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Abstract. Our concrete objective is to present both ordinary bisimula-
tions and probabilistic bisimulations in a common coalgebraic framework
based on multiset bisimulations. For that we show how to relate the un-
derlying powerset and probabilistic distributions functors with the multi-
set functor by means of adequate natural transformations. This leads us
to the general topic that we investigate in the paper: a natural transfor-
mation from a functor F to another G transforms F -bisimulations into G-
bisimulations but, in general, it is not possible to express G-bisimulations
in terms of F -bisimulations. However, they can be characterized by con-
sidering Hughes and Jacobs’ notion of simulation, taking as the order on
the functor F the equivalence induced by the epi-mono decomposition of
the natural transformation relating F and G. We also consider the case
of alternating probabilistic systems where non-deterministic and proba-
bilistic choices are mixed, although only in a partial way, and extend all
these results to categorical simulations.

1 Introduction

Bisimulations are the adequate way to capture behavioural indistinguishability
of states of systems. Ordinary bisimulations were introduced [11] to cope with
labelled transition systems and other similar models and have been used to define
the formal observational semantics of many popular languages and formalisms,
such as CCS. Bisimilarity is also the natural way to express equivalence of states
in any system described by means of a coalgebra over an arbitrary functor F .
The general categorical definition can be presented in a more concrete way for
the class of polynomial functors, that are defined by means of a simple signature
of constructors and whose properties, including the definition of relation lifting,
can be studied by means of structural induction. In particular, the powerset
constructor is one of them, and therefore the class of labelled transition systems
can be studied as a simple and illustrative example of the categorical framework.

The simplicity and richness of the theory of bisimulations made it interest-
ing to define several extensions in which the structure on the set of labels of
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the considered systems was taken into account, instead of the plain approach
made by simple (strong) bisimulations. For instance, weak bisimulation takes
into account the existence of non-observable actions, while timed and proba-
bilistic bisimulation introduce timed or probabilistic features. In particular, the
original definition of probabilistic bisimulation for probabilistic transition sys-
tems had to capture the fact that one should be able to accumulate the prob-
abilities of several transitions arriving at equivalent (bisimilar) states in order
to simulate some transition or, conversely, that one should be able to distribute
the probability of a transition among several others connecting the same states.

The classical definition by Larsen and Skou [9] certainly generalizes the defi-
nition of ordinary bisimulation in a nice way, although at the cost of leaving out
the categorical scenario discussed above. However, Vink and Rutten proved in
[17] that the definition can be reformulated in a coalgebraic way. For that, they
considered a functor D defining probabilistic distributions, that appears as the
primitive construction in the definition of the corresponding probabilistic sys-
tems. Even though this is quite an elegant characterization, it forces us to leave
the realm of (probabilistic) transition systems, moving into the more abstract
one of probabilistic distributions.

We would like to directly manage probabilistic transition systems in order to
compare the results about ordinary transition systems and those on probabilistic
systems as much as possible. We have found that multi-transition systems, where
we can have several identical transitions and the number of times they appear
matters, constitute the adequate framework to establish the relation between
those two kinds of transition systems. As a matter of fact, we will see that the
use of multisets instead of just plain sets leads us to a natural presentation
of relation lifting for that construction; besides, we can add the corresponding
functor to the collection defining polynomial functors, thus obtaining an enlarged
class with nice properties similar to those in the original class.

Although a general theory combining non-deterministic and probabilistic
choices seems quite hard to develop, since it is difficult to combine both func-
tors in a smooth way [16], we will present the case of alternating1 probabilistic
systems. In those systems, the classical definitions of ordinary and probabilis-
tic bisimulation can be combined to obtain the natural definition of alternating
probabilistic bisimulation, that perfectly fits into our framework based on cate-
gorical simulations on our multi-transition systems.

The functors defining ordinary transition systems and probabilistic systems
can be obtained by applying an adequate natural transformation to a functor
defining multiset transition systems. In both cases bisimulations are preserved
in both directions when applying those transformations. This leads us to the
general theory that we investigate in this paper: as is well-known, any natural
transformation between two functors F and G transforms F -bisimulations into
G-bisimulations; in addition, and more interesting, whenever the natural trans-

1 Although we call alternating to our systems, we do not need the strict alternation
between non-deterministic and probabilistic states as appears in [4], but only that
these two kind of choices do not appear mixed after the same state.



formation relating F and G is an epi, we can reflect G-bisimulations and express
them at the level of the functor F , though this cannot be done in general just by
means of F -bisimulations. However, they can be characterized by using Hughes
and Jacobs’ notion of simulation [6], when we consider as the order on the func-
tor F the equivalence induced by the epi-mono decomposition of the natural
transformation relating F and G. Once categorical simulations have come into
play, it is nice to find that we can extend all our results to simulations based
on any order. These extensions can be considered to be the main results in the
paper, since all our previous results on bisimulations could be presented as par-
ticular cases of them, using the fact that bisimulations are a particular case of
categorical simulations.

Although in a different direction, namely, that of exploring the relation be-
tween non-deterministic and probabilistic choices instead of the different no-
tions of distributed bisimulations, in this paper we continue the work initiated
in FORTE 2007 [3]. The goal is the exploration of ways in which the general the-
ory of categorical bisimulations and simulations can be applied to obtain almost
for free interesting results on concrete cases that, without the support of that
general theory, would need different non-trivial proofs. Therefore, our work has a
mixed flavour: on the one hand we develop new abstract results that extend the
general theory; on the other hand we apply these results to simple but important
concrete concepts, that therefore are proved to be particular cases of the rich
general theory. These are only concrete examples that we hope to extend and
generalize in the near future.

2 Basic definitions

We review in this section standard material on coalgebras and bisimulations, as
can be found for example in [8, 12, 7]. Besides, we introduce some notations on
multisets and the corresponding functor M, as well as for the functor D defining
discrete probabilistic distributions.

An arbitrary endofunctor F : Sets −→ Sets can be lifted to a functor in
the category Rel of relations Rel(F ) : Rel −→ Rel. In set-theoretic terms, for
a relation R ⊆ X1 ×X2,

Rel(F )(R) = {〈u, v〉 ∈ FX1 × FX2 | ∃w ∈ F (R). F (r1)(w) = u, F (r2)(w) = v} .

It is well-known that for polynomial functors F , Rel(F ) can be equivalently
defined by induction on the structure of F . Since we will be making extensive
use of the powerset functor, we next present how the definition particularizes to
it:

Rel(PG)(R) = {(U, V ) | ∀u ∈ U.∃v ∈ V.Rel(G)(R)(u, v) ∧
∀v ∈ V.∃u ∈ U.Rel(G)(R)(u, v)} .

Multisets will be represented by considering their characteristic function
χM : X −→ IN; similarly, discrete probabilistic distributions are represented
by discrete measures pD : X −→ [0, 1], with

∑
x∈X pD(x) = 1.



We will use along the paper several different ways to enumerate the “el-
ements” of a multiset. We define the support of a multiset M as the set of
elements that appear in it: {M}X = {x ∈ X | χM (x) > 0}. We are only inter-
ested in multisets having a finite support, so that in the following we will assume
that every multiset is finite. Given a finite subset Y of X and an enumeration of
its elements {y1, . . . ym}, for each tuple of natural weights 〈n1, . . . , nm〉 we will
denote by

∑
yi∈Y ni ·yi the multiset M given by χM (yi) = ni and χM (y) = 0 for

y /∈ Y . By abuse of notation we will sometimes consider sets as a particular case
of multisets, by taking for each finite set Y = {y1, . . . yn} the canonical associ-
ated multiset

∑
yi∈Y 1 · yi. Finally, we also enumerate the elements of a multiset

by means of a generating function: given a finite set I and x : I −→ X, we de-
note by {xi | i ∈ I} the multiset MI given by χMI

(y) = |{i ∈ I | xi = y}|. Note
that in this case sets are just the multisets generated by an injective generating
function.

We will denote by M(X) the set of multisets on X, while D(X) represents
the set of probabilistic distributions on X. Both constructions can be naturally
extended to functions, thus getting the desired functors: for f : X −→ Y we
define M(f) : M(X) −→ M(Y ) by M(f)(χ)(y) =

∑
f(x)=y χ(x), and D(f) :

D(X) −→ D(Y ) by D(f)(p)(y) =
∑

f(x)=y p(x).
Although the multiset and the probabilistic distributions functors are not

polynomial, this class can be enlarged by incorporating them since their liftings
can be defined with the following equations:

Rel(MG)(R) = {(M,N) | ∃f : I −→ GX, g : I −→ GY, generating functions of
M and N s.t. ∀i ∈ I. (f(i), g(i)) ∈ Rel(G)(R)} ;

Rel(DG)(R) = {(dx, dy) ∈ D(G(X))×D(G(Y )) | ∀U ⊆ G(X).∀V ⊆ G(Y ).
Π−1

1 (U) = Π−1
2 (V ) ⇒

∑
x∈U dx(x) =

∑
y∈V dy(y)} ,

where Π1 and Π2 are the projections of Rel(G)(R) into GX and GY , respectively.
F -coalgebras are just functions α : X −→ FX. For instance, plain labelled

transition systems arise as coalgebras for the functor P(A × X). We will also
consider multitransition systems, which correspond to the functor M(A × X),
and probabilistic transition systems, corresponding to M1([0, 1]×A×X), where
we only allow multisets in which the sum of its associated probabilities is 1.

Then, the lifting of the functor M1([0, 1]× ·) is defined as a particular case
of that of M by:

Rel(M1([0, 1]× ·)G)(R) =
{(M,N) ∈M1([0, 1]×GX)×M1([0, 1]×GY ) |
∃f : I → [0, 1]×GX, g : I → [0, 1]×GY, generating functions of M and
N s.t. ∀i ∈ I.Π1(f(i)) = Π1(g(i)) ∧ (Π2(f(i)),Π2(g(i))) ∈ Rel(G)(R)} .

A bisimulation for coalgebras c : X −→ FX and d : Y −→ FY is a relation
R ⊆ X × Y which is “closed under c and d”: if (x, y) ∈ R then (c(x), d(y)) ∈
Rel(F )(R). We shall use the term F -bisimulation sometimes to emphasize the
functor we are working with.



Bisimulations can also be characterized by means of spans, using the general
categorical definition by Aczel and Mendler [1]:

X

c

��

R

e

��

r1oo r2 // Y

d
��

FX FR
Fr1oo Fr2 // FY

R is a bisimulation iff it is the carrier of some coalgebra e making the above
diagram commute, where the ri are the projections of R into X and Y .

We will also need the general concept of simulation introduced by Hughes and
Jacobs [6] using orders on functors. Let F : Sets −→ Sets be a functor. An order
on F is defined by means of a functorial collection of preorders vX⊆ FX ×FX
that must be preserved by renaming: for every f : X −→ Y , if u vX u′ then
Ff(u) vY Ff(u′).

Given an order v on F , a v-simulation for coalgebras c : X −→ FX and
d : Y −→ FY is a relation R ⊆ X × Y such that

if (x, y) ∈ R then (c(x), d(y)) ∈ Rel(F )v(R) ,

where Rel(F )v(R) is v ◦ Rel(F )(R) ◦ v, which can be expanded to

Rel(F )v(R) = {(u, v) | ∃w ∈ F (R). u v Fr1(w) ∧ Fr2(w) v v} .

One of the cases under this general notion of coalgebraic simulation is that of
ordinary simulation. Also, equivalence (functorial) relations, represented by ≡,
are a particular class of orders on F , thus generating the corresponding class of≡-
simulations. As is the case for ordinary bisimulations, ≡-simulations themselves
need not be equivalence relations, but once we impose to the equivalence ≡ the
technical condition of being stable [6] then the induced notion of ≡-similarity
becomes an equivalence itself.

Proposition 1. For any stable functorial equivalence relation ≡X⊆ FX×FX,
the induced notion of ≡a-similarity relating elements of X for a coalgebra a :
X −→ FX is an equivalence relation. In particular, for the plain equality relation
=X⊆ FX × FX, =X-similarity coincides with plain F -bisimulation.

3 Natural transformations and bisimulations

Natural transformations are the natural way to relate two functors. Given F and
G, two functors on Sets, a natural transformation α : F ⇒ G is defined as a
family of functions αX : FX → GX such that, for all f : X −→ Y , Gf ◦ αX =
αY ◦Ff . We are particularly interested in the natural transformations relatingM
and P, and those between the functors defining probabilistic transition systems
and probabilistic distributions. For the sake of conciseness we will often omit the
action component A when working with these functors; this does not affect the
validity of the definitions nor the results.



Proposition 2. The support of multisets, {·}X : M(X) −→ P(X), gives rise
to a natural transformation {·} : M⇒ P.

Similarly, DMX
: M1([0, 1]×X) −→ D(X) given by

DM (
∑

ni · (pi, xi))(x) =
∑
xi=x

nipi

induces a natural transformation DM : M1([0, 1]× ·) ⇒ D(·).

Proof. Let f : X −→ Y . We have (Pf ◦{·}X)(
∑

ni ·xi) = Pf({xi}) = {f(xi)} =
{·}Y (

∑
ni · f(xi)) = ({·}Y ◦Mf)(

∑
ni · xi), which proves that {·} is a natural

transformation.
In the case of DM : (Df ◦DMX

)(
∑

ni · (pi, xi)) = Df(
∑

nipi · xi), which is∑
f(xi)=y nipi · y = DMY

(
∑

ni · (pi, f(xi))) = (DMY
◦M1f)(

∑
ni · (pi, xi)); this

proves that DM is a natural transformation. ut

Probabilistic transition systems were defined in [9] as P = (Pr, Act,Can, µ),
where Pr is a set of processes, Act the set of actions, Can : Pr −→ P(Act)
indicates the initial offer of each process, and µp,a ∈ D(Pr) for all p ∈ Pr,
a ∈ Can(p). Under this definition we cannot talk about “different probabilistic
transitions” reaching the same process, that is, whenever we have a transition
p

a−→µ p′ it “accumulates” all possible ways to go from p to p′ executing a.
In our opinion this is not a purely operational way to present probabilistic

systems. For instance, if we are defining the operational semantics of a process
such as p = 1

2a + 1
2a, then we would intuitively have two different transitions

reaching the same final state stop, but if we were using Larsen and Skou’s original
definition, we should mix them both into a single p

a−→1 stop. Certainly, we could
keep these two transitions separated under that definition if, for some reason,
we decided to introduce in the set Pr two different states stop1 and stop2, thus
obtaining p

a−→1/2 stop1 and p
a−→1/2 stop2. But then we observe that whether

our model captures or not the existence of two different transitions depends on
the way we define our set of processes Pr.

In order to get a more natural operational representation of probabilistic
systems we define them2 asM1([0, 1]×A×·)-coalgebras. Once we use “ordinary”
transitions labelled by pairs (q, a) to represent the probabilistic transitions we
have no problem to distinguish two “different” transitions p

a−→q′ p′, p
a−→q′′ p′′,

if p′ 6= p′′. However, in such a case it would not be adequate to treat the case
p′ = p′′ in a different way. This is why we use M1 instead of P1 to define our
probabilistic multi-transition systems (abbreviated as pmts).

We can easily translate the classical definition of probabilistic bisimulation
between probabilistic transition systems in [9], to our own pmts’s as follows.

2 Although Larsen and Skou defined their systems following the reactive aproach [4],
and therefore the sum of their probabilities is 1 for each action a, we prefer to
follow in this paper the generative aproach, so that the total addition of all the
probabilities is 1. This is done to simplify the notation, since all the results in this
paper are equally valid for the reactive model.



Definition 1. A probabilistic bisimulation on a coalgebra p : X →M1([0, 1] ×
A × X) is an equivalence relation ≡p on X such that, whenever x1 ≡p x2,
taking p(xi) =

∑
tjj · (pi

j , a
i
j , x

i
j), we also have

∑
{t1j · p1

j | a1
j = a, x1

j ∈ E} =∑
{t2j · p2

j | a2
j = a, x2

j ∈ E}, for all a ∈ A and every equivalence class E in
X/≡p.

In [17] it is proved that probabilistic bisimilarity defined by probabilistic
bisimulations coincides with categorical D-bisimilarity. By applying the func-
tor DM we can transform our pmts’s into their presentation as Larsen and
Skou’s pts’s. Then it is trivial to check that the corresponding notions of prob-
abilistc bisimulation coincide, and therefore they also coincide with categorical
D-bisimilarity.

However, that is clearly not the case for plain categorical M1([0, 1]×A× ·)-
bisimulations. This is so because when we consider the functor M1([0, 1]×A×·),
probabilistic transitions are considered as plain transitions labelled with pairs
over [0, 1] × A, whose first component has no special meaning. As a result, we
have, for instance, no bisimulation relating x and y if we consider X = {x},
Y = {y}, pa : X →M1([0, 1] × A ×X) with pa(x) = 1 · (1, a, x) and pb : Y →
M1([0, 1]×A× Y ) with pb(y) = 2 · ( 1

2 , a, y).
All these facts prove that our probabilistic multi-transition systems are too

concrete a representation of probabilistic distributions, which is formally cap-
tured by the fact that the components of the natural transformation DM are not
injective. As a consequence, by using them we do not have a pure coalgebraic
characterization of probabilistic bisimulations. By contrast, the original defini-
tion of pts’s stands apart from the operational way, mixing different transitions
into a single distribution. Besides it has to consider the quotient set X/≡p when
defining probabilistic bisimulations. Our goal will be to obtain a characterization
of the notion of probabilistic bisimilarity in terms of our pmts’s, and this will
be done using the notion of categorical simulation, as we will see in Section 4.
Next, we present a collection of general interesting results. First we will see that
bisimulations are preserved by natural transformations.

Theorem 1 ([12]). If R ⊆ X ×Y is a bisimulation relating a : X −→ FX and
b : Y −→ FY , then R is also a bisimulation relating a′ : X −→ GX, given by
a′ = αX ◦ a, and b′ : Y −→ GY , given by b′ = αY ◦ b.

Corollary 1. For a and a′ = αX ◦ a, bisimulation equivalence in a is included
in bisimulation equivalence in a′, that is, x1 ≡a x2 implies x1 ≡a′ x2.

A general converse result cannot be expected because in general there is no
canonical way to transform G into F . Since the main objective in this paper is to
relate M-bisimulations with P and D-bisimulations, we searched for particular
properties of the natural transformations relating these functors which could
help us to get the desired general results covering in particular these two cases.
This is how we have obtained the concept of quotient functors that we develop
in the following.



Definition 2. Let F be an endofunctor on Sets and ≡ a functorial equivalence
relation ≡X⊆ FX × FX. We define the quotient functor F/≡ by (F/≡)(X) =
FX/≡X , and for any f : X −→ Y , u ∈ FX, and u its equivalence class,
(F/≡)(f)(u) = F (f)(u), that is well defined since ≡ is functorial.

Definition 3. 1. We say that a functor G is the quotient of F under a func-
torial equivalence relation ≡ whenever F/≡ and G are isomorphic, which
means that there is a pair of natural transformations α : F/≡ ⇒ G and
β : G ⇒ F/≡ such that β ◦ α = IdF/≡ and α ◦ β = IdG.

2. Given a natural transformation α : F ⇒ G, we write ≡α for the family of
equivalence relations ≡α

X ⊆ FX × FX defined by the kernel of α: u1 ≡α
X

u2 ⇐⇒ αX(u1) = αX(u2) .

Proposition 3. For every natural transformation α : F ⇒ G, ≡α is functorial.

Proof. We need to show that, for any f : X −→ Y , whenever u1 ≡α
X u2, that

is, αX(u1) = αX(u2), we also have Ff(u1) ≡α
Y Ff(u2), that is αY (F (f)(u1)) =

αY (F (f)(u2)); this follows because αY ◦ F (f) = G(f) ◦ αX . ut

If every component αX of a natural transformation is surjective, α is said to
be epi.

Proposition 4. Whenever α is epi, G is the quotient of F under ≡α, just con-
sidering the inverse natural transformation α−1 : G ⇒ F/≡ given by α−1

X :
G(X) −→ (F/≡α)(X) with α−1

X (v) = u where αX(u) = v.

Corollary 2. P is the quotient of M under the kernel of the natural transfor-
mation {·} : M⇒ P.

Corollary 3. D is the quotient of M1([0, 1]× ·) under the kernel of the natural
transformation DM : M1([0, 1]× ·) ⇒ D.

4 ≡α-simulations through quotients of bisimulations

Let us start by studying the relationships between coalgebras corresponding to
functors related by an epi natural transformation.

Definition 4. Let α : F ⇒ G be a natural transformation and a : X −→ FX
an F -coalgebra. We define the α-image of a as the coalgebra aα : X −→ GX
given by aα = αX ◦ a.

Definition 5. Given a natural transformation α : F ⇒ G and a G-coalgebra
b : X −→ GX, we say that a : X −→ FX is a concrete F -representation of b iff
b = αX ◦ a.

The following result follows immediately from the previous definitions.

Proposition 5. If α is epi then every G-coalgebra has an F -representation.



Next we relate G-bisimulations with ≡α-simulations:

Theorem 2. Let α : F ⇒ G be an epi natural transformation and b1 : X1 −→
GX1, b2 : X2 −→ GX2 two G-coalgebras, with concrete F -representations a1 :
X1 −→ FX1 and a2 : X2 −→ FX2. Then, the G-bisimulations relating b1 and
b2 are precisely the ≡α-simulations relating a1 and a2.

Proof. Let us show3 that, for every relation R ⊆ X1 ×X2,

Rel(F )≡α(R) = {(u, v) ∈ FX1 × FX2 | (αX1(u), αX2(v)) ∈ Rel(G)(R)} .

We have, unfolding the definition of Rel(F )≡α(R) and using the fact that α is a
natural transformation:

Rel(F )≡α(R)={(u, v) ∈ FX1 × FX2 | ∃w ∈ FR. u ≡α Fr1(w) ∧ Fr2(w) ≡α v}
={(u, v) ∈ FX1 × FX2 | ∃w ∈ FR.αX1(u) = αX1(Fr1(w)) ∧

αX2(v) = αX2(Fr2(w))}
={(u, v) ∈ FX1 × FX2 | ∃w ∈ FR.αX1(u) = Gr1(αR(w)) ∧

αX2(v) = Gr2(αR(w))} .

On the other hand,

Rel(G)(R) = {(x, y) ∈ GX1 ×GX2 | ∃z ∈ GR. Gr1(z) = x ∧Gr2(z) = y} .

Now, if (u, v) ∈ Rel(F )≡α(R), by taking αR(w) as the value of z ∈ GR we
have that (αX1(u), αX2(v)) ∈ Rel(G)(R). Conversely, if (αX1(u), αX2(v)) ∈
Rel(G)(R) is witnessed by z, let w ∈ FR be such that αR(w) = z, which must
exists because α is epi; it follows that (u, v) ∈ Rel(F )≡α(R).

Then, (b1(x), b2(y)) ∈ Rel(G)(R) if and only if (a1(x), a2(x)) ∈ Rel(F )≡α(R),
from where it follows that R is a G-bisimulation if and only if it is a ≡α-
simulation. ut

Corollary 4. (i) Bisimulations between labelled transition systems are ≡{·}-
simulations between multi-transition systems. (ii) Bisimulations between prob-
abilistic systems are just ≡DM -simulations between (an appropriate class of)
multi-transition systems.

Example 1. Let us illustrate this result by means of some simple examples using
the natural transformation {·} : M→ P.

1. If we consider the ordinary transition systems sX : {x, x′} −→ P({x, x′}),
with sX(x) = {x′}, sX(x′) = ∅, and sY : {y, y′1, y

′
2} −→ P({y, y′1, y

′
2})

with sY (y) = {y′1, y′2}, sY (y′1) = ∅, and sY (y′2) = ∅, we have a simple P-
bisimulation relating the initial states x and y, given by R = {(x, y), (x′, y′1),
(x′, y′2)}.

3 It is not difficult to present this proof as a commutative diagram. Then one has to
check that all the “small squares” in the diagram are indeed commutative, in order
to be able to conclude commutativity of the full diagram. This is what we have
carefully done in our proof above.



Denoting by s1
X and s1

Y the canonical M-representations of sX and sY ,
obtained by the embedding of sets into multisets, it is obvious that there is
no M-bisimulation relating x and y. But if we consider s2

X(x) = {2 · x′},
s2

X(x′) = ∅, we have now an M-bisimulation between the multi-transition
systems s2

X and s1
Y relating x and y. And, by Theorem 2, we have that s1

X

is also ≡{·}-simulated by s1
Y , since {s1

X}M = {s2
X}M = sX and sX and sY

are P-bisimilar. Obviously, the same happens for any {·}-representation of
sX , sk

X with sk
X = {k · x′} and sk

X(x′) = ∅.
2. In the example above we got the ≡{·}-simulation by proving that there are
M-representations of the considered coalgebras for which the given relation
is also an M-bisimulation. However, this is not necessary as the following
shows. Let us consider tX : {x} −→ P({x}) with tX(x) = {x} and Y =
{β | β ∈ N∗, βi ≤ i} with tY (β) = {β ◦ 〈j〉 | β ◦ 〈j〉 ∈ Y }. It is clear that
R = {(x, β) | β ∈ Y } is the (only) P-bisimulation relating x and ε, the initial
states of tX and tY . However, in this case there exists no M-bisimulation
relating two M-representations of tX and tY , because |tY (β)| = |β| + 1
and therefore we would need a representation tkX with tkX(x) = {k · x} such
that k ≥ l for all l ∈ N, which is not possible because the definition of
multiset does not allow the infinite repetition of any of its members. Instead,
Theorem 2 shows that any two M-representations of tX and tY are ≡{·}-
similar.

The reason why we had an M-bisimulation relating the appropriate M-
representations of the compared P-coalgebras in our first example was because
we were under the hypothesis of the following proposition.

Proposition 6. Let α : F ⇒ G be an epi natural transformation. Whenever a
G-bisimulation R relating b1 : X −→ GX and b2 : Y −→ GY is near injective,
which means that |{b2(y) | (x, y) ∈ R}| ≤ 1 for all x ∈ X and |{b1(x) | (x, y) ∈
R}| ≤ 1 for all y ∈ Y , there exist some F -representations of b1 and b2, a1 :
X −→ FX and a2 : Y −→ FY , respectively, such that R is also a bisimulation
relating a1 and a2.

Proof. By Theorem 2, R is also a ≡α-simulation for any pair of F -representations
of b1 and b2; let a1, a2 be any such pair. Then, for all (x, y) ∈ R we have
(a1(x), a2(y)) ∈ (≡α ◦Rel(F ) ◦ ≡α)(R), and hence there exist a′1(x, y) ∈ FX,
a′2(x, y) ∈ FY such that

a1(x) ≡α a′1(x, y), a′2(x, y) ≡α a2(y) and (a′1(x, y), a′2(x, y)) ∈ Rel(F )(R) .

We now define an equivalence relation ≡ on R by considering the transitive
closure of:

– (x, y1) ≡ (x, y2) for all (x, y1), (x, y2) ∈ R.
– (x1, y) ≡ (x2, y) for all (x1, y), (x2, y) ∈ R.

Since R is near injective, it follows that if (x1, y1) ≡ (x2, y2) then b1(x1) =
b1(x2) and b2(y1) = b2(y2), and thus a′1(x1, y1) ≡α a′1(x2, y2) and a′2(x1, y1) ≡α

a′2(x2, y2).



We consider R/≡ and for each equivalence class of the quotient set we choose
a canonical representative (x, y). Obviously we have that (x, y1), (x, y2) ∈ R
implies (x, y1) = (x, y2) and that (x1, y), (x2, y) ∈ R implies (x1, y) = (x2, y).

Let us now define two coalgebras a′1 : X −→ FX and a′2 : Y −→ FY as
follows:

– If there exists some y such that (x, y) ∈ R we take a′1(x) = a′1(x, y) for any
such y; otherwise, we define a′1(x) as a1(x).

– If there exists some x such that (x, y) ∈ R we take a′2(y) = a′2(x, y) for any
such x; otherwise, a′2(y) is a2(y).

With the above definitions,

a′1(x) = a′1(x, y) ≡α a′1(x, y) ≡α a1(x) ,

and similarly a′2(y) ≡α a2(y), so that a′1, a′2 are F -representations of b1 and b2.
Besides,

if (x, y) ∈ R then (a′1(x), a′2(y)) ∈ Rel(F )(R)

and R is an F -bisimulation relating them. ut

Let us conclude this illustration of our main theorem by explaining why
we needed an infinite coalgebra to get a counterexample of the result between
bisimulations relating G-coalgebras and those relating their F -representations.
As a matter of fact, in the case of the multiset and the powerset functors we
could prove the result in Proposition 6 not only for near injective bisimulations
but for any relation where no element is related with infinitely many others.
However, we will not prove this fact here since it does not seem to generalize to
arbitrary natural transformations relating two functors.

Example 2. Next we present an example for the natural transformation DM :
M1([0, 1] × X) ⇒ D(X). If we consider the two probabilistic transition sys-
tems sX and sY given by their multisets of probabilistic transitions: sX =
{( 1

2 , x, x′1), (
1
2 , x, x′2)}, sY = {( 1

3 , y, y′1), (
1
3 , y, y′2), (

1
3 , y, y′3)}, where each triple

(p, x, x′) represents the probabilistic transition x
p→ x′, we have the following

D-bisimulation relating the initial states x and y: R = {(x, y)} ∪ {(x′i, y′j) |
i = 1, 2, j = 1, 2, 3}. It is easy to see that for the two M1-representations
s3

X = {3 ·( 1
6 , x, x′1), 3 ·( 1

6 , x, x′2)} and s2
Y = {2 ·( 1

6 , y, y′1), 2 ·( 1
6 , y, y′2), 2 ·( 1

6 , y, y′3)},
R is also an M1-bisimulation between them, using the facts that (x′1, y

′
1) ∈ R,

(x′2, y
′
2) ∈ R and (x′1, y

′
3) ∈ R, (x′2, y

′
3) ∈ R. From this result we immediately

conclude that any two M1-representations of sX and sY are ≡DM -similar.

5 Natural transformations and simulations

In this section we will see that all our results about bisimulations in the pre-
vious sections can be extended to categorical simulations defined by means of
an order on the corresponding functors. Therefore, our first result concerns the
preservation of functorial orders by means of natural transformations.



Definition 6. Given a natural transformation α : F ⇒ G and vG an order on
G, we define the induced order vα−

G on F by: x vα−
G x′ ⇐⇒ αX(x) vG αX(x′).

It is immediate that vα−
G is indeed an order on F ; given f : X −→ Y and

x, x′ ∈ X:
x vα−

G x′ ⇐⇒ αX(x) vG αX(x′)
=⇒ Gf(αX(x)) vG Gf(αX(x′))
⇐⇒ αY (Ff(x)) vG αY (Ff(x′))
⇐⇒ Ff(x) vα−

G Ff(x′) ,

where the implication follows because vG is functorial.

Example 3. Taking {·} : M ⇒ P and vP = ⊆, then the induced order v{·}−P
on M is defined as u v{·}−P v iff {u} ⊆ {v}: that is, it coincides with multiset
inclusion.

Another example corresponds to the equality relation on G.

Proposition 7. The induced order =α−
G on F is just the relation ≡α.

Proof. The definition of ≡α is just the particular case of our definition of vα−
G

for the equality relation on G as an order on it. ut

Orders on F can be also translated to G through a natural transformation
α : F ⇒ G.

Definition 7. Given a natural transformation α : F ⇒ G and vF an order on
F , we define the projected order vα

F on G as the transitive closure of the relation
x vα

F x′, which holds if:

there exist x1, x′1 such that x = αX(x1), x′ = αX(x′1) and x1 vF x′1, or x = x′.

We need to add the last condition in the definition above in order to cover
the case in which α is not an epi. Obviously, we can remove it whenever α is
indeed an epi, and in the following we will see that we only need that condition
in order to guarantee reflexivity of vα

F in the whole of GX, because all of our
results concerning this order will be based on its restriction to the images of the
components of the natural transformation αX .

Again, it is easy to prove that vα
F is indeed an order on G. By defini-

tion, it is reflexive and transitive. It is also functorial: given f : X −→ Y
and x vα

F x′, with x = αX(x1) and x′ = α(x′1) such that x1 vF x′1, we
need to show Gf(x) vα

F Gf(x′). Since Gf(x) = Gf(α(x1)) = α(Ff(x1)),
Gf(x′) = Gf(α(x′1)) = α(Ff(x′1)), and Ff(x1) vF Ff(x′1), the result follows
by the definition of vα

F .

Theorem 3 (Simulations are preserved by natural transformations). If
R ⊆ X × Y is a vF -simulation relating a : X −→ FX and b : Y −→ FY , and
α : F ⇒ G is a natural transformation, then R is also a vα

F -simulation relating
a′ = αX ◦ a and b′ = αY ◦ b.



Proof. Let (x, y) ∈ R: we need to show that (a′(x), b′(y)) ∈ Rel(G)vα
F
(R). Since

R is a vF -simulation, (a(x), b(x)) ∈ Rel(F )vF
(R). This means that there exists

w ∈ FR such that a(x) vF Fr1(w) and Fr2(w) vF b(x), and hence that
there exists z = αR(w) ∈ GR such that a′(x) vα

F αX(Fr1(w)) = Gr1(z) and
Gr2(z) = αY (Fr2(w)) vα

F b′(x); therefore, (a′(x), b′(x)) ∈ Rel(G)vα
F
(R). ut

As said before, bisimulations are just the particular case of simulations corre-
sponding to the equality relation. Obviously we have that =α

F is =G and therefore
Theorem 1 about the preservation of bisimulations by natural transformations
is a particular case of our new preservation theorem covering arbitrary vF -
simulations.

Analogously, we now generalized Theorem 2 to arbitrary vG-simulations.

Theorem 4. Let α : F ⇒ G be an epi natural transformation, vG an order on
G and b1 : X1 −→ GX1, b2 : X2 −→ GX2 two coalgebras, with a1 : X1 −→
FX1, a2 : X2 −→ FX2 arbitrary concrete F -representations. Then, the vG-
simulations relating b1 and b2 are precisely the vα−

G -simulations relating a1 and
a2.

Proof. Just like Theorem 2, the result follows from showing that, for every rela-
tion R ⊆ X1 ×X2,

Rel(F )vα−
G

(R) = {(u, v) ∈ FX1 × FX2 | (αX1(u), αX2(v)) ∈ Rel(G)vα
G
(R)} .

Unfolding the definition of Rel(F )vα−
G

(R) and using the fact that α is a natural
transformation:

Rel(F )vα−
G

(R) = {(u, v) ∈ FX1 × FX2 | ∃w ∈ FR. u vα−
G Fr1(w) ∧

Fr2(w) vα−
G v}

= {(u, v) ∈ FX1 × FX2 | ∃w ∈ FR.αX1(u) vG αX1(Fr1(w)) ∧
αX2(Fr2(w)) vG αX2(v)}

= {(u, v) ∈ FX1 × FX2 | ∃w ∈ FR.αX1(u) vG Gr1(αR(w)) ∧
Gr2(αR(w)) vG αX2(v)} .

On the other hand,

Rel(G)vG
(R) = {(x, y) ∈ GX1 ×GX2 | ∃z ∈ GR. x vG Gr1(z) ∧Gr2(z) vG y} .

Now, if (u, v) ∈ Rel(F )vα−
G

(R), by taking αR(w) as the value of z ∈ GR we
have that (αX1(u), αX2(v)) ∈ Rel(G)vG

(R). Conversely, if (αX1(u), αX2(v)) ∈
Rel(G)vG

(R) is witnessed by z, let w ∈ FR be such that αR(w) = z, which
must exist because α is epi; it follows that (u, v) ∈ Rel(F )vα−

G
(R). ut

6 Combining non-determinism and probabilistic choices

Probabilistic choice appears as a quantitative counterpart of non-deterministic
choice. However, it has been also argued that the motivations supporting the



use of these two constructions are different, so that it is also interesting to be
able to manage both together. The literature on the subject is full of proposals
in this direction [13, 10, 14], but it has been proved in [16] that there is no
distributive law of the probabilistic monad V over the powerset monad P . As
a consequence, if we want to combine the two categorical theories to obtain a
common framework, we have to sacrifice some of the properties of one of those
monads. Varacca and Winskel have followed this idea by relaxing the definition
of the monad V , removing the axiom A⊕p A = A, so that they are aware of the
probabilistic choices taken along a computation even if they are superfluous.

We have not yet studied that general case, whose solution in [16] is technically
correct, but could be considered intuitively not too satisfactory since one would
like to maintain the idempotent law A ⊕p A = A, even if this means that only
some practical cases can be considered.

As a first step in this direction we will present here the simple case of al-
ternating probabilistic systems, which in our multi-transition system framework
can be defined as follows:

Definition 8. Alternating multi-transition systems are defined as (M(A× ·) ∪
M1([0, 1] × A × ·))-coalgebras: any state of a system represents either a non-
deterministic choice or a probabilistic choice; however, probabilistic and non-
deterministic choices cannot be mixed together.

By combining the two natural transformations {·} and DM we obtain the
natural transformation Da

M , that captures the behaviour of alternating transition
systems.

Definition 9. We use the term alternating probabilistic systems to refer to the
(P(A× ·)∪D(A× ·))-coalgebras. By combining the classical definition of bisim-
ulation and that of probabilistic bisimulations we obtain the natural definition of
probabilistic bisimulation for alternating probabilistic systems.

We define Da
MX

: M(A × ·) ∪ M1([0, 1] × A × ·) ⇒ P(A × ·) ∪ D(A × ·)
as Da

MX
(M) = {·}(M), Da

MX
(M1) = DM (M1), where M ∈ M(A × X), M1 ∈

M1([0, 1]×A×X).

Then we can consider the induced functorial equivalence ≡Da
M which roughly

corresponds to the application of ≡{·} in the non-deterministic states, and the
application of ≡DM in the probabilistic states. As a consequence of Theorem 2
we obtain the following corollary.

Corollary 5. Bisimulations between alternating probabilistic systems are just
≡Da

M -simulations between alternating multi-transition systems.

Example 4. Let X = {x, x′1, x
′
2, x

′
3, x

′
4}, Y = {y, y′1, y

′
2, y

′
3, y

′
4} and let us de-

fine (disregarding actions) the alternating multi-transition systems aX : X −→
M(X) ∪M1([0, 1] × X) and aY : Y −→ M(Y ) ∪M1([0, 1] × Y ) as aX(x) =
{1·( 1

2 , x′1), 1·( 1
2 , x′2)}, aX(x′1) = {1·x′3}, aX(x′2) = {1·x′4}, aX(x′3) = aX(x′4) = ∅,

aY (y) = {1 · ( 1
3 , y′1), 1 · ( 1

3 , y′2), 1 · ( 1
3 , y′3)}, aY (y′1) = aY (y′2) = aY (y′3) = {1 · y′4},



aY (y′4) = ∅. aX and aY induce the canonical alternating probabilistic sys-
tems bX : X −→ P(X) ∪ D(X) and bY : Y −→ P(Y ) ∪ D(Y ) (for example,
bX(x) = 1

2x′1 + 1
2x′2 and bY (y′3) = {y′4}).

Now, if we want to know if there is a bisimulation between bX and bY we can
use the fact that R = {(x, y)}∪{(x′i, y′i) | i = 1, 2, y = 1, 2, 3}∪{(x′i, y′4) | i = 3, 4}
is a ≡Da

M -bisimulation between aX and aY (using a similar argument to that
in Example 2), and apply Corollary 5 to conclude that there is a (P ∪ D)-
bisimulation between bX and bY .

7 Conclusion

In this paper we have shown that multitransition systems are a common frame-
work wherein bisimulation of ordinary and probabilistic transition systems al-
most collapse into the same concept of multiset (bi)simulation. Indeed, the defini-
tion of bisimulation for the multiset functor is extremely simple, which supports
the idea that multisets are the natural framework in which to justify the use of
bisimulation as the canonical notion of equivalence between (states of) systems.

These results have been obtained by exploiting the fact that natural trans-
formations between two functors relate in a nice way bisimulations over their
corresponding coalgebras. We have illustrated these general results by means
of the natural transformations that connect the powerset and the probabilistic
distributions functors with the multiset functor.

The categorical notion of simulation proposed by Hughes and Jacobs has
played a very important role in our work; this fact, in our opinion, is far from
being casual. In particular, categorical simulations based on equivalence rela-
tions always define equivalence relations weaker than bisimulation equivalence.
Besides, as illustrated by their use in this paper, they can be used to relate
the bisimulation equivalence corresponding to functors connected by a natural
transformation.

Related to our work is [2], where probabilistic bisimulations are studied in
connection with natural transformations and other categorical notions. Even
though some connections can be found, there are very important differences;
in particular they do not consider categorical simulations nor use the multiset
functor as a general framework in which to study both ordinary and probabilistic
bisimulations. We can also mention [15], where the functor D is replaced with
a functor of indexed valuations so that it can be combined with the powerset
functor.

A direction for further study that we intend to explore concerns other classes
of bisimulations, like the forward-backward ones estudied in [5]. Besides we will
study more general combinations of non-deterministic and probabilistic choices,
comparing in detail our approach with the use of indexed valuations in [15, 16]
to combine the monads defining the corresponding functors.

We are confident we will be able to study them in a common setting by
generalizing and adapting all the appropriate notions on categorical simulations.
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Category Theory and Computer Science, volume 389 of Lecture Notes in Computer
Science, pages 357–365. Springer-Verlag, 1989.

2. Falk Bartels, Ana Sokolova, and Erik P. de Vink. A hierarchy of probabilistic
system types. Theoretical Computer Science, 327(1-2):3–22, 2004.

3. David de Frutos-Escrig, Fernando Rosa Velardo, and Carlos Gregorio-Rodŕıguez.
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