluate e before e’ or the other way around, while the
stack machine always evaluates e first. That means that, for example, the
transition

< empty, (1 + 2) + (3 + 4) >→C < empty, (1 + 2) + 7 >

cannot be simulated by the stack machine.

Furthermore, the simulation h can be lifted to the level of Kripke struc-
tures. For that we consider as the set AP of atomic propositions the set
of all possible values and extend the transition systems S and C with la-
belling functions LS(< empty, rho, v >) = LS(< v, rho, empty >) = {v},
LC(< rho,v >) = {v}, and both LS(a) and LC(c) are empty otherwise. Ap-
plying the reflection theorem, for all expressions e and environments rho we
have

C, < rho, e > |= AFv =⇒ S, < empty, rho, e > |= AFv,
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where A is the universal quantifier over paths and F is the temporal operator
meaning “eventually in the future.” That is, whenever an expression evaluates
to a value v according to the specification C, then the implementation S also
reaches v, so that S correctly implements C.

8 Summary

The Maude language is very useful to specify executable prototypes for dif-
ferent kinds of systems; in particular, its use as a metalanguage allows the
specification of operational semantics for programming and specification lan-
guages. However, a strategy language is needed to define in a simpler way the
behavior of many systems, as well as the semantics of languages of varying
complexities. We have summarized a proposal for such a strategy language
which has been used in several case studies, including the operational seman-
tics of the ambient calculus and a quite complex two-level semantics for the
parallel functional language Eden. Currently this strategy language is being
implemented in C++ at the level of Maude’s core rewrite engine [9], and we
are also using it with new case studies [35].

Another dimension studied in the context of rewriting logic as a semantic
framework is the way to establish relationships between systems, for example,
to relate semantics that operate at different levels of atomicity. The concept of
stuttering simulation provides a mathematical foundation for this kind of rela-
tionship. We have introduced several concepts of simulations and shown some
basic results about them; M. Palomino’s PhD thesis [30] (in Spanish) deals
with this subject in more detail, also covering: equational abstractions, sim-
ulations of protocols, algebraic simulations in rewriting logic, and categories
of Kripke structures and simulations. Related conference papers in English
include [27,23,10]. The study of simulations in the presence of strategies is
work in progress. Essentially, no new theoretical foundations are needed: the
strategies at hand determine the Kripke structures associated to the rewriting
theories and, afterwards, the proofs proceed as usual.

There are still many pending issues in which we are working, or will be. These
include proving properties of semantics, automating rule induction, extending
the Inductive Theorem Prover (ITP) [8] to be able to deal with rules, the use
of reflection with proofs, and the use of strategies along simulations for rewrite
systems.
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