
Executing E-LOTOS processes in Maude

Alberto Verdejo Narciso Mart́ı-Oliet

alberto@sip.ucm.es narciso@sip.ucm.es

Dpto. Sistemas Informáticos y Programación

Universidad Complutense de Madrid. Spain

Abstract

Rewriting logic can be used as a semantic framework where the formal structural oper-
ational semantics of specification languages as E-LOTOS can be described in a easy way.
E-LOTOS has been developed within ISO for the formal specification of open distributed
concurrent systems in general. Its formal semantics has been already defined, but tools need
to be developed in order to show the features of the language, and to check the correctness
of the specifications. By using the rewriting logic language Maude, not only the E-LOTOS
semantic rules can be described, but they can be executed. Furthermore, due to the rewriting
logic reflective capabilities, properties about the E-LOTOS specifications can be proved in the
same framework. For example, both an E-LOTOS protocol specification and the tool that
checks it by exploring all its behaviours can be implemented by using the Maude language.
This approach has been successfully applied to the Milner’s toy language CCS, defining its
semantics and verifying processes written in that language. The same ideas are being extended
to a bigger language such as E-LOTOS.

Introduction

Rewriting logic was introduced in [5] as a unified model of concurrency in which several well known
models of concurrent systems were represented in a common framework. This goal was further
extended in [4] to the idea of rewriting logic as a logical and semantic framework. It was shown
that many other logics, widely different in nature, can be represented inside rewriting logic in a
natural and direct way. The general way in which such representations are achieved is by:

• Representing formulas or, more generally, proof-theoretic structures such as sequents, as
terms in an order-sorted equational data type whose equations express structural axioms
natural to the logic in question.

• Representing the rules of deduction of a logic as rewrite rules that transform certain patterns
of formulas into other patterns modulo the given structural axioms.

Similar techniques can be used to naturally specify and prototype many languages and systems
in rewriting logic. In particular, the similarities between rewriting logic and structural operational
semantics were noted in [5] and further explored in [4]. As an illustrative example, the paper [4]
completely develops a representation of Milner’s CCS [7] in rewriting logic, extending ideas first
introduced in [6].

We claim that these techniques can be applied to a bigger language such as E-LOTOS [8].
E-LOTOS has been developed within ISO for the formal specification of open distributed con-
current systems in general. Its formal semantics has been already defined, but tools need to

1

be developed in order to show the features of the language, and to check the correctness of the
specifications.

By using the rewriting logic language Maude [2], a high-performance language and system
supporting both equational and rewriting logic computation, not only the E-LOTOS semantic
rules can be described, but they can be executed. Furthermore, due to the rewriting logic reflective
capabilities, properties about the E-LOTOS specifications can be proved in the same framework.
For example, both an E-LOTOS protocol specification and the tool that checks it by exploring all
its behaviours can be implemented by using the Maude language.

The general idea, as stated in [4], for implementing in rewriting logic an operational semantics
as the one defined for E-LOTOS is to translate each semantic rule into a rewriting rule where the
premises are rewritten to the conclusion, or into a rewriting rule where the conclusion is rewritten
to the premises. We follow the second approach because we want to be able to prove in a bottom-up
way that a given transition is valid in E-LOTOS .

We need operations to build the different judgements in the E-LOTOS semantics. For example,

for the judgement B
G(RN)

−−−−−−−→ B
′, defining an E-LOTOS transition in its dynamic operational

semantics, we have the operator

op _--_->_ : Process Act Process -> Judgement .

We deal with sets of judgements, so that a semantic rule is represented as a rewriting rule
where the unitary set consisting of the judgement representing the conclusion is rewritten to the
set consisting of the judgements representing the premises. For example,

rl [sel] : E |- B1 [] B2 -- G(RN) -> B1’

=> ----------------------------------

E |- B1 -- G(RN) -> B1’ .

In particular, in the representation of an axiom the conclusion is rewritten to the empty set of
judgements. Thus, a transition is possible in the structural operational semantics of E-LOTOS if
and only if the judgement representing it can be rewritten to the empty set of judgements.

However, we found two problems while working with this approach in the current version of
Maude. The first one is that sometimes new variables appear in the premises which are not in the
conclusion, such as NEW1:

rl [stasem] : (C |- P := E ==> exit < RT >)

=> ---

(C |- E ==> exit < $ 1 => ?(NEW1)T >)

(C |- (P =>PM ?(NEW1)T) -> < RT >) .

Rewriting rules with new variables in the righthand side cannot be directly used by the current
Maude system.

The second problem is that sometimes several rules can be applied to rewrite a judgement. For
example, in the case of the selection operator, in addition to the previous rule, we also have the
following one with an equivalent lefthand side

rl [sel] : E |- B1 [] B2 -- G(RN) -> B2’

=> ----------------------------------

E |- B2 -- G(RN) -> B2’ .

In general, not all of these possibilities are successful, so we have to deal with the whole tree
of possible rewritings of a judgement, searching if one of the branches leads to the empty set of
judgements.

2

In the following sections, we sketch how these problems can be solved in the current version
of the Maude system by using its implementation of the reflective capabilities of rewriting logic,
which allow to represent rewriting logic inside itself [3], and in particular to control the rewriting
process.

Definition of E-LOTOS semantics in Maude

The problem of new variables in the righthand side of a rewriting rule is solved by using the concept
of explicit metavariables presented in [9]. New variables in the righthand side of a rewriting rule
represent “unknown” values when we are rewriting. By using metavariables we make explicit this
lack of knowledge. The semantics with explicit metavariables has to bind them to concrete values
when these values are known, and these bindings have to be propagated to other judgements. We
will have different kinds of metavariables, one for each element of E-LOTOS which is represented
by a new variable in a premise of a semantic rule. For example, we have metavariables for actions
and an operator to represent bindings between a metavariable and its current value:

op ‘[_:=_‘] : MetaVarAct Act -> MetaBinding .

These metabindings have to reach all the judgements, so we introduce an operation to enclose
the set of judgements, and a rule to propagate a binding

op {{_}} : JudgementSet -> Configuration .

var JS : JudgementSet .

rl [bind] : {{ [?A := A] JS }} => {{ <act ?A := A > JS }} .

We need new metavariables each time a rewriting rule is applied. This is achieved by building
metavariables with an operator as follows

op ?‘(_‘)A : Qid -> MetaVarAct .

Rewriting has to be controlled by a strategy that instantiates the metavariables with a new (quoted)
identifier each time one of the rules is applied, in order to build new metavariables. The strategy
presented in the next section does this besides implementing the search in the tree of possible
rewritings.

Making the semantics executable

In this section we show how the reflective properties of Maude [3] can be used to control the
rewriting of a term, and the search in the tree of possible rewritings of a term. The depth-first
strategy is based on the work in [1], although modified to deal with the substitution of metavariables
explained in the previous section.

The search strategy is parameterized with respect to a constant MOD equal to the metarepre-
sentation of the Maude module which we want to work with. Since we are defining a strategy
to search a tree of possible rewritings, we need a notion of search goal. For the strategy to be
general enough, we assume that the metarepresented module MOD has an operation ok (defined at
the object level), which returns a value of sort Answer such that

• ok(T) = solution means that the term T is one of the terms we are looking for, that is, T
denotes a solution;

• ok(T) = no-solution means that the term T is not a solution and no solution can be found
below T in the search tree;

3

• ok(T) = maybe-sol means that T is not a solution, but we do not know if there are solutions
below it.

The strategy controls by means of the operation meta-apply the possible rewritings of a term.
meta-apply returns one of the possible rewritings at the top level of a given term. Our first step
is to define an operation allRew that returns all the possible one-step sequential rewritings [5] of
a given term by using rewriting rules with a given label. Since meta-apply only applies rules at
the top level of a term, but we need also rewrite at the subterms (or arguments) of the given term,
we use operations to get an argument of a term, and to replace an argument by all the possible
rewritings of this argument. meta-apply has to be used with a substitution that assigns new
identifiers to the new variables in the righthand side of the rewriting rule being applied. Hence,
allRew receives the greatest number used to substitute variables in T and uses it to create new
identifiers.

Then, we can define a strategy to search in the tree of all possible rewritings of a term T a term
that satisfies the predicate ok. Each node of the search tree is a pair whose first component is a
term and whose second component is a number representing the greatest number used as identifier
for new variables in the process of rewriting the term.

Finally, following the ideas given in [2] to build strategy expressions, we define the operations

sorts Strategy StrategyExpression .

op idle : -> Strategy .

op rewWith : Term Strategy -> StrategyExpression .

op failure : -> StrategyExpression .

op depth : Qid -> Strategy .

in such a way that rewWith(T, depth(L)) means that term T has to be rewritten using rules with
label L, exploring all the possibilities in a depth-first way until a solution is found. The search is
defined by using another operation rewWithDF

op rewWithDF : PairSequence TermSet Qid -> StrategyExpression .

eq rewWith(T, depth(L)) = rewWithDF(< T, 0 >, emptySet, L) .

which receives a sequence of pairs containing the terms that have not yet been checked, a set of
already visited terms, and the label of the rules to be used. When there is no solution in the
tree of rewritings of term T, it returns the strategy expression failure. If there are solutions
then rewWith(T’,idle) is returned, where T’ is the first solution found in a depth-first way. The
definition is as follows:

eq rewWithDF(nilPairSeq, TSe, L) = failure .

eq rewWithDF(seqPair(< T , N >, PL), TSe, L) =

if isIn(T, TSe) then rewWithDF(PL, TSe, L)

else (if meta-reduce(MOD, ’ok[T]) == {’solution}’Answer then rewWith(T, idle)

else (if meta-reduce(MOD, ’ok[T]) == {’no-solution}’Answer then

rewWithDF(PL, set(T, TSe), L)

else rewWithDF(seqPair(buildPairs(allRew(T, L, N), (N + 3)),

PL), set(T, TSe), L)

fi)

fi)

fi .

How to obtain information about a process from its semantics

By using the search strategy instantiated with the representation of the Maude module defining

the E-LOTOS semantics, we can find out if a given transition B
G(RN)

−−−−−−−→ B
′ is possible or not.

4

We can also take advantage of the metavariables, in order to obtain more information about
the E-LOTOS processes, such as the actions that a process can perform or the successors of
a process after performing an action. If we look for all the possible rewritings of the term
B -- G(RN) -> ?(’proc)P which lead to an empty set of judgements, each one of these rewritings

will bind metavariable ?(’proc)Pwith the representation of a process B’ such that B
G(RN)

−−−−−−−→ B
′.

In order to do that we have to keep the metabindings produced. When a metabinding is produced
and it is propagated, it has to be saved in a local memory of produced metabindings,

rl [bind] : {{ [?P := P] JS | JS’ }} =>

{{ (<proc ?P := P > JS) | [?P := P] JS’ }} .

When {{emptyJudgementSet | JS’}} is reached, JS’ will contain all the produced metabind-
ings. In particular, ?(’proc)P will be bound with a sucessor of B.

We also have to modify the strategy in order to get all the solutions, that is, to explore the
whole tree of rewritings finding all the nodes that satisfy function ok.

Conclusion

We have sketched how the E-LOTOS structural operational semantics can be described in a frame-
work where it can be executed, in such a way that we can prove whether a semantic judgement,
such as a transition, is possible. Moreover, thanks to the use of metavariables, we can obtain
information about the E-LOTOS processes, such as the actions that a process can perform or the
successors of a process after performing an action.

This is still work in progress in the sense that all the techniques have been developed and
successfully applied to Milner’s CCS, and we are still in the process of writing all the semantic
rules for E-LOTOS in Maude. However, we do not anticipate any new problems.

References

[1] R. Bruni. Tile Logic for Synchronized Rewriting of Concurrent Systems. PhD thesis, Dipartimento di
Informatica, Università di Pisa, 1999.

[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and José Quesada. Maude:

Specification and Programming in Rewriting Logic. SRI International, March 1999. http://maude.

csl.sri.com.

[3] M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic. In J. Meseguer, editor,
Proc. First Intl. Workshop on Rewriting Logic and its Applications, volume 4 of Electronic Notes in

Theoretical Computer Science. Elsevier, 1996. http://www1.elsevier.nl/mcs/tcs/pc/volume4.htm.

[4] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic framework. Technical Report
SRI-CSL-93-05, SRI International, Computer Science Laboratory, August 1993.

[5] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer

Science, 96:73–155, 1992.

[6] José Meseguer, Kokichi Futatsugi, and Timothy Winkler. Using rewriting logic to specify, program,
integrate, and reuse open concurrent systems of cooperating agents. In Proc. Int. Symposium on New

Models for Software Architecture, Tokyo, Japan, November 1992, pages 61–106. Research Institute of
Software Engineering, 1992.

[7] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[8] Juan Quemada, editor. Final committee draft on Enhancements to LOTOS. ISO/IEC
JTC1/SC21/WG7 Project 1.21.20.2.3., May 1998.

[9] M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic. In Proc. of LFM’99: Workshop

on Logical Frameworks and Meta-Languages, Paris, France, September 1999.

5

