
Using Rewriting Logic to implement

FULL

[Extended Abstract]

J. Bryans1, A. Verdejo2 and C. Shankland1

1Department of Computing Science and Mathematics,
University of Stirling, Stirling, FK9 4LA, UK

email: {jwb, ces}@cs.stir.ac.uk

2Universidad Complutense de Madrid, 28040 Madrid, Spain
email: alberto@sip.ucm.es

1 Introduction

A common problem of automated tools for Formal Methods is their difficulty in
dealing with infinite systems. Such systems may arise through the use of infinite
data types. For example, in the LOTOS [6] formal description technique the simple
process g?x : Nat; exit results in an infinite choice, one for each member of Nat.
Rewriting logic [7] is a possible approach to dealing with such systems.

Rewriting logic is a logic of becoming or change that can naturally deal with
state and with highly nondeterministic concurrent computations. It can be used
as a semantic framework for a wide range of languages and models of concurrency.
Maude [4] is an executable specification language based on rewriting logic and sup-
porting both equational and rewriting logic computation. Maude can be used as a
metalanguage [3] in which executable environments for different logics, languages,
and models of computation are created. Maude has powerful metaprogramming ca-
pabilities, with which the user can define strategies to guide the deduction process.

We present here work on the use of rewriting logic and Maude to implement a
model checker for the modal logic FULL [1]. FULL is used to describe properties
over data and processes, and is verified with respect to symbolic transition systems
(STS).

2 Symbolic Transition Systems and FULL

Symbolic Transition Systems are essentially transition systems whose transitions
can have free variables in the data label and are additionally labelled with a transi-
tion condition representing the conditions under which that transition is available.
This approach was first introduced by Hennessy and Lin [5] who gave a symbolic
semantics for value passing CCS.

Basically, an STS is a directed graph whose nodes are tagged with sets of free
variables, and whose branches are labelled with a boolean condition and an event.
For example, g?x : Nat[x > 5];P x > 5 gx- P is the transition from the process
“g?x : Nat[x > 5] then P” via action gx, where g is a gate name and x is a symbolic
value, with condition x > 5 to the process “P”. This transition may not be taken
if the condition is not satisfied. When reasoning about processes we simply collect
such conditions and pass them to a separate verification system for the data type.

1

Although Symbolic Transition Systems can be used independently, our work
has been focused on using them to give a new finitely branching semantics [2] for
LOTOS. LOTOS is a popular process description language that has been used in a
variety of applications. The language includes a rich set of operators for describing
both process control and data, which may in turn affect control. However, much
of the foundational work, and subsequently the verification tools, has ignored all,
or parts, of the data aspect of the language because of the problem of infinite
branching.

A set of rules presented in [2] define how a symbolic transition system may be
constructed from a LOTOS process expression. The resulting transition system
is typically a cyclic graph (if recursive processes are involved) and is always of
finite width (since only a finite number of branches may be described in a LOTOS
process).

In order to describe properties of both the actions and the data in symbolic
transition systems we developed a modal logic called Full LOTOS Logic (FULL)
Earlier work [1] describes the logic in more detail; here we give an overview.

FULL is based on HML as presented in [8]. The usual modal operators 〈 〉 and []
have been supplemented by quantifiers over data. For example, 〈∃x g〉Φ expresses
that there is some action gv such that Φ with v substituted for x holds subsequently.
The value v may be a specific value in the transition system, or another symbolic
one. The other operators are [∃x g], 〈∀x g〉 and [∀x g]. These express different path
computations through the STS.

3 Implementation of STSs and FULL using Maude

Following the ideas presented in [9] we have been working on representing the LO-
TOS symbolic semantics and the FULL logic in Maude.

Symbolic transitions are represented as terms of sort Transition, and the se-
mantic rules are translated into rewrite rules where the conclusion is rewritten to
the premisses. In this way, we start with a transition to be proved valid and work
backwards using the rewriting process, maintaining a set of transitions that have to
be fulfilled in order to prove the correctness of the first transition. This transition
can be rewritten to the empty set if and only if it is a valid transition in the LOTOS
symbolic semantics.

Examples of semantic rules and its translation as rewrite rules are

a;P tt a- P

rl [sym] :

A ; P -- ?b -- ?a --> ?P

=> --------------------------------

[?b := true]

[?a := A]

[?P := P] .

which says that the transition A ; P -- ?b -- ?a --> ?P is a valid transition that
produces three bindings: metavariable ?b is bound to the value true, ?a to action
A, and ?P to process P; and

P1
b α- P ′

1

P1 [> P2
b α- P ′

1 [> P2

if name(α) 6= δ

rl [sym] :

P1 [> P2 -- ?b -- ?a --> ?P

=> --------------------------------

P1 -- ?b -- ?a --> ?(NEW1)P

[name(?a) =/= delta]

[?P := ?(NEW1)P [> P2] .

There are two problems in this approach: the existence of new variables in
the righthand side of the rewrite rules and the nondeterministic application of the

2

semantic rules, arising from, for example, rules for choice. To solve the first problem
we use explicit metavariables, that will be bound to concrete values in the process
of rewriting and these bindings will be propagated to the rest of transitions. For
example, in the rule above ?(NEW1)P is an explicit metavariable.

To solve the second problem of nondeterministic application of rewrite rules, we
need a strategy to control the rewriting of a term and the search in the tree of all
possible rewrites of a term. This will also help us deal with metavariables.

We extend META-LEVEL with operations that generate all the one-step rewritings
of a term, and operations that search in a depth-first way the tree of possible rewrit-
ings looking for the empty set of transitions. META-LEVEL is a predefined Maude
module which implements the rewriting logic reflective capabilities and allows us
to deal with modules as normal terms and control the rewriting process. In this
controlled process of rewriting, new metavariables are created and substituted for
the new variables in the righthand side of the rewrite rules.

While these operations work, bindings are produced. If we keep these bindings,
we can obtain new information besides the fact that the transition is possible. For
example, if we start with the transition where the final process is a metavariable,
it will be bound to one of the possible successors of the first process. This is useful
to represent the FULL logic.

Some of the operators of the modal logic FULL are equivalent to operators
within the Hennessy Milner logic HML, and can be implemented in very much the
same way. We begin by defing a sort FullFormula to represent the logic and its
operators. (At the time of writing not all of the operators of FULL have been
implemented.)

sort FullFormula .
ops tt ff : -> FullFormula .
op _/_ : FullFormula FullFormula -> FullFormula .
op ‘[_‘]_ : TermSet FullFormula -> FullFormula .
op forall : TermSet FullFormula -> JudgementSeq .
op _|=_ : Term FullFormula -> Judgement .

Then, we define rewrite rules that rewrite a judgement P |= Φ into the set of
judgements that have to be fulfilled.

rl [and] : P |= Phi /\ Psi => (P |= Phi) (P |= Psi) .

rl [box] : P |= [K] Phi => forall(succ(P, K), Phi) .

eq forall({}, Phi) = emptyJS .
eq forall(P U PS, Phi) = (P |= Phi) forall(PS, Phi) .

So, just as the rules for the symbolic semantics rewrite a transition to be proved
valid into a set of transitions to be fulfilled, here we rewrite a FULL formula to be
proved valid into a set of judgements to be fulfilled. The goal is to produce the empty
judgement set, indicating that the original FULL formula is true. For example, the
base cases include the rule where the judgement P |= true is rewritten to emptyJS.

An advantage of using Maude is that the reasoning can be carried out completely
automatically by incorporating the Full LOTOS data types in the same tool. This
will be done by translating the ACT ONE data type specifications into Maude
equational specifications that will be included automatically in the Maude module
containing the semantic rules. In this way, rewriting will be perfomed modulo
the ACT ONE equations defining the particular data types of the Full LOTOS
specification we are working with.

3

Work is ongoing to implement the rest of the FULL operators, i.e. the quantified
modal operators. Particular problems to be addressed are the implementation of
substitution (crucial to the quantified modal operators), and the representation of
infinite depth transition systems.

References

[1] Muffy Calder, Savi Maharaj, and Carron Shankland. An adequate logic for Full
LOTOS. In J.N. Oliveira and P. Zave, editors, FME 2001: Formal Methods
for Increasing Software Productivity, volume 2021 of Lecture Notes in Computer
Science, pages 384–395. Springer, 2001.

[2] Muffy Calder and Carron Shankland. A symbolic semantics and bisimulation
for Full LOTOS. Technical Report CSM-159, University of Stirling, 2000.

[3] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-
Oliet, José Meseguer, and José Quesada. Maude as a metalanguage. In Claude
Kirchner and Hélène Kirchner, editors, Proceedings Second International Work-
shop on Rewriting Logic and its Applications, WRLA’98, Pont-à-Mousson,
France, September 1–4, 1998, volume 15 of Electronic Notes in Theoretical
Computer Science. Elsevier, 1998. http://www.elsevier.nl/locate/entcs/
volume15.html.

[4] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-
Oliet, José Meseguer, and José Quesada. Maude: Specification and Programming
in Rewriting Logic. Computer Science Laboratory, SRI International, 1999.
http://maude.cs.uiuc.edu/maude1/manual.

[5] M. Hennessy and H. Lin. Symbolic Bisimulations. Theoretical Computer Science,
138:353–389, 1995.

[6] International Organisation for Standardisation. Information Processing Sys-
tems — Open Systems Interconnection — LOTOS — A Formal Description
Technique Based on the Temporal Ordering of Observational Behaviour, 1988.

[7] José Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[8] C. Stirling. Temporal Logics for CCS. In J.W. de Bakker, W.-P. de Roever,
and G. Rozenberg, editors, Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, LNCS 354, pages 660–672. Springer-Verlag,
1989. REX School/Workshop, Noordwijkerhout, The Netherlands, May/June
1988.

[9] Alberto Verdejo and Narciso Mart́ı-Oliet. Implementing CCS in Maude. In
Tommaso Bolognesi and Diego Latella, editors, Formal Methods For Distributed
System Development. FORTE/PSTV 2000 IFIP TC6 WG6.1 Joint Interna-
tional Conference on Formal Description Techniques for Distributed Systems
and Communications Protocols (FORTE XIII) and Protocol Specification, Test-
ing and Verification (PSTV XX) October 10–13, 2000, Pisa, Italy, pages 351–
366. Kluwer Academic Publishers, 2000.

4

