
Proving VLRL Action Properties with the

Maude Model Checker �

Miguel Palomino and Isabel Pita

Departamento de Sistemas Informáticos, Universidad Complutense de Madrid

Abstract

The Verification Logic for Rewriting Logic (VLRL) is a modal action logic in which rewrite rules
are captured as actions. This paper studies a possible representation of the VLRL action formulae
using the Next and the Until operators of Linear Temporal Logic (LTL). In particular, it studies
the use of the Maude model checker to prove VLRL action formulae. Action modalities of VLRL
fix the transition that will take place in a state and the context in which it will be applied, while
LTL operators do not. Thus, to represent action modalities in LTL it is necessary to transform the
initial rewrite theory into a new one in which the states carry the information about the transitions
used and the context in which they have taken place. VLRL properties are then studied in the
transformed theory by translating VLRL formulae into equivalent LTL formulae.

Keywords: Modal logic, liner temporal logic, Maude, rewriting logic, verification logic for
rewriting logic, transformation of theories.

1 Introduction

The Verification Logic for Rewriting Logic (VLRL) [3,10,11] is a modal action
logic in which rewrite rules are captured as actions. It supports the verification
of properties of systems specified in rewriting logic [6,7]. In order to express
the properties of the system, VLRL allows the definition of observations of
the behaviour of the system. In this way, it is the user who determines in each
case the facts of the system that he wants to emphasize.

A VLRL signature fixes a designated sort State that represents the ob-
jects of the system relative to which change is captured. Then, VLRL actions

� Research partially supported by the Spanish CICYT Projects MELODIAS TIC2002-
01167 and MIDAS TIC2003-01000.

Electronic Notes in Theoretical Computer Science 117 (2005) 113–133

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.06.026

http://www.elsevier.com/locate/entcs

represent those transitions that are “atomic” in the sense that, even if more
than one rewrite takes place during such a transition, this happens because
the structure of the state allows for such rewrites to be performed concur-
rently. The VLRL modal language provides four action modalities to express
properties of a successor of a given state. Two of the modalities are existen-

tial in the sense that they require the action to denote an existing transition
from the current state. The other two are universal and do not impose such
requirement.

VLRL allows the verification of a particular sequence of rewrites, in con-
trast with a Linear Temporal Logic (LTL) where all computation paths are
explored. Properties concerning a computation path are expressed in VLRL
in a natural way through the use of the action modalities. Actually, VLRL
can be used as a flexible interface in which to prove properties expressed in
different branching time temporal logics [3]. And besides the action part of
the logic, which is the one explored in this paper, VLRL also provides a spatial
modality used to formulate properties of parts of the system, and the logic
allows the combination of the action and the spatial modalities with great
freedom.

This paper studies how action properties can be expressed using the Next

and the Until operators of LTL in order to use the Maude model checker [2]
to help proving the VLRL properties. But while the action modalities fix the
transition that will take place in a state together with its context, the LTL op-
erators do not. Thus, to represent the action modalities in LTL it is necessary
to transform the initial rewrite theory into a new one in which the states carry
information about the transitions that are applied and the context in which
they take place; this is based on previous work by Meseguer about transfor-
mation of rewrite theories to express fairness and justice properties [8]. VLRL
properties are then studied in the transformed theory by translating VLRL
formulae into LTL ones that make use of that additional information to ex-
press the same property. For that we use a state predicate to express when an
action α has been applied to obtain a certain state, taken(α), and another one
to express when actions have been applied concurrently, concurrent. Satisfac-
tion of both state predicates is defined over states of the transformed theory.
We illustrate our approach with a specification of a simple protocol, but our
construction applies to any system with a commutative and associative struc-
ture, and it can also be used with arbitrary systems by a simple extension of
the ideas presented here.

Section 2 summarizes the main VLRL concepts used in the paper and
Section 3 presents the way a rewrite theory is transformed into a new one
with information about actions. Section 4 explains how to obtain atomic

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133114

propositions from observations; then the translation of a VLRL action formula
to an LTL formula is explained. Section 5 shows the use of the Maude model
checker for proving some VLRL formulae. Finally, the appendix contains the
complete specification of the example presented in the paper.

This paper assumes familiarity with rewriting logic and Maude and its
LTL model checker; detailed accounts about them can be found in [6,1,2].
Our notation follows standard practice: TΣ denotes the initial algebra of terms
over the signature Σ and TΣ/E is the initial algebra of equivalence classes of
terms [t] of the theory (Σ, E). We use t[w/x] to denote the term obtained from
replacing the variable x by w in t; sometimes an overbar is used to abbreviate
sequences of expressions.

2 Overview of VLRL

VLRL [3,10,11] is a logic to talk about change in an indirect and global manner
like other modal and temporal logics [5,4], in contrast with rewriting logic
which is a logic of change. The idea is to make available attributes for making
observations of the state of a system and action symbols to account for its
elementary state changes.

2.1 Verification signature

Given a rewrite signature (Σ, E), a verification signature (Σ+, E+, State,At, L)
consists of:

• a distinguished sort State of Σ;

• additional sorts and operators that define an extension Σ+ of Σ, together
with a set E+ of equations that axiomatize the extension in a way that
protects the original signature, i.e., such that TΣ+/E+|Σ � TΣ/E ;

• a family At of observation attributes, each of which has an associated sort
s of Σ+;

• a collection L of labels indexed over strings of sorts in Σ. The index corre-
sponds to the sequence of sorts of the variables appearing in the rule that
defines the action associated with the label.

2.2 A simple mutual exclusion example

In what follows, we illustrate our approach with a simple specification bor-
rowed from [1]. It describes a system with two processes, a and b, that share a
critical resource. Each process can be either waiting or in the critical section,

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133 115

and they take turns accesing the critical section by passing to each other a
different token (either $ or #).

mod MUTEX is sorts Name Mode Proc Token Conf .
subsorts Token Proc < Conf .
op none : -> Conf .
op __ : Conf Conf -> Conf [assoc comm id: none] .
ops a b : -> Name .
ops wait critical : -> Mode .
op <_,_> : Name Mode -> Proc .
ops # $: -> Token .
rl [a-enter] : $ < a, wait > => < a, critical > .
rl [b-enter] : # < b, wait > => < b, critical > .
rl [a-exit] : < a, critical > => < a, wait > # .
rl [b-exit] : < b, critical > => < b, wait > $.

endm

We can define two observation attributes of sort Bool, crit-a and crit-b,
to check if a given process is in its critical section. The verification signature
associated to the signature (ΣMUTEX, EMUTEX) of MUTEX that we are going to use
in what follows is then

(Σ+

MUTEX
, E+

MUTEX
, Conf, {crit-a, crit-b}, L) ,

with Σ+
MUTEX

extending Σ with the sort Bool, E+
MUTEX

extending E with the equa-
tions for the Boolean operators, and L = {a-enter, b-enter, a-exit, b-exit}.

2.3 Actions

We start by defining pre-actions, α. These correspond to the quotient of the
set of proof terms obtained through the following rules of deduction:

• Identities : 1 for each [t]

[t] : [t] → [t]
,

• Replacement : for each rewrite rule r : [t(x1, . . . , xn)] −→ [t′(x1, . . . , xn)] and
terms w1, . . . , wn,

r(w) : [t(w/x)] → [t′(w/x)]
,

and

• Σ-structure: for each f ∈ Σ,

α1 : [t1] −→ [t′1] . . . αn : [tn] −→ [t′n]

f(α1, . . . , αn) : [f(t1, . . . , tn)] −→ [f(t′1, . . . , t
′

n)]
,

modulo the following equations:

• Identity transitions : f([t1], . . . , [tn]) = [f(t1, . . . , tn)],

1 Note that [t] denotes a state as well as the corresponding identity transition for that state.

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133116

• Axioms in E: t(α) = t′(α), for each equation t = t′ in E.

Actions are the pre-actions that rewrite terms of sort State. 2

Intuitively, actions (or more generally, pre-actions) correspond to “atomic”
transitions where no sequential composition or nested applications of the re-
placement rule have taken place. It was proved in [6] that any transition in
the initial model of a rewrite theory can be decomposed as an interleaving
sequence of pre-actions.

One should be careful not to confuse this notion with that of one-step

rewrite, that we will also use. The one-step rewriting relation, denoted with
−→1 to distinguish it from the general rewrite relation −→, holds between
two terms u and v iff there is a one-step proof of u −→ v, that is, a proof of
u −→ v in which only one rewrite rule is applied to a single subterm. In other
words, a one-step rewrite is a pre-action in which the replacement rule has
been applied exactly once. This relation is used by the Maude model checker
for the transition relation of the Kripke structure associated to a rewrite theory
[2].

2.4 Action modalities

VLRL defines four action modalities, [α], [[α]], 〈α〉, and 〈〈α〉〉 that capture the
state transitions performed by the action α. The modal language 3 associated
to a verification signature is given by

ϕ ::= true | t1 = t2 | ¬ϕ | ϕ ⊃ ϕ | [α]ϕ | [[α]]ϕ | 〈α〉ϕ | 〈〈α〉〉ϕ

where t1 and t2 are terms over the signature Σ+ extended with the attributes
as constants of the corresponding sort.

Given an interpretation I for the observation attributes, mapping each
attribute of sort s to a function from TΣ/E,State to TΣ+/E+,s, the value [[t′]]I,σ[t]
of term t′ at state [t] with respect to I and ground substitution σ is:

• [[x]]I,σ[t] = σ(x),

• [[at]]I,σ[t] = I(at)([t]),

• [[f(t1, . . . , tm)]]I,σ[t] = f([[t1]]
I,σ[t], . . . , [[tm]]I,σ[t]).

Satisfaction of action modality formulae at a given state [t], observation inter-
pretation I, and ground substitution σ is defined by structural induction:

• [t], I, σ |=VLRL t1 = t2 iff [[t1]]
I,σ[t] = [[t2]]

I,σ[t].

2 The above definition of actions assumes that the rules in R are unconditional. The
extension to conditional rules is straightforward.
3 Actually, as remarked in the introduction, this is only the action part of the language:
see [3] for the complete definition.

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133 117

• [t], I, σ |=VLRL [α]ϕ iff [[α]]σ : [t] → [t′] implies [t′], I, σ |=VLRL ϕ.

• [t], I, σ |=VLRL [[α]]ϕ iff [t], I, σ |=VLRL [α]ϕ and [t], I, σ |=VLRL [β(α)]ϕ, for
all actions β(α) that put α in context, that is, β(α) is constructed only with
identities and Σ-structure rules on top of α.

• [t], I, σ |=VLRL 〈α〉ϕ iff [[α]]σ : [t] → [t′] and [t′], I, σ |=VLRL ϕ.

• [t], I, σ |=VLRL 〈〈α〉〉ϕ iff either [t], I, σ |=VLRL 〈α〉ϕ or there is an action
β(α) that puts α in context such that [t], I, σ |=VLRL 〈β(α)〉ϕ.

and in the expected way in the other cases. Note that [α] and [[α]] are universal
modalities that require that the formula holds for all possible successors, as
opposed to 〈α〉 and 〈〈α〉〉 which are existential.

The actions α are subject to interpretation because they may contain vari-
ables. We denote by [[α]]σ the state transition that is given by the ground
action obtained by applying the substitution σ to the action α. Then, for a
given substitution actions are deterministic but partial, i.e., they do not ap-
ply to every state. In fact, once instantiated, an action is only applicable to a
single state; this is due to the fact that an action carries within itself all the
context information about where rewrite rules are applied.

The difference between the single action modalities [α] and 〈α〉, and the
double action modalities [[α]] and 〈〈α〉〉 is that the double modalities allow the
formulation of properties about parts of the system in a wider context without
complicating the notation by the need to make explicit the contextual identity
transitions for those subterms that remain unchanged. That is, the action can
happen anywhere in the term that represents the state.

For example, the intended interpretation I of the attributes for the MUTEX

verification signature is such that I(crit-a) maps a term of sort Conf to true

if it contains the subterm < a, crit > and to false otherwise, and similarly
for I(crit-b). Under this interpretation, the formulae [[a-enter]](crit-a =
true) and [[a-enter b-enter]](crit-b = true) hold in the state $ < a,

wait > < b, wait>, but the formula 〈〈b-enter〉〉(crit-b = true) does not.

3 Adding actions and contexts to a state

In general, for a rewrite theory R it may not be easy to specify directly a
predicate of the form taken(a(y)) holding in those states that arise from ap-
plying the action a to some other state, or a predicate concurrent stating that
two actions can be done concurrently. What we can do is to associate to R a
semantically equivalent theory R′ with information about the actions that are
applied in the system and the context in which the actions are triggered. We
can then reason about the VLRL properties in this new theory and transfer

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133118

back to R the results obtained.

In this section we illustrate our general technique by defining a theory
NEW-MUTEX that extends our rewrite theory MUTEX with some new sorts, op-
erators, and rules, but also modifies the original rules in the way explained
below. The complete specification can be found in the appendix.

3.1 The new states

States in NEW-MUTEX will carry information about the actions that have created
them. They are represented as tuples

{ C | R | A | S }

where:

• C is a term that represents a state in the original system MUTEX.

• R can be concur or no-concur depending on whether the last action has
been executed concurrently with the previous ones. For the initial state its
value is indifferent: we arbitrarily choose concur.

• A is the last action that has been carried out.

• S is a marked state in which those subterms that have been changed by the
last action are marked by enclosing them inside @ @.

To help grasp the underlying idea consider the transition

$ < a, wait > # < b, wait > −→ < a, critical > < b, critical >

in MUTEX. This transition can arise after the sequential application of ac-
tion a-enter followed by b-enter, the application of b-enter followed by
a-enter, or a single application of the action a-enter b-enter. In the first
case (and similarly in the second), the corresponding rewrites in the trans-
formed theory are as follows (the operators * and + are explained in the
next section).

{ $ < a, wait > # < b, wait > | concur | * |
$ + < a, wait > + # + < b, wait > }

−→1

{ < a, critical > # < b, wait > | concur | a-enter |
@ < a, critical > @ + # + < b, wait > }

−→1

{ < a, critical > < b, critical > | no-concur | b-enter |
< a, critical > + @ < b, critical > @ }

Note that the action associated to the last state is only b-enter, and the
marked subterm, < b, critical >, corresponds to the subterm changed by
the last action. The second argument of the second state is trivially concur

since it is the only action that has taken place so far.

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133 119

On the other hand, the single action a-enter b-enter is simulated in the
transformed theory by performing the last rewrite in a different manner.

{ $ < a, wait > # < b, wait > | concur | * |
$ + < a, wait > + # + < b, wait > }

−→1

{ < a, critical > # < b, wait > | concur | a-enter |
@ < a, critical > @ + # + < b, wait > }

−→1

{ < a, critical > < b, critical > | concur | a-enter b-enter |
@ < a, critical > @ + @ < b, critical > @ }

The third component of the state reflects the fact that both actions have
happened concurrently, as indicated by the presence of concur in the sec-
ond argument. And since the action a-enter b-enter has changed the two
subterms, both of them appear marked now.

It may seem surprising that the concurrent action a-enter b-enter ac-
tually corresponds to two steps in the transformed theory: this is enforced
upon us by the fact that the Maude model-checker works by taking one-step
rewrites. Since it is not possible to foresee in advance what concurrent steps
will take place, the best we can do is just to translate each original rule into a
single one in the transformed theory and to rely on their interleaving to allow
for all possible concurrent actions. It is precisely the second argument, when
its value is concur, which tells us that the interleaving must be interpreted as
a concurrent action whose complete name appears as the third argument.

3.2 The new sorts

New sorts are introduced to deal with actions, marked states, and the new
states.

sorts Action Action+ .
sort Concur .
sorts Conf+ Conf’ .
sort NewConf .
subsort Conf < Conf+ .
subsort Conf < Conf’ .
subsort Action < Action+ .

Two operators are declared to signal when actions happen concurrently.

ops concur no-concur : -> Concur .

To capture actions arising from the application of the replacement rule of
deduction, the idea is to add for each rewrite rule l : [t(x)] → [t′(x)], where
we assume a fixed order in x = (x1 : s1, . . . , xn : sn), an operator

op l : s_1 ... s_n -> Action .

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133120

Since the rules in MUTEX only involve ground terms what we get is

ops a-enter b-enter a-exit b-exit : -> Action .

Actions obtained by the Σ-structure rule are represented by allowing the op-
erators of the signature to apply to actions as well. In our case,

op none : -> Action .
op __ : Action Action -> Action [assoc comm id: none] .

We add to the actions a new value, *, different from all actions defined in the
system. This value is used in the initial state to represent that no action has
occurred yet.

op * : -> Action+ .

Marked states are represented by terms of sort Conf+; they are constructed
from system states and the operators

op @_@ : Conf -> Conf+ .
op _+_ : Conf+ Conf+ -> Conf+ [assoc comm] .

The first operator is the “marker”: its argument is a state in MUTEX. The
second operator combines marked states to get another marked state. This
last operator is declared with the same properties as the operator __ that
constructs the states in MUTEX, except for the identity element which is not
declared to facilitate the definition of auxiliary operations.

Conf’ is used to determine the context in which a rewrite rule of the
original system MUTEX will be applied. It is defined by the following operations:

op _._ : Conf+ Action -> Conf’ .
op [_] : Conf -> Conf’ .
op _+’_ : Conf’ Conf’ -> Conf’ [assoc comm] .

with the equation

var S : Conf+ . var A : Action . var C : Conf .
eq (S . A) +’ C = ((S + C) . A) .

The first operation adds to a state information about the action used to obtain
it. These extended states are the result of applying a transformed rewrite rule
of the original system (see, e.g., rule a-enter at the end of this section). The
second operation is used to single out the subterm to which the rewrite rule
will be applied. This operation is combined with the last one and the rule
descend below to decompose a state into its components.

Finally, the sort NewConf is used to represent the states in the transformed
theory.

op {_|_|_|_} : Conf Concur Action+ Conf+ -> NewConf .

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133 121

3.3 The new rules

The original rules in MUTEX have to be transformed so that they only apply
to the currently selected terms, as well as to point out which new terms are
created. For that, the lefthand side is encapsulated within brackets and the
righthand side consists of the resulting processes and tokens, marked, together
with the name of the rule (that corresponds to the action executed).

rl [a-enter] : [$ < a , wait >] =>
(@ < a , critical > @ . a-enter) .

rl [b-enter] : [# < b , wait >] =>
(@ < b , critical > @ . b-enter) .

rl [a-exit] : [< a , critical >] =>
((@ < a , wait > @ + @ # @) . a-exit) .

rl [b-exit] : [< b , critical >] =>
((@ < b , wait > @ + @ $ @) . b-exit) .

Then, NEW-MUTEX includes rules to transform a state { C | R | A | S }
into a state { C’ | R’ | A’ | S’ } where:

• C’ is the resulting state of applying a one-step rewrite B to the state C in
the original system,

• R’ indicates whether B has been executed concurrently with A,

• A’ is the combined action of A and B if they have executed concurrently, or
only B if not, and

• S’ is the result of updating S by marking the subterm that has been changed
by the action B.

The rewrite rules used to specify those steps are as follows:

vars S S’ : Conf+ . var C : Conf .
var R : Concur . var A : Action .

var A+ : Action+ .

crl [step1] : { C | R | A+ | S } =>
{ ! S’ | concur | (|(A, A+)) | (|(S’, S)) }
if [C] => (S’ . A) /\ (S’ & S) .

crl [step2] : { C | R | A+ | S } =>
{ ! S’ | no-concur | A | S’ }
if [C] => (S’ . A) .

The rule step1 can be used only if the last action can be executed con-
currently with the previous ones. This is ensured by the S’ & S condition,
where the & operation

op _&_ : Conf+ Conf+ -> Bool .

checks if the context in which the action A is applied, represented by S’, is
disjoint from the context in which the last action was applied, represented by

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133122

the marked state S. The basic idea is to look for occurrences of marked states
@ C @ in both S and S’.

Remark. If S and S’ are marked states, S’ & S returns true if S’ has been
obtained from S by an action that can be executed concurrently with the
previous ones.

The new state is obtained with the help of the auxiliary operations

op !_ : Conf+ -> Conf .
op | : Conf+ Conf+ -> Conf+ .
op | : Action Action -> Action .

The first one eliminates the marks of a marked state. The second one
updates the marks of the state given as its second argument with those of the
marked state given as its first argument. And the third operation constructs
an action out of two actions by adding the first to the second one. We illustrate
their behavior with the following reductions, that arise in the last step of the
second example in Section 3.1:

Maude> red !(< a, critical > + @ < b, critical > @) .
result Conf: < a,critical > < b,critical >

Maude> red |(< a, critical > + @ < b, critical > @,
@ < a, critical > @ + # + < b, wait >) .

result Conf+: @ < a,critical > @ + @ < b,critical > @

Maude> red |(b-enter, a-enter) .
result Action: a-enter b-enter

The rule step2 simply executes a new action, in a non-concurrent manner
with respect to the previous ones.

The first term of the condition of the step rules rewrites the state by mim-
icking the transitions in MUTEX. First we define a rule to obtain the subterm
to which the rewrite rules of MUTEX will be applied.

crl [descend] : [C1 C2] => C1 +’ [C2] if C1 =/= none and C2 =/= none .

Remark. The sequence of rewrites t
α1→ t1

α2→ · · ·
αn→ tn corresponding to the

actions α1,. . . , αn is valid in MUTEX if and only if { t | BA | A | S } →
{ t1 | BA1 | alpha1 | S1 } → · · · → { tn | BAn | alphan | Sn } is a
valid sequence of rewrites in NEW-MUTEX, where S is the term representing the
decomposition of t into its tokens and processes.

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133 123

4 Defining VLRL formulae in LTL

Our goal for this section is, given an interpretation I of the observations, to
define a translation from action formulae to LTL such that a formula holds
in a state in VLRL under the given interpretation for a ground substitution
of variables if and only if the translated formula holds in the corresponding
state of the transformed system. We start by studying how to express the
atomic VLRL formulae as state predicates in LTL, and then consider how to
translate arbitrary formulae.

4.1 Defining propositions from observations

The idea is to have a state predicate for each possible atomic VLRL formulae,
that is, for each possible equation. For that we associate a supersort s∗ to
each sort s, represent each attribute of sort s as a constant of sort s∗, and
define an operator

op _=_ : s* s* -> Prop .

In the case of MUTEX we have

mod MUTEX-OBSERVED is
protecting NEW-MUTEX .

sort Bool*
subsort Bool < Bool* .

ops crit-a crit-b : -> Bool* .
op _=_ : Bool* Bool* -> Prop .

The given interpretation I for the attributes is extended homomorphically
to arbitrary terms as explained in Section 2.4 and we can assume, without
loss of generality, that this extension can be defined equationally through a
family of operators interp. The homomorphic extension of our distinguished
interpration I∗ for MUTEX is equationally defined as follows.

op interp : Conf Bool* -> Bool .
op critical : Conf Name -> Bool .

var C : Conf . vars B1 B2 : Bool* .
vars N M : Name . var R : Concur .
var O : Token . var A : Action .
var S : Conf+ .

eq critical(none, N) = false .
eq critical(< N, critical > C, N) = true .
eq critical(O C, N) = critical(C, N) .
ceq critical(< M, critical > C, N) = critical(C, N) if N =/= M .
eq critical(< M, wait > C, N) = critical(C, N) .

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133124

eq interp(C, crit-a) = critical(C, a) .
eq interp(C, crit-b) = critical(C, b) .
eq interp(C, true) = true .
eq interp(C, false) = false .
eq interp(C, not B1) = not interp(C, B1) .
eq interp(C, B1 or B2) = interp(C, B1) or interp(C, B2) .
eq interp(C, B1 and B2) = interp(C, B1) and interp(C, B2) .

Then, the semantics of the atomic VLRL formulae is defined in LTL by means
of

ceq ({ C | R | A | S } |= B1 = B2) = true
if interp(C, B1) = interp(C, B2) .

ceq ({ C | R | A | S } |= B1 = B2) = false
if interp(C, B1) =/= interp(C, B2) .

endm

With these definitions we clearly have, for all ground terms C of sort Conf,
and t and t’ ground terms of sort Bool*, that

C, I |=VLRL t = t’ ⇐⇒ { C | R | A | S } |=LTL t = t’

The next step is to extend the translation from atomic to arbitrary VLRL
formulae.

4.2 Defining action formulae in LTL

The most important difference between VLRL formulae and LTL formulae is
that the former carry within themselves information about the transition that
has to be applied. It was for this reason that we had to transform the original
system MUTEX, so that states store information about the actions taken. In
addition, now we define two predicates to recognize when such actions have
occurred: taken top(α), that will be true when the action α has taken place
at the top of the state, and taken(α), that will be true when the action α is
applied in some subterm of the term representing the state.

op taken-top : Action -> Prop .
op taken : Action -> Prop .

var C : Conf . var R : Concur .
var A : Action . var S : Conf+ .

eq { C | R | A | S } |= taken(A) = true .
ceq { C | R | A | S } |= taken-top(A) = true if top(S) .

We use an auxiliary operation that checks whether the transition has been
applied on top of the state. For this it is enough to check if all processes and
tokens of the state are marked.

op top : Conf+ -> Bool .

eq top(C) = false .

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133 125

eq top(@ C @) = true .
eq top(C + S) = false .
eq top(@ C @ + S) = top(S) .

Since actions may happen concurrently with other actions we need a state
predicate that expresses this fact. We define the concurrent predicate as
follows:

op concurrent : -> Prop .
eq { C | R | A | S } |= concurrent = R == concur .

By looking at the rules step1 and step2 it is clear that concurrent satisfies
the following:

Remark. A state of the form { C | R | A | S } satisfies the atomic propo-
sition concurrent if and only if the last action used to construct A has been
executed concurrently with the previous ones.

Now we are ready to express universal action formulae in LTL, for which
we will use the Next (©) and the Until (U) temporal operators. Intuitively,
[α]ϕ holds in a given state if after the action α is done the resulting state ful-
fills ϕ. Then, for non-concurrent actions the resulting LTL formula is simply
©(taken top(α) → ϕ). But arbitrary actions cannot be captured only with
the Next operator because it only considers one-step rewrites; they can be ex-
pressed in LTL by allowing several actions to be executed concurrently before
checking that the action of the formula has been taken. Thus, we translate
[α]ϕ as

© (concurrent U (taken top(α) ∧ ϕ)) ∨

© ((concurrent∧ ¬taken top(α)) U ¬concurrent) .

The first part states that ϕ must hold if action α is taken, while the second
one considers the case in which α does not take place. 4 The translation of
[[α]]ϕ is similar, but replacing taken top by taken:

© (concurrent U (taken(α) ∧ ϕ)) ∨

© ((concurrent∧ ¬taken(α)) U ¬concurrent)

Existential action properties are translated to universal properties by dual-
ity. Negation and implication in VLRL correspond to negation and implication
in LTL.

4 This translation is correct if there are no deadlocks in the system (which is the case for
MUTEX) because then it is not possible to apply actions concurrently in an indefinite manner
and ¬concurrent must eventually be true. In [9] it was proved that any system in rewriting
logic can be specified by a deadlock-free theory, so this is not a serious restriction.

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133126

5 Proving formulae with the model checker

To prove satisfaction of VLRL formulae in a state using the Maude model
checker, we define the following MUTEX-CHECK module that imports the trans-
formed theory with all the state predicates from a module MUTEX-SAT in which
taken and top are specified (see the appendix), and where we declare the ini-
tal state for the model checker. The initial state consists of two processes a

and b which are waiting, and a token $.

mod MUTEX-CHECK is
protecting MUTEX-SAT .
including MODEL-CHECKER .
op init : -> NewConf .

eq init = { < a , wait > < b , wait > $ | concur | * |
< a , wait > + < b , wait > + $ } .

endm

We can prove satisfaction of the VLRL property

[[a-enter]](crit-a = true ∨ crit-b = true) ,

stating that after performing the action a-enter there is a process in the
critical section. The VLRL property is expressed in LTL as

© (concurrent U taken(a-enter) ∧ (crit-a = true∨ crit-b = true)) ∨

© (concurrent∧ ¬taken(a-enter) U ¬concurrent) ,

and is reduced by the model checker to:

reduce in CHECK-MUTEX : modelCheck(init, O (concurrent U taken(a-enter) /\
(crit-a = true \/ crit-b = true)) \/ O (concurrent /\ ~ taken(a-enter)
U ~ concurrent)) .

rewrites: 250 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true

The VLRL property

〈〈a-enter〉〉¬(crit-a = true ∧ crit-b = true)

stating that it is possible to perform action a-enter and after performing it
there are not two processes in the critical section is expressed in LTL, using
duality, the formula

¬© (concurrent U (taken(a-enter) ∧ (crit-a = true ∧ crit-b = true)) ,

which can be checked with

reduce in CHECK-MUTEX : modelCheck(init, ~ O (concurrent U (crit-a = true
/\ crit-b = true) /\ taken(a-enter))) .

rewrites: 272 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true

Notice that it is easy to follow the sequence of rewrites of the first argument
of the transformed state to obtain a counterexample for the original VLRL
theory.

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133 127

Finally, the property
[a-enter b-enter] false

stating that process a and process b cannot enter the critical section concur-
rently is proved with

reduce in CHECK-MUTEX : modelCheck(init, O (concurrent U taken-top(a-enter
b-enter) /\ true = false) \/ O (concurrent /\ ~ taken-top(a-enter
b-enter) U ~ concurrent)) .

rewrites: 249 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true

Note that in this case the action is done at the top of the state.

6 Conclusions

In this paper we have presented a technique to prove VLRL action properties
using the Maude model checker; it can be viewed as a case study of the trans-
formation of general theories proposed by Meseguer [8] for studying fairness
in the framework of rewriting logic. First we transform the rewrite theory into
a new one in which the states carry information about the transitions used
and the context in which they have taken place. Then, VLRL properties are
studied in the transformed theory by translating VLRL formulae into equiva-
lent LTL formulae. This procedure has allowed us to check mechanically the
validity of formulae in VLRL for the first time and it will permit us to explore
in a deeper way the benefits of using the VLRL logic in the specification of
systems. An alternative that we also intend to explore in the future is the
development of a tool to deal directly with VLRL without the intermediate
translation to LTL.

The main problem with the use of model checking for proving VLRL for-
mulae is the size of the state space since the study of a single transition usually
gives rise to many different computation paths. This fact is reflected in our
transformed theory, for example, in the three possible rewrite sequences that
correspond to the transition explained in Section 3.1.

The presented procedure is general, in the sense that it can be adapted to
any system specified in rewriting logic. For a specification with a commutative
and associative structure like that in the MUTEX example the changes should
be minor, if any. For arbitrary theories the underlying idea is the same but
the construction is more involved. In particular, we have been able to use a
single sort Action (together with a supersort) to represent actions because
the rules in the system only involve terms of a single sort, Conf. But if there
were rules for more sorts then it would be necessary to have a pre-action sort
for each of them, and to modify the extension of the operators in the signature
to actions in a corresponding manner.

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133128

We are now working on the formalization of a general procedure for trans-
forming arbitrary theories. In particular, we have to check if Meseguer’s ideas
for treating rules with rewrites in their conditions can be applied to our case.
Besides, we are also working on translating spatial VLRL formulae to LTL
formulae, where spatial formulae are an extension of the formulae considered
here that allow to prove properties that happen in a concrete part of the state
and, in particular, to define properties of actions that happen concurrently in
different parts of it.

Acknowledgments

We would like to warmly thank José Meseguer for suggesting to us the
transformation of theories as a way to prove VLRL properties using the Maude
model checker, and Narciso Mart́ı-Oliet for interesting discussions on the sub-
ject and useful comments to a previous draft. The first author would also
like to thank the Computer Science Department of the University of Illinois
at Urbana-Champaign for financial support during a visit in which this work
was started.

References

[1] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. Maude
2.0 Manual. http://maude.cs.uiuc.edu, June 2003.

[2] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL Model Checker. In F.
Gadducci and U. Montanari, editors, Proceedings Fourth International Workshop on Rewriting
Logic and its Applications, WRLA 2002, Pisa, Italy, September 19–21, 2002, volume 71 of
Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

[3] J. L. Fiadeiro, T. Maibaum, N. Mart́ı-Oliet, J. Meseguer, and I. Pita. Towards a verification
logic for rewriting logic. In D. Bert, C. Choppy, and P. Mosses, editors, Recent Trends
in Algebraic Development Techniques, 14th International Workshop, WADT’99, Chateau de
Bonas, France, September 15–18, 1999, Selected Papers, volume 1827 of Lecture Notes in
Computer Science, pages 438–458. Springer-Verlag, 2000.

[4] R. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes 7, Center for the Study
of Language and Information, Stanford University, Second edition, 1992.

[5] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, 1992.

[6] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992.

[7] J. Meseguer. A logical theory of concurrent objects and its realization in the Maude language.
In G. Agha, P. Wegner, and A. Yonezawa, editors, Research Directions in Concurrent Object-
Oriented Programming, pages 314–390. The MIT Press, 1993.

[8] J. Meseguer. Lecture notes for CS376, University of Illinois at Urbana-Champaign.
http://www-courses.cs.uiuc.edu/~cs476/.

[9] J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational abstractions. In F. Baader, editor,
Automated Deduction - CADE-19. 19th International Conference on Automated Deduction
Miami Beach, FL, USA, July 28 - August 2, 2003, Proceedings, volume 2741 of Lecture Notes
in Computer Science, pages 2–16. Springer-Verlag, 2003.

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133 129

http://maude.cs.uiuc.edu
http://www-courses.cs.uiuc.edu/~cs476/

[10] I. Pita and N. Mart́ı-Oliet. Proving modal and temporal properties of rewriting logic programs.
In L. Moniz Pereira and P. Quaresma, editors, Proc. APPIA-GULP-PRODE 2001, Joint

Conference on Declarative Programming, Évora, Portugal, Universidade de Évora, pages 277–
295, September 2001.

[11] I. Pita. Técnicas de especificación formal de sistemas orientados a objetos basadas en lógica
de reescritura. PhD thesis, Facultad de Matemáticas, Universidad Complutense de Madrid,
March 2003.

A Maude code of the mutex example

mod NEW-MUTEX is
sorts Name Mode Proc Token Conf .
sorts Action Action+ .
sorts Concur .
sorts Conf+ Conf’ .
sort NewConf .
subsort Token Proc < Conf < Conf+ Conf’ .
subsort Action < Action+ .

op * : -> Action+ .
op none : -> Action .
ops a-enter b-enter a-exit b-exit : -> Action .
op __ : Action Action -> Action [assoc comm id: none] .

ops concur no-concur : -> Concur .

op none : -> Conf .
op __ : Conf Conf -> Conf [assoc comm id: none] .

ops a b : -> Name .
ops wait critical : -> Mode .
op <_,_> : Name Mode -> Proc .
ops $ # : -> Token .

op @_@ : Conf -> Conf+ .
op _+_ : Conf+ Conf+ -> Conf+ [assoc comm] .

op _._ : Conf+ Action -> Conf’ .
op [_] : Conf -> Conf’ .
op _+’_ : Conf’ Conf’ -> Conf’ [assoc comm] .

op !_ : Conf+ -> Conf .
op | : Conf+ Conf+ -> Conf+ .
op _&_ : Conf+ Conf+ -> Bool .
op red : Conf -> Conf+ .

op | : Action Action+ -> Action .

op {_|_|_|_} : Conf Concur Action+ Conf+ -> NewConf .

vars S S’ : Conf+ .
vars C C1 C2 C3 : Conf .

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133130

vars A A1 A2 : Action .
var A+ : Action+ .
var R : Concur .
var T : Token .
var P : Proc .

eq (S . A) +’ C = ((S + red(C)) . A) .

eq ! C = C .
eq ! @ C @ = C .
eq ! (C + S) = C ! S .
eq ! (@ C @ + S) = C ! S .

eq red(none) = none .
eq red(T) = T .
eq red(P) = P .
ceq red(C1 C2) = red(C1) + red(C2) if C1 =/= none /\ C2 =/= none .

op _not-marked-in_ : Conf Conf+ -> Bool .

eq C1 not-marked-in C2 = true .
eq C not-marked-in @ C @ = false .
ceq C1 not-marked-in @ C2 @ = true if C1 =/= C2 .
eq C1 not-marked-in (C2 + S) = C1 not-marked-in S .
eq C not-marked-in @ C @ + S = false .
ceq C1 not-marked-in (@ C2 @ + S) = C1 not-marked-in S if C1 =/= C2 .

eq |(C, C) = C .
ceq |(C, C + S) = C if C not-marked-in S .
eq |(C , @ C @) = @ C @ .
eq |(C, @ C @ + S) = @ C @ .

eq |(@ C @, S) = @ C @ .

ceq |(C + S, C + S’) = C + |(S, S’) if C not-marked-in S’ .
eq |(C + S, @ C @ + S’) = @ C @ + |(S, S’) .
eq |(@ C @ + S, S’) = @ C @ + |(S, S’) .

eq S & C = true .
eq S & @ C @ = C not-marked-in S .

ceq (C + S) & (C + S’) = S & S’ if C not-marked-in S’ .
ceq S & (C + S’) = S & S’ if not (C not-marked-in S) .

eq (C + S) & @ C @ + S’ = S & S’ .
ceq S & @ C @ + S’ = false if not (C not-marked-in S) .

eq |(A, *) = A .
eq |(A1, A2) = (A1 A2) .

crl [descend] : [C1 C2] => C1 +’ [C2] if C1 =/= none and C2 =/= none .

rl [a-enter] : [$ < a , wait >] => (@ < a , critical > @ . a-enter) .

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133 131

rl [b-enter] : [# < b , wait >] => (@ < b , critical > @ . b-enter) .
rl [a-exit] : [< a , critical >] =>

((@ < a , wait > @ + @ # @) . a-exit) .
rl [b-exit] : [< b , critical >] =>

((@ < b , wait > @ + @ $ @) . b-exit) .
crl [step1] : { C | R | A+ | S } =>

{! S’ | concur | (|(A, A+)) | (|(S’, S)) }
if [C] => (S’ . A) /\ (S’ & S) .

crl [step2] : { C | R | A+ | S } =>
{! S’ | no-concur | A | S’ }
if [C] => (S’ . A) .

endm

mod MUTEX-OBSERVED is
including SATISFACTION .
protecting NEW-MUTEX .

sort Bool* .
subsort Bool < Bool* .

subsort NewConf < State .

ops crit-a crit-b : -> Bool* .
op critical? : Conf Name -> Bool .
op interp : Conf Bool* -> Bool .
op _=_ : Bool* Bool* -> Prop .

var C : Conf .
vars N M : Name .
var O : Token .
var S : Conf+ .
vars B1 B2 : Bool* .
var R : Concur .
var A : Action .

eq critical?(none, N) = false .
eq critical?(< N, critical > C, N) = true .
eq critical?(O C, N) = critical?(C, N) .
ceq critical?(< M, critical > C, N) = critical?(C, N) if N =/= M .
eq critical?(< M, wait > C, N) = critical?(C, N) .

eq interp(C, crit-a) = critical?(C, a) .
eq interp(C, crit-b) = critical?(C, b) .
eq interp(C, not B1) = not interp(C, B1) .
eq interp(C, B1 or B2) = interp(C, B1) or interp(C, B2) .
eq interp(C, B1 and B2) = interp(C, B1) and interp(C, B2) .
eq interp(C, true) = true .
eq interp(C, false) = false .

ceq ({C | R | A | S } |= B1 = B2) = true if interp(C, B1) = interp(C, B2) .
ceq ({C | R | A | S } |= B1 = B2) = false if interp(C, B1) =/= interp(C, B2) .

endm

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133132

mod MUTEX-SAT is
protecting MUTEX-OBSERVED .

op taken : Action -> Prop [ctor] .
op taken-top : Action -> Prop [ctor] .
op concurrent : -> Prop .

op top : Conf+ -> Bool .

var C : Conf .
vars A A’ : Action .
var S : Conf+ .
var N : Name .
var R : Concur .

eq {C | R | A | S } |= taken(A’) = A == A’ .
ceq {C | R | A | S } |= taken-top(A) = true if top(S) .
eq {C | R | A | S } |= concurrent = R == concur .

eq top(C) = false .
eq top(@ C @) = true .
eq top(C + S) = false .
eq top(@ C @ + S) = top(S) .

endm

mod CHECK-MUTEX is
protecting MUTEX-SAT .
including MODEL-CHECKER .
op init : -> NewConf .

eq init = { < a , wait > < b , wait > $ | concur | * |
< a , wait > + < b , wait > + $ } .

endm

M. Palomino, I. Pita / Electronic Notes in Theoretical Computer Science 117 (2005) 113–133 133

	Introduction
	Overview of VLRL
	Verification signature
	A simple mutual exclusion example
	Actions
	Action modalities

	Adding actions and contexts to a state
	The new states
	The new sorts
	The new rules

	Defining VLRL formulae in LTL
	Defining propositions from observations
	Defining action formulae in LTL

	Proving formulae with the model checker
	Conclusions
	References
	Maude code of the mutex example

