
Proving Modal Properties of Rewrite Theories

Using Maude’s Metalevel �

Isabel Pita1 , Miguel Palomino2

Departamento de Sistemas Informáticos
Universidad Complutense de Madrid, Spain

Abstract

Rewriting logic is a very expressive formalism for the specification of concurrent and distributed
systems; more generally, it is a logic of change. In contrast, VLRL is a modal logic built on top of
rewriting logic to reason precisely about that change. Here we present a technique to mechanically
prove VLRL properties of rewrite theories using the reflective capability of rewriting logic through
its Maude implementation.

Keywords: Rewriting logic, Maude, modal logic, VLRL, reflection, mechanical verification.

1 Introduction

Rewriting logic [9] provides a formal framework for modelling concurrent sys-
tems in terms of states and state transitions, which is efficiently implemented
in the Maude system [5]. It is a logic of change in which deduction directly
corresponds to the change. In contrast, the Verification Logic for Rewriting
Logic (VLRL) [7] is an action modal logic to talk about change in a more
indirect and global manner, like other modal and temporal logics. VLRL was
developed to prove abstract properties of systems specified in rewriting logic.

� Research supported by the Spanish Projects MELODIAS TIC2002-01167 and MIDAS
TIC2003-01000.
1 Email: ipandreu@sip.ucm.es
2 Email: miguelpt@sip.ucm.es

Electronic Notes in Theoretical Computer Science 137 (2005) 133–150

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.01.042

mailto:ipandreu@sip.ucm.es
mailto:miguelpt@sip.ucm.es
http://www.elsevier.com/locate/entcs

In VLRL, rewrite rules are captured as actions, transitions are represented
by action modalities, and the structure of the state is represented by spatial
modalities. In this way, action modalities allow the definition of properties of
states after a particular sequence of rewrites, and the spatial modality allows
the definition of properties of components of the state.

This kind of formulae can be proved at the object level with the help of
Maude’s LTL model checker if we are able to define a predicate taken(a),
holding in those states that arise from applying the action a to some other
state, and a predicate concurrent stating that two actions can be executed
concurrently. But in general, for a rewrite theory R it may be very difficult
(or even impossible) to specify such predicates. In [10] we solved this problem
by showing how to obtain a semantically equivalent theory R′ in which those
predicates can be straightforwardly defined.

In this paper we develop an alternative way of proving that a VLRL for-
mula holds in a given state, that relies heavily on the use of reflection [6].
Reflection allows a system to access its own metalevel and manipulate the-
ories as ordinary objects, thus providing a powerful mechanism for control-
ling the rewriting process. Maude’s metalevel provides convenient operations
that permit us to control the execution of rewrite rules in the object sys-
tem and we will use them to obtain the result from applying an action to
a state as well as to look at the states’ inner structure. This approach is
simpler than the one explored before, as it requires neither a theory trans-
formation nor translating the VLRL formulae to linear temporal logic and
the use of Maude’s model checker. For the sake of concreteness we illustrate
our technique with a concrete example, whose complete code can be found at
maude.sip.ucm.es/vlrl/metalevelprover/, but the method is general and
can be easily adapted to any system.

2 Overview on rewriting logic

A distributed system is axiomatized in rewriting logic [9] by a rewrite theory
R = (Σ, E, R), where (Σ, E) is an equational theory describing its set of states
as the algebraic data type TΣ/E associated to the initial algebra (Σ, E). The
system’s transitions are axiomatized by the conditional rewrite rules R which
are of the form l : t −→ t′ if cond, with l a label, t and t′ Σ-terms, possibly
with variables, and cond a condition involving equations and rewrites. Under
reasonable assumptions about E and R, rewrite theories are executable, and
there are several rewriting logic language implementations, including ELAN
[1], CafeOBJ [8], and Maude [4,5]. In particular, Maude offers support for
multiple sorts, subsort relations, operator overloading, and, unique among the

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150134

maude.sip.ucm.es/vlrl/metalevelprover/

other implementations, reflection.

We illustrate rewriting logic specifications by borrowing a distributed bank-
ing system example from the Maude manual [5]. Such a system is a “soup” of
objects, which represent bank accounts, and messages, that represent actions
to perform over those accounts.

mod BANK-ACCOUNT is
protecting INT .
including CONFIGURATION .
op Account : -> Cid .
op bal :_ : Int -> Attribute .
ops credit debit : Oid Nat -> Msg .
op from_to_transfer_ : Oid Oid Nat -> Msg .
vars A B : Oid .
vars M N N’ : Nat .

rl [credit] : < A : Account | bal : N > credit(A,M) =>
< A : Account | bal : N + M > .

crl [debit] : < A : Account | bal : N > debit(A,M) =>
< A : Account | bal : N - M > if N >= M .

crl [transfer] : (from A to B transfer M) < A : Account | bal : N >
< B : Account | bal : N’ > =>

< A : Account | bal : N - M > < B : Account | bal : N’ + M >
if N >= M .

endm

Integers are imported in protected form in the second line, while the syntax
for objects is imported from module CONFIGURATION. An object has the form <

A : C | Atts >, where A is the object’s name, C its class, and Atts the list of
the object’s attributes. In the module BANK-ACCOUNT only one class, Account,
was declared with an attribute bal. We also have three messages for credit,
debit, and transfer of some money, each with an associated rewrite rule (the
last two are conditional) that axiomatize the behaviour of the system when
a message is received. Note that objects and messages are combined with an
operator that is declared in CONFIGURATION to be associative, commuta-
tive, and with identity none, and that returns a term of sort Configuration.
Finally, we can declare a new module that extends the previous one with a
new class Manager whose objects will be in charge of creating new accounts.

mod BANK-MANAGER is
inc BANK-ACCOUNT .
op Manager : -> Cid .
op new-account : Oid Oid Nat -> Msg [ctor] .
vars O C : Oid .
var N : Nat .
rl [new] : < O : Manager | none > new-account(O, C, N) =>

< O : Manager | none > < C : Account | bal : N > .
endm

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150 135

3 The VLRL logic

VLRL permits the definition of observations over a system after choosing a
distinguished sort State. In this way, the user defines the means by which
he wants to talk about the behaviour of the system; see [7] for a complete
presentation.

For example, in the bank account system we can choose Configuration

as the distinguished sort. Then, we can observe if there is an account in the
system with the help of an account? observation, and the current balance of
an account with an observation balance?.

op account? : Oid -> VLRLBool .
op balance? : Oid -> VLRLInt .

This defines, for each object’s name, two observations. Their actual mean-
ing is given by means of interpretations I that take a term of sort State and
an observation of sort s and return a term of sort s. For the “standard”
interpretation one would expect, for example,

I(< A-002 : Account | bal: 300 >, balance?(A-002)) = 300 ,

where A-002 is an account name.

Actions

We start by defining preactions α. These correspond to the quotient of
the set of proof terms obtained through the following rules of deduction:

• Identities : 3 for each [t],

[t] : [t] → [t]
,

• Replacement : for each rewrite rule r : t(x1, . . . , xn) −→ t′(x1, . . . , xn) and
terms w1, . . . , wn,

r(w) : [t(w/x)] → [t′(w/x)]
,

and

• Σ-structure: for each f ∈ Σ,

α1 : [t1] → [t′
1
] . . . αn : [tn] → [t′n]

f(α1, . . . , αn) : [f(t1, . . . , tn)] → [f(t′
1
, . . . , t′n)]

,

modulo the following equations:

• Identity transitions : f([t1], . . . , [tn]) = [f(t1, . . . , tn)],

3 We use [t] to denote both the equivalence class that represents the state and the identity
transition for that state.

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150136

• Axioms in E: t(α) = t′(α), for each equation t = t′ in E.

Actions are the preactions that rewrite terms of sort State. 4

Intuitively, actions (or more generally, preactions) correspond to transi-
tions where no sequential composition or nested applications of the replace-
ment rule have taken place. It was proved in [9] that any transition in the
initial model of a rewrite theory can be decomposed as an interleaving se-
quence of preactions.

The modal language

The formulae in the modal language are given by

ϕ ::= true | t1 = t2 | ¬ϕ | ϕ ⊃ ϕ | 〈α〉ϕ | 〈〈α〉〉ϕ | fd〈ϕ1, . . . , ϕn〉

where t1 and t2 are terms that may contain observations, α is an action,
f : s1 . . . sm → State ∈ Σ, d is a sequence of data terms corresponding to the
arguments of f that are not of sort State , and the ϕi are in one-to-one corre-
spondence with the arguments of f that are of sort State. We also have the
dual action operators [] and [[]], and the dual spatial operator fd[ϕ1, . . . , ϕn].

Satisfaction of VLRL formulae at a given state [t], observation interpre-
tation I, and ground substitution σ is defined by structural induction in the
usual way. An equation t1 = t2 holds in [t] if the interpretations of t1 and t2
are the same; 〈α〉ϕ, resp. 〈〈α〉〉ϕ, is true in [t] if there exists a state [t′] that
satisfies ϕ that can be reached from [t] by applying action α at the top of [t],
resp. anywhere in [t]; and fd〈ϕ1, . . . , ϕn〉 is satisfied if there is a term of the
form fw(t1, . . . , tn) in the equivalence class [t], where w is the value of d at
state [t] for the observation interpretation I and ground substitution σ, such
that each [ti] satisfies ϕi. We refer to [7] for a formal definition.

4 VLRL in Maude

We now embark ourselves on specifying VLRL inside Maude, aiming at using
it to automatically check whether a given VLRL formula holds in a given
state.

Syntax

The first step in that direction consists in defining VLRL’s syntax in a
Maude module.

fmod VLRL-FORMULAE is

4 The above definition of actions assumes that the rules in R are unconditional. The
extension to conditional rules is straightforward (see [2]).

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150 137

sorts Action VLRLFormula .

ops True False : -> VLRLFormula .
op _->_ : VLRLFormula VLRLFormula -> VLRLFormula .
op ~_ : VLRLFormula -> VLRLFormula .
op <_>_ : Action VLRLFormula -> VLRLFormula .
op <<_>>_ : Action VLRLFormula -> VLRLFormula .

op [_]_ : Action VLRLFormula -> VLRLFormula .
op [[_]]_ : Action VLRLFormula -> VLRLFormula .
op _/_ : VLRLFormula VLRLFormula -> VLRLFormula .
op _\/_ : VLRLFormula VLRLFormula -> VLRLFormula .

vars X Y : VLRLFormula .
var A : Action .

eq [A] X = ~ (< A > ~ X) .
eq [[A]] X = ~ (<< A >> ~ X) .
eq X \/ Y = ~ X -> Y .
eq X /\ Y = ~ (X -> ~ Y) .

endfm

The module VLRL-FORMULAE above defines the syntax of the propositional
and modal action formulae, which is system-independent. The concrete syntax
for basic formulae t1 = t2, spatial formulae fd〈ϕ1, . . . , ϕn〉, and actions depends
on the particular system at hand, and is defined in a supermodule. For the
banking system we declare, in a module VLRL-SAT that imports BANK-MANAGER
and VLRL-FORMULAE, the operators

op _=_ : VLRLInt VLRLInt -> VLRLFormula .
op _=_ : VLRLBool VLRLBool -> VLRLFormula .

for atomic formulae (one for each observation sort).

Then we define the spatial formulae. For each fd : State . . . State −→
State, we have to declare an operator

fd〈 . . . 〉 : VLRLFormula . . .VLRLFormula → VLRLFormula ,

and its dual

fd[. . .] : VLRLFormula . . .VLRLFormula → VLRLFormula .

In our example, the only such operator is and we get:

op <__> : VLRLFormula VLRLFormula -> VLRLFormula .
op [__] : VLRLFormula VLRLFormula -> VLRLFormula .

vars X Y : VLRLFormula .
eq [X Y] = ~ < (~ X) (~ Y) > .

Finally, to capture preactions we declare a sort PreAction-s for each sort
s in the original signature. Note that in the absence of conditional rules we
only need to declare preaction sorts for those sorts used in the definition of

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150138

state constructors. Then the preaction corresponding to the sort selected as
state of the system is made a subsort of Action.

sort PreActionConfiguration .
subsort PreActionConfiguration < Action .

For each sort s, actions arising from the identity rule are represented with
an operator [] : s −→ PreAction-s. To capture actions resulting from the
application of the replacement rule we add, for each rewrite rule l : t(x) −→
t′(x), where we assume a fixed order in x = (x1 : s1, . . . , xn : sn), the operator
l : s1 ... sn −→ RPreAction-s. RPreAction-s is a subsort of PreAction-s used
to identify precisely those preactions obtained through the replacement rule.
Finally, actions obtained with the Σ-structure rule are represented by allowing
the operators of the signature to apply to actions as well: for each operator f :
s1 . . . sn −→ s, we declare f : PreAction-s1 . . . PreAction-sn −→ PreAction-s.
In addition, in order to take into account the quotient described on page 4,
all equations in the specification are duplicated so that now they also apply
to preactions and the corresponding equations for the identity transitions are
included. (Note that the new operator is declared with the same attributes
as over Configuration.)

sort RPreActionConfiguration .
subsort RPreActionConfiguration < PreActionConfiguration .
op [_] : Configuration -> PreActionConfiguration .
op none : -> PreActionConfiguration .
op __ : PreActionConfiguration PreActionConfiguration ->

PreActionConfiguration [assoc comm id: none] .

The RPreActionConfiguration operators depend on the rewriting rules
of the particular system we are observing; in the banking system:

ops credit debit : Oid Int Int -> RPreActionConfiguration .
op transfer : Oid Oid Int Int Int -> RPreActionConfiguration .
op new : Oid Oid Int -> RPreActionConfiguration .

Formulae satisfaction

To study satisfiability of VLRL formulae we first have to define a valid
interpretation for the observations and then to extend it to arbitrary terms.
For example, for the balance? observation and the “standard” interpretation
we would declare:

op interp : Configuration VLRLInt -> Int .
op balance? : Oid -> VLRLInt .
op balance-aux : Configuration Oid -> Int .

var C : Configuration . vars O O1 O2 : Oid .
vars N N1 N2 : Int . var M : Msg .

eq balance-aux(none, O) = 0 .

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150 139

eq balance-aux(< O : Account | bal : N > C, O) = N .
ceq balance-aux(< O1 : Account | bal : N > C, O2) = balance-aux(C, O2)

if O1 =/= O2 .
eq balance-aux(M C, O) = balance-aux(C, O) .

eq interp(C,balance?(O)) = balance-aux(C,O) .
eq interp(C,0) = 0 .
eq interp(C,s(N)) = s(interp(C,N)) .

Let us now make two assumptions. The first one is that we have at our
disposal two operations

op nextState : State Action -> State .
op nextStateinContext : State Action -> StateList .

that given a state and an action return, respectively, the unique (if any) suc-
cesor of the state that follows from applying that action at the top and the set
of all succesors that can be obtained from applying the action in context. The
second assumption is that for each fd : State . . . State −→ State we have an
operation decomposable? : State VLRLFormula . . . VLRLFormula −→ Bool
such that decomposable?(S, F1, . . . , Fn) is true if S is of the form fd(t1, . . . , tn),
with each ti satisfying Fi for i = 1 . . . n; for the bank system:

op decomposable? : State VLRLFormula VLRLFormula -> Bool .

Now, satisfiability of arbitrary VLRL formulae can be straightforwardly
defined by structural induction. The distinguished sort, Configuration, is
declared as a subsort of State, to which an error constant is also added to
signal when an action cannot be applied to a given state.

subsort Configuration < State .
op error : -> State .
op _|=_ : State VLRLFormula -> Bool .

var S : State . vars I1 I2 : VLRLInt .
vars B1 B2 : VLRLBool . vars F1 F2 : VLRLFormula .
var A : Action .

ceq (S |= I1 = I2) = true if interp(S, I1) == interp(S, I2) .
ceq (S |= I1 = N2) = false if interp(S, I1) =/= interp(S, I2) .
ceq (S |= B1 = B2) = true if interp(S, B1) == interp(S, B2) .
ceq (S |= B1 = B2) = false if interp(S, B1) =/= interp(S, B2) .
eq (S |= True) = true .
eq (S |= False) = false .
eq (S |= (F1 -> F2)) = (S |= F2) or not (S |= F1) .
eq (S |= (~ F1)) = not (S |= F1) .

--- Actions
ceq (S |= < A > F1) = nextState(S,A) |= F1 if nextState(S,A) =/= error .
eq (S |= < A > F1) = false [owise] .
ceq (S |= << A >> F1) = nextStateinContext(S,A) |= F1

if nextStateinContext(S,A) =/= nil .
eq (S |= << A >> F1) = false [owise] .

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150140

--- Spatial
ceq (S |= < F1 F2 >) = true if decomposable?(S, F1, F2) .
eq (S |= < F1 F2 >) = false [owise] .

In Maude, an owise equation is tried only if no other applies; its semantics
can be defined purely in terms of equations [5, Chapter 4].

It only remains to specify the three operations that we took for granted,
and it is precisely here where the main innovation of this paper lies. Note that
it is in their nature that they should use as input the module that specifies
the banking system itself, for instance to select a particular rule to apply to
the state in the case of nextState. To define them, then, we require the use
of Maude’s metalevel, that we explain in the next section.

5 The module META-LEVEL

Maude’s metalevel is specified in a predefined module called META-LEVEL. This
module contains operators to (meta)represent terms and modules respectively
as terms of sort Term and Module. A variable X and a constant C of sort s are
represented by the quoted identifiers ’X:s and ’C.s, respectively; the repre-
sentation of a term f(t1,...,tn) is ’f[t1,...,tn], where t1,. . . ,tn are the
representations of t1 and tn. Similar conventions apply to modules. In addi-
tion, Maude’s metalevel supplies the user with efficient descent operations to
reduce metalevel computations to object-level ones. We presently give a brief
summary of the ones we need; for a complete and more accurate description
we refer the reader to [5, Chapter 10].

• The operation metaApply takes five arguments: the metarepresentation of
a module M , a term’s metarepresentation, the name of a rule in M , a
substitution’s metarepresentation, and a natural number n. It tries to match
the term with the lefthand side of the rule using the substitution, discards
the first n matches, and applies the rule at the top of term with the n + 1
match. It returns a triple formed by the metarepresentation of the reduced
term, its corresponding sort or kind, and the substitution used; we can
obtain the first component of the triple with the operation getTerm.

• The operation metaXapply is analogous to metaApply, but the rule can be
applied anywhere in the term.

• The operation metaMatch(R, t, t’, Cond, n) tries to match at the top
the terms t and t’ in the module R in such a way that the resulting substi-
tution satisfies the condition Cond. The last argument is used to enumerate
possible matches. It returns a term of sort Substitution if it succeeds,
and noMatch otherwise. There is a corresponding generalization called
metaXmatch.

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150 141

• upModule takes as a first argument the name of a module already in Maude’s
database, and returns its representation as a term of sort Module. There is
also a second argument that we can safely assume it is always true.

• The function upTerm takes a term and returns its metarepresentation; the
operation downTerm works as its inverse.

6 The functions nextState, nextStateinContext, and

decomposable?

The functionality required by decomposable? is supplied by metaMatch for
free. Therefore, the semantics of spatial formulae can be defined by:

ceq (S |= < F1 F2 >) = true
if metaMatch(upModule(’VLRL-SAT+,true),

’__[’S1:State,’S2:State],
upTerm(S),
’_|=_[’S1:State,upTerm(F1)] = ’true.Bool /\
’_|=_[’S2:State,upTerm(F2)] = ’true.Bool,
0) =/= noMatch .

ceq (S |= < F1 F2 >) = false [owise] .

We simply decompose the state into two substates, S1 and S2, and require
that each of them satisfies the corresponding property F1 or F2 by means of
the metacondition

’_|=_[’S1:State,upTerm(F1)] = ’true.Bool /\
’_|=_[’S2:State,upTerm(F2)] = ’true.Bool

The specification of the functions nextState and nextStateinContext is
however much more involved, although the idea is very simple: extract the
labels from the actions and apply the corresponding rules with metaApply and
metaXapply.

For that, we need two auxiliary operations over RPreActionConfiguration:
upAction, to obtain the rule’s label associated to the action, and getSubs,
that constructs the substitution to be used when applying the rule.

op upAction : RPreActionConfiguration -> Qid .
op getSubs : RPreActionConfiguration -> Substitution .

vars O O1 O2 : Oid .
vars N M N1 N2 N3 : Int .

eq upAction(credit(O,N,M)) = ’credit .
eq upAction(debit(O,N,M)) = ’debit .
eq upAction(transfer(O1,O2,N1,N2,N3)) = ’transfer .
eq upAction(new(O1,O2,N)) = ’new .

eq getSubs(credit(O,N,M)) =
’A:Oid <- upTerm(O) ; ’N:Int <- upTerm(N) ; ’M:Int <- upTerm(M) .

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150142

eq getSubs(debit(O,N,M)) =
’A:Oid <- upTerm(O) ; ’N:Int <- upTerm(N) ; ’M:Int <- upTerm(M) .

eq getSubs(transfer(O1,O2,N1,N2,N3)) =
’A:Oid <- upTerm(O1) ; ’B:Oid <- upTerm(O2) ; ’M:Int <- upTerm(N1) ;
’N:Int <- upTerm(N2) ; ’N’:Int <- upTerm(N3) .

eq getSubs(new(O1,O2,N)) =
’O:Oid <- upTerm(O1) ; ’C:Oid <- upTerm(O2) ; ’N:Int <- upTerm(N) .

Then, an identity action can be executed at the top of a state only if it
corresponds to the whole state. The state does not change if an identity action
is applied.

eq nextState(S, [S]) = S .
eq nextState(S, [S1]) = error [owise] .

The state that results from applying a replacement action α to a state
[t] is obtained with the metalevel operation metaApply and the help of the
auxiliary operations just defined.

ceq nextState(S, RA) = downTerm(getTerm(R:ResultTriple?),error)
if R:ResultTriple? := metaApply(upModule(’VLRL-SAT+,true),upTerm(S),

upAction(RA),getSubs(RA),0) /\
R:ResultTriple? =/= failure .

eq nextState(S, RA) = error [owise] .

For actions f(α1, . . . , αn) obtained with the Σ-structure rule, we define an
operation nextState-aux that tries all possible decompositions f(t1, . . . , tn)
of the state by using the metalevel operation metaMatch, and chooses the one,
if any, such that each action αi can by applied to the state ti. If there is no
such a state decomposition the error state is generated. We first consider
the operator ; the functions getFirstTerm and getSecondTerm are used to
extract the two terms in the substitution returned by metaMatch.

ceq nextState(S, A1 A2) = nextState-aux(S, A1 A2, 0)
if A1 =/= none /\ A2 =/= none .

op nextState-aux : State Action Nat -> State .

ceq nextState-aux(S, A1 A2, i) =
nextState(downTerm(getFirstTerm(R:Substitution?),error),A1)
nextState(downTerm(getSecondTerm(R:Substitution?),error),A2)

if A1 =/= none /\ A2 =/= none /\
R:Substitution? := metaMatch(upModule(’VLRL-SAT+,true),

’__[’M1:State, ’M2:State],
upTerm(S), nil, i) /\

R:Substitution? =/= noMatch /\
nextState(downTerm(getFirstTerm(R:Substitution?),error),A1)

=/= error /\
nextState(downTerm(getSecondTerm(R:Substitution?),error),A2)

=/= error .

ceq nextState-aux(S, A1 A2, i) = error

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150 143

if A1 =/= none /\ A2 =/= none /\
metaMatch(upModule(’VLRL-SAT+,true),

’__[’M1:State, ’M2:State],
upTerm(S),
nil,i) == noMatch .

ceq nextState-aux(S, A1 A2, i) = nextState-aux(S, A1 A2, s(i))
if A1 =/= none /\ A2 =/= none /\

R:Substitution? := metaMatch(upModule(’VLRL-SAT+,true),
’__[’M1:State, ’M2:State],
upTerm(S),
nil,i) /\

R:Substitution? =/= noMatch /\
(nextState(downTerm(getFirstTerm(R:Substitution?),error),A1)

== error or
nextState(downTerm(getSecondTerm(R:Substitution?),error),A2)

== error) .

And finally, we also have the constant action none:

eq nextState(none,none) = none .
eq nextState(S,none) = error [owise] .

The idea behind the specification of nextState also applies to the oper-
ation nextStateinContext. Now, since the action can happen anywhere in
the state and not only at the top, we use metaXmatch and metaXapply instead
of metaMatch and metaApply. Becase the same action can rewrite different
parts of the state, the result of applying nextStateinContext won’t be a sin-
gle state in general, but a set of states (actually, a list in our implementation).
In order not to get bogged dow with too many technicals details, we defer the
specification to the appendix.

7 Some examples of properties

We illustrate some properties of the bank system for an initial bank configu-
ration S with three accounts, A-001, A-002 and A-003, three debit messages,
a transfer order from A-003 to A-002, and a new account message that we
define in a module VLRL-SAT+. We want to decide, for a given formula F,
whether F holds in S or not.

ops A-001 A-002 A-003 A-004 manager : -> Oid .
op bankConf : -> Configuration .
eq bankConf = < manager : Manager | none >

< A-001 : Account | bal : 300 > debit(A-001, 150)
debit(A-001, 150) < A-002 : Account | bal : 250 >
debit(A-002, 400) < A-003 : Account | bal : 1250 >
(from A-003 to A-002 transfer 300)
new-account(manager, A-004, 1000).

Let us prove that a debit operation does not affect the existence of an

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150144

account and that the balance of the account decreases in the debit amount.
Notice that the action is done in context, since it only refers to the A-001

account and we have more terms in the state.

reduce in VLRL-SAT+ :
bankConf |= << debit(A-001, 150, 300) >> (account?(A-001) = true /\

balance?(A-001) = 150) .
result Bool: true

We can concurrently execute a debit operation on the A-001 account and
create the new account A-004,

reduce in VLRL-SAT+ :
bankConf |= << debit(A-001,150,300) new(manager,A-004,1000) >> True .

result Bool: true

but we cannot concurrently create a new account and make an operation on
it:

reduce in VLRL-SAT+ :
bankConf |= << debit(A-004,150,300) new(manager,A-004,1000) >> True .

result Bool: false

We cannot debit an account with more money than its current balance

reduce in VLRL-SAT+ : bankConf |= << debit(A-002, 400, 250) >> True .
result Bool: false

unless we first transfer some money to it:

reduce in VLRL-SAT+ :
bankConf |= << transfer(A-003, A-002, 300, 1250, 250) >>

<< debit(A-002, 400, 250) >> True .
rewrites: 71 in 120ms cpu (120ms real) (591 rewrites/second)
result Bool: true

But note that both actions cannot be executed concurrently:

reduce in VLRL-SAT+ :
bankConf |= << debit(A-002, 400, 250)

transfer(A-003, A-002, 300, 1250, 250) >> True .
result Bool: false

We can also express concurrent actions by defining the part of the state in
which they take place by means of the spatial operator. For example we can
express a debit to the A-001 account and a transfer from account A-003 to
the account A-002 by:

reduce in VLRL-SAT+ :
bankConf |= < (< debit(A-001, 150, 300) > balance?(A-001) = 150)

(<< transfer(A-003, A-002, 300, 1250, 250) >>
balance?(A-002) = 550) > .

result Bool: true

The first action is done at the top while the second one is done in context.
If we want to express all the actions at the top we can use the identity actions

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150 145

to fix the rest of the state. For example, in the following property we divide
the state in three substates:

reduce in VLRL-SAT+ :
bankConf |= < (< debit(A-001, 150, 300) > True)

< (< new(manager, A-004, 1000) > True)
(< [(((< A-003 : Account | bal : 1250 >

from A-003 to A-002 transfer 300)
debit(A-002, 400))
< A-002 : Account | bal : 250 >)
debit(A-001, 150)] > True) > > .

result Bool: true

8 Final remarks

The VLRL logic is a powerful logic for proving modal and temporal properties
of systems specified in rewriting logic. It permits the specification of action
and spatial properties that explore the structure of a system similar to the ones
defined by the modal logic for mobile ambients of Cardelli and Gordon [3].

In this paper we have presented a method to check if a given VLRL
formula holds in a given state that uses Maude’s metalevel to decompose
the state into its components and to execute the actions in a system. Our
technique can be applied to arbitrary systems by slightly adapting to the
particular operators at hand the description in this paper. Nevertheless,
this description should already be widely applicable because distributed sys-
tems tend to be specified in rewriting logic with an associative and com-
mutative operator as here; examples of a different kind can be found at
maude.sip.ucm.es/vlrl/metalevelprover/.

Actually, and though not presented for the sake of generality, the defini-
tion of the operations nextState and nextStateinContext can be simplified
for associative and commutative structure; in this case it is enough to distin-
guish the case in which the Σ-structure rule applies to an identity action from
the case in which the rule applies to actions obtained by replacement. This
definition is more efficient since it does not obtain all possible state decompo-
sitions, but it proceeds by matching some part of the state with some action
and proving that the rest of the state fulfills the rest of the action.

Performance of the implementation could be improved by programming
directly at the metalevel. That is, instead of continually changing levels by
using the operations upTerm and downTerm, we could write equations that
would directly deal with the metarepresentations of the terms representing
the corresponding states. The drawback of this alternative is that it produces
a less readable specification and, since efficiency was not our main concern,
we have chosen to keep the specification as clear as possible.

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150146

maude.sip.ucm.es/vlrl/metalevelprover/

Compared with the technique for proving VLRL formulae at the object
level with the help of the LTL Maude model checker [10], this method does
not require the transformation of the original theory but simply the definition
of the nextState and nextStateinContext operations for each function of
the original signature. From the computational point of view, the use of
the metalevel reduces drastically the number of rewrites needed to prove the
formulae because the rewrite steps needed to simulate the execution of actions
in the transformed theory are avoided. Nevertheless, in the examples we have
run the time it takes to prove a formula is almost the same in both cases, due
to the fact that computation at the metalevel is less efficient than computation
at the object level, and the high performance of the LTL Maude model checker.
Also, the LTL model checker returns a counterexample when the property is
not fulfilled, whereas the current implementation of the method explained in
this paper does not; nevertheless, we plan to support it in a future version.

Acknowledgement

We thank Narciso Mart́ı-Oliet for his helpful comments on a previous draft
and Francisco Durán for his interesting remarks during the presentation of the
paper.

References

[1] Borovanský, P., C. Kirchner, H. Kirchner and P.-E. Moreau, ELAN from a rewriting logic point
of view, Theoretical Computer Science 285 (2002), pp. 155–185.

[2] Bruni, R. and J. Meseguer, Generalized rewrite theories, in: J. C. M. Baeten, J. K. Lenstra,
J. Parrow and G. J. Woeginger, editors, Automata, Languages and Programming. 30th
International Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003.
Proceedings, Lecture Notes in Computer Science 2719 (2003), pp. 252–266.

[3] Cardelli, L. and A. D. Gordon, Anytime, anywhere: Modal logics for mobile ambients, in:
Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (2000), pp. 365–377.

[4] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer and J. F. Quesada,
Maude: Specification and programming in rewriting logic, Theoretical Computer Science 285

(2002), pp. 187–243.

[5] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer and C. Talcott, Maude
manual (version 2.1) (2004), http://maude.cs.uiuc.edu/manual/.

[6] Clavel, M. and J. Meseguer, Reflection in conditional rewriting logic, Theoretical Computer
Science 285 (2002), pp. 245–288.

[7] Fiadeiro, J. L., T. Maibaum, N. Mart́ı-Oliet, J. Meseguer and I. Pita, Towards a verification
logic for rewriting logic, in: D. Bert, C. Choppy and P. Mosses, editors, Recent Trends
in Algebraic Development Techniques, 14th International Workshop, WADT’99, Château de
Bonas, France, September 15–18, 1999, Selected Papers, Lecture Notes in Computer Science
1827 (2000), pp. 438–458.

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150 147

http://maude.cs.uiuc.edu/manual/

[8] Futatsugi, K. and R. Diaconescu, “CafeOBJ Report,” World Scientific, AMAST Series, 1998.

[9] Meseguer, J., Conditional rewriting logic as a unified model of concurrency, Theoretical
Computer Science 96 (1992), pp. 73–155.

[10] Palomino, M. and I. Pita, Proving VLRL action properties with the Maude model checker, in:
N. Mart́ı-Oliet, editor, Proceedings Fifth International Workshop on Rewriting Logic and its
Applications, WRLA’04, Barcelona, Spain, March 27–28, 2004, Electronic Notes in Theoretical
Computer Science (2004).

A The function nextStateinContext

The successor states after applying an action in context are obtained with
the operation nextStateinContext. In this case the result of the operation
is a set (a list in the implementation) of states, since the context in which
the action is applied is not fixed. Satisfaction is defined for lists of states as
follows:

sort StateList .
subsort State < StateList .
op nil : -> StateList .
op _;_ : StateList StateList -> StateList [assoc id: nil].
op nextStateinContext : State Action -> StateList .
op _|=_ : StateList VLRLFormula -> Bool .

eq nil |= F1 = false .
ceq S ; L |= F1 = (S |= F1) or (L |= F1) if L =/= nil .

We define an operation that helps us in forming the set of successor states.
Intuitively, || is used to compose a state with a set of states, such that the
state is added to each set.

op _||_ : StateList StateList -> StateList .

eq S || nil = error .
eq S1 || S2 = S1 S2 .
eq S1 || (S2 ; nil) = S1 S2 .
ceq S1 || (S2 ; L) = (S1 S2) ; (S1 || L) if L =/= nil .
ceq (S1 ; L) || L’ = (S1 || L’) ; (L || L’) if L =/= nil .

As we have done in Section 6 with the nextState operation, we define
nextStateinContext by distinguishing cases for each possible kind of action.

When executing an identity action in context the obtained state does not
change, but the action can only be executed if it is a substate of the state. We
check it using the metaXmatch operation of the metalevel, with no condition,
and no upper nor lower bounds on the subterm searching. It is enough to find
a match.

ceq nextStateinContext(S, [S1]) = S
if R:MatchPair? := metaXmatch(upModule(’VLRL-SAT+,true),

’__[upTerm(S1), ’M:State],
upTerm(S),nil,0,unbounded,0) /\

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150148

R:MatchPair? =/= noMatch .

eq nextStateinContext(S, [S1]) = nil [owise] .

For actions obtained with the replacement rule we use the auxiliary oper-
ation nextStateinContext-aux that gives us all possible successor states by
means of the metalevel operation metaXapply. We find all possible successor
states and combine them with the ; operation.

eq nextStateinContext(S, RA) = nextStateinContext-aux(S, RA, 0) .
ceq nextStateinContext-aux(S, RA, i) =

downTerm(getTerm(R:Result4Tuple?), error) ;
nextStateinContext-aux(S, RA, s(i))

if R:Result4Tuple? := metaXapply(upModule(’VLRL-SAT+, true),
upTerm(S),
upAction(RA),
getSubs(RA), 0, unbounded,i) /\

R:Result4Tuple? =/= failure .

eq nextStateinContext-aux(S, RA, i) = nil [owise] .

For actions obtained with the Σ-structure rule we use the same auxiliary
operation as before to get all possible decompositions of the state. For each
state decomposition we verify if the corresponding actions can be executed
in the corresponding substates. If they can, we add the state to the list of
successor states, otherwise we look for the next decomposition. When there
are no more state decompositions, nil is returned. Notice that the actions
executed in the substates are also executed in context, and then the lists of
states returned by the execution of the actions in each substate are merged
appropriately with the || operation.

ceq nextStateinContext(S,A1 A2) = nextStateinContext-aux(S,A1 A2,0)
if A1 =/= none /\ A2 =/= none .

ceq nextStateinContext-aux(S, A1 A2, i) =
nextStateinContext-aux(
downTerm(getFirstTerm(getSubstitution(R:MatchPair?)),error),A1,0)

||
nextStateinContext-aux(
downTerm(getSecondTerm(getSubstitution(R:MatchPair?)),error),A2,0)

;
nextStateinContext-aux(S, A1 A2, s(i))

if A1 =/= none /\ A2 =/= none /\
R:MatchPair? := metaXmatch(upModule(’VLRL-SAT+,true),

’__[’M1:State, ’M2:State],
upTerm(S),
nil,0,unbounded,i) /\

R:MatchPair? =/= noMatch /\
nextStateinContext-aux(
downTerm(getFirstTerm(getSubstitution(R:MatchPair?)),error),A1,0)
=/= nil /\

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150 149

nextStateinContext-aux(
downTerm(getSecondTerm(getSubstitution(R:MatchPair?)),error),A2,0)
=/= nil .

ceq nextStateinContext-aux(S, A1 A2, i) = nil
if A1 =/= none /\ A2 =/= none /\

metaXmatch(upModule(’VLRL-SAT+,true),
’__[’M1:State, ’M2:State],
upTerm(S),
nil,0,unbounded,i) == noMatch .

ceq nextStateinContext-aux(S, A1 A2, i) =
nextStateinContext-aux(S, A1 A2, s(i))
if A1 =/= none /\ A2 =/= none /\

R:MatchPair? := metaXmatch(upModule(’VLRL-SAT+,true),
’__[’M1:State, ’M2:State],
upTerm(S),
nil,0,unbounded,i) /\

R:MatchPair? =/= noMatch /\
(nextStateinContext-aux(

downTerm(getFirstTerm(getSubstitution(R:MatchPair?)),error),A1,0)
== nil or

nextStateinContext-aux(
downTerm(getSecondTerm(getSubstitution(R:MatchPair?)),error),A2,0)

== nil) .

Finally, and unlike what happend for nextState, since none is the identity
element for both configurations an actions, we have

eq nextStateinContext(S, none) = S .

I. Pita, M. Palomino / Electronic Notes in Theoretical Computer Science 137 (2005) 133–150150

	Introduction
	Overview on rewriting logic
	The VLRL logic
	VLRL in Maude
	The module META-LEVEL
	The functions nextState, nextStateinContext, and decomposable?
	Some examples of properties
	Final remarks
	Acknowledgement
	References
	The function nextStateinContext

