
Electronic Notes in Theoretical Computer Science 36 (2000)
URL: http://www.elsevier.nl/locate/entcs/volume36.html 22 pages

The Leader Election Protocol of IEEE 1394 in
Maude ?

Alberto Verdejo, Isabel Pita, and Narciso Mart́ı-Oliet

Dpto. de Sistemas Informáticos y Programación
Universidad Complutense de Madrid. Spain
{alberto,ipandreu,narciso}@sip.ucm.es

Abstract

In this paper we consider two descriptions in Maude of the leader election protocol
from the IEEE 1394 serial multimedia bus. Particularly, the time aspects of the pro-
tocol are studied. The descriptions are first validated by an exhaustive exploration
of all the possible behaviors and states reachable from an initial configuration of a
network, checking that always only one leader is chosen. As a final step for proving
the correctness of the protocol we give a formal proof showing that the desirable
properties of the protocol are always fulfilled.

1 Introduction

Rewriting logic [11,12] and Maude [3,4] have emerged as an excellent frame-
work where communication protocols can be specified and analyzed [6,7].

Denker, Meseguer, and Talcott present in [7] a formal methodology for
specifying and analyzing communication protocols. It is arranged as a se-
quence of increasingly stronger methods, including:

(i) Formal specification, in order to obtain a formal model of the system, in
which ambiguities are clarified.

(ii) Execution of the specification, for simulation and debugging purposes,
leading to better versions of the specification.

(iii) Formal model-checking analysis, in order to find errors by considering all
possible behaviors of highly distributed and nondeterministic systems.

(iv) Narrowing analysis, in which all behaviors from the possibly infinite set
of states described by a symbolic expression are analyzed.

? Research supported by CICYT project Desarrollo Formal de Sistemas Distribuidos
(TIC97–0669–C03–01).

c©2000 Published by Elsevier Science B. V.

Verdejo, Pita, and Mart́i-Oliet

(v) Formal Proof, where the correctness of critical properties is verified by
using a formal technique.

In this paper we use methods (i)–(iii) to specify and analyze two descrip-
tions of the leader election protocol of IEEE 1394 serial multimedia bus (the
“FireWire”), and we use method (v) to verify them.

Although formal methods were not used in the development of the 1394
standard, various aspects of the system have been described elsewhere us-
ing a variety of different techniques, including I/O automata [8], µCRL [16],
and E-LOTOS [17]. Thus this example is becoming something of a bench-
mark for formal methods [10]. We show how Maude, a high-level language
and high-performance system supporting both equational and rewriting logic
computation, can also be used as a formal specification language. We use the
object-oriented specification style of Maude [3], which allows formalization of
both synchronous and asynchronous concurrent object systems.

2 Informal overview of the protocol

The serial multimedia bus IEEE 1394 [9] connects together systems and de-
vices in order to carry all forms of digitized video and audio quickly, reliably,
and inexpensively. Its architecture is scalable, and it is “hot-pluggable,” so
a designer or user can add or subtract systems and peripherals easily at any
time. The IEEE 1394 as a whole is complex, comprising of several different
subprotocols, each concerned with different tasks (e.g. data transfer between
nodes in the network, bus arbitration, leader election). The standard is de-
scribed in layers, in the style of OSI (Open Systems Interconnection), and
each layer is split into different phases [9]. In this paper only the tree identify
phase (leader election) of the physical layer is described.

Informally, the tree identify phase of IEEE 1394 is a leader election protocol
taking place after a bus reset in the network (i.e. when a node is added to,
or removed from, the network). Immediately after a bus reset all nodes in
the network have equal status, and know only to which other nodes they are
connected. A leader (root) must be elected to serve as the bus manager for
the other phases of the IEEE 1394. Figure 1(a) shows the initial state of a
possible network. Connections between nodes are indicated by solid lines. The
protocol is only successful if the original network is connected and acyclic.

Each node carries out a series of negotiations with its neighbors in or-
der to establish the direction of the parent-child relationship between them.
More specifically, if a node has n connections then it receives “be my parent”
requests from all, or all but one, of its connections.

Assuming n or n−1 requests have been made, the node then moves into an
acknowledgement phase, where it sends acknowledgements “you are my child”
to all the nodes which sent “be my parent” in the previous phase. When all
acknowledgements have been sent, either the node has n children and therefore

2

Verdejo, Pita, and Mart́i-Oliet

b

e

g

f

c

d

a

b

e

g

f

c

d

a

b

e

g

f

c

d

a

b

e

g

f

c

d

a

(d)

(a)

(c)

parent?

(b)

parent?

Fig. 1. Network Configurations during the Leader Election Protocol

is the root node, or the node sends a “be my parent” request on the so far
unused connection and awaits an acknowledgement from the parent. Leaf
nodes skip the initial receive requests phase and move straight to this point;
they have only one connection therefore it must be their parent. Figure 1(b)
shows the instant when nodes d, f and g have their parent already decided
(solid connections with arrows pointing to the parent), and node b is asking
node c to be its parent (the queried relationship is shown by a dotted line).

Communication between nodes is asynchronous; therefore it is possible
that two nodes might simultaneously request each other to be its parent, lead-
ing to root contention (each wants the other to be the root, see Figure 1(c)).
To resolve root contention, each node selects a random Boolean. The value
of the Boolean specifies a long or short wait before resending the “be my par-
ent” request. This may lead to contention again, but fairness guarantees that
eventually one node will become the root.

When all negotiations are concluded, the node which has established that
it is the parent of all its connected nodes must be the root node of a spanning
tree of the network. See Figure 1(d) in which node c is the root node.

3 Synchronous communication description

We begin with a simple description of the protocol, without time consider-
ations, where communication between nodes is assumed to be synchronous,
i.e. a message is sent and received simultaneously, therefore there is no need
for acknowledgements, and contention cannot arise. The reader can find a
description of how object-oriented specifications are written in Maude in [3].

In the IEEE 1394 we have nodes and communications between nodes.
These relate naturally to objects and messages. In this first description, nodes
are represented by objects of class Node with the following attributes:

3

Verdejo, Pita, and Mart́i-Oliet

• neig : SetIden, the set of identifiers of the neighbor nodes which this node
has not yet communicated with. This is initialized to the set of all nodes
(object identifiers) connected to this node and decreases with every “be my
parent” request until it is either empty (and this node is the root) or it has
one element (which is the parent of this node); and

• done : Bool, a flag which is set when the tree identify phase of the protocol
has finished for this node, because it has been elected as the root node or
because it already knows which is its parent.

Since communication is synchronous in this first description, we do not
need messages to represent the “be my parent” requests or the acknowledge-
ments. However, we add a “leader” message which is sent by the elected leader
to indicate that a leader has been chosen. This provides us with a means of
checking the requirement that a single leader is eventually elected (Section 5).

The following module introduces identifiers and sets of identifiers.

(fmod IDENTIFIERS is protecting QID .
sorts Iden SetIden . subsorts Qid < Iden < SetIden .
op empty : -> SetIden .
op __ : SetIden SetIden -> SetIden [assoc comm id: empty] .

endfm)

The object-oriented module describing the protocol starts declaring the
node identifiers as valid object identifiers, the class Node with its attributes,
and the message leader:

(omod FIREWIRE-SYNC is protecting IDENTIFIERS .
subsort Iden < Oid .
class Node | neig : SetIden, done : Bool .
msg leader_ : Iden -> Msg .

Now we have to describe the node’s behavior by means of rewrite rules.
The first rule describes how a node J, which has only one identifier I in its
attribute neig, sends a “be my parent” request to the node I, and how node
I receives the request and removes J from its set of communications still to
make; node J also finishes the identify phase by setting the attribute done.

vars I J : Iden . var NEs : SetIden .
rl [rec] :

< I : Node | neig : J NEs, done : false >
< J : Node | neig : I, done : false >

=> < I : Node | neig : NEs > < J : Node | done : true > .

Note that nondeterminism arises when there are two connected nodes with
only one identifier in their attribute neig. Any of them can act as the sender.

The other rule needed states when a node is elected as the leader.

rl [leader] :
< I : Node | neig : empty, done : false >

=> < I : Node | done : true > (leader I) .
endom)

4

Verdejo, Pita, and Mart́i-Oliet

4 Timed, asynchronous communication description

The previous description is very simple, but is not an accurate depiction of
events in the real protocol, where messages are sent along wires of variable
length, and therefore message passing is asynchronous and subject to delay.
Since the communication is asynchronous, the acknowledgement messages are
needed, and a particular problem arises when two nodes might simultaneously
request each other to be its parent, leading to root contention. Using only the
asynchronous explicit communication via messages of Maude leads us to a
description of the protocol which does not work as expected, in the sense that
there is the possibility that the root contention phase and the receive “be
my parent” requests phase alternate forever. Hence the timing aspects of the
protocol cannot be ignored, and in the root contention phase nodes have to
wait a short or long (randomly chosen) time period before resending the “be
my parent” requests.

Before showing this new, timed description, we briefly summarize the ideas
developed in [14,15] by Ölveczky and Meseguer about how to introduce time in
rewriting logic and Maude, and particularly in an object-oriented specification.
A more technical example, from which some ideas have also been borrowed,
is presented in [13].

4.1 Time in rewriting logic and Maude

A real-time rewrite theory is a rewrite theory with a sort Time that represents
the time values, and which fulfills several properties, like being a commutative
monoid (Time, +, 0) with additional operations ≤, <, and −. (“monus”). We
use the module TIMEDOMAIN to represent the time values, with a sort Time

whose values are the natural numbers, and which is a subsort of the sort
TimeInf, which in addition contains the constant INF representing ∞.

Rules are divided into tick rules, that model the elapse of time on a system,
and instantaneous rules, that model changes in (part of) the system and are
assumed to take zero time. To ensure that time advances uniformly in all the
parts of a state, we need a new sort ClockedSystem, with a free constructor
{_|_} : State Time -> ClockedSystem. In the term { s | t }, s denotes
the global state and t denotes the total time elapsed in a computation if in the
initial state the clock had value 0. Uniform time elapse is then ensured if every
tick rule is of the form { s | t } −→ { s′ | t + τ }, where τ denotes the
duration of the rule. These rules are called global rules because they rewrite
terms of sort ClockedSystem. Other rules are called local rules, because they
do not act on the system as a whole, but only on some system components.
Having local rules allows parallelism because they can be applied to differ-
ent parts of the system at the same time. Local rules are always viewed as
instantaneous rules that take zero time.

In general, it must also be ensured that time does not advance if instanta-
neous actions have to be performed. Although in many cases it is possible to

5

Verdejo, Pita, and Mart́i-Oliet

add conditions on the tick rules such that time will not elapse if some time-
critical rule is enabled (and this is our case here, as explained below), a general
approach is to divide the rules in a real-time rewrite theory into eager and lazy
rules, and use internal strategies to restrict the possible rewrites by requiring
that the application of eager rules takes precedence over the application of
lazy rules (see Section 5.1).

In [15] it is also explained how these ideas can be applied to object-oriented
systems. In that case, the global state will be a term of sort Configuration,
and since it has a rich structure, it is both natural and necessary to have an
explicit operation δ denoting the effect of time elapse on the whole state. In
this way, the operation δ will be defined for each possible element in a configu-
ration of objects and messages, describing the effect of time on this particular
element, and there will be equations, as shown below, which distribute the
effect of time to the whole system. In this case, tick rules should be of the
form { s | t } −→ { δ(s, τ) | t + τ }.

An operation mte giving the maximum time elapse permissible to ensure
timeliness of time-critical actions, and defined separately for each object and
message, is also useful, as we will see below. The following general module
declares these operations, and how they distribute over the elements (none is
the empty configuration):

(omod TIMEDOOSYSTEM is protecting TIMEDOMAIN .
sorts State ClockedSystem . subsort Configuration < State .
op ‘{_|_‘} : State Time -> ClockedSystem .
op delta : Configuration Time -> Configuration .
vars CF CF’ : Configuration . var T : Time .
eq delta(none, T) = none .
ceq delta(CF CF’, T) = delta(CF, T) delta(CF’, T)

if CF =/= none and CF’ =/= none .
op mte : Configuration -> TimeInf .
eq mte(none) = INF .
ceq mte(CF CF’) = min(mte(CF), mte(CF’))

if CF =/= none and CF’ =/= none .
endom)

4.2 Second description of the protocol

In this second description each node passes through different phases (as ex-
plained in Section 2) which are declared in the following module:

(fmod PHASES is sort Phase .
ops rec ack waitParent contention self : -> Phase .

endfm)

When a node is in the rec phase, it is receiving “be my parent” requests
from its neighbors. In the ack phase, the node sends acknowledgements “you
are my child” to all the nodes which sent “be my parent” in the previous
phase. In the waitParent phase, the node waits for the acknowledgement
from its parent. In the contention phase, the node waits a long or short time

6

Verdejo, Pita, and Mart́i-Oliet

before resending the “be my parent” request. A node is in the self phase
when it has been elected as the leader, or it has received the acknowledgement
from its parent.

The attributes of the class Node, defined in module FIREWIRE-ASYNC ex-
tending TIMEDOOSYSTEM, are now the following:

class Node | neig : SetIden, children : SetIden,
phase : Phase, rootConDelay : DefTime .

The children attribute represents the set of children to be acknowledged;
phase represents the phase in which the node is; and rootConDelay is an
alarm used in the root contention phase. The sort DefTime extends Time with
a new constant noTimeValue used when the clock is disabled.

sort DefTime . subsort Time < DefTime .
op noTimeValue : -> DefTime .

Besides the leader message, we introduce two new messages which have as
arguments the sender, the receiver, and the time needed to reach the receiver:

msg from_to_be‘my‘parent‘with‘delay_ : Iden Iden Time -> Msg .
msg from_to_acknowledgement‘with‘delay_ : Iden Iden Time -> Msg .

For example, the message from I to J be my parent with delay T de-
notes that a “be my parent” request has been sent from node I to node J,
and it will reach J in T units of time. A message with delay 0 is urgent, in the
sense that it has to be attended by the receiver before time elapses. The mte

operation will ensure that this requirement is fulfilled, as we will see below.

The first rule 1 states that a node I in the rec phase, and with more than
one neighbor, can receive a “be my parent” request with delay 0 from its
neighbor J. The identifier J is stored in the children attribute:

vars I J K : Iden . vars NEs CHs : SetIden .
crl [rec] : (from J to I be my parent with delay 0)

< I : Node | neig : J NEs, children : CHs, phase : rec >
=> < I : Node | neig : NEs, children : J CHs > if NEs =/= empty .

When a node is in the rec phase and there is only one connection unused,
it may pass to the next phase, ack, or it can receive the last request before
going into this phase:

rl [recN-1] :
< I : Node | neig : J, children : CHs, phase : rec >

=> < I : Node | phase : ack > .

rl [recLeader] :
(from J to I be my parent with delay 0)
< I : Node | neig : J, children : CHs, phase : rec >

=> < I : Node | neig : empty, children : J CHs, phase : ack > .

1 Although for the sake of simplicity we present here local rules rewriting terms of sort
Configuration, in fact in the full specification we use global rules that rewrite terms of
sort ClockedSystem. This is done in order to avoid, basically, problems with function mte
which has Configuration as an argument sort.

7

Verdejo, Pita, and Mart́i-Oliet

In the acknowledgement phase the node sends acknowledgements “you are
my child” to all the nodes which previously sent “be my parent” requests:

rl [ack] :
< I : Node | children : J CHs, phase : ack >

=> < I : Node | children : CHs >
(from I to J acknowledgement with delay timeLink(I,J)) .

The operation timeLink : Iden Iden -> Time represents a table with
the time values denoting the delays between nodes.

When all acknowledgements have been sent, either the node has the set
neig empty and therefore is the root node, or it sends a “be my parent”
request on the so far unused connection and awaits an acknowledgement from
the parent. Note that leaf nodes skip the initial receive requests phase and
move straight to this point.

rl [ackLeader] :
< I : Node | neig : empty, children : empty, phase : ack >

=> < I : Node | phase : self > (leader I) .

rl [ackParent] :
< I : Node | neig : J, children : empty, phase : ack >

=> < I : Node | phase : waitParent >
(from I to J be my parent with delay timeLink(I,J)) .

rl [wait1] :
(from J to I acknowledgement with delay 0)
< I : Node | neig : J, phase : waitParent >

=> < I : Node | phase : self > .

If a parent request has been sent, then the node waits for an acknowledge-
ment. If a parent request arrives instead, then the node and the originating
node of the parent request are in contention for leader.

In the IEEE 1394 standard, contention is resolved by choosing a random
Boolean b and waiting for a short or long time depending on b before sampling
the relevant port to check for a “be my parent” request from the other node.
If the request is there then this node should agree to be the root and send an
acknowledgement to the other. If the message is not present, then this node
will resend its own “be my parent” request.

In our representation, a random Boolean is chosen (by means of the value
N in the random number generator RAN) and a wait time selected. If a “be my
parent” request arrives during that time then the wait aborts and the request
is dealt with. If the wait time expires then the node resends “be my parent.”

rl [wait2] :
(from J to I be my parent with delay 0)
< I : Node | neig : J, phase : waitParent >
< RAN : RandomNGen | seed : N >

=> < I : Node | phase : contention,
rootConDelay : if (N % 2 == 0) then ROOT-CONT-FAST

else ROOT-CONT-SLOW fi >
< RAN : RandomNGen | seed : random(N) > .

8

Verdejo, Pita, and Mart́i-Oliet

rl [contenReceive] :
(from J to I be my parent with delay 0)
< I : Node | neig : J, phase : contention >

=> < I : Node | neig : empty, children : J, phase : ack,
rootConDelay : noTimeValue > .

rl [contenSend] :
< I : Node | neig : J, phase : contention, rootConDelay : 0 >

=> < I : Node | phase : waitParent, rootConDelay : noTimeValue >
(from I to J be my parent with delay timeLink(I,J)) .

Objects of class RandomNGen are random number generators. The class
declaration and the random operation are as follows:

class RandomNGen | seed : MachineInt .
op random : MachineInt -> MachineInt . *** next random number
var N : MachineInt .
eq random(N) = ((104 * N) + 7921) % 10609 .

We have to define now how time affects objects and messages, that is,
we have to define the delta operation denoting the effect of time elapse on
objects and messages, and also which is the maximum time elapse allowed (to
ensure timeliness of time-critical actions) by an object or message:

vars T T’ : Time . var DT : DefTime .
eq delta(< I : Node | rootConDelay : DT >, T) =
if DT == noTimeValue then < I : Node | >
else < I : Node | rootConDelay : DT monus T > fi .

eq delta(< RAN : RandomNGen | >, T) = < RAN : RandomNGen | > .
eq delta(leader I, T) = leader I .
eq delta(from I to J be my parent with delay T, T’) =

from I to J be my parent with delay (T monus T’) .
eq delta(from I to J acknowledgement with delay T, T’) =

from I to J acknowledgement with delay (T monus T’) .

eq mte(< I : Node | neig : J K NEs, phase : rec >) = INF .
eq mte(< I : Node | neig : J, phase : rec >) = 0 .
eq mte(< I : Node | phase : ack >) = 0 .
eq mte(< I : Node | phase : waitParent >) = INF .
eq mte(< I : Node | phase : contention, rootConDelay : T >) = T .
eq mte(< I : Node | phase : self >) = INF .
eq mte(< RAN : RandomNGen | >) = INF .
eq mte(from I to J be my parent with delay T) = T .
eq mte(from I to J acknowledgement with delay T) = T .
eq mte(leader I) = INF .

The tick rule that lets time pass if there is no rule that can be applied
immediately is as follows:

var C : Configuration .
crl [tick] : { C | T } => { delta(C, mte(C)) | T plus mte(C) }

if mte(C) =/= INF and mte(C) =/= 0 .

Due to our definition of the operation mte, this rule can only be applied
when no other rules are enabled.

9

Verdejo, Pita, and Mart́i-Oliet

4.3 An Example

The descriptions of the protocol are executable on the Maude system. We
can take advantage of this fact in order to get confidence on the correctness
of the protocol. First, we define a configuration denoting the initial state of
the network in Figure 1, using the timed description.

(omod EXAMPLE is protecting FIREWIRE-ASYNC .
op network7 : -> Configuration .
op dftATTRS : -> AttributeSet .
eq dftATTRS = children : empty, phase : rec,

rootConDelay : noTimeValue .
eq network7 = < ’Random : RandomNGen | seed : 13 >

< ’a : Node | neig : ’c, dftATTRS >
< ’b : Node | neig : ’c ’d, dftATTRS >
< ’c : Node | neig : ’a ’b ’e, dftATTRS >
< ’d : Node | neig : ’b, dftATTRS >
< ’e : Node | neig : ’c ’f ’g, dftATTRS >
< ’f : Node | neig : ’e, dftATTRS >
< ’g : Node | neig : ’e, dftATTRS > .

eq timeLink(’a,’c) = 7 . eq timeLink(’c,’a) = 7 .
eq timeLink(’b,’c) = 7 . eq timeLink(’c,’b) = 7 .
eq timeLink(’b,’d) = 10 . eq timeLink(’d,’b) = 10 .
eq timeLink(’c,’e) = 20 . eq timeLink(’e,’c) = 20 .
eq timeLink(’e,’f) = 8 . eq timeLink(’f,’e) = 8 .
eq timeLink(’e,’g) = 10 . eq timeLink(’g,’e) = 10 .

endom)

We can ask the Maude system to rewrite the initial configuration by using
its default strategy:

Maude> (rew { network7 | 0 } .)
result ClockedSystem : { leader ’c
< ’e : Node | neig : ’c, restATTRS > < ’d : Node | neig : ’b, restATTRS >
< ’a : Node | neig : ’c, restATTRS > < ’f : Node | neig : ’e, restATTRS >
< ’b : Node | neig : ’c, restATTRS > < ’g : Node | neig : ’e, restATTRS >
< ’c : Node | neig : empty, restATTRS >
< ’Random : RandomNGen | seed : 9655 > | 920 }

where, in order to make the term presentation more readable, we have substi-
tuted by hand the attributes which are the same for all nodes, as follows:

restATTRS = children : empty, phase : self, rootConDelay : noTimeValue

5 Model-checking analysis

There are two desirable properties that this protocol has to fulfill: A single
leader is chosen (safety), and a leader is eventually chosen (liveness).

We show in this section how the reflective capabilities of rewriting logic
and Maude [2,3] can be used to show that the specifications of the protocol
work in the expected way when applied to a concrete network. This is done
by checking that these two properties are fulfilled at the end of the protocol
in all possible behaviors of the protocol starting with the initial configuration

10

Verdejo, Pita, and Mart́i-Oliet

representing the concrete network.

5.1 Search strategy

We validate our specifications by making an exhaustive exploration of all pos-
sible behaviors in the tree of possible rewritings of a term representing the
initial state of the network. In this tree we search for all the irreducible terms
and observe that in all irreducible, reachable terms only one leader message
exists. The depth-first search strategy is based on the work in [1,5]. The
module implementing the search strategy is parameterized with respect to a
constant equal to the metarepresentation of the Maude module which we want
to work with. Hence, we define a parameter theory with a constant MOD rep-
resenting the module, and a constant labels representing the list of labels of
rewrite rules to be applied:

(fth AMODULE is including META-LEVEL .
op MOD : -> Module .
op labels : -> QidList .

endfth)

The module containing the strategy, extending META-LEVEL, is then the pa-
rameterized module SEARCH[M :: AMODULE]. The strategy controls the possi-
ble rewritings of a term by means of the metalevel function meta-apply. The
operation meta-apply returns one of the possible one-step rewritings at the
top level of a given term. We first define an operation allRew that returns
all the possible one-step sequential rewritings [11] of a given term T by using
rewrite rules with labels in the list labels.

The operations needed to find all the possible rewritings are as follows:

op allRew : Term QidList -> TermList .
op topRew : Term Qid MachineInt -> TermList .
op lowerRew : Term Qid -> TermList .
var T : Term . var L : Qid . var LS : QidList .
eq allRew(T, nil) = ~ .
eq allRew(T, L LS) = topRew(T, L, 0), *** rew. at the top of T

lowerRew(T, L), *** rew. of (proper) subterms
allRew(T, LS) . *** rew. with labels LS

Now we can define an operation allSol to search in the (conceptual) tree
of all possible rewritings of a term T for irreducible terms, that is, terms that
cannot be rewritten anymore.

sort TermSet . subsort Term < TermSet .
op ‘{‘} : -> TermSet .
op _U_ : TermSet TermSet -> TermSet [assoc comm id: {}] .
eq T U T = T .
op allSol : Term -> TermSet .
op allSolDepth : TermList -> TermSet .
var TL : TermList .
eq allSol(T) = allSolDepth(meta-reduce(MOD,T)) .
eq allSolDepth(~) = {} .

11

Verdejo, Pita, and Mart́i-Oliet

eq allSolDepth(T) =
if allRew(T, labels) == ~ then T
else allSolDepth(allRew(T, labels)) fi .

eq allSolDepth((T, TL)) =
if allRew(T, labels) == ~ then (T U allSolDepth(TL))
else allSolDepth((allRew(T, labels), TL)) fi .

Before looking at an example, we consider two possible modifications of
this strategy. First, let us consider that we have separated the protocol rules
into eager and lazy rules (as commented in Section 4.1). We can modify the
allSolDepth operation to ensure that eager rules are applied first, and that
lazy rules are applied only when there is no eager rule enabled.

eq allSolDepth(T) =
if allRew(T, eagerLabels) == ~ then
(if allRew(T, lazyLabels) == ~ then T
else allSolDepth(allRew(T, lazyLabels)) fi)

else allSolDepth(allRew(T, eagerLabels)) fi .
eq allSolDepth((T, TL)) =

if allRew(T, eagerLabels) == ~ then
(if allRew(T, lazyLabels) == ~ then (T U allSolDepth(TL))
else allSolDepth((allRew(T, lazyLabels), TL)) fi)

else allSolDepth((allRew(T, eagerLabels), TL)) fi .

Secondly, the strategy can also be modified in order to keep, for each term
T, the rewrite steps which have been done to reach T from the initial term.
This is useful if an error is found when validating the protocol; in this case,
the path leading to the error configuration shows a counterexample of the
correctness of the protocol (see [6]).

5.2 Example

We show now how the strategy is used to prove that the timed description
of the protocol always works well, in all possible behaviors, when applied to
the concrete network in module EXAMPLE. In order to instantiate the generic
module SEARCH, we need the metarepresentation of module EXAMPLE. We use
the Full Maude function up to obtain the metarepresentation of a module or
a term [3].

(mod META-FIREWIRE is including META-LEVEL .
op METAFW : -> Module . eq METAFW = up(EXAMPLE) .

endm)

We declare a view and instantiate the generic module SEARCH with it.

(view ModuleFW from AMODULE to META-FIREWIRE is
op MOD to METAFW .
op labels to (’rec ’recN-1 ’recLeader ’ack ’ackLeader ’ackParent

’wait1 ’wait2 ’contenReceive ’contenSend ’tick) .
endv)
(mod SEARCH-FW is

protecting SEARCH[ModuleFW] .
endm)

12

Verdejo, Pita, and Mart́i-Oliet

Now we can test the example. Since, in this case, only one solution is
found (modulo idempotency) we can use the down operation (which is in a
sense inverse to up) in order to display the output in a more readable form.
The Maude result is as follows:

Maude> (down EXAMPLE : red allSol(up(EXAMPLE, { network7 | 0 })) .)
result ClockedSystem : { leader ’c
< ’e : Node | neig : ’c, restATTRS > < ’d : Node | neig : ’b, restATTRS >
< ’a : Node | neig : ’c, restATTRS > < ’f : Node | neig : ’e, restATTRS >
< ’b : Node | neig : ’c, restATTRS > < ’g : Node | neig : ’e, restATTRS >
< ’c : Node | neig : empty, restATTRS >
< ’Random : RandomNGen | seed : 9655 > | 920 }

We observe that only one leader has been elected, and that the reached
configuration is the one in Figure 1(d). We have also played with other net-
works, where several configurations can be reached, but all of them have only
one leader chosen.

6 Formal proof

The desirable properties for this protocol are that a single leader is chosen,
and that this leader is eventually chosen, as said in Section 5. To prove them,
we make available attributes for making observations of a configuration of
the system. Then we observe the changes made by the rewrite rules in the
configurations until the leader is chosen.

6.1 Verification of synchronous description

For the synchronous case, we define the following observation attribute:

• nodes is a set of pairs 〈A; S〉 where A is a network node identifier and S is
the set of nodes such that B ∈ S if < A : Node | neig : B NEs, done

: false > and < B : Node | done : false >.

If we take the second component of each pair 〈A; S〉 to be the adjacency
list of the node represented in the first component, then nodes represents a
network (directed graph).

We assume that the network is initially correct, in the sense that the set
nodes is symmetric (that is, the links are bidirectional), connected, and acyclic.
We have checked that if these conditions are fulfilled initially, then they are
always fulfilled.

The desirable properties of the protocol are derived by induction from the
following:

1. If there are at least two pairs in nodes then the rule rec can be applied.
We know that if |nodes| ≥ 2 then ∃ A,B.< A ; B > in nodes, because
nodes is connected and acyclic. Since the network is symmetric, we know
∃ NEs.< B ; A NEs > in nodes. Thus, the rule rec can be applied.

13

Verdejo, Pita, and Mart́i-Oliet

2. The nodes cardinality always decreases in one unity when a rule is applied.
The proof is straightforward from the rules that model the system.

3. If there is only one pair in nodes, its set of neighbors is empty, < A ;

empty >. This is because nodes is symmetric.

4. There may be at most one element in nodes such that its second field is
empty. This is because nodes is connected.

6.2 Verification of timed asynchronous description

The method above is extended in order to prove the correctness of the timed
description. The main idea is to have different attributes for the set of nodes
in each phase and look for sets of nodes that are symmetric, connected, and
acyclic. We will prove that if the sets are not empty then some actions can
take place, and the number of elements in the sets decreases until all sets are
empty.

Given a configuration of objects and messages, we consider the following
observation attributes defined by sets of pairs:

RecN : < A ; B NEs CHs > in RecN , N > 0 ≡
< A : Node | neig : B NEs, children : CHs, phase : rec >,

where N is the number of node identifiers in the node’s attribute neig.

AckC : < A ; B CHs> in AckC , C > 0 ≡
< A : Node | neig : B, children : CHs, phase : ack > ∨
< A : Node | neig : empty, children : B CHs, phase : ack >

where C is the number of node identifiers in the node’s attribute children.

Ack0 : < A ; B > in Ack0 ≡
< A : Node | neig : B, children : empty, phase : ack >

< A ; empty > in Ack0 ≡
< A : Node | neig : empty, children : empty, phase : ack >

Wait : < A ; B > in Wait ≡ < A : Node | neig : B, phase : waitParent >

and there is no message from B to A acknowledgement with delay T

in the system.

ContentionT : < A ; B > in ContentionT ≡
< A : Node | neig : B, phase : contention, rootConDelay : T >

where T is the value of the rootConDelay attribute.

The sets are disjoint, since a node cannot be in two phases at the same
time.

6.2.1 Network properties

Now, the set Nodes is defined by:

Nodes =
⋃
N

RecN ∪
⋃
C

AckC ∪
⋃
T

ContentionT ∪Wait

14

Verdejo, Pita, and Mart́i-Oliet

There are not two pairs in Nodes with the same first component; then,
if we take the second component of each pair to be the adjacency list of the
node represented in the first component, Nodes represents a network (directed
graph), and initially Nodes =

⋃
N RecN , because the other subsets are empty.

The pair < A ; empty > represents a network with only one node.

If
⋃

N RecN represents, at the beginning, a symmetric, connected and
acyclic network, then Nodes represents always a symmetric, connected and
acyclic network.

Nodes is symmetric. If Nodes represents a symmetric network, in the sense
that, if we have a link between nodes A and B then we also have a link
between nodes B and A, then it will always represent a symmetric network.
To prove it, it is checked that when we apply a rewrite rule, either a pair is
removed from one subset, but it is added to another one, or both < A ; B

NEs CHs> and < B ; A NEs’ CHs’> are removed from Nodes, or both are
added to it.

Nodes is connected. We prove that, if Nodes represents at the beginning a
connected network, it will always represent a connected network, by check-
ing that when a pair is removed from the set Nodes, it is of the form < A ;

B > or < A ; empty > and this means that it represents a leaf of the net-
work, that is, it is connected to at most one other node. Then, by removing
only leaves, the network is still connected. States in which pairs have been
removed from Nodes are reached applying one of the following rewrite rules:
• ackLeader. Looking at the lefthand side of the rule, it is required that

the node is in phase ack and the neig and children attributes are both
empty, therefore, the pair that represents the observation attribute is like
< A ; empty >.

• ack. When this rule is applied the message from A to B acknowledgement

with delay T is added to the system, then the pair < B ; A > is removed
from the set Nodes since it should be in the subset Wait. If this rule is
applied, it is because B is in the children attribute of A, and this means
that a “be my parent” request was previously sent from B to A. Then,
node B has been in phase waitParent, and it must still be in this phase,
since no other acknowledgement message could be in the system. Thus,
when ack is applied, we stop observing node B, because we are sure that
rule wait1 will be applied and node B will reach phase self.

Nodes has no cycles. If Nodes represents at the beginning an acyclic net-
work, it will always represent an acyclic network. Since none of the rewrite
rules introduces new pairs in Nodes and since at the beginning it is acyclic,
then cycles cannot be created.

6.2.2 Safety properties

Informally speaking, we prove that a single leader is chosen by proving that if
a rewrite rule is applied in the system, at most one node is removed from the

15

Verdejo, Pita, and Mart́i-Oliet

network represented by the set Nodes. Then if the algorithm finishes, that is,
if the set Nodes becomes empty, at the end the network represented by Nodes
will have only one node that will be represented by a pair of the form < A ;

empty >. Then the rule ackLeader can be applied and a leader is declared.
There cannot be more than one leader, since the network is connected.

If the set Nodes becomes empty there should be a leader. Two rules
remove pairs from Nodes :
• ack. If we observe the state reached when we apply this rule, we have

removed a node identifier B from the second component of a pair < A ;

B CHs >, and a pair of the form < B ; A >. In the network represented
by Nodes this means that we have removed node B from the network.

• ackLeader. If we observe the state reached when we apply this rule, we
have removed a pair of the form < A ; empty > from the set Nodes, and
this means that we have removed node A from the network.

In both cases we remove only one node from the network represented by
Nodes each time we apply a rewrite rule. Since Nodes becomes empty, at
the end the network should have only one node which is of the form < A ;

empty >. Then we can apply rule ackLeader and a leader is chosen.

There is only one leader. Since the network represented by Nodes is al-
ways connected, there can only be a pair of the form < A ; empty > in
Nodes if the network has only one node. Since we do not add nodes to the
network, we can only have one leader.

6.2.3 Liveness properties

Informally speaking, we prove that if there are pairs in Nodes then we can
apply some rewrite rule in the system, and if we apply a rule, some positive
number that depends on the pairs in Nodes decreases, and becomes zero when
there are no more pairs in Nodes. Then Nodes should become empty, which
means that the algorithm has finished. The contention phase presents some
problems, since the function does not decrease sometimes when the rules that
treat the contention are applied. In this part we prove termination using the
assumption that we are in a fair system and contention cannot occur forever.

Property 1: If there are pairs in Nodes then, there is at least one
rule that can be applied in the system.

Since the network represented by the pairs in Nodes is acyclic then either
the network has only one node, or the network has at least one leaf, that is,
there is a pair of the form < A ; B CHs > in Nodes with B the only value in
the neig attribute of node A. In the first case we can apply rule ackLeader.
In the second case, and since the network is symmetric, there is < B ; A NEs

CHs’ > in Nodes. Table 1 shows the rewrite rules that can be applied for each
pair of nodes. When the second pair is not present, it means that it does not
matter the subset in which the pair is. In the cases the rewrite rule is tick,
we mean that this rule can be applied if there is no other eager rule that can

16

Verdejo, Pita, and Mart́i-Oliet

First pair Second pair Rewrite rule

< A ; B CHs > ∈ Rec1 recN-1

< A ; B CHs > ∈ AckC ack

< A ; B > ∈ Ack0 ackParent

< A ; B > ∈ Wait < B ; A NEs CHs > ∈ RecN rec

A to B be my parent delay 0

< B ; A NEs CHs > ∈ RecN tick

A to B be my parent delay T

< B ; A CHs > ∈ Rec1 recN-1

< B ; A CHs > ∈ AckN ack

< B ; A CHs > ∈ Ack0 ackParent

< B ; A CHs > ∈ Wait wait2

A to B be my parent delay 0

< B ; A CHs > ∈ Wait tick

A to B be my parent delay T

< B ; A CHs > ∈ Wait wait2

B to A be my parent delay 0

< B ; A CHs > ∈ Wait tick

B to A be my parent delay T

< B ; A CHs > ∈ ContentionT tick

< B ; A CHs > ∈ Contention0 contenSend

< A ; B > ∈ ContentionT tick

< A ; B > ∈ Contention0 contenSend

Table 1
Rules that can be applied in the system

be applied.

Property 2: A node can only come into the contention phase a finite
number of times.

Now we prove that in a fair system, and assuming that

ROOT-CONT-FAST� max{I,J}(timeLink(I,J))(1)
ROOT-CONT-SLOW� max{I,J}(timeLink(I,J))(2)
ROOT-CONT-FAST− ROOT-CONT-SLOW� max{I,J}(timeLink(I,J))(3)

a node cannot be forever changing between the contention and waitParent

phases by applying rules wait2 and contenSend; equivalently, the rewrite rule
contenReceive will be applied.

We mean by fairness that all the rewrite rules that can be applied will be
applied, and that the random number generator produces even and odd num-

17

Verdejo, Pita, and Mart́i-Oliet

A contention
B contention

RA

A waitParent
B contention
from A to B delay T1

T1

A waitParent
B ack

Fig. 2. Contention possibilities RA < RB

A contention
B contention

RA

A waitParent
B contention
from A to B delay T1

RB

A waitParent
B waitParent
from A to B delay T1
from B to A delay T2

T2

A contention
B waitParent
from A to B delay T1

Fig. 3. Contention possibilities RA = RB

bers and therefore the rootConDelay attribute of a node in the contention

phase can be either ROOT-CONT-FAST or ROOT-CONT-SLOW. Equations 1, 2 and
3 express that both constants are much greater than the maximum link delay
between the nodes, and that their difference is also much greater [9].

The configurations we can have when the contention takes places are the
following ones:

1. Both nodes are in phase contention. Then,
• If RA < RB, where RA is the rootConDelay constant selected by node
A, RA occurs and, by means of the contenSend rule, A goes into the
waitParent phase and a message from A to B be my parent with

delay T1 is sent. Then by assumption 3, T1 occurs before RB and this
message reaches node B when it is still in phase contention. Then
node B will go into phase ack by means of the contenReceive rule.
This situation corresponds to Figure 2.

• If RB < RA, the situation is similar to the previous one, and node A

will go into phase ack.
• If RA = RB, then RA and RB occur simultaneously, and the system

will apply the contenSend rule to both nodes before the time of the
“be my parent” message of the first node that applies the contenSend

rule has been consumed. This means that both nodes will go into the
waitParent phase and the two messages from A to B be my parent

with delay T1 and from B to A be my parent with delay T2 will
be in the system. Now if T1 < T2 node A will go into the contention
phase and we are in the initial situation again. If T2 < T1, node B goes
into the contention phase, and the situation is symmetric to the initial
one. See Figure 3.

In this case, we apply that we are in a fair system and the constants
selected by A and B will be in some moment different and then we will
not have this case forever.

2. Node A is in phase contention, node B is in phase waitParent, and there
is a message from A to B be my parent with delay T1 in the system.
Then, by assumptions 1 and 2, T1 occurs before RA, and by means of the
wait2 rule B goes into the contention phase, and we are in case 1.

18

Verdejo, Pita, and Mart́i-Oliet

3. Node A is in phase waitParent, node B is in phase contention, and there
is a message from B to A be my parent with delay T2 in the system.
This situation is symmetric to case 2.

4. Both nodes are in the waitParent phase, and there are two messages from
A to B be my parent with delay T1 and from B to A be my parent

with delay T2 in the system. Then, by assumptions 1 and 2, both T1

and T2 occur before any of the RA and RB can take place. This means
that both A and B go into the contention phase, and we are in the first
case.

If a node goes out of the contention phase by means of the contenReceive
rule it will not go back to the contention phase since it will be in the ack

phase with no neighbors. Then, the only rules that can be applied to it are
first ack, and then ackLeader.

Property 3: Application of rules decreases f(Configuration).

Let N be the total number of nodes in the network and T the maximum
delay of the timeLink table. We define:

rec(I) =

 5 ∗N ∗ T ∗ n if < I ; NEs > ∈ Recn

0 otherwise

ack(I) =

 4 ∗ T ∗ (n + 1) if < I ; J CHs > ∈ Ackn

0 otherwise

wait(I) =

 1 if < I ; J > ∈ Wait

0 otherwise

nm(C) = number of messages with time in configuration C

times(C) = sum of times in messages in configuration C

Consider the function

f(C) =
(∑

I∈Node

rec(I) + ack(I) + wait(I)
)

+ nm(C) + times(C) .

We show in Table 2 the value of the function f in a configuration and the
value of the function after we have applied a rewrite rule in the system. All
the values are relative, in the sense that they only represent the value of the
substate that changes when the rewrite rule is applied. We observe that in all
cases the value of the function decreases.

Rules contenReceive and contenSend are not represented in the table
because they do not decrease the value of the function, but on the contrary,
they increase it. This does not matter since we have proved above that these
rules cannot be applied forever for a pair of nodes, and that if two nodes solve
their contention they will not have another contention.

Since f(C) ≥ 0 and it decreases when we apply the rewrite rules, then,
although it can be increased by a finite quantity, we conclude that we cannot

19

Verdejo, Pita, and Mart́i-Oliet

Before the rule Rule After the rule

5 ∗N ∗ T ∗ n rec 5 ∗N ∗ T ∗ (n− 1)− 1

5 ∗N ∗ T recN-1 4 ∗ T ∗ (n + 1) ≤ 4 ∗ T ∗N

5 ∗N ∗ T recLeader 4 ∗ T ∗ (n + 1)− 1 < 4 ∗ T ∗N

4 ∗ T ∗ (n + 1) ack ≤ 4 ∗ T ∗ n + T + 1

4 ∗ T ackLeader 0

4 ∗ T ackParent ≤ 2 + T

1 wait1 0

2 wait2 0

f(C) tick f(C)− mte(C) ∗ nm(C)

Table 2
Values of function f

apply rewrite rules forever in the system.

6.2.4 Total correctness

Since we cannot apply rules forever in the system (Property 3) , the set Nodes
should become empty (Property 1), and if this set becomes empty there should
be one and only one leader (Section 6.2.2).

7 Conclusion

We have shown how rewriting logic and Maude can be used to specify and ana-
lyze at different abstract levels a communication protocol such as the FireWire
leader election protocol. We have also shown how the timing aspects of the
protocol can be modeled in an easy and structured way in rewriting logic, by
means of operations that define the effect of time elapse and rewrite rules that
let time pass.

We have written and validated a third description of the protocol, where
two new timing considerations are dealt with. The IEEE 1394 establishes that
when the time limit CONFIG_TIMEOUT is reached before all but one of the “be
my parent” requests have been made, this indicates that the network contains
a cycle, therefore it is not possible to configure the network as a tree, and an
error should be reported. On the other hand, setting a node’s FORCE_ROOT

parameter is intended to alter the basic pattern of communication by delaying
the transition from the first phase (receiving “be my parent” requests) to the
acknowledgement phase; in this way there is a higher probability that the
node receives requests on all its connections, thus ensuring that it becomes

20

Verdejo, Pita, and Mart́i-Oliet

the root of the tree. These timing considerations are handled by means of two
new attributes which represent alarms that are decreased when time elapses.

We see this work as another contribution to the research area of specifi-
cation and analysis of several kinds of communication protocols in Maude, as
described in [6,7], as well as to the development of the formal methodology
that we have summarized in the introduction. As far as we know, this paper
describes the first examples where the strongest method of formal proof has
been applied to a protocol in the context of Maude programs. In our opinion,
it is necessary to have more examples in order to consolidate this methodol-
ogy, and to develop tools that can help in the simulation and analysis of such
examples.

Acknowledgement

We are very grateful to Carron Shankland for discussions about the leader
election protocol, and in particular its time aspects. We also thank Peter
Ölveczky for suggestions about how to introduce time in our specifications.

References

[1] R. Bruni, J. Meseguer, and U. Montanari. Internal strategies in a rewriting
implementation of tile systems. In C. Kirchner and H. Kirchner, editors, Proc.
2nd Intl. Workshop on Rewriting Logic and its Applications, Pont-à-Mousson,
Nancy, France, volume 15 of Electronic Notes in Theoretical Computer Science.
Elsevier, 1998. http://www.elsevier.nl/locate/entcs/volume15.html.

[2] M. Clavel. Reflection in General Logics and in Rewriting Logic with
Applications to the Maude Language. PhD thesis, Universidad de Navarra,
1998.

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
J. Quesada. Maude: Specification and Programming in Rewriting Logic. SRI
International, Jan. 1999, revised Aug. 1999. http://maude.csl.sri.com.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
J. Quesada. A Maude Tutorial. SRI International, Mar. 2000. http://maude.
csl.sri.com.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and J. Quesada. Using Maude. In T. Maibaum, editor, Proc. Third Int.
Conf. Fundamental Approaches to Software Engineering, FASE 2000, Berlin,
Germany, March/April 2000, LNCS 1783, pages 371–374. Springer, 2000.

[6] G. Denker, J. Meseguer, and C. Talcott. Protocol specification and analysis
in Maude. In N. Heintze and J. Wing, editors, Proc. of Workshop on Formal
Methods and Security Protocols, 25 June 1998, Indianapolis, Indiana, 1998.
http://www.cs.bell-labs.com/who/nch/fmsp/index.html.

21

http://www.elsevier.nl/locate/entcs/volume15.html
http://maude.csl.sri.com
http://maude.csl.sri.com
http://maude.csl.sri.com
http://www.cs.bell-labs.com/who/nch/fmsp/index.html

Verdejo, Pita, and Mart́i-Oliet

[7] G. Denker, J. Meseguer, and C. Talcott. Formal specification and analysis of
active networks and communication protocols: The Maude experience. In Proc.
DARPA Information Survivability Conference and Exposition DICEX 2000,
Vol. 1, Hilton Head, South Carolina, January 2000, pages 251–265. IEEE, 2000.

[8] M. Devillers, W. Griffioen, J. Romijn, and F. Vaandrager. Verification of a
leader election protocol — formal methods applied to IEEE 1394. Technical
Report CSI-R9728, Computing Science Institute, University of Nijmegen, 1997.

[9] Institute of Electrical and Electronics Engineers. IEEE Standard for a High
Performance Serial Bus. Std 1394-1995, Aug. 1995.

[10] S. Maharaj and C. Shankland. A survey of formal methods applied to IEEE
1394. In Proc. of the Joint Workshop on Formal Specification of Computer
Based Systems, Edinburgh April 2000, 2000.

[11] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96:73–155, 1992.

[12] J. Meseguer. Research directions in rewriting logic. In U. Berger and
H. Schwichtenberg, editors, Computational Logic, NATO Advanced Study
Institute, Marktoberdorf, Germany, July 29 – August 6, 1997, NATO ASI Series
F: Computer and Systems Sciences 165, pages 347–398. Springer, 1998.

[13] P. Ölveczky. Specifying and analyzing the AER/NCA active networks protocols
in Maude, 2000. http://www.csl.sri.com/~peter/AER/AER.html.

[14] P. Ölveczky and J. Meseguer. Specifying real-time systems in rewriting logic.
In J. Meseguer, editor, Proc. 1st Intl. Workshop on Rewriting Logic and
its Applications, Asilomar, California, U.S.A, volume 4 of Electronic Notes
in Theoretical Computer Science, pages 65–89. Elsevier, Sept. 1996. http:
//www.elsevier.nl/locate/entcs/volume4.html.

[15] P. Ölveczky and J. Meseguer. Specification of real-time and hybrid systems in
rewriting logic. Manuscript, submitted for publication, SRI International, 1999.

[16] C. Shankland and M. van der Zwaag. The Tree Identify Protocol of IEEE 1394
in µCRL. Formal Aspects of Computing, 10:509–531, 1998.

[17] C. Shankland and A. Verdejo. Time, E-LOTOS, and the FireWire. In
Formal Methods and Telecommunications (FM&T’99), pages 103–119. Prensas
Universitarias de Zaragoza, Sept. 1999.

22

http://www.csl.sri.com/~peter/AER/AER.html
http://www.elsevier.nl/locate/entcs/volume4.html
http://www.elsevier.nl/locate/entcs/volume4.html

	Introduction
	Informal overview of the protocol
	Synchronous communication description
	Timed, asynchronous communication description
	Time in rewriting logic and Maude
	Second description of the protocol
	An Example

	Model-checking analysis
	Search strategy
	Example

	Formal proof
	Verification of synchronous description
	Verification of timed asynchronous description

	Conclusion
	Acknowledgement
	References

