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Abstract. We present a study of the notion of coalgebraic simulation introduced
by Hughes and Jacobs. Although in their original paper they allow any functorial
order in their definition of coalgebraic simulation, for the simulation relations to
have good properties they focus their attention on functors with orders which are
strongly stable. This guarantees a so-called “composition-preserving” property
from which all the desired good properties follow. We have noticed that the notion
of strong stability not only ensures such good properties but also “distinguishes
the direction” of the simulation. For example, the classic notion of simulation for
labeled transition systems, the relatigmi$ simulated byg”, can be defined as

a coalgebraic simulation relation by means of a strongly stable order, whereas
the opposite relation,f simulatesy”, cannot. Our study was motivated by some
interesting classes of simulations that illustrate the application of these results:
covariant-contravariant simulations and conformance simulations.

1 Introduction and presentation of our new results

Simulations are a very natural way to compare systems defined by transition systems or
other related mechanisms based on the description of systems by means of the actions
they can execute at each of their states [11]. They can be enriched in several ways to
obtain, in particular, the important ready simulation semantics [2, 8], as well as other
more elaborated ones such as nested simulations [5]. Quite recently we have studied
the general concept of constrained simulation [3], proving that all the simulation re-
lations constrained by an adequate condition have similar properties. The semantics of
these constrained simulations is also the basis for our unified presentation of the seman-
tics of processes [4], where all the semantics in the Itbt-spectrum [13] (and other new
semantics) are classified in a systematic way.

Hughes and Jacobs [6] have also developed a systematic study of simulation-like
relations, this time in a purely coalgebraic context, so that simulations are studied in
connection with bisimulations [11], the fundamental concept to define equivalence in
the coalgebraic world. Their coalgebraic simulations are defined in terms of artorder
associated to the functér corresponding to the coalgebta X — FX that we want
to observe. In this way they obtain a very general notion of coalgebraic simulation,
not only because all functois are considered, including in particular the important
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class of polynomial functors, but also because by changing the family of argers
many diterent families of simulation relations can be obtained. The general properties
of these simulations can be studied in the defined coalgebraic framework, thus avoiding
the need of similar proofs for each of the particular classes of simulations.

Certainly, this generic presentation of the notion of coalgebraic simulation has as
advantage that it provides a wide and abstract framework where one can try to isolate
and take advantage of the main properties of all the simulation-like relations. However,
at the same time it can be argued that the proposal fails to capture in a tight manner the
spirit of simulation relations because, in addition to the natural notions of simulations,
the framework also allows for other less interesting relations. This has as a result that
some natural properties of simulations cannot be proved in general, simply due to the
fact that they are not satisfied by all of the permitted coalgebraic simulation relations.
For instance, the induced similarity relation between systems is not always an order
because transitivity is not always satisfied. In order to guarantee transivity, and other
related properties of coalgebraic simulations, Jacobs and Hughes introduce in [7] the
composition-preserving property to the ordeithat induces the simulation relation.

In [6] they continue with the study of the topic and presstatbility of orders as a
natural categorical property to guarantee that an order is composition-preserving. They
also comment that stability is not easy to check and introduce a stronger condition
(that we will call right-stability) so that, whenever applicable, the checking of the main
properties of coalgebraic simulations becomes much simpler than in the general case.

Roughly speaking, given an ordek on FX for each sek, the induced coalgebraic
simulations are defined in the same way as bisimulation§& fdaut allowing a double
application ofc on the two sides of the defined relation. More precisely, instead of the
functor Relf) defining plain bisimulations, RelF) defined as=y oRel(F)o Cx is
used. There are several interesting facts hidden behind the apparent simplicity of this
definition. The first one is that, in general, it only defines an order and not an equiv-
alence relation, even if it is based on bisimulations (that always define an equivalence
relation, namely, bisimilarity). The reason is that the ordeppears “in the same di-
rection” on both sides of the definition, thus breaking its symmetry. However, we can
also define some equivalence relations weaker than bisimilarity by using an equiva-
lence relatior= as the ordeE. Another interesting fact is that whenever we define a
coalgebraic simulation by using, the inverse orden defines the inverse relation of
that defined byC once we also interchange the roles of the related>setisdY (so we
could say that we are defining in fact the same relation but looking at it from the other
side). Stability is also a symmetric condition, so that whenever an araer a func-
tor F is stable, the inverse orderis stable forF, too. This is quite reasonable, since
stability is imposed in order to guaratee transitivity of the generated similarity relation
and the inverse of a transitive relation is also transitive, so that whenayemerates an
“admissible” similarity relation (meaning that it is an order), the inverse ardeaust
be also admissible.

It is worth noting that the stronger condition guaranteeing stability is asymmetric.
In fact, Hughes and Jacobs prove in [6] that “right-stability” implies that

Rel(F)(R) o £x € Cy o Rel(F)(R), 1)

which in fact motivates our name for the condition.



A second surprise was to notice that, in most cases, right-stability induces a “natu-
ral direction” on the orders defining the coalgebraic simulation. For instance, for plain
similarity over labeled transition systems, the inclusion oglgrduces the classic sim-
ulation relation while the reversed inclusianinduces the opposite “simulated by”
relation: the first one is right-stable while the second is not.

All these general results arose when trying to integrate two new simulation-like
notions as coalgebraic simulations definable by a stable order, so that we could obtain
for free all the good properties that have been proved in [6] for this class of relations.

The first new simulation notion is that of covariant-contravariant simulations, where
the alphabet of actionct is partitioned into three disjoint sefsct, Act, and Act”’.

The intention is for the simulation to treat the actionAit like in the ordinary case,
to interchange the role of the related processes for those actidwd jrand to impose
a symmetric condition like that defining bisimulation for the action&dt?'.

The second notion, conformance simulations, captures the conformance relations
[9, 12] that several authors introduced in order to formalize the notion of possible im-
plementations. Like covariant-contravariant simulations, they can be defined as coalge-
braic simulations for some stable order which is not right-stable neither left-stable. We
show that the good properties of these two classes of orders are preserved in those or-
ders that can be seen as a kind of composition of right-stable and left-stable orders. We
use this fact to derive the stability of the orders defining both covariant-contravariant
and conformance simulations.

2 Coalgebraic simulations and stability

Given a categoryC and an endofunctof in C, anF-coalgebra, or just a coalgebra,
consists of an objecX € C together with a morphisro : X — FX. We often callX
the state space amthe transition or coalgebra structure.

An arbitrary endofunctoF : Sets— Setscan be lifted to a functor in the category
Rel over Setsx Setsof relations, Relf) : Rel — Rel. In set-theoretic terms, for a
relationR C X; x Xa,

Rel(F)(R) = {{(u,v) € FXy x FXy | 3w € F(R). F(r1)(w) = u, F(r2)(w) = v}.

A bisimulationfor coalgebras : X — FXandd : Y — FYisarelatiorR € XxY
which is “closed undec andd”:

if (x,y) € Rthen €(x), d(y)) € RelF)(R),

where ther; are the projections dR into X andY. Sometimes we shall use the term
F-bisimulation to emphasize the functor we are working with.

Bisimulations can also be characterized by means of spans, using the general cate-
gorical definition by Aczel and Mendler [1]:

r r2

X R Y

|

FX<— FR—>FY




Ris a bisimulationff it is the carrier of some coalgebeamaking the above diagram
commute. Alternatively, bisimulations can also be defined as thé-Ret{algebras in
the categonRrel.

We will also need the general concept of simulation introduced by Hughes and
Jacobs [6] using orders on functors. l[Fet Sets— Setsbe a functorAn order on F
is defined by means of a functorial collection of preordexs FX x FX that must be
preserved by renaming: for evefy. X — VY, if uCyx U’ thenF f(u) Cy Ff(u).

Given an ordec on F, aC-simulationfor coalgebrag : X — FXandd: Y —
FY is arelationR € X x Y such that

if (x.y) € Rthen €(x), d(y)) € Rek(F)(R),

where the lax relation lifting Re(F)(R) isCy o Rel(F)(R) o Cx, which can be expanded
to
Rek(F)(R) = {(u,v) | 3w € F(R). uCx Fri(w) A Fra(w) Cy Vv}.

Alternatively,C-simulations are just the R€F)-coalgebras ifRel.

Sometimes, wheifi : X — Y andA ¢ X we will simply write f(A) for the image
LI+ (A).

A functor with orderC is stable[6] if the relation lifting Rel(F) commutes with
substitution, that is, if for every : X — Z andg: Y — W, Rek(F)((f x 9)'(R)) =
(Ff x Fg)~}(Rek(F)(R)).! They also define a stronger condition that we are going to
call right-stability.

Definition 1 ([6]). We will say that a functor F with ordet is right-stableif, for every
function f: X — Y, we havé

(dxFHrcy ¢ | ] ex. )
Ffxid

According to [6], condition (2) is equivalent to (&) being stable and (b) for every
relationRC X x Y,
Rel(F)(R)o Ex <€ Lty oRel(F)(R). 3

Right-stability was introduced by arguing that it is easier to check than plain stabil-
ity, while being satisfied by nearly all orders discussed in that paper. Surprisingly, one
cannot find in [6] a clear explanation of the reason why right-stable orders are easier to
analyze. In our opinion, the crucial fact is that from (3) we can immediately conclude
that

Cy ocRel(F)(R) o Ex = Cv oRel(F)(R), 4)

so that the coalgebraic simulations for a right-stable ardean be equivalently defined
by means of the asymmetric definition on the right-hand side of equality (4). If the
orderC can be used only on one of the sides of the definition, the verification of the

L In fact, the inclusiort always holds.
2 Again, the other inclusion is always true sincefunctorial means thaf f(u) Ty Ff(v) if
Uty V.



properties of the induced coalgebraic simulations becomes much easier than when using
the original definition.

It was quite surprising to discover that the easiest way to prove the properties of the
“simulated by” relations which come from symmetric properties such as composition-
preserving (that are also satisfied by the corresponding inverse relations “simulates”) is
to break that symmetry by considering the asymmetric definition of coalgebraic sim-
ulations that only usey; certainly, this is only possible when the defining ordeis
right-stable.

Stability is used in [6, Lemma 5.3] to prove that lax relation lifting preserves com-
position of relations, which is needed to prove [6, Lemma 5.4(2)], the crucial fact that
the induced similarity relation is transitive; this need not be the case for the simulation
notion defined by an arbitrary order

3 On stability of simulation and anti-simulation

Plain simulations between labeled transition systems can be defined as coalgebraic sim-
ulations considering the functér = PA (G denote the funtoX — (G(X))*) with the
orderc given bya C gfora,8: A— PXiff forallac A, a(a) C (a).

Lemma 1. The orderc defining plain simulations for labeled transition systems is
right-stable.

Corollary 1. Plain simulations between labeled transition systems can be defined as
the(Cy o Rel(F))-coalgebras.

It is worth examining the consequences of the removatpffrom the original
definition of coalgebraic simulations in this particular case. BgttlandCy correspond
to the inclusion order, but when applied at the right-hand side it means that we can
reduce the set of successors of the simulating pragegsen simulating the execution
of a by p. This means that starting from a $étC Y we can obtain an adequate subset
Y” C Y. Instead, the application @fx at the left-hand side allows to enlarge the set of
successors of the simulated procesand this produces a s&t’ larger than the given
X’: one could say that we need to consider “new” information noX’inwhile going
from Y’ to Y” just “removes” some known information.

Another interesting point arises from the fact that every usexoét the left-hand
side can be “compensated” by removingYathe added states and this is why Corol-
lary 1 was correct, because we can always avoid the introduction of new successors in
the simulated process by simply removing them at the right-hand side. However, the op-
posite procedure, to compensate the removal of states by adding them at the simulated
process side is not always possible, since in genéraluld be not big enough.

The anti-simulations can be defined as coalgebraic simulations by taking the re-
versed inclusion order instead ©f It is interesting to note that it is not right-stable as
the following counterexample shows. Dét= {x} andY = {y;,y,} and letf : X — Y
be such thaff (x) = y;. With these definitions the pail,(X) € (id x Pf)1(2), since
Y 2 {y1} = Pf(X), but it is obvious that there is n& C X such thaty = f(A) because
f is not surjective.



However, the order defining anti-simulations is stable as a consequence of the fol-
lowing general result.

Lemma 2. F with an orderC is stable jf it is stable with the ordeE°P.

Proof. Itis shown in [6, Lemma 4.2(4)] that Re}(F)(R) = (Rek(F)(R°P))°P. Then, on
the one hand,

(Ff x Fg)(Rel(F)(R) = (Ff x Fg) ™ (Rek(F)(R*)*
= ((Fgx Ff)™ReL(F)(RP)™,

and on the other hand,

Reka(F)((f x 9)(R)) = (Rek(F)((f x 9)™(R)*))P
= (Rek(F)((gx )™ (RP).

SinceRP C Y x X is a relation wheneveR € X x Y is so, andf, g, andR are
arbitrary, we have shown that

Rek(F)((f x 9)'(R)) = (Ff x Fg) " (ReL(F)(R)
if and only if
Reko(F)((f x 9)(R) = (Ff x Fg)™(Rekx(F)(R)),
and thereford- is stable forC iff it is stable for=°P. i

Corollary 2. The orderc°? defining anti-simulations for transition systems as coalge-
braic simulations is stable.

One could conclude from the observation above that there is indeed a natural ar-
gument supporting plain similarity as a “right” coalgebraic similarity, definable by a
right-stable order. This criterion could be adopted to define right coalgebraic simula-
tions, which plain similarity would satisfy while the opposite relation “is simulated by”
would not. However, we immediately noticed that we could define “left-stable” orders
by interchanging the roles &ff andid in the definition of right-stable order, obtaining
the inverse inclusion in (1).

Definition 2. We will say that a functor F with ordet is left-stableif, for every func-
tion f : X — Y, we have

(Fixid)'cy ¢ | ] cx. (5)
idxF f

Itis inmediate to check that an ordeis left-stable ff the inverse order®P is right-
stable. Moreover, left-stable orders have the same structural properties that right-stable
ones so that, in particular, they are also stable and hence composition-preserving. But
in this case it would be the inverse simulations, corresponding to the “is simulated by”
notion, that would be natural instead of plain simulations. As a conclusion, we could
use right or left-stability as a criterion to choose a natural direction for the simulation
order. But the important fact in both cases is that the simplified asymmetric definitions
(using eithercx or Cy) of coalgebraic simulations are much easier to handle than the
symmetric original definition (where bothx andCy have to be used).



4 Covariant-contravariant simulations and conformance
simulations

Covariant-contravariant simulations are defined by combining the conditions “to simu-
late” and “be simulated by”, using a partition of the alphabet of actions of the compared
labeled transition systems.

Definition 3. Givenc: X — P(X)A% andd: Y — P(Y)Alabeled transition systems
for the alphabet Act, an@iAct, Act, Act’’} a partition of this alphabet, §Act, Act)-
simulation between c and d is a relation § X x Y such that for ever{x,y) € S we
have:

— foralla e Act U Act’ and all x—= X’ there exists y— Yy with (X,y) € S.
— foralla e Act U Act, and all y—= v’ there exists x— x’ with (X,y) € S.

We write Xacr Sact Y, and say that x igAct, Act)-simulated by y, if and only if there
exists som¢Act , Act)-simulation S with xSyy.

A very interesting application of this kind of simulations is related with the defi-
nition of adequate simulation notions for infudtput (JO) automata [10]. The classic
approach to simulations is based on the definition of semantics for reactive systems,
where all the actions of the processes correspond to input actions that the user must
trigger. Instead, whenever we have explicit output actions the situation is the opposite:
it is the system that produces the actions and the user who is forced to accept the pro-
duced output. Then, it is natural to conclude that in the simulation framework we have
to dualize the simulation condition when considering output actions, and this is exactly
what our anti-simulation relations do.

Covariant-contravariant simulations can be easily obtained as coalgebraic simula-
tions, as the following proposition proves.

Proposition 1. (Act, Act)-simulations can be defined as the coalgebraic simulations
for the functor F= PA with functorial orderacsrCaci Where, for each set X and o’ :
Act — P(X), we havar actCag @ if:

— foralla € Act U Act’, a(a) C ’/(a), and
— foralla e Act U Act, a(a) 2 /().

Note that in particular we have(a) = «’(a) for all a € Act”’.

Proof. Intuitively, using the ordejcCacy ON the left-hand side of RelF)(R) allows
us to removex -transitions wher® € Act, whereas using it on the right-hand side of
Rek(F)(R) allows us to remove-transitions wher € Act'.

Let us suppose that we have a classic covariant-contravariant simulgtiSgyy
between labeled transition systemsP — P(P) ' andd : Q — P(Q)"°t defined by
o(p)(@) = (' | p— P’} andd(6)(@) = (g | g —> ). We must show that ip ace Sact
then there exisp* andq* such that

c(P) ActCact P*REIP ™) (acr Sact)d” ActTact A(0). (6)

We definep* andg* as follows:



— p* has the same transitions ef), except for those transitiong N p’ with

a e Act such that there is ng with g A g andp’ actSact d -
— g° has the same transitions d&j), except for those transitiorqsi q withae
Act such that there is np’ with p N p’andp’ act Sact 9'-

It is immediate from these definitions thep) actCact P* and g* actCact d(Q), SO
we are left with checking thagt*RelP*)q.

Let p’ € p*(a) with a € Act'. By construction ofp*, since we have not dropped
any a-transitions fromp*, p 2 p’. Using the fact thai.r St is a classic covariant-
contravariant simulation, there existssuch thaty 2 g with p’ acr Sact 0, @and, again
by constructiong/ € g*(a) because there is sorpel p’ with p’ act Sact - Similarly,
if p € p*(a) with @ e Act, by construction ofp* there must exist somg such that
q 2, g with p’ act Sact 0’ - Again, since we have not removed aaiytransitions from
d(qg) in g*, it must be true thatf € g’ (a). Finally, if p’ € p*(a) with a € Act’ we have
thatp —a> p’ and hence there existp such thaig 2, g with p’ acrSact 4, but also

" € g'(a).
| th((a ;rgument that shows that for evefye g*(a) there exists somp’ € p*(a) with
P’ act Sact 0 IS analogous.

We show now the other implication, that a coalgebraic covariant-contravariant sim-
ulation is a classic one. In this case we start from coalgebessid that satisfy rela-
tion (6) whenevep acr Sact 0.

If p 2 p’ for a € Act, thenp’ € p*(a) becausec(p) actCact P° and, since
p*RelPAY (act Sact)d", there is somel € g*(a) with p’ ace Sact - Again, the defi-
nition of actCact €nsures thag*(a) € d(g)(a) and hence N g as required. Similarly,
if q N q fora’ e Act, thenq' € g*(a) because’ actCact d(q) and thus, as |nthe previ-

ous case, there emspée p*(a) with p’ act Sact @ @andp 2, p’. Finally if p N p’ for
a e Act (resp.q N d), again by the definition of;sCacy We havep’ € p*(a) (resp.
q € g'(a)) and, fromp*RelP*Y)(act Sact)q", it follows that there existsf € q*(a)
(resp.p’ € p*(a)) such thatp’ acr Sact q'; by the definition ofacrCact, 9 N q (resp.

a
p— p). O

The other new kind of simulations in which we are interested is that of conformance
simulations, where the conformance relation in [9, 12] meets the simulation world in a
nice way. In the definition below we will writg 2 if p 2, p’ for somep'.

Definition 4. Given c: X — P(X)*and d: Y — P(Y)* two labeled transition
systems for the alphabet Acanformance simulatiorbetween them is a relation
X x'Y such that whenever pRq, then:

. a a . .
— For alla € A, if p — we must also have g— (this means, using the usual
notation for process algebras, thatd) c 1(q)).

— For all a € A such that qi> q and pi>, there exists somé with p A, p’ and
P'Rq.



Conformance simulations allow the extension of the set of actifiesadl by a pro-
cess, so that in particular we will hage< a + b, but they also consider that a process
can be “improved” by reducing the nondeterminism in it, so @jpt+ aq < ap. In
this way we have again a kind of covariant-contravariant simulation, not driven by the
alphabet of actions executed by the processes but by their nondeterminism.

Once again, conformance simulations can be defined as coalgebraic simulations
taking the adequate order on the functor defining labeled transition systems.

Proposition 2. Conformance simulations can be obtained as the coalgebraic simula-
tions for the orde=®°" on the functorP?, where for any set X we hav@.i"“f v if for
every yv: A— PX and a€ A:

— either ya) = 0, or
— u(a) 2 v(a) and a) # 0.

Proof. Let us first prove thr—za:ionf isindeed an order. It is clear that the only not imme-

diate property is transitivity. To check it, let us takez 3™ v " w: if u(a) = 0 we
are done; otherwise, we haué) 2 v(a) andv(a) # 0, so that we also hawga) 2 w(a)
andw(a) # 0, obtainingu(a) 2 w(a) andw(a) # 0.

Now, we can interpret that using the ordgr°™ on the left-hand side of RefF)(R)
allows us to remove ak-transitions except for the last one, whereas using it on the
right-hand side allows us to remove BHtransitions forb € B, whereB is any set of
actions. But again, as in the proof of Proposition 1, we can compensate these additions
with the corresponding removals at the other side and the proof follows in an analogous
way. O

Next we check that the ordag:Ca defining covariant-contravariant simulations
is stable.

Lemma 3. Given a partition{Act , Act, Act’'} of Act the orderncCac for the functor
PAt defining covariant-contravariant simulations for transition systems is stable.

Proof. It is clear that the ordex.sCact Can be obtained as the product of a family of
ordersC? for the functor®, with a € Act This is indeed the case takimg = Cx for
ae Act,C% = Dy for ae Act andc? = =x for a € Act”. Then itis easy to see that to
obtain thatacrCact IS Stable it is enough to prove that each of the or@é@ris stable.

This latter requirement is straightforward becauseafar Act’, C2 is right-stable;
for a € Act the orderc? is left-stable; and fom € Act”, C2 is the equality relation,

which is both right and left-stable, for every functer O

Certainly, the order defining covariant-contravariant simulations is not right-stable
nor left-stable, but in the proof above we have used the power of these two properties
thanks to the fact that the ordg&Cac can be factorised as the product of a family
of orders that are either right-stable or left-stable. Then we can obtain the following
sequence of general definitions and results, from which Lemma 3 could be obtained as
a simple particular case.

3 Instead of removing the above, we have preferred to maintain the sequence of results in the
order in which we got them, starting with our motivating example.



Definition 5. We say that an ordez on a functor P is action-distributiveif there is a
family of orders=? on F such that

fCg & f(agc?g(a)forallac A
WheneveL can be distributed in this way we will write = []zca E2.

Definition 6. We say that an action-distributive orderon FA is side stabléf for the
decompositiort = [].ca £ we have that each ordez? is either right-stable or left-
stable.

By separating the right-stable and the left-stable components we abtain' x C",
where A (resp. A) collects the set of argumefita € A with C2 right-stable (resp. left-
stable). We extend' andC" to obtain a pair of orders on &, C' andC", defined by:

- f

C' gif f(a) = g(a) for alla € A" and f(a) = g(a) foralla e A
- fc

giff f(a) =2 g(a) for alla € A and f(a) = g(a) foralla e A".

Proposition 3. The orderc! is left-stable, W_hil@r:is right-stable. We have = (E'_o C') =
(C" o '), and therefore we also hawe= (C' U C7)*.

Proposition 4. For any side stable order on F, if we have a decompositian =
C' x C' based on a partition of A into a set of right-stable componenhtand another
set of left-stable components, #hen we can obtain the coalgebraic simulationstfor
as the(c!, o Rel(F) o C} )-coalgebras.

Proof. By definition, Rel(F)(R) = Ey oRel(F)(R)o Ex. Sincet = C'o EG =
(c' o C7), we have:

Cv oRel(F)(R) o Ex = (&}, o £}) o Rel(F)(R) o(C © )
=, o(c, o RelF)(R) o Cf) o £ i
= (c} o C{) o Rel(F)(R) o (by right-stability of=")
=Cl o(C, oRelF)(R)oC})  (sincec” andc' commute)

= !, oRel(F)(R) o C}, (by left-stability ofc') .

The characterization above still requires the use of the order on both sides of the
Rel(F)(R) operator. However, the fact tha}, (resp.C} ) is right-stable (resp. left-stable)
makes the application of this decomposition as simple as when coping with either a right
or left-stable order.

Proposition 5. If C = [T,ca C% andZ? is stable for all ac A, thenC is stable.

4We have assumed here a partitigh, A’} of the setA into two sets of right-stable and left-
stable components. Obviously, if there were some arguneerdsA on which? is both
right-stable and left-stable then the decomposition would not be unique, but the result would
be valid for any such decomposition.
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Proof. The result follows from the following chain of implications:

(uv) € (Ff x Fg)"*RekL(F)(R)

Ff(u) E ZRel(F)(Rw C Fg(v)

Ff(u)(a) =2 Z(a)RelF?)(Rw (a) =2 Fg(v)(a), for all a

(u(@), v(a)) € (Ff x Fg)"*Rek:(F)(R), for all a

(u(@), v(a)) € Reka(F)((f x g)'R), forall a

u(a) c2 x' (a)Rel(F)((f x g)"*R)y'(a) =2 v(a), for all a

(uv) € Rek(F)((f x 9)'R) O

Corollary 3. Any side stable order is stable.

1007101

Corollary 4. The orderacrCact defining covariant-contravariant simulations is side
stable and therefore it is stable too.

Next we consider the case of conformance simulations, for which we can obtain
similar results to those proved for covariant-contravariant simulations.

Lemma 4. The order=°"" defining conformance simulations for transition systems is
stable.

Proof. LetR € Z x W be a relation and : X — Z,g: Y — W arbitrary functions.
If (u,v) € (PAf x PAG)~L(Rekea (PA)(R)), then there exist andw such that

PAF(U) £ z Rel®P?)(R) w CCO PAg(v). 7)

We have to show thati(v) € Rekco(PA)((f x g)~1(R)), that is, there exist andy such
that
uce x Rel@*)((f x 9 "(R) yc=" v.

Let us definex : A — P(X) by x(@) = u(@) n f~%(z(a)) andy : A — P(Y) by
y(a) = g~1(w(a)). Then we have:

1. ucConfx,
If u(a) = 0, there is nothing to prove. Otherwise, sife®f (u) " zand f (u(a)) #
0, we havef (u(a)) 2 z(a) # 0 and hencei(a) 2 u(a) N f-1(z(a)) = x(a) # 0.

2. y ;Conf V.
If w(a) = 0, theny(a) = g~*(w(a)) = 0. Otherwise, sincev C¢°" PAg(v), we have
w(a) 2 g(v(a)) # 0, so thatv(a) # 0 andy(a) = g~*(w(a)) 2 g~*(g(v(a))) 2 v(a).

3. x Rel®PM((f x ) (R) .
For everya € Awe need to show thaqa) Rel®)((f x g)"1(R)) y(a), which means:
(a) for everyp € x(a) there existgy € y(a) such thatp (f x g)"(R) g, that is,

f(pRda); and
(b) for everyq € y(a) there existsp € x(a) such thatp (f x g)"*(R) g, that is,

f(P)RYQ). o

In the first case, lgp € x(a); by definition ofx, f(p) € z(a). Now, fromz Rel(®*)(R)
w we obtain that for eacly € z(a) there exist®]' € w(a) such thatp’Rd. Then, for
f(p) € zZ(a) there existgl’ € w(a) with f(p)R(; and by definition ofy, there exists
g € y(a) with g = g(q) as required.

In the second case, Igte y(a) so thatg(q) € w(a). Again, fromz Rel®P*)(R) w it
follows that there igy’ € z(a) with p’Rg(g). Now, f(u(a)) 2 z(a) because = z,
so there exist® € u(a) N f-(z(a)) with f(p) = p’, as required. O

11



As in the case of covariant-contravariant simulations, conformance simulations can-
not be defined as coalgebraic simulations using neither a right-stable order nor a left-
stable order. But we can find in the arguments above the basis for a decomposition of
the involved ordec ", according to the two cases in its definition. Once agziff"
is an action-distributive order oR”, but in order to obtain the adequate decomposition
of =¢°" now we also need to decompose the component ofers

Definition 7. We define the conformance orders™, c°, andcC on the functorP
by:

— X D % if Xy = 0 Or X1 = Xo.
— % C % if Xy 2 xoand % # 0, Or X, = Xo.
— %1 € X if X1 270 %, or %, C©° X,.

Proposition 6. The two relationg&® andc=®? commute with each other:
(EC(/) ° EC_‘(D) — (l;C—\(/) ° EC@)’

from where it follows tha(c®® U c€?)* = (£° o ) = (£ o ). We also
havecC= (C® o %), from where we conclude thaf is indeed an order relation.

Proof. Letu (C®° o £¢?) v: there is somev such that ¢ w andw = v. We need
to findw such thatu % w andw’ =€ v. If w = 0 then it must bau = 0 too, and
we can takew’ = v; otherwise, it must b& = w and we can take&’ = u. The other
inclusion is similar. O

Corollary 5. The orderct°" defining conformance simulations can be decomposed
into [T.ca T2 Where, for each & A, we havec? = CC as defined above. Then®°"'=

[Taca@ ™ U £2)" = [Taca@ ™) 0 [TacaE*’) = [TacaC®”) 0 [Taca(E>™), sO that
we obtainc®°™ as the composition of a right-stable order and a left-stable order that
commute with each other.

Proposition 7. For any pair of right (resp. left)-stable ordets!, £2 on F, their com-
position also defines a right (resp. left)-stable order on F.

Proof. Givenf : X — Y we must show that

(dxFHeyochc [ | ko).
(F fxid)

Let us assume thay,(x) € (id x Ff)"}(c} o C2), thatis,y (E* o £2) y' = Ff();
then, there existg’ € FY such thay C2 y” andy” C} y'. Graphically,

Yy Ly (8)

jpf

X
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Sincecy is right-stable we have thati(x F f)™ =} C []r1xig) Cx- Hence, there exists
X’ € FX such thatFf(x”) = y” andXx” C X, thus turning diagram (8) into the
following:

y ey (©)
jﬁ
X' Cy X

Now, we can apply right-stability af?: since we havey(x”) € (id x Ff)™ 2 ¢
[ (Fxiq) C% there existx’ € FX such thaf f(x) = yandx' c% x”. Thus, diagram (9)
becomes
y (10)

pr

X C2 x' C} X
which means that there exist, X" € FX such that-f(x') =y, X’ I;f( X" andx” g)l( X,
or equivalently, thaty, X) € [ ] 1xia)(C% © C2). as we had to prove. O

Proposition 8. If C" is a right-stable order on F angd' is a left-stable order on F that
commute with each other, then their composition defines a stable order on F. Moreover,
the coalgebraic simulations for the order = C" o C' can be equivalently defined as
the(C" o Rel(F)(R) o C')-coalgebras.

Proof. LetRC Z x W be a relationf : X — Z andg : Y — W arbitrary functions,
andC =C" o C'. Let us suppose thati(v) € (Ff x Fg)~X(ReL(F)(R)). Then, since"
andc' commute with each other, using Proposition 4, there ekist’ such that

Ff(u) C, Z Rel(F)(R) w Cl, Fg(V). (11)
If we write z for F f(u) andw for Fg(v), then equation (11) is equivalent to

zc, z RIF)R w Ly w (12)
Ffj IFQ
u \'

and we have to show that,{) € Rek(F)((f x g)"*(R)), that is, that there existandy
such that
uch x RelF)((f x 9 (R) y i, v.

Using thatc" is right-stable on the rhs of equation (11), we g€t ¢) € (id x Fg)™* Cl S
[{(Fgxiq) EY, SO that there is somee FY such thatFg(y) = w', with y =, v. Graphi-
cally, diagram (12) becomes

z c, 7z RelF)(R w (13)
Ff Fg

.
u y i v
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Analogously, applying the left-stability of ordet, we get that there is somes FX
with F f(x) = Z such thau ;'X x. Or graphically,

Z RelF)(R) w (14)
FfI IFQ
uch x y c{ v

But diagram (14) is just what we had to prove, since we have foygdsuch that
(xy) € (Ff x Fg) X (Rel(F)(R)) = Rel(F)((f x g)~*(R)) with u c, x, y C!, vor, in other
words, (I, V) € Rek(F)((f x g)"1(R)). O

In particular, for our running example of conformance simulations we obtain the

corresponding factorization of the definition of coalgebraic simulations for the order
EConf:

Corollary 6. Coalgebraic simulations for the conformance ord&" can be equiva-
lently defined as thf Taca(C3 ™) o Rel(F)(R) o [Taca(E2?))-coalgebras.

5 Conclusion

We have presented in this paper two new simulation orders induced by two criteria that
capture the dference between input and output actions and the implementation notions
that are formalized by the conformance relations.

In order to apply the general theory of coalgebraic simulations to them, we identified
the corresponding orders on the functor defining labeled transition systems. However,
it was not immediate to prove that the obtained orders had the desired good properties
since the usual way to do it, namely, by establishing stability as a consequence of a
stronger property that we have called right-stability, is not applicable in this case.

Trying to adapt that property to our situation we have discovered several interesting
consequences. We highlight the fact that right-stability is an assymetric property which
has proved to be very useful for the study of a “reversible” concept such as that of
relation, since it is clear that any structural result on the theory of relations should
remain true when we reverse the relations, simply “observing” them “from the other
side”. Two consequences of that assymetric approach followed: first we noticed that
we could use it to point the simulation orders in some natural way; secondly we also
noticed that by dualizing the right-stability condition we could obtain left-stability.

But the crucial result in order to be able to manage more complicated simulation
notions, as proved to be the case for our new covariant-contravariant simulations and
the conformance simulations, was the discovery of the fact that both of them could be
factorized into the composition of a right-stable and a left-stable component. Exploiting
this decomposition we have been able to easily adapt all the techniques that had proved
to be very useful for the case of right-stable orders.

We plan to expand our work here in twoffdirent directions. The first one is con-
cerned with the two new simulated notions introduced in this paper: once we know that
they can be defined as stable coalgebraic simulations and therefore have all the desired
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basic properties of simulations, we will continue with their study by integrating them
into our unified presentation of the semantics for processes [4]. Hence we expect to
obtain, in particular, a clear relation between conformance similarity and the classic
similarity orders as well as an algebraic characterization for the new semantics. In ad-
dition, we plan to continue with our study of stability, which has proved to be a crucial
property in order to understand the notion of coalgebraic simulation, thus making it
possible to apply the theory to other examples like those studied in this paper.
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