
Logical Methods in Computer Science
Vol. 9(2:11)2013, pp. 1–74
www.lmcs-online.org

Submitted Mar. 6, 2012
Published Jun. 26, 2013

UNIFYING THE LINEAR TIME-BRANCHING TIME SPECTRUM OF

STRONG PROCESS SEMANTICS

DAVID DE FRUTOS ESCRIG a, CARLOS GREGORIO RODRÍGUEZ b, MIGUEL PALOMINO c,

AND DAVID ROMERO HERNÁNDEZ d

a,b,c,d Departamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid
e-mail address: {defrutos, cgr, miguelpt}@sip.ucm.es, dromeroh@pdi.ucm.es

Abstract. Van Glabbeek’s linear time-branching time spectrum is one of the most rel-
evant work on comparative study on process semantics, in which semantics are partially
ordered by their discrimination power. In this paper we bring forward a refinement of this
classification and show how the process semantics can be dealt with in a uniform way:
based on the very natural concept of constrained simulation we show how we can classify
the spectrum in layers; for the families lying in the same layer we show how to obtain in a
generic way equational, observational, logical and operational characterizations; relations
among layers are also very natural and differences just stem from the constraint imposed
on the simulations that rule the layers. Our methodology also shows how to achieve a
uniform treatment of semantic preorders and equivalences.

2012 ACM CCS: [Theory of computation]: Formal languages and automata theory—Formalisms—
Algebraic language theory; Formal languages and automata theory—Semantics and reasoning—Program
semantics; Logic; Models of computation—Concurrency.

Key words and phrases: process semantics, linear time-branching time spectrum, algebraic languages,
simulation semantics, linear semantics, constrained simulation, axiomatizations, unification.

a,c,d David de Frutos Escrig, Miguel Palomino and David Romero Hernández were partially supported by the
Spanish MEC project DESAFIOS10 TIN2009-14599-C03-01 and the project PROMETIDOS S2009/TIC-
1465.

b Carlos Gregorio Rodŕıguez was partially supported by the Spanish MEC project ESTuDIo TIN2012-
36812-C02-01.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(2:11)2013

c© D. de Frutos Escrig, C. Gregorio Rodríguez, M. Palomino, and D. Romero Hernández
CC© Creative Commons

http://creativecommons.org/about/licenses

2 D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

Contents

1. Introduction 2
1.1. Overview of results 4
1.2. Some related work 7
1.3. Paper structure 8
2. Preliminaries 9
3. Equational semantics 12
3.1. A new axiomatization of the most popular semantics 12
3.2. The coarsest semantics in the spectrum 18
4. Observational semantics 21
4.1. Branching general observations 22
4.2. Linear observations and linear time semantics 26
4.3. Deterministic branching observations 31
4.4. Back to branching observations 34
5. Relating the observational and equational frameworks 36
5.1. Semantics coarser than ready simulation 36
5.2. The semantics that are not coarser than ready simulation 39
6. Logical characterization of semantics 41
6.1. A new logical characterization of the most popular semantics 44
6.2. Our new unified logical characterizations of the semantics 49
7. Relating the unified logics and the unified observational model 55
8. On the real diamond structure 59
9. Operational semantics 64
9.1. Local simulations up-to 64
9.2. Operational rules for the linear semantics of processes 66
9.3. Characterizing the semantics corresponding to other constraints 68
9.4. Application: trace deterministic normal forms 69
10. Conclusions and some future work 69
References 70

1. Introduction

Since the foundational work by Robin Milner [41, 42] and Tony Hoare [32] on process
semantics, there has been a multitude of proposals to endow processes with meaning and
to define equivalence and preorder relations over them. Among the most relevant work
are those of Matthew Hennessy [30], who introduced the testing methodology defining
process semantics from test cases, and those of Jan Bergstra and Jan Willen Klop [11],
later continued by Jos Baeten and Peter Weijland [10], which were based on an axiomatic
approach.

These proposals define algebraic languages for the specification of processes, diverging in
subtle details concerning the treatment of non-determinism and parallelism. These aspects
are captured by means of certain operators which may (strongly) vary in each particular
language.

UNIFYING THE LTBT SPECTRUM 3

Focusing on equivalences, it is interesting to note how the pioneering work in this area
already established two fundamental notions, bisimulation and traces/failures, that consti-
tute an upper and a lower bound on the natural framework in which other process equiva-
lences can be studied. Hoare—with his characteristic clarity—summarizes the situation in
the following paragraph.

CCS makes many distinctions between processes which would be regarded
as identical in this book. The reason for this is that CCS is intended to
serve as a framework for a family of models, each of which may make more
identifications than CCS but cannot make less. To avoid restricting the
range of models, CCS makes only those identifications which seem absolutely
essential. In the mathematical model of this book [CSP] we have pursued
exactly the opposite goal —we have made as many identifications as possible,
preserving only the most essential distinctions. [32]

In between these two fundamental notions of equivalence—bisimulation and traces—
the last two decades of the 20th century witnessed the surge of a large variety of new
equivalences associated to new calculi and process algebras, whose aim was to explore the
different needs for expressivity and distinction capabilities in many applications.

The most important taxonomic work on process semantics was carried out by Rob
van Glabbeek as part of his doctoral dissertation [54]. In two papers, titled Linear time-
branching time spectrum [55, 56], he collected the most important of these equivalences
establishing, among other results that we will comment on, a classification based on their
capability to distinguish processes. The first of the papers concentrate on strong semantics,
in the sense that they consider each action processes perform as being observable by their
environment. The second paper consider the inclusion in the language of a new and invisible
action τ ; process semantics considering this internal action are usually called weak seman-
tics. Figure 1 shows a slightly expanded version of the spectrum proposed by van Glabbeek
for the case of strong semantics in [55]. These strong semantics, that do not consider at all
the special role of internal actions τ , are the only ones that we consider in this paper.

This array of semantics is supported by many authors who claim that there is no
single “good” definition. Process theory can be applied in a wide spectrum of contexts
and situations and the concrete uses will have a decisive influence in the election of what a
suitable semantics should be.

The choice of a suitable semantics may depend on the tools an environment
has, to distinguish between certain processes. It is conceivable that a con-
currency theory is equipped with different semantics, and has the capacity to
express equality on different levels. [57]

The possibility to define several and varied semantics can then be considered to be
an advantage of the theory, since it allows for the necessary flexibility to reflect different
notions of processes and equivalence and preorder relations over them.

Nevertheless, this multiplicity has gone hand in hand in the literature with an individual
study of each of the semantics that somehow makes the whole theory less appealing because
such a cornucopia can become a handicap both for its study and its practical application.
For instance, although most of the semantic notions defined for processes simultaneously
induce both a (pre)order and an equivalence, 1 the literature has frequently overlooked the

1A remarkable exception, however, is the bisimulation notion, for which no non-trivial order relation is
known.

4 D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

bisimulation (B)

2-nested simulation (2S)

ready simulation (RS)

possible worlds (PW) possible futures (PF)

complete simulation (CS) ready trace (RT)

failure trace (FT) readiness (R)

failure (F) impossible futures (IF)

simulation (S) completed trace (CT)

trace (T)

Figure 1: Linear time-branching time spectrum.

fact that these two notions are mutually intertwined, as we will show later. Likewise, the
study of the concrete models has been usually undertaken paying little attention to the
other semantics or to the relations among them, even though it is well-known that there
exist “families” of semantics—such as the linear semantics—which are undoubtedly related.

A unified study of semantics has both methodological and practical implications that
have been explored along the last years by the authors of this work, for example in [22,
24, 25, 20, 21], and also in work by important researchers in the area [5, 4, 16, 40]. This
research shows that a unified view of process semantics is indeed possible.

This is precisely the main goal we set to reach with our work: we aim to study process
semantics in a generic way, making the equivalence and (pre)order relations our object of
study in order to find patterns, to identify families, to search for properties among these
relations, so that we obtain generic results that need not be proved again and again for each
of the semantics.

We aim, in a nutshell, at a unifying view of process semantics that can be used to
understand them both jointly and individually and that allows to continue with their the-
oretical study in a more focused manner, helping to identify those properties a semantics
should have for a particular application.

1.1. Overview of results. This paper contains a consolidated and extended presentation
of the unification of observational, equational and the logic process semantics published in
[20, 19, 47] for strong behavioral semantics.2 We take advantage of the joint and larger
presentation of the subject to tighten the connections between the different views. Besides,
we make the paper mostly self-contained providing proofs for all the results; we also com-
plete the study with new results not included in [20, 19, 47]. We have also completed the

2We comment in Section 10 the work of some of the authors on unification of weak semantics.

UNIFYING THE LTBT SPECTRUM 5

revision of the unification of strong process semantics with a section devoted to the unified
presentation of the operational semantics.

Next we describe the main results we have obtained. They can be used as a roadmap
for reading the paper and to understand the technical details in the following sections.

• One of the most generic results we have proved is the existence of two essential families of
semantics: branching semantics and linear semantics. Certainly, this was already hinted
by van Glabbeek when he named its spectrum of semantics “linear time-branching time”.

Our results show that the most representative branching semantics have characteriza-
tions as simulation semantics. Moreover, every simulation has a natural family of coarser
linear semantics associated to it that inherit some of its properties.

In Figure 11 (page 34), branching semantics are located to the left and each of them
defines a layer of “induced” linear semantics, to their right. For example, ready simulation
is the branching semantics from which the classic diamond of linear semantics composed of
failures, readiness, failure trace, and ready trace semantics is generated. These semantics,
as we will later see in detail, inherit some of their axiomatic characterizations directly
from the ready simulation. In addition, the same layer also contains the possible worlds
semantics, which is a deterministic branching semantics.

Even though the axiomatic characterizations contained in Section 3 already show this
dependency between linear and branching semantics—see Figure 5 (page 17)—it is in
Section 4 where, using techniques from denotational semantics, the relations between the
original branching semantics and the induced linear semantics can be fully appreciated.
The relationships among the different linear semantics in the same branching layer are
also completely specified in that section.
• Equational characterizations reveal in a very concise manner the basic properties of the
different semantics. As a result of our research, we have been able to derive a generic
axiomatic characterization of the semantics in the spectrum which shows clearly the
relationships among them: the uniformity in the definitions of the branching semantics
and the different families of linear semantics becomes apparent, as well as the tight relation
between each branching semantics and its associated linear semantics. In Section 3 we
present all the details related to these axiomatic characterizations.
• Another result that we consider important is that it is indeed possible to establish a clear
relationship between the preorder and the equivalence associated to a given semantics.
From an axiomatic point of view, in Section 3 we show how these characterizations are
closely related. In fact, there are algorithms that allow to easily obtain the axioms for
the equivalence from those of the preorder [4, 21], and also the other way around, the
axioms for the preorder from those of the equivalence [23, 24].
• We also offer a unifying view of the process semantics based on observational (denota-
tional) semantics, according to which we have classified the process semantics in four
categories:
− bisimulation semantics, which is the finest semantics in the spectrum and the only one

that cannot be defined by means of a non-trivial preorder;
− the simulation semantics (simulation, complete simulation, ready simulation, nested

simulation, . . .) which are characterized by means of branching observations, that is,
labeled trees;

− the linear semantics (traces, failures, readiness, . . .), characterized by linear observa-
tions, a degenerated case of branching observations;

6 D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

− the deterministic branching semantics corresponding to an intermediate class between
branching and linear, where observations are deterministic trees. Possible worlds se-
mantics is the only semantics in the original van Glabbeek’s spectrum in this class.
Besides their linear or branching nature, semantics are characterized by a local obser-

vation function that generates the local observations at the states. For the linear case
there is also the possibility of observing this local information in a partial way and this is
how for each local observer, in principle, up to four different semantics can be obtained.
In particular, this gives rise to the classic diamond below the ready simulation semantics
formed by failures, failure trace, readiness, and ready trace semantics.

The uniform presentation of the process semantics that we offer in Section 4 clarifies
the relationships and hierarchies among all the semantics; moreover, it will make possible
the development of generic proofs of their common properties.
• We also present a unified view of the logical semantics. Again, the bisimulation semantics,
which is characterized by the Hennessy-Milner logic HML [31], is our starting point, and
then we aim for the sublogics that characterize each of the semantics in the spectrum.
Guided by our main unification goal, we have not tried to obtain the smallest possible
sets of formulas, but have veered for the largest sublogics that characterize each of the
semantics.

Hence, the finest semantics are characterized by the largest sublogics and in fact we
obtained a uniform characterization that informs us about the hierarchy of semantics, by
proving that a semantics S1 is finer than another S2 if and only if the corresponding logics
satisfy LS2

⊆ LS1
. Moreover, the classification into branching and linear time semantics

is also reflected in the structural definition of each logic. In particular, the branching
semantics are characterized by the free use of negation over the formulas that define
the corresponding constraint, while the linear semantics at each layer of the spectrum
introduce ever more limitations in the subformulas.
• Finally, we also discuss an operational-like presentation of the semantics in the spectrum;
more precisely, we consider an evaluation semantics to derive the appropriate data which
characterize them. Those data are quite similar to the ones employed for our observational
semantics so that it is not them, but the way in which they are derived, that enhances
our understanding of the features of each of the semantics and the relationships between
them. These presentations somehow generalize the work by Cleaveland and Hennessy [17]
on the characterization of the Testing semantics by means of bisimulation. There is also
a clear connection with the work by two of the authors of this paper on (Bi)simulation
up-to [25].
• A concomitant, but still important result of our work, is of methodological nature: the
semantics are amenable to a working methodology that allows for general results that
can be applied to families of semantics as well as to yet to be defined semantics. The
requirements we impose on these new semantics are relatively mild. An example of this is
shown seen in Section 8, where some new process semantics—indeed two new families—
smoothly integrate into our general theory. In fact, it was nice to discover that one of
them is just the revivals semantics, which has been recently developed by Bill Roscoe [48].
• Each of the characterization frameworks—equational, observational, logical or operational—
sheds light on the spectrum in different and complementary ways. This has provided us
with different ways to study all the previously known semantics and the relationships
between them. That complementary nature also sprang up along our unification work
when we discovered one by one all the factors that contribute to the structure of the

UNIFYING THE LTBT SPECTRUM 7

extended spectrum. In particular, when considering simple and natural combinations of
axioms we found out the new meet semantics in Section 8, while their dual join semantics
was discovered in a natural way when considering the observational characterizations.
Finally, the semantics of minimal readies (in Section 6.2.2) appeared when investigating
the logical framework. While not too important on its own, our unification work has also
revealed a mistake in the classic logical characterization of one of the semantics in the
original spectrum (see Section 6.2.3): it was the general and systematic approach that
guides our uniform characterization that allowed it.

1.2. Some related work. Naturally, the goal of defining a global or general theory of
process semantics has been around for a long time and several relevant authors in the field
have already paved the way that we now tread.

Despite the methodological differences between Milner’s work, based on bisimulation,
and Hoare’s, on denotational semantics, both of them had in common the search for
characterizations—logical, axiomatic, observational—that could shed light from different
angles on the world of process semantics.

Hennessy introduced the testing methodology to endow processes with semantics, mak-
ing the notion of equivalence to spring from the application of the interaction principles for
processes expressed within the model. Perhaps one of the most important contributions
of his work was what he called the “trinity”: processes can be seen as syntactic terms in
an algebra, as operational descriptions in labeled transition systems, or as denotational
objects in a mathematical model. With our work we have somehow extended this trinity
in a generic manner to all the semantics in the extended spectrum.

Van Glabbeek’s work, the linear time-branching time spectrum aimed at the compari-
son of most known semantics—at the time he developed his seminal work—by presenting
them within common frameworks that would allow a comparative study of their properties.
Besides providing uniform definitions over transition systems, van Glabbeek also proposed
to characterize the semantics in terms of logical formulas. The set of modal formulas whose
satisfaction equivalence identifies the same processes as the corresponding semantics is de-
fined. Because of the compositional definition of the corresponding sets of formulas, this
characterization can be considered to be denotational semantics.

Another characterization provided by van Glabbeek is the axiomatic one, for which he
defines the BCCSP language that is used in this work (see Definition 2.1). Twelve of the
semantics in the spectrum are characterized by means of sets of axioms over syntactic terms
for this language. For most of them—except for bisimulation, that has no associated order—
their characterizations are actually twofold: on the one hand, the natural order relation
that defines each semantics—Table 1—and, on the other hand, the induced equivalence—
Table 2. Many of these characterizations were previously known but, again, their uniform
presentation is one of its main merits.

A deep study—individual as well as comparative—of these axiomatizations and the
quest for answers to the new questions that arise from this study has been one of the leading
forces behind our research. Actually, some of our most relevant results can be combined
into a new way of presenting the spectrum—Figure 11 (page 34)—that allows for a better
comprehension of the semantics since it clarifies their relative positions within it and shows
the existence of “gaps” that correspond to new semantics whose addition to the graph
reflects a desirable regularity that makes it clearer. Hoare’s work on the unification of the

8 D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

study of process algebras [33] was also an important influence. Specially, the relationship
between similarity and trace refinement, which we have generalized by establishing the
connection between branching time and linear time semantics, and the connection between
the denotational, the algebraic, and the operational styles proposed by him and He Jifeng
in [34].

As already mentioned, Roscoe has contributed in an independent research effort in
parallel with ours to the study of new process semantics by proposing his stable revivals
model [48]. He relates his new semantics with other well known linear time semantics and
the rediscovery of that semantics in our expanded spectrum gave us the opportunity to
present those relationships with a unified and generic light.

There is other relevant work in the area of process theory that has inspired us. The
number of contributions is too large to cite all of them here. Anyone interested on finding a
more exhaustive list of relevant references may collect them, for instance, from [28, 7, 1, 57,
50]. There the historic evolution of the area and many of the most important contributions
to it are reviewed. To them we can add four recent books on process algebras and related
subjects [8, 49, 6, 51], presenting different points of view and some of the semantics studied
in this paper. Finally, in our Conclusions, we will discuss a bit the work on the generic
study and classification of the weak semantics.

1.3. Paper structure. We have structured this paper as follows. Section 2 introduces
all the basic definitions and notation to properly follow the developments in the following
sections.

In Section 3 we propose alternative characterizations for the axiomatizations of the
semantics in the spectrum, both for orders and equivalences. All these axiomatizations are
based on just two parametrical axiom skeletons that clearly highlight the relations among
the different semantics.

Section 4 presents a unified observational characterization for process semantics. One
of the key ideas is that constrained simulations are uniformly characterized by a branching
observation plus a local observation function. From the observations of a given constrained
simulation, the linear semantics in its layer are uniformly derived.

In Section 5 we prove that the equations we presented in Section 3 are deduced from the
observations defined in Section 4 in a general way, without using at all the already known
axiomatizations for the semantics.

Section 6 follows the trails of Sections 3 and 4 by introducing a unified logical charac-
terization of process semantics.

In Section 7 we prove that the observational characterizations developed in Section 4
allow for generic proofs for the logical characterizations presented in Section 6. Therefore
the “trinity” of equations, observations, and logical formulas is established in a generic way
for large families of process semantics.

Section 8 is a practical proof of the applicability of our unification proposal. Some
new process semantics, that were not listed in the original linear time-branching time spec-
trum, are easily accommodated in our framework thus getting the corresponding semantic
characterizations that we have presented in previous sections.

In Section 9 we conclude the unified presentation of the semantics in the spectrum by
developing an operational characterization which mainly produces the information provided
by the observational semantics, but inferred in an operational way, using a (unified) set of
SOS-like rules.

UNIFYING THE LTBT SPECTRUM 9

Finally, in Section 10 we offer some conclusions and lines for future work.

Acknowledgments. We gratefully acknowledge three anonymous referees for their very
thoughtful and detailed comments on a previous version of this work, that have greatly
helped us to improve the presentation of this material.

2. Preliminaries

Although the main results in this paper are also valid for infinite processes—as we showed
in [22, 25]—in order to simplify the presentation of the concepts, we will mainly consider
finite processes generated by the basic process algebra BCCSP which contains only the
basic process algebraic operators from CCS [42], and CSP [32], but is sufficiently powerful
to express all finite synchronization trees [41]. This language has repeatedly been used in
unification work, e.g. [4, 58].

Definition 2.1. Given a set of actions Act, the set BCCSP(Act) of processes is defined by
the following BNF-grammar:

p ::= 0 | ap | p+ q

where a ∈ Act; 0 represents the process that performs no action; for every action in Act,
there is a prefix operator; and + is a choice operator.

The operational semantics for BCCSP terms is defined in Figure 2. As usual, we write

p
a
−→ if there exists a process q such that p

a
−→ q, and p

α
=⇒ q if α = a1 . . . an and p

a1−→

p′
a2−→ . . .

an−→ q. The initial offer of a process is the set I (p) = {a | a ∈ Act and p
a
−→}.

This is a simple, but quite important observation function that plays a central role in the
definition of the most popular semantics in the linear time-branching time (ltbt) spectrum.
We will also denote by I the relation expressing the fact that two processes have the same
initial offers: pIq ⇔ I (p) = I (q).

One way to capture semantics is by means of the equivalence relation induced by it:
given a formal semantics [[·]]Z , we say that processes p and q are equivalent iff they have
the same semantics, that is, p ≡Z q ⇔ [[p]]Z = [[q]]Z . These semantics can be defined
by means of adequate observational scenarios, or by logical characterizations that induce
natural preorders ⊑Z whose kernels are the semantic equivalences. We refer to [58] for the
original definition and usual notation for all the semantics in the ltbt spectrum that will be
discussed throughout the paper.

To properly express equations or inequations within the process language, we introduce
variables from any adequate set V, and consider the extended set BCCCSP(Act, V) of terms
including variables in V .

Some of the semantics in the spectrum are concrete examples of the general notion of
constrained simulation semantics that can be defined in a parameterized way.

Definition 2.2. Given a relation N over BCCSP processes, a relation SN is anN -constrained
simulation if pSNq implies:

• for every a ∈ Act, if p
a
−→ p′ then there exists some q′ such that q

a
−→ q′ and p′SNq′, and

• pNq.

We say that process p is N -simulated by process q, or that q N -simulates p, written p ⊑NS q,
whenever there exists an N -constrained simulation SN such that pSNq.

10D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

ap
a
−→ p

p
a
−→ p′

p+ q
a
−→ p′

q
a
−→ q′

p+ q
a
−→ q′

Figure 2: Operational semantics for BCCSP terms.

(B1) x+ y ≃ y + x (B3) x+ x ≃ x
(B2) (x+ y) + z ≃ x+ (y + z) (B4) x+ 0 ≃ x

Figure 3: The axiomatization for the (strong) bisimulation equivalence.

We have already studied the constrained simulation semantics in detail in [24], stressing
their general properties. In particular, the following constraints were considered:

• the universal relation U relating all processes, which gives rise to the simulation semantics;
• the relation C, which holds for processes p and q when both, or none, are isomorphic to
0, and that gives rise to the complete simulation semantics;
• the relation I relating processes with the same initial offer, which is the constraint for
ready simulation;
• the relation T , that holds for processes having the same set of traces and gives rise to the
trace simulation semantics;
• the relation S, the inverse of the simulation equivalence relation, whose associated con-
strained simulation is the 2-nested simulation.

Throughout this paper there appear different order relations. We use ⊑ to denote semantic
preorders and, for the sake of simplicity, we use the symbol ⊒ to represent the preorder
relation ⊑−1. With ≡ we denote the induced equivalence (that is, ⊑ ∩ ⊒). To refer to
a specific preorder we shall append the initials of its name as subscripts to the symbol ⊑
(⊑RS for ready simulation, ⊑F for failures, and so on). A similar convention applies to the
kernels of the preorders (≡RS , ≡F , . . .) and to the bisimulation equivalence ≡B .

An inequation (respectively, an equation) over the language BCCSP is a formula of the
form t � u (respectively, t ≃ u), where t, u ∈ BCCSP(Act, V). An (in)equational axiom
system is a set of (in)equations over the language BCCSP. An equation t ≃ u is derivable
from an equational axiom system E, written E ⊢ t ≃ u, if it can be proven from the axioms
in E using the rules of equational logic (viz. reflexivity, symmetry, transitivity, substitution
and closure under BCCSP contexts):

t ≃ t
t ≃ u

u ≃ t

t ≃ u u ≃ v

t ≃ v

t ≃ u

σ(t) ≃ σ(u)

t ≃ u

at ≃ au

t ≃ u t′ ≃ u′

t+ t′ ≃ u+ u′

where substitutions σ are defined and applied as usual.
For the derivation of an inequation t � u from an inequational axiom system E, the

rule for symmetry—that is, the second rule above—is omitted. We write E ⊢ t � u if the
inequation t � u can be derived from E.

It is well-known that, without loss of generality, one may assume that substitutions
happen first in (in)equational proofs, i.e., that the fourth rule may only be used when its
premise is one of the (in)equations in E. Moreover, by postulating that for each equation
in E its symmetric counterpart is also present in E, one may assume that applications of
symmetry happen first in equational proofs, i.e., that the second rule is never used. In the

UNIFYING THE LTBT SPECTRUM 11

remainder of this paper, we shall always tacitly assume that equational axiom systems are
closed with respect to symmetry. Note that, with this assumption, there is no difference
between the rules of inference of equational and inequational logic. In what follows, we
shall consider an equation t ≃ u as a shorthand for the pair of inequations t � u and u � t.

An inequation t � u is sound with respect to a given preorder relation ⊑, if t ⊑ u holds
true. An (in)equational axiom system E is sound with respect to ⊑ if so is each (in)equation
in E. An (in)equational axiomatization is called ground-complete if it can prove all the valid
(in)equivalences relating terms with no occurrences of variables. As in [58], we abbreviate
ground-completeness for completeness because this is the only kind we use along the paper.

Bisimilarity, the strongest of the semantics in the spectrum, can be axiomatized by
means of the four simple axioms in Figure 3. These axioms state that the choice operator
is commutative, associative and idempotent, having the empty process as identity element.
These axioms also justify the use of the notation

∑
a

∑
i ap

i
a for processes, where the com-

mutativity and associativity of the choice operator is used to group together the summands
whose initial action is a. We will also write p|a for the (sub)process we get by projecting
all the a-summands of p; that is, if p =

∑
a

∑
i ap

i
a, then p|a =

∑
i ap

i
a.

Besides the semantics in the spectrum, we are interested in a general study that can be
applied to any “reasonable” semantics coarser than bisimilarity. Since we will use preorders
to characterize these semantics we introduce the following definitions that state the desired
properties of those reasonable preorders.

Definition 2.3. A preorder relation ⊑ over processes is a behavior preorder if

• it is weaker than bisimilarity, i.e., p ≡B q ⇒ p ⊑ q, and
• it is a precongruence with respect to the prefix and choice operators, i.e., if p ⊑ q then
ap ⊑ aq and p+ r ⊑ q + r.

If ⊑ is actually an equivalence, it is said to be a behavior equivalence.

Another way of presenting a semantics is by means of a logical characterization. The
Hennessy-Milner logic [31], characterizing the bisimulation semantics is the most popular
one.

Definition 2.4 (Hennessy-Milner logic, HML). The set LHM of Hennessy-Milner log-
ical formulas is defined by: if ϕ, ϕi ∈ LHM for all i ∈ I and a ∈ Act, then

∧
i∈I ϕi, aϕ, ¬ϕ

∈ LHM .
The satisfaction relation |= is defined by:

• p |= aϕ if there exists q such that p
a
→ q and q |= ϕ;

• p |=
∧

i∈I ϕi if for all i ∈ I : p |= ϕi.
• p |= ¬ϕ if p 6|= ϕ.

Note that
∧

i∈∅ ϕi ∈ LHM , and we have p |=
∧

i∈∅ ϕi for all p. Therefore, in the following
we will consider that ⊤ ∈ LHM , where ⊤ is syntactic sugar for

∧
i∈∅ ϕi. The finite version

of this logic, LfHM , uses binary conjunction ∧ instead of the general conjunction
∧

i∈I .
It is well-known that LfHM characterizes the bisimulation semantics between image-finite
processes, that are those that do not allow infinite branching for any action a ∈ Act at any
state. Van Glabbeek uses LB to refer to LHM in [58].

12D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

3. Equational semantics

On Tables 1 and 2 appear the axiomatic characterizations for the preorders and equivalences
in van Glabbeek’s spectrum [58]. For each column, the set of axioms marked with “+” are
sound and complete with respect to the preorder or equivalence in the head of that column;
axioms marked with “v” are valid but not needed. When studying these tables there are
several questions that naturally arise: for every semantics, is there any connection between
the axioms defining the preorder and those for the equivalence? Can the axiomatizations
of some of these semantics be jointly tackled?

In this section we will develop new axiomatizations for all the semantics in the ltbt
spectrum that offer a clear answer to the previous questions: even if there was not a
systematic procedure that led to produce the axiomatizations of those tables, we can obtain
equivalent axiomatizations that do follow a given procedure.

These new axiomatizations are obtained after noticing that every process semantics
can be understood as the product of two “design decisions”, decisions that define what
we have called the “dynamic” and the “static” basis of the semantics. We will show that,
besides B1–B4, we only need a generic simulation axiom (NS)—Proposition 3.1—which
characterizes the family of constrained simulation semantics, to axiomatize the whole class
of pure branching semantics. Moreover, to characterize the linear time semantics, we only
need to add to the corresponding simulation axiom the adequate instantiation of a generic
axiom (ND)—see page 14—for reducing the observability of non-determinism in processes,
by means of which we introduce the additional identifications induced by each of the linear
semantics.

Also the axiomatizations between orders and equivalences are closely related; in fact, in
the case of the linear semantics we could just use an equivalence (ND≡) axiom, leaving the
order or equivalence aspect to be determined by the use of the order or equivalence axiom
of the corresponding branching semantics, see Figure 5.

In order to justify the form of our axiomatizations without leaving the axiomatic frame-
work, in this section we prove our results with separate and ad-hoc proofs for each semantics
just comparing the new characterizations with those previously known. This allows us to
quickly get the taste of the underlying relations of the process semantics. Once the unified
observational characterization of semantics is presented in Section 4, we will provide generic
proofs for these results in Section 5 that show the suitability of the new axiomatizations
with respect to the observational characterizations of the semantics.

3.1. A new axiomatization of the most popular semantics. We start our study with
a very representative and well-known group of semantics in the spectrum, each of which
has been developed and used in important work in the area: ready simulation [38, 13],
failures [14, 32], readiness [43], ready trace [9] and failure traces [44].

3.1.1. Semantic preorders. As already hinted above, the dynamic part of the semantics
is inherited from a simulation preorder. As stated in our Introduction, bisimilarity can
be axiomatized by the set of axioms B1 − B4. All the other semantics in the spectrum
are coarser than it, and therefore also satisfy these axioms. But due to the fact that
bisimulations define equivalence relations and not just preorders, we cannot base on them
the characterization of any other interesting semantics. But, plain simulations are somehow
defined as half-bisimulations, and can indeed be used as support for the characterizations of

UNIFYING THE LTBT SPECTRUM 13

B RS PW RT FT R F CS CT S T
(x+ y) + z ≃ x+ (y + z) + + + + + + + + + + +
x+ y ≃ y + x + + + + + + + + + + +
x+ 0 ≃ x + + + + + + + + + + +
x+ x ≃ x + + + + + + + + + + +
ax � ax+ ay + + + + + + v v v v
a(bx+ by + z) ≃ a(bx+ z) + a(by + z) + v v v v v v
I(x) = I(y)⇒ ax+ ay ≃ a(x+ y) + v v v v v
ax+ ay � a(x+ y) + v v v
a(bx+ u) + a(by + v) � a(bx+ by + u) + v v v
ax+ a(y + z) � a(x+ y) + v v
ax � ax+ y + + v v
a(bx+ u) + a(cy + v) ≃ a(bx+ cy + u+ v) + v
x � x+ y + +
ax+ ay ≃ a(x+ y) +

Table 1: Axiomatization for the preorders in the linear time-branching time spectrum.

some interesting semantics, such as trace semantics. Nevertheless, plain similarity becomes
too weak, and some other finer class of simulations is needed to support the characterization
of the interesting semantics listed above. Next we recall the axiomatizations of plain, ready
and general constrained similarity.

Proposition 3.1 ([58, 24]).

(1) Plain similarity can be axiomatically defined by means of the axiom (S) x � x + y,
together with the axioms B1–B4 that define bisimilarity.

(2) Ready similarity can be axiomatically defined by means of the conditional axiom (RS) xIy ⇒
x � x+y, together with B1–B4. It can also be axiomatized by means of the axiom scheme
ax � ax+ ay, where a represents any arbitrary action.

(3) Whenever N is a behavior preorder, N -similarity can be axiomatically defined by means
of the conditional axiom (NS) N(x, y)⇒ x � x+ y, together with B1–B4.

Let us now consider the diamond of semantics coarser than ready similarity in the ltbt
spectrum. It consists of the failures, readiness, failure trace, and ready trace semantics.
None of them is a simulation semantics, so their classic axiomatizations (see Table 1) contain
an additional axiom:

Failures: (F) a(x+ y) � ax+ a(y + w)
Readiness: (R) a(bx+ by + u) � a(bx+ u) + a(by + v)
failure trace: (FT) a(x+ y) � ax+ ay
ready trace: (RT) I(x) = I(y)⇒ ax+ ay ≃ a(x+ y)

Since we are interested in capturing the reduction of observability of non-determinism,
our first candidate for a general axiom covering all cases was (FT), which captures the
fact that by delaying the choices we get “smaller” processes. However, since this axiom
characterizes the failure trace semantics and this is finer than failure semantics, a more
general axiom is needed: axiom (F) became our next proposal because failure semantics is
the coarsest of the four semantics. More precisely, we expected to achieve the axiomatiza-
tion of the four semantics in the diamond by adding the adequate instance of the generic

14D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

constrained conditional axiom

(ND) M(x, y, w)⇒ a(x+ y) � ax+ a(y + w) .

This seemed reasonable since the other semantics in the group are finer than failures and
by adding a constraint to (F) we certainly obtain a more restricted axiom that produces a
finer preorder. The conjecture turned out to be correct and we found that the semantics in
the diamond can be characterized by the following instances:

(NDF) MF (x, y, w) ⇐⇒ true
(NDR) MR(x, y, w) ⇐⇒ I(x) ⊇ I(y)

(NDFT) MFT (x, y, w) ⇐⇒ I(w) ⊆ I(y)
(NDRT) MRT (x, y, w) ⇐⇒ I(x) = I(y) and I(w) ⊆ I(y)

Since MF is the universal relation containing all triples of processes, the corresponding
instance of the conditional axiom (ND) is clearly equivalent to (F), and thus adding it to the
set {B1–B4, (RS)} we obtain a ground-complete axiomatization of ⊑F . Let us now prove
that the remaining three semantics are also axiomatized by the corresponding instances of
the axiom (ND) together with (RS).

Proposition 3.2.

(1) The readiness preorder ⊑R is axiomatized by {B1–B4, (RS), (NDR)}.
(2) The failure trace preorder ⊑FT is axiomatized by {B1–B4, (RS), (NDFT)}.
(3) The ready trace preorder is axiomatized by the set {B1–B4, (RS), (NDRT)}.

Proof.

(1) Let us show that the set {B1–B4, (RS), (NDR)} is logically equivalent to {B1–B4,
(RS), (R)}. By taking x = bx′ + u, y = by′, and w = v we have that (NDR) im-
plies (R). In the other direction, let x and y be arbitrary closed BCCSP terms with
I(y) ⊆ I(x): we will prove, by structural induction on y, that {B1–B4, (RS), (R)} ⊢
a(x+ y) � ax+ a(y + w), for any term w.
• For y = 0, we have a(x+ y) ≃ ax � ax+ a(y + w), by application of (RS).
• For y = by′ + y′′, it must be x = bx′ + x′′ and taking v = y′′ + w in (R) we obtain
a(x+ y) = a(bx′ + by′ + x′′ + y′′) � a(x+ y′′) + a(y +w). Then we have I(y′′) ⊆ I(x)
and we can apply the induction hypothesis to get {B1–B4, (RS), (R)} ⊢ a(x + y) �
ax+ a(y + w).

(2) Let us show that the sets {B1–B4, (RS), (NDFT)} and {B1–B4, (RS), (FT)} are logi-
cally equivalent. The implication from left to right follows by taking w = 0. In the
other direction, let w and y with I(w) ⊆ I(y), so that a(x + y) � ax + ay using
(FT) and, since I(y) = I(y + w), we have y � y + w using (RS): hence we conclude,
a(x+ y) � ax+ a(y + w).

(3) Let us show that the set {B1–B4, (RS), (NDRT)} is logically equivalent to {B1–B4, (RS),
(RT)}. We first note that {B1–B4, (RS), (RT)} is equivalent to {B1–B4, (RS), (RT�)},
where (RT�) is the axiom MRT (x, y, w) ⇒ ax + ay � a(x + y). This follows from the
fact that, whenever I(x) = I(y), we can use (RS) to get x � x + y and y � x + y,
and then ax+ ay � a(x+ y). Now, the implication from left to right follows by taking
w = 0. From right to left, as above, whenever I(w) ⊆ I(y) we have y � y+w and then,
if I(x) = I(y) we have a(x+ y) � ax+ ay, and therefore a(x+ y) � ax+ a(y + z).

UNIFYING THE LTBT SPECTRUM 15

⊑RS

I(x) = I(y) ⇒ x � x+ y

⊑RT

I(x) = I(y) ⇒ x � x+ y

I(x) = I(y) and I(w) ⊆ I(y) ⇒ a(x+ y) � ax+ a(y + w)

⊑FT

I(x) = I(y) ⇒ x � x+ y

I(w) ⊆ I(y) ⇒ a(x+ y) � ax+ a(y +w)

⊑R

I(x) = I(y) ⇒ x � x+ y

I(x) ⊇ I(y) ⇒ a(x+ y) � ax+ a(y + w)

⊑F

I(x) = I(y) ⇒ x � x+ y

a(x+ y) � ax+ a(y + w)

Figure 4: Inclusion relation for the ready simulation preorder and its associated linear se-
mantics.

Figure 4 shows the already known relations between the semantics of the spectrum
in the ready simulation layer. However, we want to stress the fact that once the new
axiomatizations are proved to be correct, those relations became obvious since the four
constraints defined above trivially satisfy MRT (x, y, w) ⇒ MFT (x, y, w) ∧MR(x, y, w) and
MFT (x, y, w)∨MR(x, y, w)⇒MF (x, y, w). It is even more important that the tight relations
and the subtle differences between these semantics clearly stand out by just looking at their
axiomatizations.

Certainly, if we compare our new axiomatizations and those in Table 1, the use of
conditions in our axioms could be on the grounds that complex conditions could be used to
hide the complexity of the semantics. However, the conditions that we have introduced for
the alternative axiomatizations of the semantics in the spectrum are very simple. In any
case, our main interest was to obtain a uniform presentation of the axiomatizations that
could be used to simplify their generic algebraic study.

Corollary 3.3.

(1) ⊑FT is axiomatized by the set {B1–B4, (RS), (NDFT
0)}, where (NDFT

0) is the instance
of (NDFT) where w is 0.

(2) ⊑RT is axiomatized by {B1–B4, (RS), (NDRT
0)}, where (NDRT

0) is the instance of (NDRT)
where w is 0.

Proof. Note that for the proof of Proposition 3.2 only the case w = 0 is needed.

Even if the simplifications above are possible, we prefer to maintain the general forms
of the axioms (NDFT) and (NDRT) to keep all axiomatizations as similar as possible, which
will come in handy when proving general properties of the semantics.

Corollary 3.4.

(1) ⊑F can be axiomatized by the axioms {B1–B4, (ND
F)}.

(2) ⊑R can be axiomatized by the axioms {B1–B4, (ND
R)}.

16D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

B RSPWRT FT R F CS CT S T
(x+ y) + z ≃ x+ (y + z) + + + + + + + + + + +
x+ y ≃ y + x + + + + + + + + + + +
x+ 0 ≃ x + + + + + + + + + + +
x+ x ≃ x + + + + + + + + + + +
I(x) = I(y)⇒ a(x+ y) ≃ a(x+ y) + ay + v v v v v v v v v
a(bx+ by + z) ≃ a(bx+ z) + a(by + z) + v v v v v v
I(x) = I(y)⇒ ax+ ay ≃ a(x+ y) + + v v v v
ax+ ay ≃ ax+ ay + a(x+ y) + v v v
a(bx+ u) + a(by + v) ≃ a(bx+ by + u) + a(by + v) + + v v
ax+ a(y + z) ≃ ax+ a(x+ y) + a(y + z) + v v
a(x+ by + z) ≃ a(x+ by + z) + a(by + z) + v v v
a(bx+ u) + a(cy + v) ≃ a(bx+ cy + u+ v) + v
a(x+ y) ≃ a(x+ y) + ay + v
ax+ ay ≃ a(x+ y) +

Table 2: Axiomatization for the equivalences in the linear time-branching time spectrum.

Proof. Note that (NDF) implies (RS) and therefore (NDR) implies (RS), by taking y = 0

and w = y.

3.1.2. Equivalences and their preorders. Let us now study the equivalences and first of all
note that the axiom (ND) controlling the reduction of non-determinism has been presented
as an inequational axiom. Certainly, it cannot simply be replaced by the corresponding
equation since, in general, it is not true that ax + ay ≃ a(x + y). However, the two
dimensions corresponding to (RS) and (NDZ) that control the “growth” of a process with
respect to a preorder � are not orthogonal; for example, a(x + y) � a(x + y) + ax can be
derived either by an application of (NDFT) or by one of (RS). As a consequence of the
relation between these two axioms, once (RS) is assumed then the inequational axiom (ND)
can be substituted by its (stronger) equational form

(ND≡) M(x, y, w)⇒ ax+ a(y + w) + a(x+ y) ≃ ax+ a(y + w) .

As above, we write (NDZ
≡) for the concrete instances of this axiom for Z ∈ {F,R, FT,RT}.

Proposition 3.5.

(1) The set {B1–B4, (RS), (ND)} is logically equivalent to {B1–B4, (RS), (ND+)}, where
(ND+) is the axiom

M(x, y, w)⇒ ax+ a(y + w) + a(x+ y) � ax+ a(y +w) .

(2) {B1–B4, (RS), (ND+)} is logically equivalent to {B1–B4, (RS), (ND≡)}.

Proof.

(1) We only need to prove the implication from right to left, since the other follows from �
being a precongruence. For that, from (RS) we get a(x+ y) � a(x+ y)+ ax+ a(y+w)
whence, using (ND+), a(x+ y) � ax+ a(y + w).

UNIFYING THE LTBT SPECTRUM 17

(2) We only need to prove that, if M(x, y, w), then

{B1–B4, (RS), (ND+)} ⊢ ax+ a(y + w) � ax+ a(y + w) + a(x+ y) ,

which follows from (RS).

This result can be interpreted as saying that the only way to “enlarge” a process is by
extending its possible behaviors by means of the “dynamic” simulation axioms; the static
rules, (ND) and its variants, instead generate new identifications among processes.

Actually, any complete axiomatization of a preorder that contains the axiom (RS) can
be turned into an equivalent axiomatization by replacing every inequality u � v by u+v ≃ v.

Proposition 3.6. Let Q = {B1–B4, (RS)} ∪ Q′ be an axiomatization of an order ⊑ such
that ⊑ ⊆ I. Then, the equational variant of Q, Q= = {B1–B4, (RS)} ∪ {M ⇒ u+ v ≃ v |
M ⇒ u � v ∈ Q′} is also an axiomatization of ⊑.

Proof. Analogous to the particular case considered in Proposition 3.5 above. For the sake
of clarity we have preferred to present the particular case before, because it is easily stated
and it corresponds to the most important instance of the general result.

Finally, to conclude this section we gather in Table 2 axiomatic characterizations for
the semantic equivalences that are an alternative to the classic axioms appearing in [58].

⊑RS ≡RS
I(x) = I(y) ⇒ x � x+ y I(x) = I(y) ⇒ a(x+ y) ≃ a(x+ y) + ay

⊑RT ≡RT
I(x) = I(y) ⇒ x � x+ y I(x) = I(y) ⇒ a(x+ y) ≃ a(x+ y) + ay

I(x) = I(y) and I(w) ⊆ I(y) ⇒ ax+ a(y + w) + a(x+ y) ≃ ax+ a(y + w)

⊑FT ≡FT
I(x) = I(y) ⇒ x � x+ y I(x) = I(y) ⇒ a(x+ y) ≃ a(x+ y) + ay

I(w) ⊆ I(y) ⇒ ax+ a(y + w) + a(x+ y) ≃ ax+ a(y + w)

⊑R ≡R
I(x) = I(y) ⇒ x � x+ y I(x) = I(y) ⇒ a(x+ y) ≃ a(x+ y) + ay

I(x) ⊇ I(y) ⇒ ax+ a(y + w) + a(x+ y) ≃ ax+ a(y + w)

⊑F ≡F
I(x) = I(y) ⇒ x � x+ y I(x) = I(y) ⇒ a(x+ y) ≃ a(x+ y) + ay

ax+ a(y + w) + a(x+ y) ≃ ax+ a(y + w)

Figure 5: Axioms for the ready simulation layer of semantics.

Following the same ideas that we have already discussed for the preorders, a key point
is to find the equations that characterize the simulation equivalence that governs each layer.

18D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

As showed in [24], there is a generic axiom that we can use:

(NS≡) N(x, y)⇒ a(x+ y) ≃ a(x+ y) + ay.

We consider the instantiated equation that characterizes the ready simulation equiva-
lence:

(RS≡) I(x) = I(y)⇒ a(x+ y) ≃ a(x+ y) + ay,

and the rest of the characterization follows by using the equation (ND≡) presented above.

Proposition 3.7.

(1) The failure equivalence ≡F is axiomatized by {B1–B4, (RS≡), (NDF
≡)}.

(2) The readiness equivalence ≡R is axiomatized by {B1–B4, (RS≡), (NDR
≡)}.

(3) The failure trace equivalence ≡FT is axiomatized by {B1–B4, (RS≡), (NDFT
≡)}.

(4) The ready trace equivalence ≡RT is axiomatized by the set {B1–B4, (RS≡), (NDRT
≡)}.

Proof. To prove these results we can compare the new and old axiomatizations similarly as
we did in the proof of Proposition 3.5 or alternatively make use of the “ready to preorder”
algorithm thoroughly studied in [4, 18, 21].

The results in this section clarify the entanglement between axiomatizations for pre-
orders and equivalences. For example: for the ready simulation and its associated linear se-
mantics, we just need three axioms (RS), (RS≡) and (ND≡)—conveniently instantiated—to
characterize the 10 relations (orders and equivalences) involved, as summarized in Figure 5.

3.2. The coarsest semantics in the spectrum. The results in Section 3.1 show the
relations between the ready simulation and the linear semantics naturally associated to it.
The same phenomenon occurs for other simulations. In this section we focus on the bottom
part of the spectrum where lie the simulation semantics coarser than ready simulation: plain
and complete simulation, and the semantics coarser than these. For the simulation semantics
we obtain the corresponding axiomatizations simply by considering the universal constraint
for the case of plain simulations and the complete constraint for complete simulations:

Simulation U(x, y) ⇐⇒ true
Complete simulations C(x, y) ⇐⇒ (x = 0 iff y = 0)

Trace and completed trace semantics can be defined by simply adding our axiom (NDF) to
the appropriate instance of

(NS) N(x, y)⇒ x � x+ y.

Proposition 3.8.

(1) ⊑T is axiomatized by the axioms3 {B1–B4, (S), (ND
F)}.

(2) ⊑CT is axiomatized by the axioms {B1–B4, (CS), (NDF)}, where (CS) is the instanti-
ation of (NS) taking C(x, y) as N(x, y).

Proof.

3Note that (S) is equivalent to (US), the instantation of (NS) with U as N .

UNIFYING THE LTBT SPECTRUM 19

(1) The classic axiomatization of trace semantics is given by {B1–B4, (S), (T)}, where (T)
is the axiom ax + ay ≃ a(x + y). Note that {B1–B4, (S), (T)} is logically equivalent
to {B1–B4, (S), (T⊑)}, where (T⊑) is the axiom a(x + y) � ax + ay, because (S) can

be used to obtain ax � a(x + y) and ay � a(x + y). And it is immediate that (NDF)
implies (T⊑). Also, {(S), (T⊑)} ⊢ a(x + y) � ax+ a(y + w), since a(x + y) � ax + ay
by (T⊑) and ax+ ay � ax+ a(y + w) by (S).

(2) Analogous to the previous case once we realize that the classic axiom for completed
trace, (CT) a(bx+u)+a(cy+v) ≃ a(bx+cy+u+v), is equivalent to the conditional axiom
C(x, y)⇒ ax+ay ≃ a(x+y). This follows because bx+u and cy+v are two independent
patterns describing non-null processes and when the condition is instantiated with x
and y equal to 0 the identity is trivial: a0+ a0 ≃ a0.

By an argument analogous to that in Proposition 3.5, we can obtain for ⊑T the axiomati-
zation {B1–B4, (S), (ND

F
≡)}. Note that although (NDF

≡) is an equation, this axiomatization
is not the classic one; obviously, (T) ax+ ay = a(x+ y) implies (NDF

≡) but the converse is
false.

It is easy to check that in the case of trace semantics, the particular instance (ND0)
of the axiom (ND) with w equal to 0 is powerful enough to generate the trace preorder.
This was certainly not the case when we were under ready simulation, where (ND0) just
generates the failure trace preorder instead of the coarser failures preorder.

It is also interesting to note that for the trace semantics the symmetric version of (ND),

(NDvw) a(x+ y) � a(x+ v) + a(y + w),

is also valid, so we can take both {B1–B4, (S), (NDvw)} and {B1–B4, (S), (ND
≡
vw)}, where

(ND≡
vw) a(x+ v) + a(y + w) + a(x+ y) ≃ a(x+ v) + a(y + w),

as alternative axiomatizations of the trace preorder.
Should we expect another diamond of “reasonable” semantics under plain simulation

in the spectrum? Were that to be the case, why have we only found the trace semantics?
In order to answer these questions, note that the diamond of semantics under ready

simulation was completely governed by the function I, which appears in the constraints of
the different instantiations of the axiom (ND). For plain simulations, however, the trivially
true predicate U(x, y) corresponds to the observation function that can see nothing. As a
consequence, if we substitute U for I in each of the four constraints of the diamond they
all collapse into a single one: trace semantics. Nevertheless, an alternative path can be
explored to obtain new semantics: let us keep the different axioms (NDZ) the way they
stand and simply replace (RS) by (S). Then we obtain the following results:

Proposition 3.9. {B1–B4, (S), (ND
FT)} is another axiomatization of trace semantics.

Hence, under (S) the failures and the failure trace axioms generate the same preorder,
namely the trace preorder.

Proof. {B1–B4, (S), (ND0)} is a complete axiomatization of trace preorder, and (ND0) is a
particular case of (NDFT).

The axioms corresponding to readiness and ready trace, however, give rise to two new
semantics that we shall name extended ready and extended ready trace semantics. They are
defined by the order obtained by inclusion of the offers of the processes, either just at the

end of a trace, or after each action within it: in order to have p ⊑ER q, for each p
α

=⇒ p′

20D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

with I(p′) = R we need some q
α

=⇒ q′ with I(q′) ⊇ R; the extended ready trace preorder
⊑ERT is defined analogously, but using ready traces.

Proposition 3.10.

(1) The set {B1–B4, (S), (ND
R)} is an axiomatization of ⊑ER.

(2) The set {B1–B4, (S), (ND
RT)} is an axiomatization of ⊑ERT .

Let us now consider the versions of the axioms (NDR), (NDFT), (NDRT) where the con-
straint I has been replaced by the completeness condition C defined by C(x)⇐⇒ x = 0:

(C-NDR) MCR(x, y, w) ⇐⇒ (C(x) implies C(y))

(C-NDFT) MCFT (x, y, w) ⇐⇒ (C(y) implies C(w))

(C-NDRT) MCRT (x, y, w) ⇐⇒
(
(C(x) iff C(y)) and (C(y) implies C(w))

)

Once again, we simply obtain three alternative axiomatizations of the completed trace
semantics.

Proposition 3.11. The following axiomatizations are equivalent:

(1) {B1–B4, (CS), (NDF)}.
(2) {B1–B4, (CS), (C-NDR)}.
(3) {B1–B4, (CS), (C-NDFT)}.
(4) {B1–B4, (CS), (C-NDRT)}.

Proof. Clearly, (1) ⇒ (2) ⇒ (3) ⇒ (4) and therefore it is enough to prove that (4) ⇒ (1).
If x and y are not 0 we can apply (C-NDRT) to obtain the inequality in (NDF). If x is 0
but y is not, we need to obtain ay � a0+ a(y + w). By (CS) we have y � y + w and then
ay � a(y+w); applying (CS) again, a(y+w) � a(y+w)+a0 and thus ay � a0+a(y+w).
If y is 0 but x is not, we need to obtain ax � ax + aw, which results from an immediate
application of (CS). Finally, if both x and y are 0, a0 � a0+ aw.

As before, if we consider the original axioms (NDR), (NDFT), and (NDRT) we obtain,
together with an alternative axiomatization of the completed trace semantics, two new
semantics.

Proposition 3.12. The set {B1–B4, (CS), (NDFT)} is logically equivalent to {B1–B4,
(CS), (NDF)}. Hence, under (CS), the failures and the failure trace axioms generate the
same semantics.

Proof. It is enough to prove that (C-NDFT) can be derived from {B1–B4, (CS), (NDF)}.

• If y is 0 we then have w equal to 0 and can apply (NDFT).
• If y is not 0 we can apply (NDFT

0) to obtain a(x+y) � ax+ay and then (CS) to conclude
that a(x+ y) � ax+ a(y + w).

By contrast, as happened for plain simulations, under (CS) the axioms of the ready seman-
tics generate two slightly different versions of the extended ready and extended ready trace
semantics introduced before, that we call extended complete ready and extended complete

ready trace semantics. In order to have p ⊑ECR q, whenever p
α

=⇒ p′ with I(p′) 6= ∅ we

require some q
α

=⇒ q′ with I(q′) ⊇ I(p′), but if I(p′) = ∅ then the corresponding q′ also has
to satisfy I(q′) = ∅. The extended complete ready trace preorder ⊑ECRT is defined in an
analogous way, starting from the ready traces of the processes.

As we did in Section 3.1.2, we can prove that the axioms that characterize trace and
completed trace preorders reflect the fact that the order relation is inherited from simulation

UNIFYING THE LTBT SPECTRUM 21

and complete simulation, respectively, and that the role of the static rules is to introduce
identifications. As stated in Proposition 3.12 above, the only inequation that we use to ax-
iomatize the trace and completed trace orders is (S), the remaining axioms being equational
axioms.

Proposition 3.13.

(1) {B1–B4, (S), (ND
F)} is logically equivalent to {B1–B4, (S), (ND

F
≡)}.

(2) {B1–B4, (CS), (NDF)} is logically equivalent to {B1–B4, (CS), (NDF
≡)}.

A similar discussion could have been carried out for trace and completed trace equivalences,
and indeed a very natural axiomatization for these relations can be obtained based on the
corresponding instantiation of the (NS≡) equation:

(S≡) a(x+ y) ≃ a(x+ y) + ay
(CS≡) C(x, y)⇒ a(x+ y) ≃ a(x+ y) + ay .

Proposition 3.14.

(1) The trace equivalence ≡T is axiomatized by {B1–B4, (S≡), (NDF
≡)}.

(2) The completed trace equivalence ≡CT is axiomatized by {B1–B4, (CS≡), (NDF
≡)}.

To conclude this section devoted to the unification of the equational characterizations
of process semantics, we present in Figure 6 a condensed view of our new spectrum. This
presentation exploits in an expressive way the two dimensions of the picture, which in fact
reflects a tridimensional structure. On the lefthand side the constrained simulations and
bisimulations appear, totally ordered from top to bottom. Each constrained simulation
generates a layer of semantics. Here, we have only detailed the layers corresponding to
ready simulation and that of plain simulation. As a matter of fact, the latter degenerates
to a single point due to the simplicity of the constraint U governing plain simulations. The
naturality of the semantics appearing in this part of the spectrum is illustrated by our generic
axiomatization, where a single (constrained) simulation axiom governs all the constrained
simulation semantics, whereas adding a single axiom we complete the axiomatizations of
each of the linear semantics at the righthand side of the picture.

B
FT

RS RT F
R

CS CT

S T

Figure 6: New view of the linear time-branching time spectrum.

4. Observational semantics

Along Section 3 we have presented some views of the axiomatizations for process semantics
that highlight the common properties and the subtle differences between them; likewise these

22D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

views of the axiomatic characterizations point out the similarities between the preorder and
the equivalence of a given semantics.

In this section we focus on the characterizations of process semantics based on obser-
vations. Indeed, this idea of determining the semantics by means of observations lies deep
inside the foundations of process theory.

Our calculus is founded in two central ideas. The first is observation; [. . .]
two systems are indistinguishable if we cannot tell them apart without pulling
them apart. We therefore give a formal definition of observation equivalence
and investigate its properties. [41]

Imagine there is an observer with a notebook who watches the process and
writes down the name of each event as it occurs. [32]

Besides the classical references to Milner and Hoare, this idea of observation pervades
the Hennessy’s testing methodology [30] and most of the work on linear semantics. Observa-
tions, in spite of the variations in different proposals, constitute a denotational space closely
related to the classical developments of semantics based on denotations for programming
languages [52].

In this section we will show how most of the semantics can be characterized with one
of the two main families of observations:

• Branching general observations, Section 4.1, that are essentially labeled trees, that char-
acterize the simulation semantics: simulation, complete simulation, ready simulation,
nested simulation, . . .
• Linear observations, a simplified case of branching observations, Section 4.2, that char-
acterize the linear semantics: traces, failures, readiness, ready trace, . . .

We consider also in Section 4.3 a more exotic kind of observations, deterministic branching
observations, which are essentially deterministic trees. Possible worlds semantics is the only
semantics appearing in the classical spectrum in this class, although, our general approach
will show how this kind of observations define new full families of process semantics.

To develop this observational characterization for process semantics allows us to deepen
into the ultimate nature of the similarities and differences between them. Along this section
we present a thorough study of the local observation functions that generate the local obser-
vations of the states, Figure 10. For the linear case, there is also the possibility of observing
this local information in a partial way and this is how for each local observer, in principle,
up to four different semantics can be obtained. This fact explains the classic diamond below
the ready simulation semantics formed by the failures, failure trace, readiness, and ready
trace semantics. Again, the generality of our study makes it exportable to other simulation
layers enriching and completing the spectrum of semantics, Figure 11.

Finally, from a methodological point of view, the unification of observational semantics
that we present in this section introduces all the technical machinery needed to rewrite the
proofs of Section 3 in a generic way, proving that the two unification procedures produce
characterizations of the same semantics. We will address this topic in Section 5. Let us
now concentrate on the observational semantics.

4.1. Branching general observations. In order to characterize the simulation semantics
in an extensional way we need local and branching general observations.

UNIFYING THE LTBT SPECTRUM 23

bgo1 bgo2

{a}

a

}}④④
④④
④④
④④ a

!!
❈❈

❈❈
❈❈

❈❈

{b}

b
��

{b}

b
��

{c} {d}

{a}

a

��

{b}

b

}}④④
④④
④④
④④ b

!!
❈❈

❈❈
❈❈

❈❈

{c} {d}

Figure 7: Two branching observations.

Definition 4.1. The sets LN of local observations corresponding to each of the constrained
simulations in the spectrum, and LN (p) of observations associated to a process p, are defined
as follows:

• Universal (or Plain) simulation: LU = {·}; LU (p) = ·.
• Ready simulation: LI = P(Act); LI(p) = I(p).
• Complete simulation: LC = Bool; LC(p) is true if I(p) = ∅ and false otherwise.
• Trace simulation4: LT = P(Act∗); LT (p) = T (p), the set of traces of p.
• 2-nested simulation: LS = {[[p]]S | p ∈ BCCSP}; LS(p) = [[p]]S , where [[p]]S represents the
equivalence class of p with respect to the simulation equivalence.

Definition 4.2.

(1) A branching general observation (bgo for short) of a process is a finite, non-empty tree
whose arcs are labeled with actions in Act and whose nodes are labeled with local
observations from LN , for N a constraint; the corresponding set BGON is recursively
defined as:
• 〈l, ∅〉 ∈ BGON for l ∈ LN .
• 〈l, {(ai, bgoi) | i ∈ 1..n}〉 ∈ BGON for every n ∈ IN, ai ∈ Act and bgoi ∈ BGON .

(2) The set BGON (p) of branching general observations of p corresponding to the constraint
N is

BGON (p) = {〈LN (p), S〉 | S ⊆ {(a, bgo) | bgo ∈ BGON (p′), p a
−→ p′}} .

(3) We write p ≤b
N q if BGON (p) ⊆ BGON (q).

In Figure 7 some simple examples of bgo’s for N = I are shown. We represent bgo1 as

〈{a}, {(a, 〈{b}, {(b, 〈{c}, ∅〉)}〉), (a, 〈{b}, {(b, 〈{d}, ∅〉)}〉)}〉

and bgo2 as
〈{a}, {(a, 〈{b}, {(b, 〈{c}, ∅〉), (b, 〈{d}, ∅〉)}〉)}〉.

We use braces for the set of children of a node, parentheses to represent a branch of the
tree as a pair (initial arc, subtree below), and angular brackets to represent each tree as a
pair 〈root, children〉.

4Trace simulations are the only ones in this list that do not appear in [58]. They can be defined as
T -simulations, with T (x, y) ::= T (x) = T (y), and the general theory about constrained simulations in [24]
applies to them. In particular, they can be axiomatized as stated in Proposition 3.1(3), page 13.

24D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

bgo1 bgo2 bgo3

{a} {a}

a

��

{b}

b
��

{c, d}

d

!!
❈❈

❈❈
❈❈

❈❈
❈

c

}}④④
④④
④④
④④
④

∅ ∅

{a}

a

}}④④
④④
④④
④④ a

""
❋❋

❋❋
❋❋

❋❋

{b}

b
��

{b}

b
��

{c}

c
��

{c, d}

d
��

∅ ∅

Figure 8: Three branching observations.

Note that the bgo’s of a process p described by its transition system can be generated
by inductively applying the clauses defining the set BGON (p), even when p is infinite. For
instance, if N = I and we consider the process p ::= c.p defining a clock, since ∅ ⊆ {(c, bgo) |

bgo ∈ BGOI(p), p
c
−→ p}, it follows that 〈{c}, ∅〉 ∈ BGOI(p). But now {(c, 〈{c}, ∅〉)} ⊆

{(c, bgo) | bgo ∈ BGOI(p), p
c
−→ p} and therefore 〈{c}, {(c, 〈{c}, ∅〉)}〉 ∈ BGOI(p), and so

on.
It is clear that the bgo’s of a process have an operational flavor. The nodes of the

observations correspond to its states and the arcs to its transitions; this is why we will
be able to define the orders associated to the different simulation semantics simply by set
inclusion over the sets of bgo’s.

Let us also comment on the fact that in all five cases that we have considered in
Definition 4.1, which correspond to the five constrained simulation semantics in the spec-
trum, the local observation functions LN define a representation of the equivalence re-
lation N used to define the constrained simulation relations. This means that we have
LN (p) = LN (q)⇐⇒ pNq.

Example 4.3. For N = I, if x = b(c+ d) and y = bc + bd, then for p = a(x+ y) we have
bgok ∈ BGOI(p) for k ∈ {1, 2, 3}, where the bgo’s are depicted in Figure 8. It is easy to
check that all of them are also branching observations of q = a(x+ y) + ax. As a matter of
fact, we have BGOI(p) = BGOI(q). Note that in order to obtain bgo3 ∈ BGOI(p) we need
to combine two different observations of the process x + y, which is the only p′ such that

a(x+ y)
a
−→ p′.

In contrast, for p = a(bc + bd) and q = abc + abd, BGOI(q) 6⊆ BGOI(p), since for the
branching observation bgo1 in Figure 7 we have bgo1 ∈ BGOI(q) and bgo1 6∈ BGOI(p). And
also, we have BGOI(p) 6⊆ BGOI(q), since for bgo2 as in Figure 7 we have bgo2 ∈ BGOI(p),
but bgo2 /∈ BGOI(q). The key idea is that we can indeed include in a single bgo two
separated computations but we cannot “mix” two different ones, even if the labels both in
their initial transitions and in the local observations of the reached nodes were the same.
This is why bgo2 /∈ BGOI(q).

UNIFYING THE LTBT SPECTRUM 25

The following simple properties will be immediate consequences of Theorem 4.9 below;
we use them here to illustrate the expressive power of each kind of bgo.

Definition 4.4. An axiom t � u, respectively t ≃ u, is satisfied in a model BGON if
BGON (t′) ⊆ BGON (u′), respectively BGON (t′) = BGON (u′), for every possible ground
instantiation t′ � u′ or t′ ≃ u′ of the axiom.

Proposition 4.5.

(1) The axiom (S) x � x+ y is satisfied in the model BGOU .
(2) The axiom (S≡) a(x+ y) ≃ a(x+ y) + ax is satisfied in the model BGOU .

Proof.

(1) It is an immediate consequence of the fact that if p
a
−→ p′ then p + q

a
−→ p′, and

therefore {a | p
a
−→} ⊆ {a | p+ q

a
−→}.

(2) Again, it is a simple exercise to check that BGOU (p) ⊆ BGOU (q) implies BGOU (ap) ⊆
BGOU (aq), and that if BGOU(p),BGOU (q) ⊆ BGOU (r), then BGOU (p+q) ⊆ BGOU (r);
in combination with (1), this produces the result.

Proposition 4.6. BGOI(p) ⊆ BGOI(p+ q) iff I(q) ⊆ I(p).

Proof. (⇐) Since I(p + q) = I(p), the root of the bgo’s is the same for both processes and
obviously p+ q has all the observations of p.

(⇒) If I(q) 6⊆ I(p), then I(p) 6= I(p+ q) and then no bgo of p is a bgo of p+ q because
the roots of the observations of both processes are different.

The fact, that we now prove, that the observational semantics BGON (p) can be defined
in a compositional way, is an important property that will simplify the proofs of many of
their properties.

Theorem 4.7. Let L be a function used as a local observation function and let us also
denote by L the range of L, as done in Definition 4.1. If there exist semantic functions
+L : L× L→ L and aL : L→ L satisfying L(ap) = aLL(p) and L(p + q) = L(p) +L L(q),
then:

• BGON (ap) = {〈aLL(p), {(a, bgo) | bgo ∈ B}〉 | B ⊆ BGON (p)}.
• BGON (p+q) = {〈L(p)+LL(q), S1∪S2〉 | 〈L(p), S1〉 ∈ BGON (p), 〈L(p), S2〉 ∈ BGON (q)}.

Proof. The first equality is immediate by definition of BGON (ap). As for the second, we

only need to realize that p+ q
a
−→ r iff p

a
−→ r or q

a
−→ r: then, the set of children of the

root labeled by LN (p+ q) at any bgo ∈ BGON (ap) correspond to the union of the two sets

of children that contain some bgo’s of processes pi such as p
a
−→ pi (and then p+ q

a
−→ pi)

or qi such that q
a
−→ qi (and then p + q

a
−→ qi). Note that from the equalities above it

follows that BGON (p) can be computed compositionally.

In particular, BGON (p) is compositional for any of the constraints considered in Defi-
nition 4.1.

Proposition 4.8. For N ∈ {U, I, C, T, S}, LN can be defined in a compositional way over
the terms in BCCSP.

Proof. The result for U is obvious since it is a degenerate semantics that identifies all
processes. By Theorem 4.7 and Theorem 4.9 below we can conclude that the simulation
semantics can indeed be denotationally defined. The result for traces is well-known, while I
and C can be easily defined denotationally since I(ap) = {a} and I(p+ q) = I(p) ∪ I(q).

26D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

Now we show that bgo’s characterize N -simulation semantics in all cases.

Theorem 4.9. For all N ∈ {U, I, C, T, S} and any two processes p and q, p ⊑NS q iff
p ≤b

N q.

Proof. (⇒) Let p =
∑∑

apia and q =
∑∑

aqja; if p ⊑NS q, then pNq and therefore
LN (p) = LN (q). Now we proceed by induction on p. If p ≡ 0 the result is trivial. Otherwise,

for every a ∈ I(p) such that p
a
−→ p′ there exists q a

−→ q′ such that p′ ⊑NS q′. By induction
hypothesis BGON (p′) ⊆ BGON (q′) from where, by the definition of BGON (p), it follows
that BGON (p) ⊆ BGON (q).

(⇐) Let us show that the relation R = {(p, q) | BGON (p) ⊆ BGON (q)} is an N -
simulation. If (p, q) ∈ R, then LN (p) = LN (q) because 〈LN (p), ∅〉 ∈ BGON (q) and thus

pNq. Now, for each p
a
−→ p′ we have {〈LN (p), {(a, bgo)}〉 | bgo ∈ BGON (p′)} ⊆ BGO(q)

and therefore there must exist some q
a
−→ q′ such that BGON (p′) ⊆ BGON (q′), so that

(p′, q′) ∈ R.

Note that for this result to hold it is only required that the local observation function
LN satisfies pNq iff LN (p) = LN (q). That is, LN must compute a concrete representative
of the equivalence class defined by N and this stresses again the interest of using behavior
equivalences N as constraints for the definition of constrained simulations. Let us recall
that, in principle, any behavior preorder could be used as such a constraint. For instance,
the predicate I⊇ defined by pI⊇q iff I(q) ⊆ I(p) could be used to define I⊇-simulations
(which in fact coincide with I-simulations). But from I(q) ⊆ I(p) we cannot conclude that
LN (p) = LN (q) and, hence, either a more complicated characterization of ⊑NS in terms of
bgo’s or an additional argument to show that p ⊑I⊆ q implies I(p) ⊆ I(q) would be needed.
And although this is obvious for a constraint as simple as I, or even T or S, it could be
far from trivial for other, more complex constraints: therefore, it is always advisable to
consider equivalence behaviors as constraints.

Corollary 4.10. For any constraint N that is a behavior equivalence, whenever we have as
local observation function LN the quotient function LN (p) = [[p]]N or any concrete represen-
tation of it satisfying LN (p) = LN (q) ⇐⇒ pNq, then p ⊑NS q iff BGON (p) ⊆ BGON (q).

The results above bring forward the fact that despite the resemblance between the bgo’s
of a process and its computation tree, the possibility of mixing several computations in a
single branching observation makes it possible to identify non-bisimilar processes by their
sets of branching observations.

4.2. Linear observations and linear time semantics. We introduce the linear obser-
vations of a process as a particular (degenerate) case of branching observations: those with
a linear structure.

Definition 4.11.

(1) The set LGON of linear general observations (lgo for short) for a local observer LN is
the subset of BGON defined as:
• 〈l, ∅〉 ∈ LGON for each l ∈ LN .
• 〈l, {(a, lgo)}〉, whenever a ∈ A and lgo ∈ LGON .

(2) The set of linear general observations of a process p with respect to the local observer
LN is LGON (p) = BGON (p) ∩ LGON .

UNIFYING THE LTBT SPECTRUM 27

Since lgo’s are linear they can be presented as traces, avoiding the sets of descendants in
the bgo’s. Therefore, we will consider them as elements of the set LN × (Act× LN)∗.

It is also clear that the set of linear observations can be defined recursively without
resorting to branching observations.

Definition 4.12. The set LGON (p) of linear general observations of a process p is recur-
sively defined by

LGON (p) = {〈LN (p)〉} ∪ {〈LN (p), a〉 ◦ lgo | p
a
−→ p′, lgo ∈ LGON (p′)}.

We can also compute LGON (p) in a compositional way.

Proposition 4.13. Let L be a local observation function such that there exist semantic
functions +L : LN × LN → LN and aL : LN → LN satisfying L(ap) = aLL(p) and
L(p+ q) = L(p) +L L(q). Then:

• LGON (ap) = {〈aLL(p)〉} ∪ {〈aLL(p), a〉 ◦ LGON (p)}.
• LGON (p + q) = {〈L(p) +L L(q)〉 ◦ t | 〈L(p)〉 ◦ t ∈ LGON (p) or

〈L(p)〉 ◦ t ∈ LGON (q)}.

Proof. Just like that of Theorem 4.7.

Obviously, for N = U we have that LGOU is isomorphic to Act∗ and thus LGOU (p) =
Traces(p). By contrast, for N = I, LGOI(p) is the set of ready traces of p, ReadyTraces(p).

Set inclusion of linear observations with respect to a local observer LN gives us the
preorder defining the corresponding semantics.

Definition 4.14. A process p is less than or equal to q with respect to the linear obser-
vations generated by LN , denoted p ≤l

N q, if LGON (p) ⊆ LGON (q). We will denote the

corresponding equivalence by =l
N .

Proposition 4.15. (1) ≤l
U = ⊑T ; (2) ≤

l
I = ⊑RT ; (3) ≤

l
C = ⊑CT .

Proof. It is trivial, since LGOU (p) = Traces(p), LGOI(p) = ReadyTraces(p), and LGOC(p) =
{(false, a1)◦ . . . ◦(false, an, true), (false, a1)◦ . . . ◦(false, ai, false) | a1 . . . an ∈ CompleteTraces(p), i <
n}.

Proposition 4.16. For N ∈ {U,C, I, T, S}, if p ⊑NS q then p ≤l
N q, but the converse is

false in general.

Proof. The implication follows from Theorem 4.9 and the fact that lgo’s are just a particular
case of bgo’s. To see that the converse is false in general consider N = U ; we have ⊑US = ⊑S

and ≤l
U = ⊑T , and it is well-known that ⊑S 6⊆ ⊑T since, for instance, a(b+ c) 6⊑S ab+ ac,

but a(b+ c) =T ab+ ac.

Therefore, by means of linear observations and set inclusion we can characterize the
orders that define some of the semantics in the spectrum which are not simulation semantics.
However, there are still some other semantics for which a different way of treating the linear
observations is needed. We need to introduce some identifications in the corresponding
domain LGON to obtain their characterizations.

Definition 4.17. For T ,T ′ ⊆ LGOI we define the orders ≤l⊇
I , ≤lf

I , and ≤lf⊇
I by:

• T ≤l⊇
I T

′ ⇐⇒ for all X0a1X1 . . . Xn ∈ T
there is some Y0a1Y1 . . . Yn ∈ T

′ with Xi ⊇ Yi, for all i ∈ 0..n.

28D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

• T ≤lf
I T

′ ⇐⇒ for all X0a1X1 . . . Xn ∈ T
there is some Y0a1Y1 . . . Yn ∈ T

′ with Xn = Yn.

• T ≤lf⊇
I T ′ ⇐⇒ for all X0a1X1 . . . Xn ∈ T

there is some Y0a1Y1 . . . Yn ∈ T
′ with Xn ⊇ Yn.

Then, for each δ ∈ {⊇, f, f⊇} we write p ≤lδ
I q if LGOI(p) ≤

lδ
I LGOI(q).

Since the definition of ≤lf
I ignores all the intermediate ready sets Xi with i < n and

requires the final ready sets to coincide, it is obvious that it defines the readiness preorder.
Let us now prove that the two semantics based on failures are also characterized by our

preorders ≤lf⊇
I and ≤l⊇

I .

Proposition 4.18. The preorder ≤lf⊇
I generates the failures preorder and ≤l⊇

I generates
the failure trace preorder.

Proof. The proof is based on the definition of initial failures of a process: we say that p

rejects X if and only if X ∩ I(p) = ∅. Then, 〈α,X〉 is a failure of p if and only if p
α

=⇒ p′

and p′ rejects X. Using lgo’s, for α = a1 . . . an, 〈α,X〉 is a failure of p iff there exists
X0a1 . . . Xn ∈ T such that Xn ∩X = ∅. Thus:

p ⊑F p′ ⇐⇒ Failures(p) ⊆ Failures(p′)
⇐⇒ 〈α,X〉 ∈ Failures(p′) for all 〈α,X〉 ∈ Failures(p)
⇐⇒ X0a1 . . . Xn ∈ LGOI(p) with Xn ∩X = ∅ implies that there exists

Y0a1 . . . Yn ∈ LGOI(p
′) with Yn ∩X = ∅ ,

and then p ≤lf⊇
I p′ implies p ⊑F p′.

Conversely, assume that p ⊑F p′ and recall that p ≤lf⊇
I p′ iff for all t = X0a1 . . . Xn ∈

LGOI(p) there exists Y0a1 . . . Yn ∈ LGOI(p
′) such that Xn ⊇ Yn. For each set X, let us

denote by Xc its complement. If t ∈ LGOI(p), we have 〈α,Xc
n〉 ∈ Failures(p) and therefore

〈α,Xc
n〉 ∈ Failures(p′), which implies that there exists p′ α

=⇒ p′′ such that I(p′′) ∩Xc
n = ∅.

This means that there is some t′ = Y0a1 . . . anI(p
′′) ∈ LGOI(p

′) with I(p′′) ⊆ Xn, and

therefore we can conclude that p ≤lf⊇
I p′.

The proof for failure trace is very similar and we omit it.

As a matter of fact, the characterization of failures by means of the reverse inclusion
of offerings is not a great discovery at all: for instance, the same idea can be found in the
definition of acceptance trees [29]. However, our sets of linear observations produce quite a
nice characterization and allow us to forget about the notion of failures and consider instead
reverse inclusion of offerings. But the most important property of our characterizations in
terms of different orders on the set LGOI is that they can be generalized to other local
observation functions.

Definition 4.19. For T ,T ′ ⊆ LGON we define the orders ≤l⊇
N , ≤lf

N , and ≤lf⊇
N by:

• T ≤l⊇
N T

′ ⇐⇒ for all X0a1X1 . . . Xn ∈ T
there is some Y0a1Y1 . . . Yn ∈ T

′ with Xi ⊇ Yi for all i ∈ 0..n.

• T ≤lf
N T

′ ⇐⇒ for all X0a1X1 . . . Xn ∈ T
there is some Y0a1Y1 . . . Yn ∈ T

′ with Xn = Yn.

• T ≤lf⊇
N T ′ ⇐⇒ for all X0a1X1 . . . Xn ∈ T

there is some Y0a1Y1 . . . Yn ∈ T
′ with Xn ⊇ Yn.

UNIFYING THE LTBT SPECTRUM 29

Then, for each δ ∈ {⊇, f, f⊇} we write p ≤lδ
N q if LGON (p) ≤lδ

N LGON (q).

By abuse of notation, we have used the superset inclusion symbol ⊇ in the definitions
above for any N . That is indeed the right interpretation for the cases N = I, T ; however,
for N = U,C the superset inclusions degenerate to equalities while for N = S it should
be interpreted as [[p]]S ≥S [[q]]S . Then, with the right notation we could have used such an
inequality [[p]]N ≥N [[q]]N in all the cases.

When defining an observational semantics one expects the order between processes to be
plain set inclusion as is the case, for instance, for the classic definition of failures semantics.
Fortunately, it is easy to obtain such a characterization for the three semantics considered
above by means of some suitable closure operators.

Definition 4.20. For T ⊆ LGON , the following three closures are defined:

• T
⊇
= {X0a1X1 . . . anXn | there is some Y0a1Y1 . . . anYn ∈ T with Xi ⊇ Yi for i ∈ 0..n}.

• T
f
= {X0a1X1 . . . anXn | there is some Y0a1Y1 . . . anXn ∈ T }.

• T
f⊇

= {X0a1X1 . . . anXn | there is some Y0a1Y1 . . . anYn ∈ T with Xn ⊇ Yn}.

Proposition 4.21. All the operators in Definition 4.20 are indeed closures: if δ ∈ {⊇

, f, f⊇} and T ,T ′ ⊆ LGON , then T ⊆ T
δ
and T

δ
δ

= T
δ
; also, if T ⊆ T ′ then T

δ
⊆ T ′δ.

Proof. The first and third conditions are immediate from the definitions. As for the second,

let X0a1X1 . . . anXn ∈ T
f
f

. Then, there exists Y0a1Y1 . . . anXn ∈ T
f
and thus there exists

Z0a1Z1 . . . anXn ∈ T , which implies X0a1X1 . . . anXn ∈ T
f
; the inclusion in the other

direction follows from monotonicity. Analogously for the other two operators.

Proposition 4.22. For all δ ∈ {⊇, f, f⊇}, T ≤lδ
N T

′ iff T
δ
⊆ T ′δ.

Proof. It is easy but tedious, so only the case δ = f⊇ is presented in detail. Assume

T ≤lf⊇
N T ′: for all t = X0a1X1 . . . anXn ∈ T there exists Y0a1Y1 . . . anYn ∈ T

′ with

Xn ⊇ Yn and hence t ∈ T ′f⊇ and T ⊆ T ′f⊇; T
f⊇
⊆ T ′f⊇ follows because of the properties

of closures.
Conversely, from T

f⊇
⊆ T ′f⊇ it follows that T ⊆ T ′f⊇ and thus for allX0a1X1 . . . anXn ∈

T there exists Y0a1Y1 . . . anYn ∈ T
′ with Xn ⊇ Yn: therefore T ≤

lf⊇
N T ′.

Definition 4.23. For each δ ∈ {⊇, f, f⊇}, p ∈ BCCSP, and N a constraint, we define

LGOδ
N (p) = LGON (p)

δ
.

Let us see which of the semantics in the spectrum are characterized by the orders ≤lδ
N

defined above.

Proposition 4.24. For N = U we have ≤l
U = ≤l⊇

U = ≤lf
U = ≤lf⊇

U = ⊑T . As a consequence,
the only semantics coarser than plain simulation that can be characterized by means of linear
observations using LU is the trace semantics.

Proof. The first three equalities are obvious since U provides useless (empty) local informa-
tion (LU = {·}). The last equality was proved in Proposition 4.15(1).

30D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

Proposition 4.25. For N = C we have ≤l
C = ≤l⊇

C = ≤lf
C = ≤lf⊇

C = ⊑CT . As a conse-
quence, the only semantics coarser than complete simulation that can be characterized by
means of linear observations using LC is the completed trace semantics.

Proof. Note that the local information at the intermediate steps of traces in LGOC has to be
false, since it corresponds to non-terminated states; thus, only the final states provide real
information. Since in this case ⊇ corresponds to Boolean equality, the first three equalities
follow; the fourth was proved in Proposition 4.15(3).

Proposition 4.26. For N = I, ≤lf⊇
I characterizes the failures semantics, ≤lf

I the readiness

semantics, ≤l⊇
I the failure trace semantics, and ≤l

I the ready trace semantics. Therefore,
the possible worlds semantics is the only semantics in the ltbt spectrum coarser than ready
simulation that cannot be characterized using lgoI ’s.

Proof. We have already proved (Propositions 4.15 and 4.18) the four characterizations,
while ⊑PW cannot be characterized using lgoI ’s because all the information available in our
lgoI ’s was needed to capture the ready trace semantic and it is well-known that the possible
worlds semantics is strictly finer.

As we will see in Section 4.3, the possible worlds semantics is the only deterministic
branching semantics in the spectrum and will require the use of the deterministic branching
observations introduced there to be characterized in an observational way. This is not
the case, however, for the possible futures semantics (already discussed in [58]), and the
impossible futures semantics [59].

Definition 4.27.

(1) The impossible futures semantics is defined as: p ⊑IF q if for all S ⊆ P(Act∗), if p
α

=⇒ p′

with T (p′) ∩ S = ∅ then there exists q
α

=⇒ q′ with T (q′) ∩ S = ∅.

(2) The possible futures semantics is defined as: p ⊑PF q if p
α

=⇒ p′ then there exists

q
α

=⇒ q′ with T (q′) = T (p′).

Proposition 4.28.

(1) ≤lf
T is the possible futures preorder.

(2) ≤lf⊇
T is the impossible futures preorder.

Proof.

(1) Obvious.

(2) Assume that p ≤lf⊇
T q. Then p

α
=⇒ p′, with α = a1 . . . an, implies q

α
=⇒ q′ with

T (q′) ⊆ T (p′). Therefore, if p α
=⇒ p′ with T (p′)∩X = ∅ then q

α
=⇒ q′ with T (q′)∩X = ∅

which implies p ⊑IF p′.
Conversely, if p ⊑IF q, t = X0a0X1 . . . Xn ∈ LGOT (p) and p

α
=⇒ p′ with α =

a1 . . . an, obviously we have T (p′) ∩ T (p′)c = ∅, where T (p′)c just represent the com-

plement of the set T (p′). Now applying the definition of ⊑IF , we have some q
α

=⇒ q′

with T (q′) ∩ T (p′)c = ∅. Hence, there exists t′ = X ′
0a0X

′
1 . . . X

′
n ∈ LGOT (q) with

T (q′) ⊆ T (p′), which implies p ≤lf⊇
T q.

UNIFYING THE LTBT SPECTRUM 31

As a matter of fact, the possible futures semantics is just below the 2-nested simulation
semantics in the spectrum only because the trace simulation semantics is missing there.

At this point we are ready to present our first two “missing links”, which arise through

the remaining two orders: ≤l
T and ≤l⊇

T .

Definition 4.29. The possible futures trace semantics is defined by lgoT ’s related by ≤l
T

and the impossible futures trace semantics is defined by ≤l⊇
T .

Let us complete this part of the new extended spectrum by introducing the diamond
generated by lgoS ’s. This produces four new semantics coarser than 2-nested semantics.
For instance, for the case of failures we obtain the following definition.

Definition 4.30. The extended simulation failures of a process p are defined as

ExtSimFailures(p) = {〈α, p′′〉 | α ∈ A∗, p
α

=⇒ p′, p′ ⊑S p′′}.

The simulation failures of a process p are defined as SimFailures(p) = {〈α,B〉 | p
α

=⇒
p′, B ∩ BGOU (p

′) = ∅}. We write p ⊑SF q iff SimFailures(p) ⊆ SimFailures(q).

It can be proved that the inclusion SimFailures(p) ⊆ SimFailures(q) holds if and only
if ExtSimFailures(p) ⊆ ExtSimFailures(q). Thus, simulation failures are essentially defined
by translating the characterization of ordinary failures with the closure of readiness.

Proposition 4.31. ≤lf⊇
S = ⊑SF .

Proof. Analogous to the characterization of ⊑F in terms of ≤lf⊇
I .

4.3. Deterministic branching observations.

Definition 4.32.

(1) We say that a bgo is deterministic if the set of children {(ai, bgoi)} of every node satisfies
ai 6= aj whenever i 6= j. We denote with dBGON the set of deterministic observations
in BGON .

(2) The set of deterministic branching observations (dbgo for short) of a process p is
dBGON (p) = BGON (p) ∩ dBGON .

(3) We write p ≤db
N q if dBGON (p) ⊆ dBGON (q).

Like the linear observations, the set dBGON (p) can be defined recursively and the corre-
sponding semantics, compositionally.

Example 4.33. For the two processes p = a(bc+ bd) and q = abc+ abd we have that both
deterministic observations in Figure 9 belong to dBGOI(p) and dBGOI(q). Indeed, that
must be the case since it is easy to check that dBGOI(p) = dBGOI(q).

In order to prove that dbgo’s for the constraint I characterize the possible worlds
semantics we first recall the definition of that semantics in [58].

Definition 4.34. A deterministic process p is a possible world of a process q if p ⊑RS q.
The set of possible worlds of p is denoted by PW (p). We define the order p ⊑PW q iff
PW (p) ⊆ PW (q).

32D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

{a}

a

��

{b}

b
��

{c}

{a}

a

��

{b}

b
��

{d}

Figure 9: Deterministic branching observations.

When defining the possible worlds of a process we have to solve all the non-deterministic
choices in it, each choice leading to one of its possible worlds. The same idea supports the
selection of dbgo’s to characterize this semantics: the non-deterministic branching obser-
vations in BGON (p) are not present in dBGON (p), where we have instead all the possible
deterministic subtrees of every branching observation.

In our proof below we will relate the dbgo’s in dBGOI(p) and the possible worlds in
PW (p). When necessary, we will consider observations in dBGOI(p) as processes in BCCSP
by removing the information from their nodes; by abuse of notation we will also denote with
dbgo the process obtained after such a removal. Also, we call complete those observations
that, for every node labeled by an offering A, have a branch labeled by each of the actions
in A.

Definition 4.35. The set of complete deterministic branching observations for the local
observation function LI is the set cdBGOI ⊆ dBGOI recursively defined as:

• 〈∅, ∅〉 ∈ cdBGOI .
• 〈A, {(a, cdbgoa) | a ∈ A}〉 ∈ cdBGOI for every a ∈ A and cdbgoa ∈ cdBGOI .

For each p ∈ BCCSP we define its set of complete deterministic branching observations
cdBGOI(p) = dBGOI(p) ∩ cdBGOI .

We also associate to a deterministic process q its universal (complete deterministic)
branching observation.

Definition 4.36. For a deterministic process p, its universal deterministic branching ob-
servation cdbgo(p) is:

• cdbgo(0) = 〈∅, ∅〉.
• cdbgo(

∑
a∈A apa) = 〈A, {(a, cdbgo(pa)) | a ∈ A}〉.

The following result is now immediate.

Proposition 4.37. For every p ∈ BCCSP, cdbgo(p) ∈ cdBGOI(p).

Lemma 4.38. For every q ∈ PW (p), cdbgo(q) ∈ cdBGOI(p).

Proof. By structural induction on q:

• If q is 0, then p ≡ 0 and 〈∅, ∅〉 ∈ cdBGOI(0).
• If q is

∑
aqa, since q ∈ PW (p) we have q ⊑RS p. This implies I(q) = I(p) and that, for all

a ∈ A, there exists p
a
−→ pa, qa ⊑RS pa, so that qa ∈ PW (pa). By induction hypothesis,

cdbgo(qa) ∈ cdBGOI(p). Now, by definition, cdbgo(q) = 〈A, {(a, cdbgo(qa)) | a ∈ A)}〉

UNIFYING THE LTBT SPECTRUM 33

and, from p
a
−→ pa and I(p) = I(q), we conclude cdbgo(q) ∈ dBGOI(p) and therefore

cdbgo(q) ∈ cdBGOI(p).

Lemma 4.39. For every process q such that cdbgo(q) ∈ cdBGOI(p) we have q ⊑RS p and
therefore q ∈ PW (p).

Proof. We will prove that the set S = {(q, p) | cdbgo(q) ∈ cdBGOI(p)} is a ready simulation.

Obviously, for (q, p) ∈ S it is I(q) = I(p) and, if q
a
−→ qa, there exists p

a
−→ pa with

cdbgo(qa) ∈ cdBGOI(pa), which shows that (qa, pa) ∈ S and that S is a ready simulation.

Theorem 4.40. For all processes p1, p2 ∈ BCCSP, p1 ⊑PW p2 iff p1 ≤
db
I p2.

Proof. (⇐) For q ∈ PW (p1), by Lemma 4.38 we have cdbgo(q) ∈ cdBGOI(p1) and therefore
cdbgo(q) ∈ cdBGOI(p2). Now, by Lemma 4.39, q ⊑RS p2 and thus q ∈ PW (p2).

(⇒) Let dbgo ∈ dBGOI(p1): by definition of dBGOI(p1) it is clear that we can extend
dbgo into some dbgo′ ∈ cdBGOI(p1). Now, by Lemma 4.39, dbgo′ ⊑RS p1 (taking dbgo′ as
a deterministic process). Therefore, dbgo′ ∈ PW (p1) and thus dbgo′ ∈ PW (p2) and, by
Lemma 4.38, cdbgo(dbgo′) = dbgo′ ∈ cdBGOI(p2): hence dbgo ∈ dBGOI(p2) as required.

Remark 4.41. If we consider infinite processes, then our characterization of ⊑PW by
means of ≤db

I only works if we restrict ourselves to image-finite processes. We will continue
the discussion on this part when studying the logical characterization of this semantics at
Section 6.

Let us briefly consider the remaining new semantics definable by means of deterministic
branching observations. It is clear that in all cases the corresponding orders verify ≤b

N ⊆
≤db

N ⊆ ≤
l
N , so that the associated semantics will be situated between the corresponding

semantics defined by branching observations in BGON and linear observations in LGON , as
is the case for the possible worlds semantics, located between the ready simulation semantics
and the ready trace semantics.

Admittedly, most of these semantics are rather strange and this is probably the reason
why, as far as we know, they have not been previously considered. However, the simplest
of them all, that corresponding to N = U , has properties similar to the possible worlds
semantics and, in fact, can be defined by simply removing from its definition the “R”
in the condition q ⊑RS p. Hence, we can regard as possible worlds those deterministic
implementations where we offer just a part of the action offered by the given process.

Definition 4.42. The partial possible worlds of a process p are those deterministic processes
that verify q ⊑S p. We denote with PWU (p) the set of partial possible worlds of a process
p and define p ⊑UPW q if PWU(p) ⊆ PWU (q).

Proposition 4.43. For all processes p1, p2 ∈ BCCSP, p1 ⊑UPW p2 iff p1 ≤
db
U p2.

Proof. Similar to Theorem 4.40, simplified by the fact that all dbgo in PWU (p) satisfy
dbgo ⊑S p.

Example 4.44. We have a ⊑UPW a + b since 〈·, {(a, ∅)}〉 ∈ dBGOU (a + b). By con-
trast, for p = ab + ac and q = a(b + c) we have p ⊑UPW q but q 6⊑UPW p because
〈·, {(a, 〈·, {(b, 〈·, ∅〉), (c, 〈·, ∅〉)}〉}〉 ∈ dBGOU (q)− dBGOU (p).

Analogously, for any other constraint N we could define the N -possible worlds order
⊑NPW using ⊑NS instead of ⊑S at Definition 4.42. However, it is easy to see that when
N is fine enough, e.g. N = T , this order would become totally wrong. Instead, we can

34D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

≤l⊇
N

≤b
N ≤db

N ≤l
N ≤lf⊇

N

≤lf
N

Figure 10: Basic layer in the linear time-branching time spectrum.

B
New

2S New New New
New

New
TS New New IF

PF
FT

RS PW RT F
R

CS New CT

S New T

Figure 11: Semantics in the new linear time-branching time spectrum.

still consider the observations in dBGON and by means of them we define the “reasonable”
deterministic branching semantics, for any layer in the spectrum.

The extended spectrum can now be depicted as in Figures 11 and 10.

4.4. Back to branching observations. The orders ≤lδ
N with δ ∈ {⊇, f, f⊇} that char-

acterize some of the linear semantics studied in Section 4.2, restricted in several ways the
use of the local information, when characterizing those semantics. The same scheme can be
generalized to the branching observations. This way, for each constraint N we would obtain
three new branching semantics based on bgo’s in BGON which, together with the original
N -simulation semantics, would constitute a diamond of branching semantics at a higher
layer in our extended ltbt spectrum. The introduction of these new semantics also offers a
clearer view of the spectrum, with two main levels of branching and linear semantics and an
intermediate one of deterministic branching semantics. Although this provides the means
for obtaining a host of new semantics, it is also true that most of them are bizarre, in sharp
contrast with the fact that the corresponding orders gave rise to interesting semantics when
applied to linear observations.

To illustrate the comments above, next we consider in some detail the case N = I,
which corresponds to the most interesting semantics.

Definition 4.45. For bgo, bgo′ ∈ BGOI we define:

• bgo ≤⊇
I bgo′ ⇐⇒

(
bgo = 〈A1, S1〉 and bgo′ = 〈A2, S2〉 and A1 ⊇ A2 and
S1 = {(ai, bgoi) | i ∈ I} and S2 = {(ai, bgo

′
i) | i ∈ I} and

for all i ∈ I (bgoi ≤
⊇
I bgo′i)

)
.

UNIFYING THE LTBT SPECTRUM 35

• bgo ≤f
I bgo′ ⇐⇒

(
bgo = 〈A1, ∅〉 and bgo′ = 〈A1, ∅〉

)
or(

bgo = 〈A1, S1〉 and bgo′ = 〈A2, S2〉 and
S1 = {(ai, bgoi) | i ∈ I} and S2 = {(ai, bgo

′
i) | i ∈ I} and

for all i ∈ I (bgoi ≤
f
I bgo′i)

)
.

• bgo ≤f⊇
I bgo′ ⇐⇒

(
bgo = 〈A1, ∅〉 and bgo′ = 〈A2, ∅〉 and A1 ⊇ A2

)
or(

bgo = 〈A1, S1〉 and bgo′ = 〈A2, S2〉 and
S1 = {(ai, bgoi) | i ∈ I} and S2 = {(ai, bgo

′
i) | i ∈ I} and

for all i ∈ I (bgoi ≤
f⊇
I bgo′i)

)
.

Definition 4.46. For B,B′ ⊆ BGOI and δ ∈ {⊇, f, f⊇}, we define the orders ≤bδ
I by:

• B ≤bδ
I B

′ ⇐⇒ for all bgo ∈ B there exists bgo′ ∈ B′ with bgo ≤δ
I bgo

′.

Then, we write p ≤bδ
I q if BGOI(p) ≤

bδ
I BGOI(q).

It is somewhat surprising to discover that ≤b⊇
I = ≤b

I , since this was not the case for

their linear “projections” ≤l⊇
I and ≤l

I .

Proposition 4.47. For all processes p1, p2 ∈ BCCSP, p1 ≤
b⊇
I p2 iff p1 ≤

b
I p2.

Proof. Assume that p1 ≤
b⊇
I p2 and let bgo ∈ BGOI(p1): it is clear that it can be extended

into a complete cbgo ∈ BGOI(p1). Then, there exists some cbgo′ ∈ BGOI(p2) with cbgo ≤⊇
I

cbgo′ and, since cbgo is complete, cbgo = cbgo′ and hence bgo ∈ BGOI(p2). The other
implication is trivial.

Example 4.48. For p1 = a(b + c) and p2 = ab + ac, p1 ≤
l⊇
I p2 but p1 6≤

l
I p2. However,

p1 6≤
b⊇
I p2 since for bgo = 〈{a}, (a, 〈{b, c}, {(b, ∅), (c, ∅)}〉)〉 ∈ BGOI(p1) there is no bgo′ ∈

BGOI(p2) with bgo ≤l⊇
I bgo′.

By contrast, the branching semantics defined by ≤bf
I and ≤bf⊇

I are indeed new.

Example 4.49. For the processes p and q in Figure 12, p ≤bf
I q but p 6≤b

I q.

p q q′

·

a

��

·

a

��

·

a

��

·

a

��

·

·
a

ww♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

a

��

a

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆

·

a

��

·
a

��✁✁
✁✁
✁✁
✁

b
��

·
a

��✁✁
✁✁
✁✁
✁

b
��

· ·

a

��

· ·

a

��

b

��
❂❂

❂❂
❂❂

❂ ·

· ·

a

��

·

·

·
a

ww♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

a
��✁✁
✁✁
✁✁
✁

a

��

a

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆

· ·
a

��✁✁
✁✁
✁✁
✁

b
��

·

a

��

b

��
❂❂

❂❂
❂❂

❂ ·

a

��

b

��
❂❂

❂❂
❂❂

❂

· · ·

a

��

b

��
❂❂

❂❂
❂❂

❂ · ·

a

��

b

��
❂❂

❂❂
❂❂

❂ ·

· · ·

a

��

b

��
❂❂

❂❂
❂❂

❂ ·

· ·

Figure 12: Three processes.

36D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

This example shows that it is quite difficult to characterize this semantics as a simulation
one. Furthermore, we conjecture that it is not finitely axiomatizable in the classic way (that
means using only unconditional axioms). As a matter of fact, we were also unable to find
any conditional axiomatization, what we interpret as a “proof” of the fact that these new
branching semantics are quite strange.

Definition 4.50. We say that R ⊆ BGOI × BCCSP is a final-ready simulation when:

• (〈A, ∅〉, q) ∈ R implies I(q) = A.

• (〈A, {(ai, bgoi)}〉, q) ∈ R implies that for all i ∈ I there exists q
ai−→ qi such that (bgoi, qi) ∈

R.

We say that p is final-ready simulated by q when for all bgo ∈ BGOI(p) there exists a
final-ready simulation R with (bgo, q) ∈ R, and write p ⊑fRS q.

Theorem 4.51. For all p, q ∈ BCCSP, p ⊑fRS q iff p ≤bf
I q.

Example 4.52. It is easy to check that for p and q′ as in Figure 12 we have p ≤bf⊇
I q′ but

p 6≤bf
I q′.

Final failure simulations are defined exactly like final-ready simulations but substituting
I(q) ⊆ Act for I(q) = A in the first clause, giving rise to the order ⊑fFS between processes.

Theorem 4.53. For all p, q ∈ BCCSP, p ⊑fFS q iff p ≤bf⊇
I q.

As previously noted, these are certainly bizarre semantics but we believe it is interesting
to indicate their existence because, by analogy to the linear case, their definitions in terms
of branching observations look quite natural. However, it also seems that when dealing with
branching observations the introduction of any kind of asymmetry in the treatment of local
observations produces quite involved semantics.

5. Relating the observational and equational frameworks

In this section we tie up all loose ends and show how our unification theory is fully self-
contained. Namely, we prove the results on axiomatic characterizations in Section 3 from the
observational semantics developed in Section 4: we show how the equations are deduced from
the observations in a general way without resorting to the already existing axiomatizations.

One of the key points of this section is to illustrate how the particular proofs needed in
Section 3 for every one of the semantics can be replaced by a generic proof that stands for
a whole family of semantics. In fact, we will show in Section 8 that the same proof is still
valid for the new semantics suggested in Roscoe’s work.

5.1. Semantics coarser than ready simulation. Let us now see how, from this uniform
definition of the linear semantics, the proofs of the correctness and completeness of the
corresponding axiomatizations can be derived in a uniform way avoiding the case analyses
of Sections 3.1 and 3.2. Although this could be done generically, with N ∈ {U,C, I, T},
we prefer to start with the particular case N = I, which corresponds to the most popular
semantics already studied in Section 3.1.

To start with, we show how the axiomatizations can be synthetized from the obser-
vational characterizations. Our general axiom (ND) for the reduction of non-determinism

UNIFYING THE LTBT SPECTRUM 37

specifies the hypothesis M(x, y, w) under which the process ax + a(y + w) can be (syn-
tactically) expanded by adding a new summand a(x + y) without changing its semantics.
Then, let us compare the two sides of our general axiom. Since I(ax+ a(y+w)) = I(ax) =
I(a(y + w)) = {a}, we have

LGOI(ax+ a(y + w)) = LGOI(ax) ∪ LGOI(a(y +w)),
LGOI(a(y + w)) = {〈{a}〉} ∪

{〈{a}, a, I(y + w)〉 ◦ S | 〈{a}, a, I(y)〉 ◦ S ∈ LGOI(ay) ∨
〈{a}, a, I(w)〉 ◦ S ∈ LGOI(aw)}.

Notice then that the observations of a(y+w) are exactly those of ay+aw simply replacing
I(y) or I(w), respectively, by I(y + w) = I(y) ∪ I(w). Analogously,

LGOI(a(x+ y)) = {〈{a}〉} ∪
{〈{a}, a, I(x + y)〉 ◦ S | 〈{a}, a, I(x)〉 ◦ S ∈ LGOI(ax) ∨

〈{a}, a, I(y)〉 ◦ S ∈ LGOI(ay)}.

Now, in order to get the adequate condition MZ(x, y, w) for each of the semantics, let
us examine the formulas that define the preorders ≤lY

I :

• ≤l
I . To have LGOI(a(x + y)) ⊆ LGOI(ax) ∪ LGOI(a(y + w)) it is enough to require
{〈{a}, a, I(x) ∪ I(y)〉 ◦ S | 〈I(x)〉 ◦ S ∈ LGOI(x)} ⊆ {〈{a}, a, I(x)〉 ◦ S | 〈I(x)〉 ◦ S ∈
LGOI(x)} and {〈{a}, a, I(x)∪I(y)〉◦S | 〈I(y)〉◦S ∈ LGOI(y)} ⊆ {〈{a}, a, I(y)∪I(w)〉◦S |
〈I(y)〉 ◦ S ∈ LGOI(y)}. Thus, a first proposal for MRT would be

I(y) ⊆ I(x) ∧ I(x) = I(y) ∪ I(w).

However, due to the fact that this axiom will be used in combination with (RS), the
following, more restrictive but simpler form, can be used instead:

MRT (x, y, w) ⇐⇒ I(x) = I(y) ∧ I(w) ⊆ I(y).

Clearly, this form is stronger than the condition synthetized above. Reciprocally, a(x +
y) � ax+a(y+w) can be proved from the assumptions I(y) ⊆ I(x) and I(x) = I(y)∪I(w)
using (RS) first to get a(x + y) � a(x + y + w), and then (ND) instantiated with MRT

to obtain a(x+ y + w) � ax+ a(y + w).

• ≤l⊇
I . We need the inclusion LGOI(a(x+ y))

⊇
⊆ LGOI(ax+ a(y + w))

⊇
to hold. Since

I(x) ∪ I(y) ⊇ I(x), the general observations in a(x+ y) that arise from x will be also in

LGOI(ax)
l⊇
. For those that arise from y, it is required that I(x) ∪ I(y) ⊇ I(y) ∪ I(w).

Once again, (RS) can be used to simplify this condition into the simpler

MFT (x, y, w) ⇐⇒ I(w) ⊆ I(y).

The less restrictive variant of the axiom can be derived from the stronger one and (RS)
as follows. Taking w = 0, since I(0) ⊆ I(y) we obtain a(x+ y) � ax+ ay from (NDFT);
in particular, a(x+ y+w) � ax+ a(y+w). Also, by (RS), x+ y � (x+ y)+ (x+ y+w),
from where it follows a(x+ y) � a(x+ y +w).

• ≤lf
I . We consider the inclusion LGOI(a(x+ y))

f
⊆ LGOI(ax+ a(y + w))

f
. We only

have to consider the lgo 〈{a}, a, I(x) ∪ I(y)〉 in LGOI(a(x+ y))
f
and show that it also

belongs to LGOI(ax+ a(y + w))
f
, since all lgo’s of length greater than 1 start with the

prefix 〈{a}, a〉. For that, either I(x) ∪ I(y) = I(x) or I(x) ∪ I(y) = I(y) ∪ I(w), that is,

38D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

I(y) ⊆ I(x) or I(x)∪ I(y) = I(y)∪ I(w). Again, we can remove the second condition and
define

MR(x, y, w) ⇐⇒ I(y) ⊆ I(x)

since, whenever I(x)∪ I(y) = I(y)∪ I(w), a(x+ y+w) � ax+ a(y+w) can be obtained
by taking x = y + w, y = x, and w = 0, and then by applying (RS) we conclude
a(x+ y) � ax+ a(y + w).

• ≤lf⊇
I . An argument analogous to the previous one leads us to check that I(x)∪I(y) ⊇ I(x)

or I(x) ∪ I(y) ⊇ I(y) ∪ I(w), and the first is certainly true.

In order to prove the completeness of our axiomatizations we introduce the following
notions of head normal forms.

Definition 5.1. For p =
∑

a∈X0

∑
i∈Ia ap

i
a and Z ∈ {F,R,FT,RT}, its Z-head normal

form hnf Z(p) is:

• For a ∈ X0, i ∈ Ia, andX1 ⊆
⋃

i∈Ia I(p
i
a) such that I(pia) ⊆ X1, we define hnf

Z(p, a, i,X1) =

a(pia +
∑
{pja|X1

| j 6= i,MZ(p
i
a, p

j
a|X1

, pja|X1
)}).

• hnf Z(p) = p+
∑

a∈X0

∑
i∈Ia

∑
X1⊆

⋃
I(pia)

hnf Z(p, a, i,X1).

It is clear that several redundancies arise in this definition: for example, if Z = RT
then hnf Z(p, a, i,X1) = hnf Z(p, a, i, I(pia)), so that the argument X1 would not be needed
in this case. We prefer to maintain the generic definition in order to allow a homogeneous
treatment of all the semantics.

Proposition 5.2. For Z ∈ {RT,FT,R, F}, {B1–B4, (RS), (NDZ)} ⊢ hnf Z(p) � p.

Proof. Let p =
∑

a∈X0

∑
i∈Ia ap

i
a.

Considering the definition of hnf Z(p, a, i,X1), let us consider an enumeration of the

set of j’s contributing to it: If Ji = {j 6= i | MZ(p
i
a, p

j1
a |X1

, pj1a |X1
)}, we take {jk | k =

1 . . . |Ji|} = Ji.
Then we can prove by induction on l that for all 0 ≤ l ≤ |Ji| we have {B1–B4, (RS), (NDZ)} ⊢

a(pia +
∑l

h=1 p
jh
a |X1

) � apia +
∑l

h=1 ap
jh
a .

The case of l = 0 is trivial. Assuming the result for l, we prove the result for l + 1.

From MZ(p
i
a, p

jl+1
a |X1

, p
jl+1
a |X1

) we can infer MZ(p
i
a+

∑l
h=1 p

jh
a |X1

, p
jl+1
a |X1

, p
jl+1
a |X1

) so that

we can derive ⊢ a(pia +
∑l+1

h=1 p
jh
a |X1

) � a(pia +
∑l

h=1 p
jh
a) + ap

jl+1
a ; and applying the i.h. we

conclude {B1–B4, (RS), (NDZ)} ⊢ a(pia +
∑l+1

h=1 p
jh
a |X1

|X1
) � apia +

∑l+1
h=1 ap

jh
a .

From this we immediately obtain {B1–B4, (RS), (NDZ)} ⊢ hnf Z(p, a, i,X1) � p|a. Fi-
nally, adding all these inequalities we conclude {B1–B4, (RS), (NDZ)} ⊢ hnf Z(p) � p.

Let us define l(F) = lf⊇, l(FT) = l⊇, l(R) = lf , and l(RT) = l. In order to apply
structural induction to prove the completeness of the axiomatizations we need to show that,

whenever p =
∑

a∈X0

∑
i∈Ia ap

i
a and p ≤

l(Z)
I q, there is a summand ahka of hnf Z(q) such

that pia ≤
l(Z)
I hka for each a ∈ Act, i ∈ Ia.

Proposition 5.3. Let Z ∈ {F,FT,R,RT}, and let p =
∑

a∈X0

∑
i∈Ia ap

i
a, and q =

∑
a∈X0

∑
j∈Ja aq

j
a. If p ≤

l(Z)
I q then there exists a summand ahka of hnf Z(q) such that

pia ≤
l(Z)
I hka.

UNIFYING THE LTBT SPECTRUM 39

Proof. Using Definition 4.19 and Proposition 4.22, we need to show that there exists

LGOI(pia)
l(Z)
⊆ LGOI(hka)

l(Z)
but, due to the fact that ()

l(Z)
is a closure operator (Propo-

sition 4.21), it is enough to prove that LGOI(p
i
a) ⊆ LGOI(hka)

l(Z)
. For 〈I(pia)〉 ∈ LGOI(p

i
a),

since p ≤
l(Z)
I q there is some qja such that 〈I(pia)〉 ∈ LGOI(q

j
a)

l(Z)
; we then consider

hnf Z(q, a, j, I(pia)) = ahka.

If t ∈ LGOI(p
i
a) then 〈I(p), a〉 ◦ t ∈ LGOI(p) ⊆ LGOI(q)

l(Z)
and there exists jt such

that t ∈ LGOI(q
jt
a)

l(Z)
. In addition, MZ(q

j
a, q

jt
a |I(pia), q

jt
a |I(pia)

):

• If Z = RT , then t ∈ LGOI(q
jt
a) and therefore I(qjta) = I(pia) = I(qja). Hence, condition

MRT (q
j
a, q

jt
a |I(pia),0) holds and therefore MRT (q

j
a, q

jt
a |I(pia), q

jt
a |I(pia)

).

• If Z = FT , from t ∈ LGOI(q
jt
a)

⊇
it follows that I(qjta) ⊆ I(pjta) and therefore I(qjta |I(pia)

) =

∅ ⊆ I(qjta |I(pia)). Hence, MFT (q
j
a, q

jt
a |I(pia), q

jt
a |I(pia)

).

• If Z = R, from 〈I(pia)〉 ∈ LGOI(q
j
a)

f
we have that I(pia) = I(qja) and thus I(qjta |I(pia)) ⊆

I(qja) and MR(q
j
a, q

jt
a |I(pia), q

jt
a |I(pia)

).

• For Z = F it is trivial since MF (x, y, w) is always true.

Therefore qjta is one of the summands of hka and, since t ∈ LGOI(q
jt
a)

l(Z)
, we have pia ≤

l(Z)
I hka.

Theorem 5.4 (Soundness and completeness). For Z ∈ {RT,FT,R, F}:

p ≤
l(Z)
I q iff {B1–B4, (RS), (NDZ)} ⊢ p � q.

Proof. (Soundness) The axiomatizations are sound because of the way they have been de-
rived.

(Completeness) By structural induction on p.

• Let p be 0. As usual, we can consider terms up to bisimulation since B1–B4 are equations

needed for all the semantics. If p ≤
l(Z)
I q, then q must be 0 (or bisimilar to 0) because

the set of local observations of 0 is empty and cannot contain any observations (see
Definition 4.19.)

• If p =
∑

a∈X0

∑
i∈Ia ap

i
a then, by Proposition 5.3, p ≤

l(Z)
I q implies that there exists a sum-

mand ahka of hnf
Z(q) such that pia ≤

l(Z)
I hka. By induction hypothesis, {B1–B4, (RS), (NDZ)} ⊢

pia � hka and therefore {B1–B4, (RS), (NDZ)} ⊢ apia � ahka; adding all these inequalities
and using (RS), which is allowed because I(p) = I(q), it follows that {B1–B4, (RS),
(NDZ)} ⊢ p � hnf Z(q) and, by Proposition 5.2, {B1–B4, (RS), (NDZ)} ⊢ p � q.

5.2. The semantics that are not coarser than ready simulation. Once we have a
clear picture of the semantics that are coarser than ready simulation, it is time to consider
the rest of the semantics in the spectrum. Let us start with the possible futures and the
impossible futures semantics. Recall that we have shown that they can be described by

LGOT observations so that they are defined by ≤lf⊇
T and ≤lf

T , respectively.

We introduce the T -versions of our (NDZ) axioms: all of them are instances of our gen-
eral axiom for the reduction of non-determinism and therefore are defined by the adequate

40D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

constraint MT
Z (x, y, w). As expected, they are obtained by substituting every occurrence of

I in MZ(x, y, w) by the observer T defining the traces of processes.

Definition 5.5. The constraints MT
Z that characterize the semantics coarser than T -

simulation semantics are:

(T-NDF) MT
F (x, y, w) ⇐⇒ true

(T-NDR) MT
R (x, y, w) ⇐⇒ T (x) ⊇ T (y)

(T-NDFT) MT
FT (x, y, w) ⇐⇒ T (w) ⊆ T (y)

(T-NDRT) MT
RT (x, y, w) ⇐⇒ T (x) = T (y) and T (w) ⊆ T (y)

As indicated in Section 4.2 (Definition 4.29), the semantics associated to the last two
conditions do not appear in the ltbt spectrum and, as far as we know, they have not been
previously studied nor even defined.

Using the same arguments as in Section 5.1, we can prove that ≤
l(Z)
T satisfies the axiom

(T-NDZ) for Z ∈ {RT,FT}.

Proposition 5.6. MT
Z (x, y, w) implies T (a(x+ y)) = T (ax+ a(y+w)) for Z ∈ {RT,FT}.

However, this is not the case for Z ∈ {R,F}

Proof. MT
RT implies MT

FT , and therefore T (y+w) = T (y), which leads to T (ax+a(y+w)) =

T (a(x+ y)). Neither MT
R nor MT

F refer to w and therefore, in general, T (ax+ a(y +w)) 6=
T (a(x+ y)) in those cases.

Note that when proving the correctness of the corresponding axiom (NDZ) for ≤
l(Z)
I

we had I(a(x+ y)) = {a} = I(ax+a(y+w)) in all cases. Now, T (a(x+ y)) = T (ax+a(y+
w)) only under the constraints corresponding to the finer semantics ⊑FT and ⊑RT . The
properties of the prefixes appearing in all the terms in both sides of the axiom (ND) are not
used anymore in the proofs in Section 5.1, so they can be transferred to the T -semantics,

thus proving the correctness of (T-NDZ) for both ≤
l(RT)
T and ≤

l(FT)
T .

The introduction of the equational version (ND≡) of the axiom (ND) now becomes
crucial in order to preserve the generality of our unifying work. We saw that under (RS)
these two axioms were equivalent. However, when observing the set of traces T (x) of any
process, instead of just the initial offer I(x) we need to consider T -simulations, that are
constrained by the condition T (x, y) ⇐⇒ T (x) = T (y); under the corresponding axiom
(TS), things turn out to be different.

Proposition 5.7. T (a(x+y)+ax+a(y+w)) = T (ax)∪T (ay)∪T (aw) = T (ax+a(y+w)).

As a consequence, for (T-NDZ
+) and (T-ND≡) we can apply the same arguments used

in Section 5.1 to show that (NDZ) was satisfied by ≤
l(Z)
I .

Proposition 5.8. For Z ∈ {RT,FT,R, F}, the preorder ≤
l(Z)
T satisfies the axiom (T-NDZ

+)

and also (T-NDZ
≡).

Proof. To show that ≤
l(Z)
T satisfies (T-NDZ

+) we just need to apply Proposition 5.7 and
follow the line of thought in the second bullet on page 37, substituting the observer T for
I. For the other axiom, from T (a(x + y)) ⊆ T (ax + a(y + w)) it follows that {(TS)} ⊢
ax+ a(y +w) � (ax+ a(y + w)) + a(x+ y).

UNIFYING THE LTBT SPECTRUM 41

Notice that for Z ∈ {RT,FT} we can also obtain the correctness of (T-NDZ
≡) from that

of (T-NDZ) and vice versa, as a consequence of the following fact.

Proposition 5.9. The axiomatization {B1–B4, (TS), (T-ND
Z)} is equivalent to the axiom-

atization {B1–B4, (TS), (T-ND
Z
≡)} for Z ∈ {RT,FT}.

Proof. Let us first show that {B1–B4, (TS), (T-ND
Z)} is equivalent to {B1–B4, (TS), (T-ND

Z
+)}.

This holds because (T-NDZ) implies (T-NDZ
+) and, since T (w) ⊆ T (y) implies T (a(x+y)) =

T (ax+ a(y+w)) and then we have {B1–B4, (TS)} ⊢ a(x+ y) � a(x+ y)+ (ax+ a(y+w)).
To prove {B1–B4, (TS), (T-ND

Z
+)} equivalent to {B1–B4, (TS), (T-ND

Z
≡)} we only need

to show that {B1–B4, (TS), (T-ND
Z
+)} ⊢ (MT

Z (x, y, w)⇒ ax+ a(y +w) � ax+ a(y +w) +

a(x + y)), but we have that for Z ∈ {RT,FT}, MT
Z (x, y, w) implies T (w) ⊆ T (y), so that

T (a(x+ y)) = T (ax+ a(y+w)) and therefore {(TS)} ⊢ ax+ a(y+w) � (ax+ a(y+w)) +
a(x+ y).

The important fact about the obtained sets of correct axioms for the semantics ≤
l(Z)
T

is that, although our proofs of completeness for the axiomatizations {B1–B4, (RS), (NDZ)}
considered the inequational axioms (NDZ), they are also valid for the axiomatizations
{B1–B4, (RS), (NDZ

≡)}.
The steps in the procedure that leads to the completeness of {B1–B4, (RS), (NDZ)} can

be adapted by substituting each reference to the observer I by T , thus obtaining a proof

of the completeness of {B1–B4, (RS), (T-NDZ
≡)} for ≤

l(Z)
T . However, the notion of head

normal form for N = I uses the fact that the summands hnf Z(q, a, i,X1) can be defined in
terms of the offers X1 ⊆ P(Act), which correspond to the values produced by the observer
I. For an arbitrary N , a more general definition of hnf’s, valid for every observer, is needed.

Definition 5.10. For p =
∑

a∈X0

∑
i∈Ia ap

i
a, its totally expanded Z-head normal form

tehnf ZN (p) is that given by:

• For a ∈ X0, i ∈ Ia, and Ka ⊆ Ia we consider a decomposition pka = pk1a + pk2a such that
MN

Z (pia, p
k1
a , pk2a). Then, tehnf ZN (p, a, i, 〈(pk1a , pk2a)〉k∈Ka

) = a(pia +
∑

k∈Ka
pk1a).

• tehnf ZN (p) =
∑

tehnf ZN (p, a, i, 〈(pk1a , pk2a)〉k∈Ka
).

It is clear that for K ′
a ⊆ Ka, or any decomposition pka = pk3a + (pk4a + pk2a) with pk1a =

pk3a + pk4a , the corresponding tehnf ZN (. . .) is a subterm of tehnf ZN (p, a, i, 〈pk1a , pk2a 〉k∈Ka
) and

thus contributes nothing to the expanded normal form. This is the reason why we preferred
the more compact definition of hnf Z(p) for semantics coarser than ready simulation.

Theorem 5.11. For Z ∈ {RT,FT,R, F}, {B1–B4, (TS), (T-ND
Z
≡)} ⊢ p � q if and only if

p ≤
l(Z)
T q.

6. Logical characterization of semantics

The third and a very natural alternative to associate a semantics to processes lies in the
logical framework. This is indeed quite a natural way to do it. We have a language to
express properties of processes and a way to check whether a process satisfies a formula of
the language: then, two processes are equivalent with respect to this semantics if and only if
they satisfy the same set of formulas. In fact, the semantics can also be defined in terms of

42D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

❤❤❤❤❤❤❤❤❤❤❤❤❤❤Formulas
Semantics (Z)

T S CT CS F FT R RT PW RS PF 2S B

⊤ ∈ LZ • ν • ν • • • • ν ν ν ν ν

0 ∈ LZ • • ν ν ν ν ν ν ν ν ν

ϕ ∈ LZ , a ∈ Act ⇒
• • • • • • • • ν • • • •

aϕ ∈ LZ

X ⊆ Act ⇒
• ν ν ν ν ν ν ν ν

X̃ ∈ LZ

X ⊆ Act ⇒
• ν • • ν ν ν

X ∈ LZ

ϕ ∈ LZ , X ⊆ Act ⇒
• ν ν ν ν ν

X̃ϕ ∈ LZ

ϕ ∈ LZ , X ⊆ Act ⇒
• ν ν ν ν

Xϕ ∈ LZ

ϕi ∈ LZ ∀i ∈ I ⇒
• • • • •∧

i∈I ϕi ∈ LZ

X ⊆ Act, ϕa ∈ LPW ∀a ∈ X ⇒
• ν ν ν∧

a∈X aϕa ∈ LZ

ϕi, ϕj ∈ LT ∀i ∈ I ∀j ∈ J ⇒
• ν ν∧

i∈I ϕi ∧
∧

j∈J
¬ϕj ∈ LZ

ϕ ∈ LS ⇒
• ν

¬ϕ ∈ LZ

ϕ ∈ LZ ⇒
•

¬ϕ ∈ LZ

Table 3: Van Glabbeek’s logical characterizations for the semantics in the ltbt spectrum.

the induced preorder that indicates whether a process satisfies more formulas than another
one.

Each subset L of LHM induces a semantics as stated in the following definition.

Definition 6.1. Any subset L of LHM induces a logical semantics for processes, given by
the preorder ⊑L: p ⊑L q whenever for all ϕ ∈ L, if p |= ϕ then q |= ϕ. We say that L and L′

are equivalent, and we write L ∼ L′, if they induce the same semantics, that is ⊑L = ⊑L′ .

Let us start with a look at Table 3, which contains the logical characterization of each of
the semantics in van Glabbeek’s spectrum. LZ with Z ∈ {T,CT, F, FT,R,RT, PF, S,CS,RS,
2S,PW,B} denotes each of the logics; the dots indicate the clauses needed to obtain the
corresponding languages; and the boxes marked with ν correspond to rules that could be
added to LZ , but would only introduce redundant formulas. The following constructs,
which appear in the table but are not in LHM , can be obtained as syntactic sugar:

X̃ :=
∧

a∈X
¬a⊤ X̃ϕ′ := X̃ ∧ ϕ′ 0 := Ãct

ϕ1 ∧ ϕ2 :=
∧

i∈{1,2}
ϕi X :=

∧

a∈X
a⊤ ∧

∧

a6∈X
¬a⊤ Xϕ′ := X ∧ ϕ′ ã := ¬a⊤

Disjunction does not appear in LHM and therefore neither in any of the logics LZ
characterizing the semantics in the ltbt spectrum. It is probably folklore that it can be
added in all cases without affecting the expressive power of each of these logics, but since
we have not found a clear statement in this direction in any of our references, next we
establish the result and comment on its proof.

Proposition 6.2. Let us define L∨Z, with Z ∈ {T,CT, F, FT,R,RT, PF, S,CS, RS, 2S,PW,B},
by adding the clause

∨
i∈I ϕi ∈ L

∨
Z if ϕi ∈ L

∨
Z for all i ∈ I to the clauses that define LZ,

UNIFYING THE LTBT SPECTRUM 43

replacing LZ by L∨Z in the other clauses, and making p |=
∨

ϕi iff there exists i ∈ I with
p |= σi. Then, L∨Z ∼ LZ .

Proof. It is interesting to observe that even if the result is valid for all the semantics, the
reason behind is not the same as for bisimulation. In that case, we only need to apply the
De Morgan laws to get the “definition” of ∨ as a combination of ¬ and ∧. However, for
the rest of the semantics we do not have negation as “constructor”, but ∨ distributes over
∧ and the prefix operator (that is

∨
aϕi = a

∨
ϕi), while negation is never applied to a

formula ϕ′ ∈ L∨Z . Therefore, by floating to the top any ∨, using those distribution laws,
a formula in L∨Z becomes equivalent to a disjunction of formulas within the corresponding
language LZ , and the equivalence of both logics follows.

As we will see in this section, each of our logics is defined by a set of rules and, as
usual, only the formulas that can be obtained by finite application of these rules belong
to the logics. One important feature of our approach is that instead of focusing on small
sets of formulas characterizing each of the semantics, we somewhat follow the opposite
approach by including all the formulas, from a certain family, that are preserved by each of
the semantics. This choice has many interesting side effects. In particular, we will not need
to look for adequate formulas reflecting the characteristics of each of the semantics, but
instead pick up from our “repository” of possible formulas those that are preserved by the
current semantics. Thus, we characterize each of the semantics by means of the formulas
that “see” the kind of observations that define it. As a consequence, we know whether a
semantics is coarser than another by checking whether the logic characterizing the former
is included in the logic characterizing the latter. Moreover, by using a larger logic we may
find a formula expressing some property that is preserved by the corresponding semantics,
while if we settle on a smaller logic we might need a collection of formulas to express a
simple property.

Formally speaking, for each semantics defined by a preorder ≺ we have a language
L ⊆ LHM characterizing it: ϕ ∈ L iff ((p ≺ q ∧ p |= ϕ) implies q |= ϕ). However, it
is not easy (nor specially illustrative) to capture the whole set of formulas characterizing
the semantics. Instead, we will consider sufficiently large families defined in a simple way
that provide natural characterizations of the different semantics and show the relationship
between them so that, as stated above, whenever a semantics is finer than another, the logic
characterizing the first will contain that for the latter.

As will become clear when we introduce our new logical characterizations, Table 3
readily presents the features that allow us to classify the semantics in the spectrum in four
categories:

• Bisimulation semantics, characterized by HML, that is closed under negation (¬), so that
the preorder defined is an equivalence (the bisimulation). The remaining semantics are
defined by non-trivial preorders, i.e., the preorders are not equivalences and their logical
characterizations are, of course, not closed under negation.
• Simulation semantics (S, CS, RS, . . .), characterized by branching observations, which
will be reflected by the unrestricted use of the operator

∧
in the formulas.

• Linear semantics (T, F, R, . . .), characterized by linear observations. We will get them
by severely restricting the use of

∧
and the use of the negation.

• Deterministic branching semantics, corresponding to an intermediate class between branch-
ing and linear semantics, where determinism appears restricting the use of the operator

∧

44D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

in combination with the prefix operator. The only semantics in this class in the classical
spectrum is PW.

As already happened in Sections 3 and 4, our unified logical semantics will provide an
enlarged spectrum—Figure 11. In particular, we will show the logical characterization of
revivals semantics, introduced by Roscoe in [48] and already axiomatized in [19].

6.1. A new logical characterization of the most popular semantics. Again, we start
with the best known classical semantics, that is, those at the layer of ready simulation in
the spectrum. All of them use in some way the set of formulas LI = {a⊤ | a ∈ Act} that
characterizes the initial offers of a process. In Section 6.2 we will present the logics for the
rest of the semantics in a unified way, remarking how they are obtained similarly to those
in this section but working from the set LN of formulas associated to the corresponding
constraint N .

We will prove the equivalence between each of our logics and the corresponding logical
characterization defined by van Glabbeek, thus checking that our new logical characteri-
zations are indeed correct. But one of the intended goals of our unification was to obtain
direct and natural proofs. This will be illustrated in Section 7 by showing the equivalence
between each of our logical semantics and the corresponding observational semantics of
Section 4. This will provide a new, single proof of their correctness without having to resort
to the characterizations defined by van Glabbeek.

Definition 6.3. Ready simulation semantics. We define the set of formulas L′RS for ready
simulation semantics by:

• If σ ∈ LI then σ ∈ L′RS ;

• if σ ∈ LI then ¬σ ∈ L′RS ;
• if ϕi ∈ L

′
RS for all i ∈ I then

∧
i∈I ϕi ∈ L

′
RS ;

• if ϕ ∈ L′RS and a ∈ Act then aϕ ∈ L′RS .

Ready trace semantics. We define the set of formulas L′RT for ready trace semantics by:

• ⊤ ∈ L′RT ;
• if ϕ ∈ L′RT and X1,X2 ⊆ L

′
I then (

∧
a∈X1

a⊤ ∧
∧

b∈X2
¬b⊤) ∧ ϕ ∈ L′RT ;

• if ϕ ∈ L′RT and a ∈ Act then aϕ ∈ L′RT .

Failure trace semantics. We define the set of formulas L′FT for failure trace semantics by:

• ⊤ ∈ L′FT ;
• if ϕ ∈ L′FT and X1 ⊆ L

′
I then (

∧
a∈X1

¬a⊤) ∧ ϕ ∈ L′FT ;

• if ϕ ∈ L′FT and a ∈ Act then aϕ ∈ L′FT .

Readiness semantics. We define the set of formulas L′R for readiness semantics by:

• ⊤ ∈ L′R;
• if X1 ⊆ L

′
I and X2 ⊆ L

′
I then (

∧
a∈X1

a⊤∧
∧

b∈X2
¬b⊤) ∈ L′R;

• if ϕ ∈ L′R and a ∈ Act then aϕ ∈ L′R.
Failures semantics. We define the set of formulas L′F for failures semantics by:

• ⊤ ∈ L′F ;
• if X1 ⊆ L

′
I then (

∧
a∈X1

¬a⊤) ∈ L′F ;
• if ϕ ∈ L′F and a ∈ Act then aϕ ∈ L′F .

UNIFYING THE LTBT SPECTRUM 45

It is immediate that L′RS ⊆ LB and hence ready simulation semantics is coarser than
bisimulation equivalence. We also have L′F ⊆ L

′
R, L

′
F ⊆ L

′
FT , L

′
R ⊆ L

′
RT , L

′
FT ⊆ L

′
RT , and

L′RT ⊆ L
′
RS , which can be interpreted in a similar way. Let us now focus our attention on

the third rule of the definition of L′RS : the unrestricted use of conjunction corresponds to the
branching nature of the semantics. Moreover, the two first rules allow to fix the set of offers
of a process as I-simulations impose. By contrast, the linear semantics only allow the use of
conjunction to join those simple formulas that fix the set of offers along a computation (in
the case of the readies-based semantics), or their over-approximations (obtained by means
of the negated formulas ¬a⊤, in the case of the failures-based semantics). Finally, notice
how these simple formulas can only be checked at the corresponding final state, for the two
simpler coarser semantics.

Now, for Z ∈ {RS,RT, FT,R, F}, each of the logics L′Z is a superset of the corre-
sponding logic LZ defined in Table 3. To be precise, for FT and F we need to remove the
syntactic sugar used by van Glabbeek as stated below.

Remark 6.4. We have used in Section 4.2Xc to denote the complementary of a set, because
previously in Definition 4.20 we used the classic over line notation to refer to closures of sets
T ⊆ LGON . However, since we will not need those closure operators anymore we prefer to
used the classic notation referring the complement of a set X by X.

Proposition 6.5.

(1) LRS L′RS.
(2) LRT (L′RT .
(3) L′FT ⊇ desugared(LFT), where the desugaring function removes the syntactic sugar used

in LFT .
(4) LR L′R.
(5) L′F ⊇ desugared(LF), where the desugaring function removes the syntactic sugar used

in LF .

Proof. Recall the definition of LZ in Table 3.

(1) To prove that LRS ⊆ L
′
RS , it is sufficient to show that each formula ϕX =

∧
a∈X a⊤ ∧∧

b/∈X ¬b⊤ corresponding to X ⊆ Act belongs to L′RS . Both a⊤ and ¬b⊤ are in L′RS
and the combination of these formulas with the operator ∧ is also in the set L′RS . For
the inclusion to be proper, it is sufficient to notice that the formula ¬b⊤ belongs to L′RS
but not to the set LRS .

(2) To prove that LRT ⊆ L
′
RT it is sufficient to show that for every X ⊆ Act and any

ϕ ∈ LRT , the formula (
∧

a∈X a⊤ ∧
∧

b/∈X ¬b⊤) ∧ ϕ belongs to L′RT . Note that b /∈ X

is equivalent to b ∈ X, so taking X1 = X and X2 = X we have that the considered
formula belongs to L′RT . To prove that LRT ⊂ L

′
RT , it is sufficient to note that (¬b⊤)∧ϕ

belongs to L′RT , by taking X1 = ∅ and X2 = {b}, but it does not belong to LRS .
(3) In this case the result is trivial, since the definitions of LFT and L′FT are almost the

same, once the syntactic sugar is removed. The only difference is that ⊥∈ L′FT , which
obviously does not affect the inclusion.

(4) To prove that LR ⊆ L
′
R, it is sufficient to show that for every X ⊆ Act the formula∧

a∈X a⊤ ∧
∧

b/∈X ¬b⊤ belongs to L′R. Note that the condition b /∈ X is equivalent to

b ∈ X, so taking X1 = X and X2 = X we have that the considered formula belongs to
L′R. To check that LR L′R, it is sufficient to note that the formula ¬b⊤ belongs to
L′R by taking X1 = ∅ and X2 = {b}, while it does not belong to LR.

46D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

(5) Analogous to 3.

As stated earlier, in order to obtain more natural characterizations, our logics typically
contain large sets of formulas. This is why in most cases our logics contain those proposed
by van Glabbeek. In order to prove the equivalence between ours and his, we have to show
that our additional formulas are in fact redundant and could be safely removed.

Proposition 6.6. (1) LRS ∼ L
′
RS; (2) LRT ∼ L

′
RT ; (3) LFT ∼ L

′
FT ; (4) LR ∼ L

′
R; and

(5) LF ∼ L
′
F .

Proof.

(1) Any conjunction and negation of formulas in LI can be obtained as the disjunction of
the formulas X describing all the “compatible” offers. These are those including the
positive and negative information in the corresponding conjunction, i.e., a⊤ ∼

∨
a∈X X;

¬a⊤ ∼
∨

a/∈X X. Then, by applying Proposition 6.2, we obtain L′RS ∼ LRS .
(2) We have shown that the formulas in LRT are particular cases of the formulas in L′RT :

those that completely define the offers at the states along a computation (when we
apply the second clause in the definition of L′RT with X2 = X1). In contrast, our more
general formulas (

∧
a⊤∈X1

a⊤∧
∧

b⊤∈X2
¬b⊤)∧ϕ, where ϕ ∈ L′RT , could provide us with

some partial information, combining both positive information a⊤ ∈ X1 and negative
information b⊤ ∈ X2, which tells us that we are in an arbitrary state X satisfying
X1 ⊆ X ⊆ X2. But we can replace these formulas by the disjunction of all the formulas
describing any of these possible offers X. By repeating this procedure at each level
of the formula, we finally obtain a disjunction of formulas in LRT . To conclude, it is
enough to apply Proposition 6.2.

(3) We know ⊥= ¬⊤ =
∨

i∈∅ ϕi, and applying Proposition 6.2 we get the equivalence.
(4) Note that van Glabbeek allowed in LR only “normal form” formulas from L′R, which

can give us information about the offers at the final state in a computation (when we
apply the second clause in the definition of L′R) or simply define these computations
by means of the prefix operator (when we apply the third clause in the definition of
L′R). However, our more general formulas (

∧
a⊤∈X1

a⊤∧
∧

b⊤∈X2
¬b⊤) can also provide

us with some partial information about the final state, which could be both positive
a⊤ ∈ X1 and negative b⊤ ∈ X2. In the (allowed) case X1

⋂
X2 6= ∅ we have that

the formula is unsatisfiable. Otherwise, we are offering the actions a corresponding to
formulas a⊤ in any X ⊆ LI that satisfies X1 ⊆ X and X ⊆ X2, and we can replace
again the corresponding formula by a disjunction of formulas in LR.

(5) Analogous to 3.

In the following, when we consider a logic LZ and the index Z refers to some concrete
semantics, as is the case with RS, RT , FT , R, and F above, by abuse of notation we will
simply write ⊑′

Z instead of ⊑L′
Z
for the preorder induced by the logic L′Z .

Theorem 6.7.

(1) The logical semantics ⊑′
RS induced by the logic L′RS is equivalent to the observational

branching semantics defined by ≤b
I , generated by the set of branching general observa-

tions BGOI .
(2) For Z ∈ {F,FT,R,RT}, the logical semantics ⊑′

Z induced by the logic L′Z is equivalent

to the observational linear semantics ≤
l(Z)
I in Definitions 4.14 and 4.19.

UNIFYING THE LTBT SPECTRUM 47

Proof. It is a consequence of Proposition 6.6 and the results by van Glabbeek collected in
Table 3, Theorem 4.9, and Proposition 4.18.

(1) We have already checked that our formulas are equivalent to van Glabbeek’s: L′RS ∼
LRS . It is easy to show that once we have eliminated the unsatisfiable formulas in L′RS
(those that simultaneously make two different offers, or perform an action that was not
included in the corresponding offer) the remaining formulas in L′RS admit a normal
form in the language N (LRS), which we define as follows:
• if X ⊆ Act, {ai | i ∈ I} ⊆ X, and ϕi ∈ N (LRS), then (

∧
b∈X b⊤ ∧

∧
b/∈X ¬b⊤) ∧∧

i∈I aiϕi ∈ N (LRS);
• if {ai | i ∈ I} ⊆ Act and ϕi ∈ N (LRS) then

∧
i∈I aiϕi ∈ N (LRS).

Within this set, consider the subset of formulas CN (LRS) which can be generated
using the first clause in the above definition. We can establish an isomorphism between
CN (LRS) and the set of possible branching general observations BGOI . Moreover, it is
easy to prove that if for every formula ϕ ∈ CN (LRS) we define bgoϕ as the corresponding
observation, then ϕ |= p iff bgoϕ ∈ BGOI(p), from which it immediately follows that
CN (LRS) characterizes the ready simulation semantics defined via BGOI .

Now, to conclude the proof it is sufficient to show that N (LRS) and CN (LRS) are
equivalent. Note that whenever we use the second clause in the definition of N (LRS),
we are ignoring the possibility of specifying the offer X at the state we are. As a
consequence, the offer could be any satisfying {ai | i ∈ I} ⊆ X, for the corresponding
set {ai | i ∈ I}. Then we can complete the associated formula

∧
i∈I aiϕi by adding the

disjunction
∨

{ai/i∈I}⊆X(
∧

b∈X b⊤ ∧
∧

b/∈X ¬b⊤). Floating all the disjunctions away we

obtain a disjunction of formulas in N (LRS), which ends the proof.
(2) • If Z = RT , we know that L′RT ∼ LRT . It is easy to show that eliminating all the

unsatisfiable formulas (those that simultaneously offer two different sets of actions,
or perform an action a that is not included in the corresponding offer X) the rest of
the formulas in L′RT admit a normal form in the language N (LRT), which we define
as follows:
− if X ⊆ Act then (

∧
b∈X b⊤ ∧

∧
b/∈X ¬b⊤) ∈ N (LRT);

− if X ⊆ Act, a ∈ X, and ϕ ∈ N (LRT) then (
∧

b∈X b⊤∧
∧

b/∈X ¬b⊤)∧aϕ ∈ N (LRT);
− ⊤ ∈ N (LRT);
− if a ∈ Act and ϕ ∈ N (LRT) then aϕ ∈ N (LRT).
As we did for the case of ready simulation, we could define the corresponding lan-
guage of complete formulas CN (LRT). The formulas in L′RT that we obtained in the
proof of Proposition 6.6, for the case of RT , are indeed in CN (LRT) because any
subformula gives us some partial information about the offers at the corresponding
state, which in the worst case could be empty. Therefore, when we translate this in-
formation into the language L′RT we obtain a disjunction between complete formulas
in CN (LRT). We can easily establish the isomorphism between CN (LRT) and the
domain LGOI , and then prove that for every formula ϕ ∈ CN (LRT), if we define
lgoϕ as the corresponding observation, we have ϕ |= p iff lgoϕ ∈ LGOI(p). From
here it follows that CN (LRT) characterizes the ready simulation semantics defined
via LGOI . To conclude the proof we need to show that N (LRT) and CN (LRT) are
equivalent, which is analogous to N (LRS) and CN (LRS) above.
• Z = FT . (⇒) Let p and q be such that p ⊑′

FT q: we will show that p ≤l⊇
I q. Given an

observation X0a1X1 . . . anXn ∈ LGOI(p), we have a failure trace X0a1X1 . . . anXn

48D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

for the process p. Now, we consider the formulas ϕn =
∧

a∈X ¬a⊤, ϕi =
∧

a∈Xi
¬a⊤∧

ai+1ϕi+1 with i ∈ 0..n− 1, and we have that p |= ϕ0. Therefore q |= ϕ0, which means
that X0a1X1 . . . anXn is a failure trace of q. Then, there is some Y0a1Y2 . . . anYn ∈
LGOI(p) with Yi

⋂
Xi = ∅ for all i = 0..n or, equivalently, Xi ⊇ Yi for all i = 0..n.

As a result, LGOI(p) ≤
l⊇
I LGOI(q), which means p ≤l⊇

I q.
(⇐) Let us suppose that for all X0a1X1 . . . anXn ∈ LGOI(p) there exists Y0a1Y1 . . .
anYn ∈ LGOI(q) such that Xi ⊇ Yi for all i = 0..n; we want to show that if p |= ϕ
then q |= ϕ, for all ϕ ∈ L′FT . If p |= ϕ, we can decompose ϕ by means of a sequence of
formulas, taking ϕ = ϕn, ϕi =

∧
a∈Xi

2
¬a⊤∧ aiϕi−1 for i ∈ 1..n and ϕ0 =

∧
a∈X0

2
¬a⊤

. Therefore, XnanXn−1 . . . a1X0 is a failure trace for the process p, so there exists

ZnanZn−1 . . . a1Z0 ∈ LGOI(p) with Zi
⋂

Xi = ∅, and using that p ≤l⊇
I q, there exists

some YnanYn−1 . . . a1Y0 ∈ LGOI(q) with Yi ⊆ Zi, so that Yi
⋂

Xi = ∅ and then we
get q |= ϕn.
• If Z = R, using the result in the proof of Proposition 6.6 for the case of R it is enough
to show the result for the set of “normal form” formulas N (LR) defined by:
− if X ⊆ Act then (

∧
b∈X b⊤ ∧

∧
b/∈X ¬b⊤) ∈ N (LR);

− ⊤ ∈ N (LR);
− a ∈ Act and ϕ ∈ N (LR) then ϕ ∈ N (LR).
(⇒) Let p and q be such that p ⊑′

R q: we will show p ≤lf
I q. Given an observation

X0a1X1 . . . anXn ∈ LGOI(p), it corresponds to the readiness information a1 . . . anXn

of p. Now, we consider the formulas ϕn =
∧

a∈X a⊤∧
∧

a/∈X ¬a⊤; ϕi−1 = aiϕi with i ∈
1 . . . n−1, and we have that p |= ϕ0. Therefore q |= ϕ0, and a1 . . . anXn is a readiness
information of q and, as a consequence, there is an observation Y0a1Y2 . . . anYn ∈

LGOI(q) with Yn = Xn, proving p ≤lf
I q.

(⇐) Let us suppose that for all X0a1X1 . . . anXn ∈ LGOI(p) there exists some
Y0a1Y1 . . . anYn ∈ LGOI(q) such that Xn = Yn. We want to show that if p |= ϕ then
q |= ϕ for all ϕ ∈ CN (LR). If p |= ϕ, we can decompose ϕ taking ϕ = ϕn, ϕi = aiϕi−1,
for all i ∈ 1..n, and ϕ0 =

∧
a∈X0

a⊤∧
∧

a/∈X0
¬a⊤. Then we have that anan−1 . . . a1X0

is a readiness information of p, so there exists some ZnanZn−1 . . . a1X0 ∈ LGOI(p),
and some YnanYn−1 . . . a1Y0 ∈ LGOI(q) with Y0 = X0, from which we conclude that
q |= ϕn.

• Z = F . (⇒) Let p and q be such that p ⊑′
F q: we will show p ≤lf⊇

I q. Given an

observation X0a1X1 . . . anXn ∈ LGOI(p), it generates a (maximal) failure a1 . . . anXn

of the process p. Now, we consider the formulas ϕn =
∧

a∈X ¬a⊤; ϕi+1 = ai+1ϕi with

i ∈ 0..n − 1, and we have that p |= ϕ0. Therefore, q |= ϕ0, so a1 . . . anXn is a failure
information of q, and there is some Y0a1Y2 . . . anYn ∈ LGOI(q) with Yn

⋂
Xn = ∅, or

equivalently Xn ⊇ Yn, proving that p ≤lf⊇
I q.

(⇐) Let us suppose that for all X0a1X1 . . . anXn ∈ LGOI(p) there exists some
Y0a1Y1 . . . anYn ∈ LGOI(q) such that Xn ⊇ Yn. We want to show that if p |= ϕ then
q |= ϕ for all ϕ ∈ L′F . If p |= ϕ, we can decompose ϕ taking ϕ = ϕn, ϕi = aiϕi−1, with
i ∈ 1..n, and ϕ0 =

∧
a∈X0

¬a⊤. From p |= ϕ we infer that anan−1 . . . a1X0 is a fail-
ure information of the process p, so there exists ZnanZn−1 . . . a1Z0 ∈ LGOI(p) with
Z0

⋂
X0 = ∅, and then there is some YnanYn−1 . . . a1Y0 ∈ LGOI(q) with Yn ⊆ Zn, so

that Yn
⋂
Xn = ∅, obtaining q |= ϕn.

UNIFYING THE LTBT SPECTRUM 49

p1 p2 p5 p6

·
a

��✂✂
✂✂
✂✂
✂✂

a
��

a

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼

·
b
��

· ·
b

��✂✂
✂✂
✂✂
✂✂

c
��

e

��
❁❁

❁❁
❁❁

❁❁

· ·
d

��

· ·

·

·
a

xxqq
qq
qq
qq
qq
qq
qq

a
��

a

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼

·
b
��

·
b

��✂✂
✂✂
✂✂
✂✂

c
��

·
b

��✂✂
✂✂
✂✂
✂✂

c
��

e

��
❁❁

❁❁
❁❁

❁❁

· ·
d

��

· ·
d

��

· ·

· ·

·
a

��✂✂
✂✂
✂✂
✂✂

a
��

a

��
❁❁

❁❁
❁❁

❁❁

·
b
��

·
b
��

·
b
��

·
c
��

·
c

��✂✂
✂✂
✂✂
✂✂ d

��
❁❁

❁❁
❁❁

❁❁
·
d
��

· ·

·
a

��✂✂
✂✂
✂✂
✂✂ a

��
❁❁

❁❁
❁❁

❁❁

·
b
��

·
b
��

·
c
��

·
d
��

· ·

p3 p4 p7 p8

·
a

��✂✂
✂✂
✂✂
✂✂

a
��

a

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼

·
b
��

·
b
��

·
b

��✂✂
✂✂
✂✂
✂✂

c
��

e

��
❁❁

❁❁
❁❁

❁❁

· ·
d

��

·
d

��

· ·

· ·

·
a

yyrr
rr
rr
rr
rr
rr
r

a

��
❁❁

❁❁
❁❁

❁❁

·
b
��

·
b

��✂✂
✂✂
✂✂
✂✂

c
��

e

��
❁❁

❁❁
❁❁

❁❁

· ·
d

��

· ·

·

·
a

��

·
b

��✂✂
✂✂
✂✂
✂✂ b

��
❁❁

❁❁
❁❁

❁❁

·
c
��

·
d
��

· ·

·
a

��✂✂
✂✂
✂✂
✂✂ a

��
❁❁

❁❁
❁❁

❁❁

·
b

��✂✂
✂✂
✂✂
✂✂ b

��
❁❁

❁❁
❁❁

❁❁
·
b
��

·
c
��

·
d
��

·
c
��

· · ·

Figure 13: A simple example to show the strength of the different logics

Example 6.8. Figure 13 shows a collection of examples to illustrate the differences between
the semantics in the RS layer of the spectrum. All the following equivalences can be
checked by taking any arbitrary formula from the logic defining each of the semantics. For
readability, we omit the last ⊤ in all subformulas. Besides, ∼X (resp. ≁X), where X is a
set of indexes, represents any ∼Z (resp. ≁Z), with Z ∈ X.

• p1 6⊑
′
F p2 and p1 6⊑

′
{R, FT, RT, RS} p2 because p1 |= a(¬b ∧ ¬c), but p2 does not satisfy it.

• p2 ∼F p3, but p2 6⊑
′
{R, FT} p3 and thus p2 6⊑

′
{RT, RS} p3, since p2 satisfies a(¬e ∧ c) but p3

does not.
• p3 ∼{F, R} p4, but p3 6⊑

′
FT p4 and thus p3 6⊑

′
{RT, RS} p4, because p3 satisfies a(¬c∧b(¬e∧d))

but p4 does not.
• p5 ∼{F, FT} p6, but p5 6⊑′

R p6 and thus p5 6⊑
′
{RT, RS} p6, since p5 satisfies ab(c ∧ d) but p6

does not.
• p6 ∼{F, R, RT, FT} p7 but p7 6⊑

′
RS p6, because p7 satisfies a(bc ∧ bd) but p6 does not.

• p7 ∼{F, R, RT, FT, RS} p8.

6.2. Our new unified logical characterizations of the semantics. Inspired by the
semantics studied in Section 6.1, next we define the general format for the logics character-
izing each of the semantics in the spectrum. We start by enlarging the spectrum yet a bit
more.

Definition 6.9.

(1) Universal semantics. We define the set L′U of universal formulas that characterize the
trivial semantics that identifies all the processes by L′U = {⊤}.

(2) Complete semantics. We define the set L′C of complete formulas characterizing the
semantics that only distinguishes the terminated processes from the non-terminated
ones by L′C = {⊤,¬0}.

50D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

(3) Initial offer semantics. We define the set L′I of initial offer formulas characterizing the
semantics that only observers the set of initial actions of a process by L′I = {⊤,¬0} ∪
{a⊤ | a ∈ Act}.

In the definition above the subformula ¬0 is just syntactic sugar for the formula
¬(

∧
a∈Act ¬a⊤). Therefore, once again all these new logics are sublogics of LHM and,

as a result, we do not need to define their semantics.
Note that L′I is a bit larger than the logic LI from Section 6.1. Once again, this is

so in order to get a more uniform presentation of our logics: ¬0 is indeed redundant. By
including it we immediately obtain that the complete semantics is coarser than the initial
offer semantics, because L′C ⊆ L

′
I . Based on this result we will also obtain that the complete

simulation is coarser than the ready simulation. Certainly, ¬0 is redundant in L′I (but not
in L′C !), because by means of it we can only distinguish a process that cannot execute any
action from any other that can execute someone. But using the corresponding a⊤ formula
we can also get that.

6.2.1. The simulation semantics. As repeatedly noted, the family of simulation semantics
constitute the spine of the new spectrum. All of them are defined in a homogeneous way
thanks to the notion of constrained simulation from [24]. Next we present their logical
characterization.

Definition 6.10. Given a set of formulas L′N defining a semantics N , we define the set of
formulas L′NS that characterizes the N -constrained simulation semantics by:

• If σ ∈ L′N then σ ∈ L′NS;

• if σ ∈ L′N then ¬σ ∈ L′NS;
• if ϕi ∈ L

′
NS for all i ∈ I then

∧
i∈I ϕi ∈ L

′
NS;

• if ϕ ∈ L′NS and a ∈ Act then aϕ ∈ L′NS.

Taking N ∈ {U,C, I} we obtain L′US , L
′
CS and L′IS, that we rewrite as L′S and L′RS

in the first and last cases to emphasize the classic notation for simulation semantics. From
L′S we obtain L′SS, that we will denote as L′2S . To complete the collection of simulation
semantics in the spectrum we need L′TS , that will be based on L′T , to be defined in the next
section.

The definition above differs from the particular case of ready simulation in Definition 6.3
in the two first rules, by means of which we impose that the process will traverse states which
are in the corresponding N -equivalence class all along the tree of computations checked by
a formula in L′NS. Note that the combination of positive and negated formulas allows us
to shape each of these classes. Next we state the equivalence between our logics for the
simulation semantics and those by van Glabbeek’s recalled in Table 3.

Proposition 6.11. (1) L′S ∼ LS; (2) L
′
CS ∼ LCS; and (3) L′2S ∼ L2S.

Proof.

(1) The clauses defining L′S and LS produce the same set of formulas. The first two clauses
in L′S only add the two trivial formulas ⊤ and ¬⊤ because in L′U = {⊤}.

(2) Again, the sets of formulas produced by L′CS and LCS are the same because the two first
clauses of L′

CS can only generate ⊤, ¬⊤, 0 and ¬0 from L′C = {⊤,¬⊤}. 0 is needed
to reflect the second clause in the definition of LCS , while ¬0 ≡

∨
a∈Act a⊤ so that any

formula containing ¬0 can be rewritten into a disjunction of formulas in LCS.

UNIFYING THE LTBT SPECTRUM 51

(3) Once again, the sets generated by L′2S and L2S are the same. The clause “if σ ∈ L′S then
σ ∈ L′2S” in L′2S does not generate any new formulas because LS ⊆ L2S (the formulas in
LS are exactly those that can be created using only the last two clauses in the definition
of L2S).

Remark 6.12. We can use both positive formulas in L′C and their negations for defining
L′CS due to the fact that C-constrained simulation can be built from the equivalence relation
defined by C as constraint. However, we could also use ⊑C as a constraint and then remove
the clause “if σ ∈ L′C then σ ∈ L′SC

”, which generates ¬0 ∈ LSC
. The other clause, which

generates 0 ∈ L′SC
, is crucial and cannot be removed from the definition. These two facts

also concur in the definition of the other simulation semantics in the extended spectrum,
for which we also present a logical characterization including the two clauses above.

6.2.2. Logical characterization of the linear semantics. We start by defining the closure
operators by means of which we express the extent to which conjunction and negation can
be used in the logical characterizations of each of the linear semantics.

Definition 6.13. Given a logical set L′N with N ∈ {U,C, I, T, S}, we define:

(1) Its symmetric closure L≡N by: if σ ∈ L′N then σ ∈ L≡N and ¬σ ∈ L≡N ; if σi ∈ L
≡
N for all

i ∈ I then
∧

i∈I σi ∈ L
≡
N .

(2) Its negative closure L¬N by: if σ ∈ L′N then ¬σ ∈ L¬N ; if σi ∈ L
¬
N for all i ∈ I then∧

i∈I σi ∈ L
¬
N .

(3) Its positive closure L
√
N by: if σ ∈ L′N then σ ∈ L

√
N ; if σi ∈ L

√
N for all i ∈ I then∧

i∈I σi ∈ L
√
N .

Remark 6.14. Obviously these closures make sense for any given logic L, but we prefer to
restrict our attention to L′N since it will be enough for our goal and gives rise to a simpler
notation.

Whenever we have a bag of “good” properties (such as L′N above), to assert by means
of a single formula which is the subset of properties that a certain element satisfies it is not
enough to assert that it satisfies each of them: we also need to assert that it does not satisfy
any of the rest. This is why we need formulas in the symmetric closure. By contrast, if the
only available formulas belong to the negative (resp. positive) closure, we can only assert
that the element has at most (resp. at least) the enumerated properties. Next we present
the unified logics for all the linear semantics in the spectrum.

Definition 6.15. Inspired by the orders ≤l
N , ≤l⊇

N , ≤lf
N , and ≤lf⊇

N , we define the set of
formulas L′≤l

N

, L′≤l⊇
N

, L′≤lf
N

, and L′≤lf⊇
N

, respectively, by means of the rules:

(1) • ⊤ ∈ L′≤l
N

;

• if ϕ ∈ L′≤l
N

and σ ∈ L≡N then σ ∧ ϕ ∈ L′≤l
N

;

• if ϕ ∈ L′≤l
N

and a ∈ Act then aϕ ∈ L′≤l
N

.

(2) • ⊤ ∈ L′≤l⊇
N

;

• if ϕ ∈ L′≤l⊇
N

and σ ∈ L¬N then σ ∧ ϕ ∈ L′≤l⊇
N

;

52D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

• if ϕ ∈ L′≤l⊇
N

and a ∈ Act then aϕ ∈ L′≤l⊇
N

.

(3) • ⊤ ∈ L′≤lf
N

;

• if σ ∈ L≡N then σ ∈ L′≤lf
N

;

• if ϕ ∈ L′≤lf
N

and a ∈ Act then aϕ ∈ L′≤lf
N

.

(4) • ⊤ ∈ L′≤lf⊇
N

;

• if σ ∈ L¬N then σ ∈ L′≤lf⊇
N

;

• if ϕ ∈ L′≤lf⊇
N

and a ∈ Act then aϕ ∈ L′≤lf⊇
N

.

Note that for the coarsest semantics (i.e. those corresponding to plain refusals and plain
readiness when N = I) we only check for N at the “end” of the formula because there are
no conjunctions in the corresponding languages L′≤lf

N

and L′≤lf⊇
N

, except for those stemming

from the corresponding closures L≡N and L¬N . The other two logics do introduce additional
conjunctions that allow to observe N along the computations.

We have used the negative and symmetric closures for the “failures-based” and“readies-
based” semantics, and we can use the positive closure to define two new semantics that have
not been considered earlier in this paper, nor elsewhere as far as we know. For that we need
to observe partial offers along a computation, or just at its end, where X is a partial offer
of p if X ⊆ I(p). It is clear the duality with respect to the failures semantics, where F is
a failure of p if I(p) ⊆ F . We can introduce these two new semantics at each layer of the
spectrum through the corresponding partial offers for each N ∈ {U,C, I, T, S}.

Definition 6.16.

(1) The semantics of partial offer traces for the constraint N is that defined by the logic
L′≤l⊆

N

with:

• ⊤ ∈ L′≤l⊆
N

;

• if ϕ ∈ L′≤l⊆
N

and σ ∈ L
√
N then σ ∧ ϕ ∈ L′≤l⊆

N

;

• if ϕ ∈ L′≤l⊆
N

and a ∈ Act then aϕ ∈ L′≤l⊆
N

.

(2) The semantics of partial offers for the constraint N is that defined by the logic L′≤lf⊆
N

with:
• ⊤ ∈ L′≤lf⊆

N

;

• if σ ∈ L
√
N then σ ∈ L′≤lf⊆

N

;

• if ϕ ∈ L′≤lf⊆
N

and a ∈ Act then aϕ ∈ L′≤lf⊆
N

.

Duality between failures and partial offers causes the picture of the complete layer of linear
semantics for each N to become two diamonds that share the side corresponding to the
readies-based semantics. Now, recalling Theorem 6.7.

Proposition 6.17.

(1) L′F and L′≤lf⊆
I

are incomparable: p ≤lf⊇
I q does not imply p ≤lf⊆

I q and p ≤lf⊆
I q does

not imply p ≤lf⊇
I q.

UNIFYING THE LTBT SPECTRUM 53

(2) L′FT and L′≤l⊆
I

are incomparable: p ≤l⊇
I q does not imply p ≤l⊆

I q and p ≤l⊆
I q does not

imply p ≤l⊇
I q.

Proof. In fact, we have a stronger result by combining these two statements: if we consider

p = ab + ac, q = a(b + c), and r = p + q, then p =l⊇
I r but r �lf⊆

I p, and q =l⊆
I r but

r �lf⊇
I q.

Similar counterexamples exist for N ∈ {T, S}. However, for N ∈ {U,C}, which produce
the trace and the completed trace semantics, respectively, it is easy to prove that the six
logics of the layer are equivalent.

Proposition 6.18.

(1) L′≤lf
U

= L′≤l
U

= L′≤l⊇
U

= L′≤l⊆
U

= L′≤lf⊇
U

= L′≤lf⊆
U

= LT

(2) L′≤lf⊇
C

= L′≤lf⊆
C

= L′≤l⊇
C

= L′≤l⊆
C

= L′≤lf
C

= L′≤l
C

= LCT .

Proof.

(1) Trivial, since the sets of clauses defining L′≤lf
U

and LT are almost the same. Note that

the clause “if σ ∈ L≡U then σ ∈ L′≤lf
U

” does not give rise to new formulas because

L≡U = {⊤}.
(2) Note that the sets of clauses defining L′≤lf⊇

C

and LCT are the same but for the clause

“if σ ∈ L¬C then σ ∈ L′≤lf⊇
C

”. On the one hand, this causes ¬⊤ ∈ L′≤lf⊇
C

(which adds

nothing) because⊤ ∈ L′C and thus ¬⊤ ∈ L¬C . On the other hand, we also have 0 ∈ L′≤lf⊇
C

because ¬0 ∈ L′C and then ¬¬0 ∈ L¬C .

Corollary 6.19. L′≤lf
U

∼ LT and L′≤lf⊇
C

∼ LCT .

An interesting result illustrating the generality of our characterizations concerns one of
the finest semantics in the classic spectrum: possible futures. Possible futures is located in
Figure 1 below 2-nested simulation because the more accurate trace simulation semantics
was not yet included in the spectrum; this is corrected in the spectrum in Figure 11. Indeed,
for N = T we have the following result.

Proposition 6.20. L′≤lf
T

= LPF .

Proof. Trivial, since the sets of clauses defining L′≤lf
T

and LPF are almost the same: our

definition includes the clause “⊤ ∈ L′≤lf
T

”, which does not appear explicitly in that of LPF

because it corresponds to the conjunction of an empty set of formulas.

Corollary 6.21. L′≤lf
T

∼ LPF .

6.2.3. Logical characterization of the deterministic branching semantics. Now we consider
the deterministic branching semantics. In the classic spectrum the only such semantics is
possible worlds but, as we pointed out before, there is one such semantics at each layer of
the extended spectrum.

54D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

❤❤❤❤❤❤❤❤❤❤❤❤❤❤Formulas
Constraints (N)

U C I T S B

⊤ ∈ L′
N • • • • ν ν

¬⊤ = ⊥ ∈ L′
N ν ν ν ν ν ν

¬0 ∈ L′
N • • ν ν ν

a ∈ Act ⇒ a⊤ ∈ L′
N • ν ν ν

ϕ ∈ L′
N , a ∈ Act ⇒

• • •
aϕ ∈ L′

N

ϕi ∈ L′
N ∀i ∈ I ⇒

• •∧
i∈I ϕi ∈ L′

N

ϕ ∈ L′
N ⇒

•
¬ϕ ∈ L′

N

Table 4: Logical characterizations of the semantics used as constraints.

In order to capture determinism we need to consider conjunctive formulas to express
the desired branching, but only when it corresponds to a choice between different actions.
This leads us to the following scheme:

if X ⊆ Act and ϕa ∈ LDN
for all a ∈ X, then

∧

a∈X
aϕa ∈ LDN

.

Definition 6.22. For each N ∈ {U,C, I, T, S}, we define the formulas of L′DN
by:

• ⊤ ∈ L′DN
;

• if ϕ ∈ L′DN
and σ ∈ L≡N then σ ∧ ϕ ∈ L′DN

;

• if X ⊆ Act and ϕa ∈ L
′
DN

for all a ∈ X then
∧

a∈X aϕa ∈ L
′
DN

.

For N = I we obtain the unified logical characterization of the possible worlds seman-
tics.

Proposition 6.23. L′DI
⊇ LPW .

Proof. Analogous to the case of ready simulation semantics.

Proposition 6.24. L′DI
≁ LPW .

Proof. This is a consequence of the fact that the original logical characterization of the
possible worlds semantics, LPW , was wrong. For instance, taking p = abc+ a(bc+ d) + ab
and q = a(bc + d) + ab then p 6≡PW q but p ∼LPW

q, since LPW cannot “observe” the
intermediate offer that makes the possible world abc different from those of q. By contrast,
the formula ϕ = a(¬d ∧ bc) ∈ L′DI

is enough to distinguish p and q, since p |= ϕ and

q 6|= ϕ.

We postpone to Section 7 the proof of the equivalence between our observational and
logical characterizations of the possible worlds semantics. As a consequence of this cor-
respondence, we have that a logical characterization only works in the infinite case if we
restrict ourselves to image-finite processes.

In Tables 4 and 5 we present our results in a three-dimensional way. Table 5 shows the
rules defining the logics characterizing each of the semantics at each layer of the spectrum.
On top of it also appears, as example, the classic notation for the corresponding semantics
represented when N = I. Table 4 contains the logics that characterize the constraint
governing each of these layers. There are two semantics that are included in both tables, in
order to emphasize their double role as “main” and “auxiliary” semantics. However they
are disguised under different names: this is the case of T = ≤l

U (in fact, it is also equal to
the other three linear U -semantics) and S = US.

UNIFYING THE LTBT SPECTRUM 55

❤❤❤❤❤❤❤❤❤❤❤❤❤❤Formulas
Semantics (YN)

≤lf⊇
N

≤lf

N ≤l⊇
N

≤l

N DN NS N ∈ {U,C, I, T, S}

F R FT RT PW RS when N = I

⊤ ∈ L′
YN

• • • • • ν

ϕ ∈ L′
YN

, a ∈ Act ⇒
• • • • ν •

aϕ ∈ L′
YN

ϕ ∈ L¬
N ⇒

• ν ν ν ν ν
ϕ ∈ L′

YN

ϕ ∈ L≡
N ⇒

• ν ν ν
ϕ ∈ L′

YN

ϕ ∈ L′
YN

, σ ∈ L¬
N ⇒

• ν ν ν
σ ∧ ϕ ∈ L′

YN

ϕ ∈ L′
YN

, σ ∈ L≡
N ⇒

• • ν
σ ∧ ϕ ∈ L′

YN

X ⊆ Act, ϕa ∈ L′
YN

∀a ∈ X ⇒
• ν∧

a∈X aϕa ∈ L′
YN

ϕi ∈ L′
YN

∀i ∈ I ⇒
•∧

i∈I
ϕi ∈ L′

YN

ϕ ∈ LN ⇒
•

ϕ ∈ L′
YN

ϕ ∈ LN ⇒
•

¬ϕ ∈ L′
YN

Table 5: Our new logical characterizations for the semantics at each level of the spectrum.

7. Relating the unified logics and the unified observational model

In this section we will relate our unified logical characterizations and the unified observa-
tional semantics. As indicated in Section 2, we have to restrict ourselves to image-finite
processes; as a byproduct, the finite parts of each of the corresponding languages, that are

obtained by intersection with LfHM , provide us with a pure finite logical characterization
of the semantics. However, it is convenient in the first part of this Section to consider still
the full (infinitary) logic characterizing each of the semantics.

Definition 7.1 (Normal formulas N (L)).

(1) Given a set of formulas L whose outermost operator is not conjunction, the set N (L)
of induced normal formulas is defined by:
• ⊤ ∈ N (L);
• if Γ1,Γ2 ⊆ L, {ai | i ∈ I} ⊆ Act, and ϕi ∈ N (L), then (

∧
σ∈Γ1

σ ∧
∧

σ∈Γ2
¬σ) ∧∧

i∈I aiϕi ∈ N (L).

(2) For each N ∈ {U,C, I, T, S} and each YN ∈ {NS,≤l
N ,≤l⊇

N ,≤lf
N ,≤lf⊇

N ,≤l⊆
N ,≤lf⊆

N ,DN}
in the spectrum, we define the set of normal formulas NYN

(L′′N) ⊆ L′YN
as NYN

(L′′N) =

N (L′′N)
⋂
L′YN

, where L′′N is the set of formulas in L′N whose outermost operator is not
conjunction.

Remark 7.2. The clause in Definition 7.1.1 is more involved than it appears. Initially, we
can apply it with I = ∅ to obtain the first (non-trivial) normal formulas and then recursively
to obtain more complex normal formulas; note that the two first subformulas stem always
from the original set L. By abuse of notation, when some of the elements in our normal
formulas do not appear in the corresponding set L′YN

, we assume that these formulas have

been extended by conjunction with ⊤ using the fact that
∧

σ∈∅ σ is another syntactic form
to express ⊤.

56D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

Also note that infinite conjunction is allowed in the two first subformulas. As a conse-
quence, if we consider the tree-like form of these (possibly infinitary) formulas they could
have infinite depth. However, if we define the normal depth of formulas in N (LN) as that
obtained by counting the recursive nesting in the application of Definition 7.1, then any
normal formula has finite normal depth, and the set they form can be explored by structural
induction.

Theorem 7.3. Each set of normal formulas NYN
(L′′N) associated to the semantics in the

spectrum is equivalent to the full set of formulas L′YN
.

Proof. By structural induction, all the formulas in L′YN
admit a normal formula in the

sense of Definition 7.1, that is obtained by gathering the subformulas and applying Propo-
sition 6.2.

Definition 7.4. The set of complete normal formulas CN (L) (resp., the set of complete
normal formulas associated to each semantics in the spectrum, CNYN

(L′′N)) is the set of
normal formulas (resp., the set of normal formulas associated to each semantics in the
spectrum) for which the rule in Definition 7.1 is applied with Γ2 = Γ1.

Now we prove that infinite conjunction in Definition 7.1 can be approximated by finite
conjunction.

Theorem 7.5. If we restrict ourselves to image-finite processes, for each denumerable set
of formulas L, any complete normal formula ϕ ∈ CN (L) can be approximated by a set of
finite normal formulas {ϕk | k ∈ IN} that only use finite conjunction, that is, p |= ϕ iff
p |= ϕk for all k ∈ IN.

Proof. We define the sequence ϕk by structural induction on the normal depth of ϕ:

• ϕ = (
∧

σ∈Γ1
σ∧

∧
σ∈Γ1

¬σ). We consider a fixed enumeration of the set L = {σn | n ∈ IN},

and define L6n = {σj ∈ L | j 6 n}. Then, for each k ∈ IN:

ϕk =
∧

σ∈Γ1∩L6k

σ ∧
∧

σ∈Γ1∩L6k

¬σ.

We have p |= ϕ ⇔ (p |= σ ∀σ ∈ Γ1 and p 6|= σ ∀σ 6∈ Γ1) and p |= ϕk ∀k ∈ IN ⇔
(p |= σ ∀σ ∈ Γ1 ∩ L

6k and p 6|= σ ∀σ ∈ Γ1 ∩ L
6k) and the result follows from a the

equality

Γ1 = Γ1 ∩ L = Γ1 ∩ (
⋃

k∈IN
L6n).

• ϕ = (
∧

σ∈Γ1
σ ∧

∧
σ∈Γ1

¬σ) ∧
∧

i∈I aiϕi. By structural induction we can assume that the

result is true for any subformula ϕi. Then we define ϕk =
∧

σ∈Γ1∩L6k σ∧
∧

σ∈Γ1∩L6k ¬σ∧∧
i∈I aiϕ

k
i . Now, if we decompose ϕ as ϕI ∧ϕII (taking ϕII =

∧
i∈I aiϕi, and analogously

for the set of approximations) we have that p |= ϕk iff p |= ϕk
I and p |= ϕk

II . If p |= ϕk

then p |= ϕk
I for all k ∈ IN and arguing as in the base case above we conclude that p |= ϕI .

Any image-finite process p can be decomposed as p =
∑

ai∈Act

∑mi

j=1 a
j
ip

j
i , and we have

p |= ϕk
II iff for all i there exists j with ai = aji and pji |= ϕk

i . Then, if p |= ϕk
II for all

k ∈ IN, for each i there exists some j ∈ 1..mi such that pji |= ϕk
i for infinitely many k, but

this means that pji |= ϕk
i for all k ∈ IN and then, by the induction hypothesis, pji |= ϕi

thus getting p |= ϕ.

UNIFYING THE LTBT SPECTRUM 57

l ∈
LN (p)

ln ∈
LN (pn)

l1 ∈
LN (p1)

a1
ak

an

. . .

. . .

. . .

. . .✫✪
✬✩

��✠
❄

❅❅❘

✫✪
✬✩

�✠
❄

❅❘✫✪
✬✩

�✠
❄

❅❘

Figure 14: A branching observation.

Definition 7.6. For each N ∈ {U,C, I, T, S} and each YN ∈ {NS,≤l
N ,≤l⊇

N ,≤lf
N ,≤lf⊇

N ,≤l⊆
N

,≤lf⊆
N , DN} in the spectrum, we define the finite logic for the semantics LfYN

as L′YN
∩LfHM .

Corollary 7.7. For each N ∈ {U,C, I, T, S} and each YN ∈ {NS,≤l
N ,≤l⊇

N ,≤lf
N ,≤lf⊇

N ,≤l⊆
N

,≤lf⊆
N , DN} in the spectrum, if we restrict ourselves to the set of image-finite processes we

have LfYN
∼ L′YN

.

Proof. We only need to apply Theorem 7.5. The only non trivial case is when N = S, where

we have to apply twice the Theorem, using also the fact that CN(L′′S) ∼ CN(LfS), because

L′′S ∼ L
f
S.

Theorem 7.8. For each N ∈ {U,C, I, T, S} and each YN ∈ {NS,≤l
N ,≤l⊇

N ,≤lf
N ,≤lf⊇

N ,≤l⊆
N

,≤lf⊆
N ,DN} in the spectrum there exists a correspondence between the set of complete normal

formulas CNYN
(L′′N) and the corresponding domain of observations ΩGON with Ω ∈ {B,L}.

This correspondence ↔ satisfies that ϕ ↔ θ implies that (p |= ϕ iff θ ∈ ΩGON (p)). More-
over:

(1) The set of complete normal formulas CNNS(L′′N) (resp. CNDN
(L′′N)) and the domain

of branching general observations BGON (resp. dBGON) are isomorphic, that is, ↔
is one to one.

(2) The set of complete normal formulas CN≤l
N
(L′′N), CN≤l⊇

N

(L′′N) and the domain of linear

general observations LGON are isomorphic, that is, ↔ is one to one.
(3) The set of complete normal formulas CN≤lf

N

(L′′N) (resp. CN≤lf⊇
N

(L′′N)) and the quotient

domain LGON/≃lf
N

(resp. LGON/≃lf⊇
N

) are isomorphic, that is, ↔−1 is injective and

ϕ↔ θ iff θ ≃lf⊇
N θϕ, for some adequate θϕ.

Proof.

(1) As can be seen in Figure 14, a branching observation is a labeled tree whose nodes are
local observations and whose arcs are labeled by actions.

The general form of any complete normal formula in CNNS(LN) is (
∧

σ∈Γ σ∧
∧

σ/∈Γ ¬σ)∧∧
i∈I aiϕi, with ϕi ∈ CNNS(LN) for all i ∈ I. Since the language L′N characterizes the

semantics used to get the local observations, we can associate to each complete formula
(
∧

σ∈Γ σ ∧
∧

σ/∈Γ ¬σ) the corresponding local observation l ∈ LN . Then, by structural
induction, we obtain the observation associated to each formula ϕi ∈ CNNS(LN), thus
getting the branching general observation BGON associated to the given formula. It is
easy to see that this correspondence is indeed a bijection.

58D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

The case for CNDN
(LN) is analogous, but now it is not allowed to have repeated

actions in the arcs leaving any node of an observation; this is obviously reflected in the
form of the formulas in the corresponding language.

(2) The case for CN≤l
N
(LN) is similar to the previous one, but now the obtained (degen-

erated) tree is just a single branch corresponding to a lgo in LGON .
For CN≤l⊇

N

(LN) the general form of a complete normal formula is ϕ = (⊤∧
∧

σ/∈Γ ¬σ)∧

aϕ′, with ϕ′ ∈ CN≤l⊇
N

(LN). If we close the set Γ by derivability obtaining Γ′ and then

consider its complement Γ′, we can consider the local observation l that satisfies all the
formulas in Γ′ and none in Γ′. The linear general observation lgo corresponding to ϕ
is then recursively defined as 〈l, {(a, lgo′)}〉 where lgo′ is the linear general observation
corresponding to ϕ′.

To proceed in the opposite direction, we just need to take as Γ the complement of
the set of formulas in L′N satisfied by the local observation l at the root of the given
LGON , and then proceed in a recursive way.

(3) In this case, the general form of a complete normal formula in CN≤lf
N

(LN) is ϕ =

⊤∧a1(. . . (⊤∧an−1(⊤∧an(
∧

σ∈Γ σ∧
∧

σ/∈Γ ¬σ) . . .). Now we establish a correspondence
between the set of local observations LN and the sets Γ ⊆ LN as done in cases (1)
and (2) above, and then define the correspondence ↔ by ignoring the values of all the
intermediate local observations in the considered lgo, keeping only the local observation
at the end.

For CN≤lf⊇
N

(LN) we just need to apply the same procedure above combined with the

ideas along the proof for CN≤l⊇
N

(LN).

Remark 7.9. It came as a surprise to notice that the lgo′s in LGON are in a bijective
relation both with the complete normal formulas in N≤l

N
(LN) and those in N≤l⊇

N

(LN),

so let us consider the case N = I to explain this fact. A cnf in N≤l
I
(LI) specifies the

corresponding local observation I(p) ⊆ P(Act) by means of a formula (
∧

σ∈Γ σ ∧
∧

σ/∈Γ ¬σ),
where the formulas in Γ are just the elements of the corresponding set I(p) while those in Γ
correspond to its complement. When considering the failure trace semantics, the formulas
in N≤l⊇

I

(LI) only contain the part
∧

σ/∈Γ ¬σ corresponding to the complement I(p). Since

in this case the sets of lgo’s could be assumed to be closed with respect to the order

≤l⊇
N in Definition 4.19, soundness is retained after “assuming” that any formula

∧
σ/∈Γ ¬σ

“generates” the observation associated to Γ, even though some of the formulas σ ∈ Γ may
not be satisfied when the corresponding I(p) is smaller. But for the failures and failure
trace semantics we can proceed by closing the set of offers upwards with respect to ⊆ and
no new failure is introduced.

Theorem 7.10. For each N ∈ {U,C, I, T, S} and each YN ∈ {NS,≤l
N ,≤l⊇

N ,≤lf
N ,≤lf⊇

N ,≤l⊆
N

,≤lf⊆
N ,DN} in the spectrum, if we restrict ourselves to image-finite processes, the logical

semantics ⊑f
YN

induced by the logic LfYN
, is equivalent to the corresponding observational

semantics in Definitions 4.2, 4.11 and 4.32. In order to unify our notation, here we will
denote by GON the corresponding semantic domain.

Proof. By Theorem 7.3, L′YN
∼ NYN

(LN), and from Theorem 7.8 we get the isomorphism

between the set CNYN
(LN) and the corresponding set of general observations GON .

UNIFYING THE LTBT SPECTRUM 59

To finish the proof, we just need to show that NYN
(LN) and CNYN

(LN) are equivalent.
Any consistent formula in NYN

(LN) (Γ1
⋂

Γ2 = ∅) provides only some partial information
about the states in a computation, so that the concrete values of these states are charac-
terized by a set Γ with Γ1 ⊆ Γ ⊆ Γ2. Therefore, we can replace Γ1 and Γ2 by Γ and Γ,
respectively, adding the disjunction over all the possible values of Γ, to characterize the
set of processes specified by the formula. Now it is enough to float the disjunction up to
obtain a disjunction of formulas in CNYN

(LN), and applying Proposition 6.2 we get the
equivalence between the two sets of formulas. Finally, we only need to apply Corollary 7.7
to conclude.

Corollary 7.11.

(1) The unified logical semantics in Definition 6.10 is equivalent to the N -simulation se-
mantics.

(2) The unified logical semantics in Definition 6.15.1 is equivalent to the N -ready trace
semantics.

(3) The unified logical semantics in Definition 6.15.2 is equivalent to the N -failure trace
semantics.

(4) The unified logical semantics in Definition 6.15.3 is equivalent to the N -readiness se-
mantics.

(5) The unified logical semantics in Definition 6.15.4 is equivalent to the N -failure seman-
tics.

(6) The unified logical semantics in Definition 6.22 is equivalent to the N -deterministic
branched semantics.

Moreover, if we restrict ourselves to image-finite processes we have also an equivalence with
the corresponding finite logical semantics.

Proof. Since it was proved in Section 4 that any observational semantics characterizes the
corresponding (classical) semantics in the (extended) ltbt spectrum, the desired equivalence
between our (unified) logical characterizations and the classical semantics is an immediate
corollary.

8. On the real diamond structure

This section is a practical proof of the suitability of our unification work. Some recently
proposed semantics that were not in the original ltbt spectrum are nicely included in our
extended spectrum, which shows why and how the old spectrum has to be expanded. Our
unified approach immediately absorbs these new semantics and the results about the dif-
ferent characterizations are easily extended to cover them. We warmly thank Roscoe for
pointing out to us his work on the stable revivals semantics [46, 48], where an endeavor for
an adequate presentation of the notion of responsiveness for a CSP-like language is made.
(Responsiveness had been previously studied by Fournet et al. in [27] for CCS, under the
name of stuck-freeness.)

When faced with the diamond shape of the collection of linear semantics that are
associated to each simulation semantics in the extended spectrum, it would be natural to
expect it to reflect the structure of a lattice. Then, failure semantics would be the greatest
lower bound of the readiness and failure trace semantics, while ready trace semantics would
be the corresponding lowest upper bound. However, both intuitions turn out to be wrong

60D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

and a new semantics finer than failures and another one coarser than ready trace can be
found: together with readiness and failure trace, they do constitute a lattice.

Let us first consider the case of the lowest upper bound. We postulate that the axiom-
atization of the associated semantics is obtained by instantiating our general axiom with
the conjunction of the two conditions MR and MFT :

MR∧FT (x, y, w) ⇐⇒ I(x) ⊇ I(y) and I(w) ⊆ I(y).

We denote with ⊑R∧FT the order axiomatized by the corresponding axiom (NDR∧FT).

Definition 8.1. The readiness and failure trace semantics, or join semantics R ∧ FT , is
that defined by the order ⊑R∧FT generated by the set of axioms {B1–B4, (RS), (NDR∧FT)}.

Proposition 8.2. The ready trace semantics is strictly finer than the readiness and failure
trace semantics.

Proof. ⊑RT ⊆ ⊑R∧FT is an immediate consequence of Proposition 3.2 and the fact that
condition MRT implies both MR and MFT , and hence also MR∧FT . To show that ⊑RT 6⊆
⊑R∧FT , let us take w = 0, y = b, and x = bB′ + c; then we have:

a(bB + bB′ + c)︸ ︷︷ ︸
p

⊑R∧FT a(bB′ + c) + abB︸ ︷︷ ︸
q

but, if I(B) 6= I(B′),
a(bB + bB′ + c) 6⊑RT a(bB′ + c) + abB

because {a}a{b, c}bI(B) ∈ ReadyTraces(p) \ ReadyTraces(q).

It is clear that the readiness and failure trace semantics is finer than both the readiness
and the failure trace semantics; to show that it is actually the coarsest upper bound we
need to prove that ⊑R∧FT = ⊑R ∩ ⊑FT . Even if the axiom (NDR∧FT) was created with
this goal in mind, this cannot be easily shown using only algebraic arguments. Instead, it
is trivial to obtain the observational characterization of the desired semantics by gathering
together the failure trace and the ready observations. Based on Definition 4.19, we can

define the corresponding order ≤l⊇∧f
N by taking

T ≤l⊇∧f
N T ′ ⇐⇒ T ≤l⊇

N T
′ and T ≤lf

N T
′.

A direct characterization can be obtained as follows. We combine both kinds of obser-
vations into a single family of decorated traces that we call failure trace with final ready sets,
by considering failure sets all along the trace except at the end of it, where we introduce
the corresponding ready set.

Definition 8.3. We define the order ≤l⊇∧f
N by

T ≤l⊇∧f
N T ′ ⇐⇒ for all X0a1 . . . Xn ∈ T there is some Y0a1 . . . Yn ∈ T

′

with Xn = Yn and Xi ⊇ Yi, for i ∈ 0..n− 1.

Proposition 8.4. The semantics defined by the order ⊑R∧FT coincides with that defined

by ≤l⊇∧f
I and is thus the lowest upper bound of the readiness and failure trace semantics.

Proof. Similar to that of Theorem 5.4.

UNIFYING THE LTBT SPECTRUM 61

Let us finally consider the logical characterization of this semantics. It is clear that the
conjunction of two semantics should be characterized in a logical way by simply considering
the union of the logics that characterize both semantics (although there could possibly be
a more compact presentation).

Definition 8.5. We define the set of formulas L′≤l⊇∧f
I

as that generated by the clauses:

• ⊤ ∈ L′≤l⊇∧f
I

;

• if ϕ ∈ L′≤l⊇∧f

I

and σ ∈ L¬I then σ ∧ ϕ ∈ L′≤l⊇∧f

I

;

• if σ ∈ L≡I then σ ∈ L′≤l⊇∧f
I

;

• if ϕ ∈ L′≤l⊇∧f
I

and a ∈ Act then aϕ ∈ L′≤l⊇∧f
I

.

Proposition 8.6. The logical semantics ⊑′
≤l⊇∧f

I

induced by the logic L′≤l⊇∧f
I

is equivalent

to the observational semantics defined by ≤l⊇∧f
I .

Proof. We just need to check that L′≤l⊇∧f
I

= L′≤l⊇
I

∪ L′≤lf
I

, which is immediate.

By replacing the I above by the generic N, we get the definitions and results for the
general case.

The axiomatic characterization of the greatest lower bound of the readiness and failure
trace semantics is much simpler: we simply put together the axioms for the orders defining
both semantics.

Definition 8.7. The meet semantics R∨FT is that defined by the order ⊑R∨FT generated
by the set of axioms {B1–B4, (RS), (NDR), (NDFT)}.

If we define MR∨FT as MR ∨MFT , that is, MR∨FT (x, y, w) holds if I(x) ⊇ I(y) or
I(w) ⊆ I(y), we have the following characterization of ⊑R∨FT .

Proposition 8.8. The order ⊑R∨FT is that generated by the set of axioms {B1–B4, (RS),
(NDR∨FT)}, where (NDR∨FT) is the instantiation of the generic axiom (ND) with the con-
dition MR∨FT .

Proposition 8.9. The semantics defined by the order ⊑R∨FT is the finest semantics that
is coarser than both the readiness and the failure trace semantics.

Proof. Obvious since any semantics coarser than the readiness semantics has to satisfy
{B1–B4, (RS), (NDR)}, any one coarser than failure trace must satisfy {B1–B4, (RS), (NDFT)},
and MR∨FT is equivalent to MR ∨MFT .

Once again, the semantics defined by ⊑R∨FT is not included in the ltbt spectrum and
neither in our extended one; in particular, it is different from the failures semantics. To
prove this fact we make essential use of the notion of revival, as defined by Reed, Roscoe,
and Sinclair [46]. Revivals are sequences a1, . . . , an(X, a) where a1, . . . , an is a trace of the
corresponding process after which the action a is offered, but the set of actions X is refused.

Proposition 8.10. The meet semantics R ∨ FT is strictly finer than failure semantics.

Proof. The inclusion ⊑R∨FT ⊑F is obvious since failures semantics is coarser than both
the readiness and the failure trace semantics. To show that the inclusion is strict, note that
any two processes related by ⊑R∨FT do not only have the same failures but also the same re-
vivals. This is indeed the case since all the axioms u � v in {B1–B4, (RS), (NDR), (NDFT)}

62D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

preserve the revivals, which means Revivals(σ(u)) ⊆ Revivals(σ(v)) for every ground sub-
stitution σ, and the revivals order is a precongruence for the operators in BCCSP. For
instance, for (NDFT) we need to prove that Revivals(σ(a(x + y))) ⊆ Revivals(σ(ax)) ∪
Revivals(σ(a(y + w))) whenever I(σ(w)) ⊆ I(σ(x)). It is clear that the only non-trivial
case occurs when a(X, b) ∈ Revivals(σ(a(x+ y))); then we have (X, b) ∈ Revivals(σ(x+ y))
so that X ∈ Failures(σ(x)) ∩ Failures(σ(y)) and b ∈ I(σ(X)) or b ∈ I(σ(y)). In the
first case, a(X, b) ∈ Revivals(σ(ax)) whereas, in the second, X ∈ Failures(σ(x + y)) and
therefore a(X, b) ∈ Revivals(σ(a(x + y))). The case for (NDR) is simpler. Once we know
that ⊑R∨FT preserves the revivals we only need to observe that the revivals cannot be
obtained from the failures of a process. In particular, we have ab ⊑F a + a(b + c), but
a({c}, b) ∈ Revivals(ab) \ Revivals(a+ a(b+ c)).

Next we present the characterization of the revivals semantics in terms of our observa-
tional framework.

Definition 8.11. We define the order ≤l⊇∨f
N by

T ≤l⊇∨f
N T ′ ⇐⇒ for all X0a1 . . . Xn ∈ T

there is {Y0a1Y1 . . . Y
j
n | j ∈ J} ⊆ T ′ such that Xn =

⋃
j∈J Y

j
n .

Proposition 8.12. For all p, q ∈ BCCSP, Revivals(p) ⊆ Revivals(q) if and only if LGOI(p) ≤
l⊇∨f
I

LGOI(q).

Proof. Note that ≤l⊇∨f
I can be equivalently defined as

T ≤l⊇∨f
I T ′ ⇐⇒ for all X0a1 . . . Xn ∈ T and for all a ∈ Xn

there is Y0a1 . . . Yn ∈ T
′ with a ∈ Yn and Yn ⊆ Xn.

Now, since a1 . . . an(X, a) ∈ Revivals(p) if and only if there exists X0a1 . . . Xn ∈ LGOI(p)
such that a ∈ Xn and Xn ∩X = ∅, we obtain the desired characterization.

Definition 8.13. Given T ⊆ LGON , T
⊇∨f

is defined as

T
⊇∨f

= {X0a1 . . . Xn | there is {Y0a1 . . . Y
j
n | j ∈ J} ⊆ T with Xn =

⋃

j∈J
Y j
n }.

This clearly indicates that ≤l⊇∨f
I is in between ≤lf⊇

I , defining the failures semantics,

and ≤lf
I , defining readiness semantics. This is useful for the proof of the axiomatic charac-

terization of the revivals semantics.

Theorem 8.14. The revivals semantics defined by ⊑l⊇∨f
I is axiomatized by {B1–B4, (RS), (NDR∨FT)}.

Proof sketch. It is quite similar to that of Theorem 5.4 for the case of failures semantics
and, hence, also similar to the characterization of that semantics by means of acceptance
trees [30] (and where the closure of the set of offers with respect to both union and convex
closure is a critical argument), and this is why we only sketch it. In connection to that,
recall that the application of the particular case of (ND) corresponding to (NDFT) allowed
us to join arbitrary states after the same trace, while that corresponding to (NDR) allowed
us to obtain a common continuation after the same action at any state reachable by the
same trace. All this can be done now using (NDR∨FT); however, we cannot add to an
arbitrary state an action offered at another state reachable by the same trace since to do
that we needed the unlimited strength of axiom (ND).

UNIFYING THE LTBT SPECTRUM 63

Note that for the join semantics R ∧ FT the logical approach was the most direct
way of defining it, whereas its equational characterization needed more care. For the meet
semantics R∨FT , the situation is just the opposite. As we have seen, R∨FT is axiomatized
by putting together the axioms for R and those for FT ; in contrast, the logic characterizing
R∨FT is obtained by cleverly selecting the common part of the logics characterizing both
R and FT . If we had defined the logical semantics by considering all the formulas from
HML that are preserved by each semantics, then we could take the intersection of these sets
as the logical semantics of any meet semantics. Since we defined our logical semantics by
considering only a “basis” that generates the corresponding full set, we cannot simply take
their intersection.

Definition 8.15. We define the set of formulas L′≤l⊇∨f
I

as that generated by the clauses:

• ⊤ ∈ L′≤l⊇∨f
I

;

• if σ, σj ∈ L
′
I for all j ∈ J then (σ ∧

∧
j∈J ¬σj⊤) ∈ L≤l⊇∨f

I

;

• if ϕ ∈ L′≤l⊇∨f
I

and a ∈ Act then aϕ ∈ L′≤l⊇∨f
I

.

Note that in the second clause of this definition we have relaxed the condition in the
definition of L′R by considering an arbitrary failure (that defined by the set J), but only
a positive offer (the action appearing in σ). This is how the revivals semantics becomes
slightly finer than the failures semantics.

Proposition 8.16. The logical semantics ⊑′
≤l⊇∨f

I

induced by the logic L′≤l⊇∨f
I

is equivalent

to the observational semantics defined by ≤l⊇∨f
I .

Proof. In this case we have taken L′≤l⊇∨f

I

= L′≤l⊇
I

∩ L′≤lf
I

. Then, to prove that it defines

R∨FT it is enough to check that p 6⊑l⊇∨f
I q implies that there exists ϕ in L′≤l⊇∨f

I

such that

p |= ϕ and q 6|= ϕ, which is almost immediate.

Again, by replacing the I above by the generic N, we get the definitions and results for
the general case.

We can generalize most of the results obtained for the refusal semantics when N = I
to any reasonable local observation function such as T or S, once we interpret ⊆ as the
corresponding order and = as the induced equivalence. However, in order to define the
adequate observational characterization of the revivals semantics for a local observation (or
constraint) N , we should look for the adequate “elements” of the universe of observations.
This leads us to traces when N is T , but it is not so clear how to define those “elements”
for a non-extensional semantics such as that obtained when N is S.

Let us conclude this section with a look at the picture in Figure 15 showing the real
structure of the full (bidimensional!) diamond, that should be included in all the upper
levels of the extended ltbt spectrum.

64D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

(RS)

(RT)

(R ∧ FT)

(FT) (R)

(R ∨ FT)

(F)

Figure 15: The real diamond below ready simulation.

9. Operational semantics

In this section we explain how to develop the semantics in the spectrum in an operational
way. Certainly, this presentation could be argued to be ad-hoc at times since some “high-
level” conditions are required in the SOS-like rules for some of the semantics. Moreover, the
style of presentation at this Section is certainly less precise and detailed than in the previous
ones. However, we believe it still provides some additional insight on the common properties
of the semantics and also establishes a connection with our previous work on (bi)simulations
up-to [23, 25] as a way to get coinductive characterizations of any “reasonable” process
semantics.

Structural operational semantics was introduced by G. Plotkin in 1981, even though
his seminal work was not published in a journal until 2004 [45]. In Section 2 we already
presented a basic operational semantics for our processes as a starting point for the definition
of all the semantics in the spectrum: a small-step semantics that collects the (atomic) actions
executed by the processes into the corresponding transition system. By contrast, all the
operational semantics in this section will be big-step semantics which directly return the
adequate semantic values defining each of the semantics. They are generated by means of
SOS-like rules that obtain these values in a compositional way. An extensive presentation
of structural operational semantics covering all its variants can be found in [39].

9.1. Local simulations up-to. In order to characterize all the reasonable behavior pre-
orders in a coinductive way we need to generalize constrained N -simulations (Definition 2.2)
with N -simulations up-to an order ⊑.

Definition 9.1. Let ⊑ be a behavior preorder and N a relation over processes. We say
that a binary relation S over processes is an N -simulation up-to ⊑ if S ⊆ N and S is a
simulation up-to ⊑. Or equivalently, in a coinductive way, whenever we have pSq we also
have:

• for every a, if p
a
−→ p′a then there exist q′, q′a such that q ⊒ q′

a
−→ q′a and p′aSq

′
a;

• pNq.

UNIFYING THE LTBT SPECTRUM 65

We say that process p is N -simulated up-to ⊑ by process q, or that process q N -simulates

process p up-to ⊑, written p ❁
∼

N

⊑ q, if there exists an N -simulation up-to ⊑, S, such that

pSq.

We often just write ❁
∼

N
, instead of ❁∼

N

⊑ , when the behavior preorder is clear from the

context.
We proved in [23] that all the preorders defining the semantics in the ltbt spectrum can

be characterized as N -simulations up-to the corresponding equivalence relation ≡, where N
is the constraint defining the coarsest simulation semantics finer than the given semantics.
For instance, the result for the semantics between failures semantics and ready simulation
was the following.

Theorem 9.2 ([23]). For every behavior preorder ⊑ satisfying the axiom (RS) and ⊑ ⊆ I,

we have p ⊑ q if and only if p ❁
∼

I

⊑ q.

Table 6 shows the constraints defining the adequate constrained simulation order finer
than each of the semantics in the linear time-branching time spectrum. Obviously, they
coincide with the layer of the extended spectrum at which each semantics appear.

T S CT CS F R FT RT PW RS PF 2N
CO U U C C I I I I I I V W

pUq ⇐⇒ true pV q ⇐⇒ p ≡T q
pCq ⇐⇒ (p = 0 iff q = 0) pWq ⇐⇒ p ≡S q
pIq ⇐⇒ I(p) = I(q)

Table 6: Constraints for the semantics in the ltbt spectrum.

Note that Theorem 9.2 is more subtle that it could appear: it characterizes a given
preorder with a constrained simulation upto the preorder itself (Definition 9.1). Therefore,
there are several semantics that share the same constraint. This characterization is indeed
rather technical and the key point is that it allows to express any behavior preorder in a
simulation-like fashion. We have used this characterization to prove many useful statements
in our previous work5 and we will use it again several times in the current Section.

In our proof of the completeness of the axiomatizations for the linear semantics in
the spectrum in Section 5 we used a notion of normal form which, roughly, was defined
by applying repeatedly to any term p the axiom (ND≡) from right to left, for as long as
possible. Propositions 5.2 and 5.3 were then the key results to complete the proof, and also
lie behind the intuition for introducing now the notion of local I-simulation up-to.

Definition 9.3. For Z ∈ {F,R, FT,RT} and p =
∑

a

∑
i ap

i
a, whenever we have a pair of

indices i, j and a decomposition pja = rja + sja with MZ(p
j
a, r

j
a, s

j
a) we say that p is 1-locally

Z-equivalent to q = p + a(pia + rja), and we write p ≡l1
Z q. We say that p and q are locally

Z-equivalent when they are related by the reflexive and transitive closure of ≡l1
Z , and then

we write p ≡l
Z q.

For Z ∈ {F,R, FT,RT} we refer to the I-simulations up-to ≡l
Z as local I-simulations

up-to ≡Z . We say that process p is locally I-simulated up-to ≡Z by process q, or that

5For instance in [24] (Theorem 10) we provided an axiomatization for any behavior preorder starting
from the equations of the corresponding equivalence.

66D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

process q locally I-simulates process p up-to ≡Z , written p ❁
∼

I

≡l
Z

q, if there exists a local

I-simulation up-to ≡Z , S, such that pSq.

Local I-simulations up-to are enough to characterize the linear semantics in {F,R, FT,RT}.
Note that we cannot get a local notion of bisimulation up-to equivalent to our unrestricted
notion of bisimulation up-to.

Proposition 9.4. For Z ∈ {F,R, FT,RT} we have p ⊑Z q if and only if p ❁
∼

I

≡l
Z

q.

Proof. The implication from right to left is an immediate consequence of Theorem 9.2. For
the other, note that {(p, q) | p ⊑Z q} is a local I-simulation up-to ≡Z . Indeed, for any

p
a
−→ pia we have q ≡l

Z hnf Z(q) and taking hnf Z(q) =
∑

a

∑
i ah

j
a there exists some j such

that hnf Z(q)
a
−→ hja and pia ⊑Z hja.

Example 9.5. Let us consider the processes p = abc + abd and q = a(bc + bd). We have

p ≡F q and we can check that p ❁
∼

I

≡l
F

q since p ⊑RS q. In order to prove that we also have

q ❁
∼

I

≡l
F

p, we apply ≡l
F to p to obtain p ≡l

F p+ q and then we obtain q ⊑RS p.

By contrast, if we wanted to apply our bisimulation up-to characterization to prove
directly that p ≡F q then we would have to turn q into q + p in order to simulate the

transition p
a
−→ bc. This would correspond to the local application of (NDF

≡) combined
with that of

(RS≡) I(x) = I(y) =⇒ a(x+ y) ≃ a(x+ y) + ax.

But if we replace the action a by a larger prefix a1 . . . an then we should also modify the
process q′ = a1 . . . an(bc+ bd) in a non-local way in order to obtain q′′ = q′ + p′, so that we

could suitably simulate the transition p′ = a1 . . . anbc+a1 . . . anbd
a1−→ a2 . . . anbc. Certainly,

this is not necessary when checking p′ ≡F q′ by means of local simulations up-to.

The coinductive characterization of the semantics by means of simulations up-to has
at least two important advantages over that of using bisimulations up-to. First, we can
characterize the orders defining the semantics and not just the induced equivalences; and
second, we can use a local variant of the up-to mechanism so that we only need to rely on
the equivalence relation ≡l

Z for the up-to part.

9.2. Operational rules for the linear semantics of processes. In Section 9.1 we have
introduced and proved some results that establish the framework using which we achieve
our goal: to define for each of the classic linear semantics an operational semantics over
BCCSP terms in such a way that we can use constrained simulations to characterize the
considered semantics. For instance, if we consider the case of the failures preorder ⊑F , we
are going to define a new operational semantics for BCCSP terms (P,Act,⇒F) such that
p ⊑F q if and only if q ready simulates p in (P,Act,⇒F).

Next we will concentrate first on the diamond of linear semantics coarser than ready
simulation. All these semantics are based on the observation of the initial set of actions of
each process, that can be obtained by application of the SOS-like rules in Figure 16.

The rules in Figure 17 define the transition relation =⇒Z that induces the operational
semantics to characterize each of the Z-semantics. The transition relation ←→Z is an
auxiliary relation that captures the iterated application of the axiom (NDZ

≡). Rules (RF)
and (TR) define reflexivity and transitivity of the relation ←→Z . Finally, the rule (CL)

UNIFYING THE LTBT SPECTRUM 67

0 −→I ∅ ap −→I {a}
p −→I A q −→I B
p+ q −→I A ∪B

Figure 16: Rules that compute the set of initial actions of a process.

(ND)
p −→I Ap q −→I Aq r −→I Ar MZ(Ap, Aq, Ar)
ap+ a(q + r) + s←→Z ap+ a(q + r) + a(p + q) + s

(RF) p←→Z p (TR) p←→Z q q ←→Z r
p←→Z r

(CL)
p←→Z p′ p′

a
−→ q

p
a

=⇒Z q

Figure 17: Operational semantics characterizing the linear semantics.

combines the auxiliary relation ←→Z and the original operational transition relation −→
(see Figure 2), to define the new labeled transitions =⇒Z .

Definition 9.6. For Z ∈ {F,R, FT,RT}, the operational semantics for BCCSP terms is
given by the labeled transition system (P,Act,=⇒Z) where the transition relation =⇒Z is
defined by the rules in Figure 17.

By abuse of notation, we have writtenMZ(Ap, Aq, Ar) to express that we checkMZ(p, q, r)
using the initials computed by −→I .

The relation =⇒Z has some interesting properties. First, it is an extension of the
original transition system.

Proposition 9.7. For Z ∈ {F,R, FT,RT}, p and q BCCSP processes, and α a sequence

of actions in Act, we have that p
α

=⇒ q implies p
α

=⇒Z q.

Although usually some new transitions appear, the set of initial actions of any process
always remains the same.

Corollary 9.8. For Z ∈ {F,R, FT,RT} and for any BCCSP process p, we have I
→
(p) =

I
⇒Z (p).

It is also clear that, for any Z ∈ {F,R, FT,RT}, the auxiliary relation ←→Z preserves
the equivalence ≡Z because the rule (ND) corresponds to the application of axiom (I-NDZ

≡),
which is sound with respect to ≡I

Z .

Proposition 9.9. For Z ∈ {F,R, FT,RT} and any two BCCSP processes p and q, we
have p←→Z q implies p ≡Z q.

Now we prove the main theorem in this section, that asserts that for each of the se-
mantics in the considered diamond we can define the corresponding operational semantics
as stated in Figure 17.

Theorem 9.10. For Z ∈ {F,R, FT,RT} and any two BCCSP processes p and q, we have

p ⊑Z q ⇐⇒ p ⊑⇒Z

RS q.

68D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

Proof. We will apply our characterization of the orders ⊑Z by means of local I-simulations

up-to at Proposition 9.4 to show that p ⊑⇒Z

RS q implies p ❁
∼

I

≡l
Z

q. This is because any ready

simulation over the transition system =⇒Z is also a local I-simulation up-to ≡Z . Indeed,
if R is a ready simulation over the transition system =⇒Z , and pRq, then whenever we

have p
a
−→ p′ we also have p

a
=⇒Z p′, and therefore there is some q

a
=⇒Z q′ with p′Rq′. By

definition of the transition system =⇒Z , there is some process q′′ such that q ←→Z q′′ and
q′′ a
−→ q′. Then we also have q ≡l

Z q′′, and thus R is indeed a local I-simulation up-to ≡Z .

To prove that p ❁
∼

I

≡l
Z

q implies p ⊑⇒Z

RS q, we will check that the relation ❁
∼

N

≡l
Z

is a ready

simulation over the transition relation =⇒Z . If p ❁
∼

N

≡l
Z

q, whenever p
a

=⇒Z p′ we have

some process p′′ such that p ←→Z p′′ and p′′ a
−→ p′. Then we also have p ≡Z p′′, and

so p′′ ❁∼
N

≡l
Z

q. From p′′
a
−→ p′ we now obtain that there are processes q′ and q′′ such that

q ≡l
Z q′′, q′′

a
−→ q′, and therefore we also have q ←→Z q′′, thus concluding the proof.

As a consequence of our negative results at the end of Section 9.1, it is not possible
to obtain an operational semantics locally defined from that which characterizes the linear
semantics by means of bisimilarity. However, this can be done if we use mutual similarity
instead of bisimulation.

Certainly, the fact that the characterizations in terms of bisimilarity cannot be defined
in a local way is related to the fact that the transition systems generated by application
of the algorithm in [17] are larger than those generated by our local transformation here.
Unfortunately, it is true that our presentation does not magically lead (at least at the
theoretical level) to more efficient algorithms to decide the equivalences with respect to
the linear semantics (which are known to be quite hard to decide). Obviously, this is
related to the fact that simulation is harder than bisimulation [37]. Even so, these are just
theoretical worst case bounds, and it is nice to know that in practice we can apply a local
transformation to generate the transition systems characterizing those semantics by means
of the simulation orders, that in many concrete cases will not be too difficult to decide.

9.3. Characterizing the semantics corresponding to other constraints. Let us start
by considering the case of the universal constraint U . As discussed in Section 3.2, if we
use U in the condition MZ it is clear that all the semantics in the corresponding diamond
collapse into a single one: trace semantics. It is immediate to realize that the transition
system to characterize it in terms of plain simulations is the same transition system =⇒F

that we use to characterize the failures semantics by means of ready simulations.

Theorem 9.11. The trace preorder ⊑T coincides with the simulation order on the transition
system =⇒F , that is, p ⊑T q iff p ⊑⇒F

S q.

Even if this coincidence is a simple fact that reflects the relation between traces and
failures semantics, it contributes to clarify it. In plain words, failures semantics is just
traces semantics enriched by the observation of initials, so that the plain simulation order
that implies the trace order becomes the ready simulation order.

For other, finer observers such as T we can also characterize the corresponding semantic
orders, such as possible and impossible futures, in terms of local simulations up-to. We can
use that result to justify that the corresponding transition systems =⇒T

Z would characterize

the semantic orders ⊑T
Z in terms of T -simulations that preserve the set of traces of the

UNIFYING THE LTBT SPECTRUM 69

simulated process. In this case the corresponding operational characterization has to include
rules for the computation of the set of traces T (p) and this cannot certainly be done for
infinite processes. But out of the computation of these sets, the rest of the rules for the
generation of the corresponding transition systems =⇒T

Z are also valid, and their local
character is still present.

9.4. Application: trace deterministic normal forms. As a simple application we
present the example used by Klin in [36], that we already used in [22] to illustrate our
coinductive characterization of the behavior preorders by means of our bisimulations up-to.

Definition 9.12. For any process p =
∑

a

∑
i ap

i
a the deterministic form of p is defined as

Det(p) =
∑

a aDet(
∑

i p
i
a).

We wish to prove that p and Det(p) are trace equivalent. We will do it by proving that
they are simulation equivalent over the transition system =⇒F .

Proposition 9.13. For any process p we have p ⊑F Det(p).

Proof. We will prove that p ⊑⇒F

S Det(p) by showing that R = {(p,Det(p+q)) | p, q processes}

is a simulation for the transition system =⇒F . For q =
∑

a

∑
j aq

j
a we have Det(p + q) =

∑
aDet(

∑
i p

i
a +

∑
j q

j
a). Then, for any p

a
=⇒F p′ we have p = pia +

∑
k r

k
a , for some index

i and pka = rka + ska a decomposition of any of the rest of the summands of p. We have

Det(p + q)
a
−→ Det(

∑
i ap

i
a +

∑
j aq

j
a) = Det((pia +

∑
k r

k
a) + (

∑
k r

k
a +

∑
j q

j
a)), so that we

also have Det(p+ q)
a

=⇒F Det((pia+
∑

k r
k
a)+(

∑
k r

k
a+

∑
j q

j
a)), with (pia+

∑
k r

k
a,Det((pia+∑

k r
k
a) + (

∑
k r

k
a +

∑
j q

j
a))) ∈ R.

Proposition 9.14. For any process p we have Det(p) ⊑F p.

Proof. We will prove that Det(p) ⊑⇒F

S p by showing that R = {(Det(p), p)} is a simulation
for the transition system =⇒F . Since Det(p) is deterministic for each a ∈ Act there is a

unique transition Det(p)
a

=⇒F Det(
∑

i p
i
a). By applying the definition of

a
=⇒F we have

p
a

=⇒F
∑

i p
i
a, and clearly we have (Det(

∑
i p

i
a),

∑
i p

i
a) ∈ R.

Although this is a very simple example, it is interesting to compare the proof above with
that in [22]. This proof is simpler and more natural, mainly because the proof obligations to
check bisimulations forced us to remove the sub-terms that were not in the chosen transition
when we had to simulate it. This is not necessary for any of the two simulations that are
needed to check mutual simulation, as done above. Obviously, this is also related to the
impossibility to obtain a notion of local bisimulation up-to characterizing the equivalence
under any of the linear semantics.

10. Conclusions and some future work

Throughout this paper we have provided a global outline of process semantics from differ-
ent points of view, each of which reveals some of the key ingredients for a more uniform
comprehension of those semantics. We have noted that the family consisting of the simula-
tion semantics—constrained simulations, in its generalized version—plays an essential role
in the class of process semantics, becoming the cornerstone for sorting and classifying the
remaining semantics.

70D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

From a framework in which, based on observational trees, denotational semantics are
assigned —Section 4—we have been able to prove that the spectrum of process semantics
can be structured by means of layers that are induced by the simulations. Each layer is
dominated by a simulation semantics that determines the finest distinction available for
that layer. The remaining semantic families are also described by abstracting or simpli-
fying the observations needed for the corresponding layer. In particular, below each con-
strained simulation there appear the corresponding versions for each of the classic linear
semantics—failures, readiness, failure trace, and ready trace—and, as we saw in Section 8,
other semantics are also explained within our framework.

This observational characterization allowed us to offer a new insight into the axiomatic
characterization of the semantics—Sections 3 and 5—revealing a uniformity lacking in all
previous studies. To characterize any of the orders that define a process semantics, we have
proved that it is enough to use two parametric axioms: one of the required axioms is that
for the generalized simulation of the corresponding layer while the other, when it is present,
has to do with the reduction of non-determinism that is carried out in each semantics.

Analogously, in Sections 6 and 7 we showed how to characterize process semantics by
means of sets of Hennesy-Milner logic formulas out of their observational characterization,
and finally we have also discussed a unified operational presentation of the semantics in the
extended spectrum.

One of the more obvious lines for future work would be to consider those semantics that
allow for an inner, non-visible action, known as weak semantics. Actually, some promising
results have already been obtained that make clear the regularity and generality present
in the domain of weak semantics. In particular, in [16] it is proved that it is possible to
apply to weak semantics the algorithm to obtain axiomatic characterizations of semantic
equivalences from the axioms for corresponding order [21]. And [2, 3] provides a detailed
study of the axiomatization of weak simulation semantics.

Let us also cite here the recent work by Anti Valmari [53], where he presents the
full catalogue of (weak) linear-time congruences for finite state systems. Certainly, it is
interesting to limit somehow the class of “reasonable” semantics for processes, but this has
not been so much the intention of our work in this paper. In fact, it is interesting to note
that the results in the paper referenced above limit the set of semantics to explore in a
quite personal way: for instance, the semantics of failure traces and that of ready traces
are not included in the category, because Valmari (implicitly) considers that they are not
“linear-time enough”.

Another interesting approach consists in the use of coalgebras—following the work,
among others, of Jesse Hughes and Bart Jacobs [35]—where powerful categorical techniques
allow to connect the idea of simulation with that of bisimulation, which is central in the
coalgebraic setting. More concretely, these techniques were successfully used in [26] to relate
classic and probabilistic bisimulation.

References

[1] Luca Aceto. Some of my favourite results in classic process algebra. In In Bulletin of the EATCS, pages
89–108, 2003.

[2] Luca Aceto, David de Frutos-Escrig, Carlos Gregorio-Rodŕıguez, and Anna Ingólfsdóttir. Axiomatizing
weak ready simulation semantics over bccsp. In Cerone and Pihlajasaari [15], pages 7–24.

[3] Luca Aceto, David de Frutos-Escrig, Carlos Gregorio-Rodŕıguez, and Anna Ingólfsdóttir. The equational
theory of weak complete simulation semantics over bccsp. In Bieliková et al. [12], pages 141–152.

UNIFYING THE LTBT SPECTRUM 71

[4] Luca Aceto, Wan Fokkink, and Anna Ingólfsdóttir. Ready to preorder: get your BCCSP axiomatization
for free! In Algebra and Coalgebra in Computer Science, Second International Conference, CALCO 2007,
volume 4624 of Lecture Notes in Computer Science, pages 65–79. Springer, 2007.

[5] Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. Finite equational bases in process
algebra: Results and open questions. In Processes, Terms and Cycles, volume 3838 of Lecture Notes in
Computer Science, pages 338–367. Springer, 2005.

[6] Luca Aceto, Anna Ingólfsdóttir, Kim G. Larsen, and Jiri Srba. Reactive Systems: Modelling, Specifica-
tion and Verification. Cambridge University Press, 2007.

[7] Jos C. M. Baeten. A brief history of process algebra. Theoretical Compututer Science, 335(2-3):131–146,
2005.

[8] Jos C. M. Baeten, Twan Basten, and Michel A. Reniers. Process Algebra: Equational Theories of
Communicating Processes (Cambridge Tracts in Theoretical Computer Science). Cambridge University
Press, 2009.

[9] Jos C. M. Baeten, Jan A. Bergstra, and Jan Willem Klop. Ready-trace semantics for concrete process
algebra with the priority operator. The Computer Journal, 30(6):498–506, 1987.

[10] Jos C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Computer Science. Cam-
bridge University Press, 1990.

[11] Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous communication. Information
and Control, 60(1-3):109–137, 1984.

[12] Mária Bieliková, Gerhard Friedrich, Georg Gottlob, Stefan Katzenbeisser, and György Turán, editors.
SOFSEM 2012: Theory and Practice of Computer Science - 38th Conference on Current Trends in
Theory and Practice of Computer Science, pindlerv Mlýn, Czech Republic, January 21-27, 2012. Pro-
ceedings, volume 7147 of Lecture Notes in Computer Science. Springer, 2012.

[13] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced. Journal of the ACM,
42(1):232–268, 1995.

[14] Stephen D. Brookes, C.A.R. Hoare, and A. William Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31(3):560–599, 1984.

[15] Antonio Cerone and Pekka Pihlajasaari, editors. Theoretical Aspects of Computing - ICTAC 2011 - 8th
International Colloquium, Johannesburg, South Africa, August 31 - September 2, 2011. Proceedings,
volume 6916 of Lecture Notes in Computer Science. Springer, 2011.

[16] Taolue Chen, Wan Fokkink, and Rob J. van Glabbeek. Ready to preorder: The case of weak process
semantics. Information Processing Letters, 109(2):104–111, 2008.

[17] Rance Cleaveland and Matthew Hennessy. Testing equivalence as a bisimulation equivalence. Formal
Asp. Comput., 5(1):1–20, 1993.

[18] David de Frutos-Escrig, Carlos Gregorio-Rodŕıguez, and Miguel Palomino. Coinductive characterisa-
tions reveal nice relations between preorders and equivalences. In First International Conference on
Foundations of Informatics, Computing and Software (FICS 2008), volume 212 of Electronic Notes in
Theoretical Computer Science, pages 149–162. Elsevier, 2008.

[19] David de Frutos-Escrig, Carlos Gregorio-Rodŕıguez, and Miguel Palomino. On the unification of process
semantics: Equational semantics. Electronic Notes in Theoretical Computer Science, 249:243–267, 2009.

[20] David de Frutos-Escrig, Carlos Gregorio-Rodŕıguez, and Miguel Palomino. On the unification of process
semantics: Observational semantics. In SOFSEM 2009: Theory and Practice of Computer Science, 35th
Conference on Current Trends in Theory and Practice of Computer Science, volume 5404 of Lecture
Notes in Computer Science, pages 279–290. Springer, 2009.

[21] David de Frutos Escrig, Carlos Gregorio-Rodŕıguez, and Miguel Palomino. Ready to preorder: an
algebraic and general proof. Journal of Logic and Algebraic Programming, 78(7):539–551, 2009.
doi:10.1016/j.jlap.2008.09.001.

[22] David de Frutos-Escrig and Carlos Gregorio-Rodŕıguez. Bisimulations up-to for the linear time-
branching time spectrum. In CONCUR 2005 - Concurrency Theory, 16th International Conference,
volume 3653 of Lecture Notes in Computer Science, pages 278–292. Springer, 2005.

[23] David de Frutos-Escrig and Carlos Gregorio-Rodŕıguez. Simulations up-to and canonical preorders (ex-
tended abstract). In Structural Operational Semantics SOS 2007, volume 192 of Electronic Notes in
Theoretical Computer Science, pages 13–28. Elsevier, 2007.

72D. DE FRUTOS ESCRIG, C. GREGORIO RODRÍGUEZ, M. PALOMINO, AND D. ROMERO HERNÁNDEZ

[24] David de Frutos-Escrig and Carlos Gregorio-Rodŕıguez. Universal coinductive characterizations of pro-
cess semantics. In 5th IFIP International Conference on Theoretical Computer Science, volume 273 of
IFIP, pages 397–412. Springer, 2008.

[25] David de Frutos-Escrig and Carlos Gregorio-Rodŕıguez. (Bi)simulations up-to characterise process se-
mantics. Information and Computation, 207(2):146–170, 2009.

[26] David de Frutos-Escrig, Miguel Palomino, and Ignacio Fábregas. Multiset bisimulations as a common
framework for ordinary and probabilistic bisimulations. In Formal Techniques for Networked and Dis-
tributed Systems - FORTE 2008, 28th IFIP WG 6.1 International Conference, volume 5048 of Lecture
Notes in Computer Science, pages 283–298. Springer, 2008.

[27] Cédric Fournet, Tony Hoare, Sriram K. Rajamani, and Jakob Rehof. Stuck-free conformance. In Rajeev
Alur and Doron A. Peled, editors, Computer Aided Verification. 16th International Conference, CAV
2004, Boston, MA, USA, July 13–17, 2004. Proceedings, volume 3114 of Lecture Notes in Computer
Science, pages 242–254. Springer, 2004.

[28] Per Brinch Hansen. The Origins of Concurrent Programming: From Semaphores to Remote Procedure
Calls. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.

[29] Matthew Hennessy. Acceptance trees. Journal of the ACM, 32(4):896–928, 1985.
[30] Matthew Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
[31] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency. Journal of

the ACM, 32:137–161, 1985.
[32] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[33] Tony Hoare. Process Algebra: A Unifying Approach, volume 3525 of Lecture Notes in Computer Science,

pages 36–60. Springer Berlin / Heidelberg, 2005.
[34] Tony Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall, 1998.
[35] Jesse Hughes and Bart Jacobs. Simulations in coalgebra. Theoretical Computer Science, 327(1–2):71–

108, 2004.
[36] Bartek Klin. A coalgebraic approach to process equivalence and a coinductive principle for traces. In

CMCS’04: 7th International Workshop on Coalgebraic Methods in Computer Science, volume 106 of
Electronic Notes in Theoretical Computer Science, pages 201–218. Elsevier, 2004.

[37] Antońın Kucera and Richard Mayr. Why is simulation harder than bisimulation? In CONCUR 2002
- Concurrency Theory, 13th International Conference, Proceedings, volume 2421 of Lecture Notes in
Computer Science, pages 594–610. Springer, 2002.

[38] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing (preliminary report). In
Principles of Programming Languages, 16th ACM SIGACT-SIGPLAN Symposium – POPL ’89, pages
344–352. ACM Press, 1989.

[39] Chris Verhoef Luca Aceto, Wan Fokkink. Handbook of Process Algebra, chapter 3, Structural operational
semantics, pages 197–292. Elsevier, 2001.

[40] Gerald Lüttgen and Walter Vogler. Ready simulation for concurrency: It’s logical! Information and
Computation, 208(7):845–867, 2010.

[41] Robin Milner. A Calculus of Communicating Systems. LNCS 92. Springer, 1980.
[42] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
[43] Ernst R. Olderog and C.A.R. Hoare. Specification-oriented semantics for communicating processes. Acta

Informatica, 23(1):9–66, 1986.
[44] Iain Phillips. Refusal testing. Theoretical Computer Science, 50(3):241–284, 1987.
[45] Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic and Algebraic

Programming, 60-61:17–139, 2004.
[46] Joy N. Reed, A. William Roscoe, and Jane E. Sinclair. Responsiveness and stable revivals. Formal

Aspects of Computing, 19:303–319, 2007.
[47] David Romero-Hernández and David de Frutos-Escrig. On the unification of process semantics: Logical

semantics. In Structural Operational Semantics, SOS’11, volume 62 of EPTCS, pages 47–61, 2011.
[48] A. William Roscoe. Revivals, stuckness and the hierarchy of CSP models. Journal of Logic and Algebraic

Programming, 78(3):163–190, 2009.
[49] A. William Roscoe. Understanding Concurrent Systems (Texts in Computer Science). Springer, 2010.
[50] Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans. Program. Lang. Syst.,

31(4):41 pages, 2009.
[51] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press, 2012.

UNIFYING THE LTBT SPECTRUM 73

[52] Dana Scott and Christopher Strachey. Towards a mathematical semantics for computer languages.
Programming Research Group Technical Monograph PRG-6, Oxford Univ. Computing Lab., 1971.

[53] Anti Valmari. All linear-time congruences for finite ltss and familiar operators. In Application of Con-
currency to System Design (ACSD), 2012 12th International Conference on, pages 12–21. IEEE, 2012.

[54] Rob J. van Glabbeek. Comparative Concurrency Semantics and Refinement of Actions. PhD thesis,
Free University, Amsterdam, 1990. Second edition available as CWI tract 109, CWI, Amsterdam 1996.

[55] Rob J. van Glabbeek. The linear time-branching time spectrum. In CONCUR ’90 Theories of Concur-
rency: Unification and Extension, number 458 in Lecture Notes in Computer Science, pages 278–297.
Springer-Verlag, 1990.

[56] Rob J. van Glabbeek. The linear time - branching time spectrum II. In CONCUR ’93 - Concurrency
Theory, 5th International Conference, volume 715 of Lecture Notes in Computer Science, pages 66–81.
Springer, 1993.

[57] Rob J. van Glabbeek. Notes on the methodology of ccs and csp. Theoretical Computer Science,
177(2):329–349, 1997.

[58] Rob J. van Glabbeek. Handbook of Process Algebra, chapter 1, The Linear Time – Branching Time
Spectrum I: The Semantics of Concrete, Sequential Processes, pages 3–99. Elsevier, 2001.

[59] Marc Voorhoeve and Sjouke Mauw. Impossible futures and determinism. Information Processing Letters,
80(1):51–58, 2001.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. Overview of results
	1.2. Some related work
	1.3. Paper structure

	2. Preliminaries
	3. Equational semantics
	3.1. A new axiomatization of the most popular semantics
	3.2. The coarsest semantics in the spectrum

	4. Observational semantics
	4.1. Branching general observations
	4.2. Linear observations and linear time semantics
	4.3. Deterministic branching observations
	4.4. Back to branching observations

	5. Relating the observational and equational frameworks
	5.1. Semantics coarser than ready simulation
	5.2. The semantics that are not coarser than ready simulation

	6. Logical characterization of semantics
	6.1. A new logical characterization of the most popular semantics
	6.2. Our new unified logical characterizations of the semantics

	7. Relating the unified logics and the unified observational model
	8. On the real diamond structure
	9. Operational semantics
	9.1. Local simulations up-to
	9.2. Operational rules for the linear semantics of processes
	9.3. Characterizing the semantics corresponding to other constraints
	9.4. Application: trace deterministic normal forms

	10. Conclusions and some future work
	References

