
Electronic Notes in Theoretical Computer Science 71 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume71.html 17 pages

A Conference Reviewing System in
Mobile Maude ?

Francisco Durán a and Alberto Verdejo b

a ETSI Informática, Universidad de Málaga, Spain. duran@lcc.uma.es
b Facultad de Informática, Universidad Complutense, Madrid, Spain.

alberto@sip.ucm.es

Abstract

A useful way of presenting a new language is by means of complete examples that
show the language features in action. In this paper we do so for the Mobile Maude
language, an extension of Maude that supports mobile computation. We implement
an ambitious wide area application, namely a conference reviewing system, an exam-
ple described by Cardelli as a challenge for any wide area language to demonstrate
its usability.

1 Introduction

The popularity of the Internet has brought much attention to the world of
distributed applications development. Now, more than ever, the network is
being viewed as a platform for the development of cost-effective, mission-
critical applications. Mobile code and mobile agents [12,11] are emerging
technologies that promise to make it very much easier to design, implement,
and maintain distributed systems. Mobile agents may reduce the network
traffic, provide an effective means of overcoming network latency, and, perhaps
more important, help us to construct more robust and fault-tolerant systems,
thanks to their ability to operate asynchronously and autonomously of the
process that created them.

While distributed applications represent a great potential future, the task
of writing distributed applications which run over the Internet is flooded with
problems of scalability, reliability, and security. The scale of applications now
being considered for network environments will require higher levels of security
and reliability. In order for agent systems to present a realistic development
alternative for such applications, these systems must evolve to provide the

? Research supported by projects TIC2000-0701-C02-01 and TIC2001-2705-C03-02.

c©2002 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume71.html

Durán and Verdejo

highly secure and reliable environments needed. Intrinsically concurrent for-
malisms with a precise semantics seem to be unavoidable for such a task, and
declarative approaches seem quite promising.

The flexibility of rewriting logic for representing very different styles of
communication, either synchronous or asynchronous, its facility for support-
ing distributed, concurrent object-oriented systems, and its reflective capabil-
ities for supporting metaprogramming and dynamic reconfiguration, make it
a very suitable formalism for the specification of distributed systems based on
mobile agents, on which the proof of properties about security, correctness,
and performance, can be based.

Recently, an extension of the multiparadigm, declarative language Maude
[5] has been proposed with mechanisms for supporting mobile computation. It
is known as Mobile Maude [7], and its main features, that make it a language
appropriate for the specification and prototyping of distributed systems based
on mobile agents, are: (1) it is based on rewriting logic, a simple logic which is
easy to use for the specification of concurrent, distributed, and open systems,
including aspects as data, events, system evolution, security and real time;
(2) it is object-oriented, supporting distributed objects and their communi-
cation, either synchronous or asynchronous, with a formal, precise semantics;
(3) it is reflective, with formal support for metaprogramming at any level of
reflection; (4) it is wide spectrum, allowing transformations and refinements
of specifications; (5) it is modular, with an advanced module system; (6) it
is mobile, supporting the movement of data, states, and programs; and (7) it
has a formal basis for the development of security models, and the verification
of properties for such models.

The aim of this work is to contribute to the understanding of Mobile
Maude, illustrating the main features of the language in the specification of
an application of certain complexity, namely, the reviewing system for a con-
ference, going from its announcement to the edition of the proceedings. Such
example was proposed by Cardelli in [2] as a challenge for any wide area lan-
guage to demonstrate its usability, although it was previously used by different
authors.

Mobile Maude is described in Section 2. Section 3 includes a description
of the conference reviewing system, and a detailed explanation of our Mobile
Maude implementation. Section 4 discusses some related work. In Section 5,
we present some conclusions and future work.

2 Mobile Maude

Mobile Maude was first described in [7]. We present here a brief discussion on
the language, showing its key notions and the primitives used in the following
sections.

Mobile Maude is a mobile agent language that extends the rewriting logic
language Maude for supporting mobile computation. In its design, a sys-

2

Durán and Verdejo

tematic use of reflection is made, obtaining a simple and general declarative
mobile agent language. Mobile Maude has been formally specified by means
of a rewrite theory. Since this specification is executable, it can be used as a
prototype of the language, in which mobile agent systems can be simulated.

Mobile Maude is based on two key notions: processes and mobile objects.
Processes are located computational environments where mobile objects can
reside. Mobile objects can move between different processes, can communicate
asynchronously with each other by means of messages, and can evolve. In
Mobile Maude, a mobile object can communicate with objects in the same
process or in different processes—some mobile agent languages forbid this
latter kind of communication, allowing only communication within a process.

Mobile objects travel with their own data and code. The code of a mobile
object is given by (the metarepresentation of) an object-oriented module—
a rewrite theory—and its data is given by a configuration of objects and
messages that represent its state. Such configuration is a valid term in the
code module, which is used to execute it.

Processes and mobile objects are modeled as distributed objects in classes
P and MO, respectively. The names of processes range over the sort Pid, and
the declaration of the class P of processes is as follows.

class P | cf : Configuration, cnt : Int, guests : Set(Mid),
forward : PFun(Int, Tuple(Pid, Int)) .

The cf attribute represents an inner configuration, where mobile objects
and messages can reside. Thus, a mobile agents system will consist of a con-
figuration of processes (and messages in transition between processes), with
a configuration of mobile objects inside each process. The guests attribute
keeps the names of the mobile objects currently in the process’s internal config-
uration. The cnt attribute is a counter to generate new mobile object names.
The names of mobile objects range over the sort Mid, and they have the form
o(PI, N), where PI is the name of the object’s home or parent process, that
is, the process where it was created, and N is a number that distinguishes the
children of PI. This number is provided by the cnt attribute, which gets in-
creased after the creation of a new mobile object. The dispatching of messages
is nontrivial, since mobile objects can move from one process to another. To
solve this problem each process keeps forwarding information about the where-
abouts of its children in its forward attribute, a partial function that maps a
child number to a pair consisting of the name of the process where the object
currently is, and the number of “hops” that the object has taken to reach
it. The number of hops is used to know the age of the information kept in
the parent. Each time a mobile object moves to a different process it sends a
message to its home process announcing its new location.

The class of mobile objects is declared as follows:

class MO | mod : Module, s : Term, p : Pid, hops : Int, mode : Mode .

The s attribute keeps (the metarepresentation of) the mobile object’s state,

3

Durán and Verdejo

and has to be of the form C & C’, where C is a configuration of objects and
messages—unprocessed incoming messages and inter-inner-objects messages—
and C’ is a multiset of messages—the outgoing messages tray. One of the
objects in the configuration of objects and messages is supposed to have the
same identifier as the mobile object it is in. We refer to this object as the
main one. The mod attribute is the metarepresentation of the Maude module
that describes the behavior of the object. The p attribute keeps the name of
the process where the object currently resides. The number of hops from one
process to another performed by the object is stored in the hops attribute.
Finally, the object’s mode can be active if the object is inside a process, and
idle if it is moving.

The semantics of Mobile Maude is specified by an object-oriented rewrite
theory containing the definitions of the above classes and rewrite rules that
describe the behavior of the different primitives: object mobility, message pass-
ing, and object and process creation. This specification is the system code of
Mobile Maude, which works as a prototype on which to execute Mobile Maude
applications. Such applications need of course to satisfy certain requirements,
as being object-oriented, using the _&_ constructor for sending messages out
of the mobile objects, and using the primitive messages for moving to other
processes.

We will present now the Mobile Maude primitives used in the application.

There are three kinds of communication between objects. Objects in-
side the same mobile object can communicate with each other by means of
messages with any format, and the communication may be synchronous or
asynchronous. Objects in different mobile objects may communicate when
such mobile objects are in the same process and when they are in different
processes; in these cases, the actual kind of communication is transparent to
the mobile objects, but such communication must be asynchronous, and mes-
sages must be of the form to_:_, where the first argument is the identifier
of the addressee object, and the second argument is the message contents, a
value of sort Contents built with free user-defined syntax (see, for example,
Section 3.2). That is, the minimum information needed to dispatch a message
is the receiver’s identity; if the sender wants to communicate its identifier, it
has to include it in the message contents. If the addressee is an object in a
different mobile object, then the message must be put by the sender object in
the second component of its state (the outgoing messages tray). The system
code will send the message to the addressee object.

When a mobile object wants to move to another process it puts in its outgo-
ing messages tray a go(PI) message, where PI is the target process identifier.
When a mobile object has an outgoing go message, a new inter-mobile-objects
go message is sent, with the mobile object as one of its arguments, after re-
moving the outgoing message and setting the state to idle. This ensures that
the mobile object is inactive while on the move.

If the message’s sender and addressee are in different processes, then this

4

Durán and Verdejo

message has to travel to the desired process, going out to the outer configu-
ration of processes. When the message reaches the destination process, the
mobile object is put into it (in active mode), and the parent process is in-
formed, so it can update its forwarding information, or just updated, if it is
the parent process itself.

In the go message, the mobile object indicates the process where it wants
to go. Sometimes, a mobile object wants to reach another object, but it only
knows the identifier of the object it wants to catch up, not the process it is
in. In this case, the go-find message can be used. When this message is used
by an object M, it takes as arguments the identifier of the mobile object that
M wants to reach, and the identifier of a tentative process where it may be.

When an object wants to create a new mobile object, it sends a newo

message to the system (by putting it in the second component of its state).
The newo message takes as arguments (the metarepresentation of) a module
M , a configuration C (which will be the initial configuration to be put in the
belly of the mobile object to be created, and which is a valid term in the module
M), and the provisional identifier of the main object in the configuration C.
The first action accomplished by the system when it detects the newo message
is to create a new mobile object with the configuration C as its state and the
module M as its code, and then sends a start-up message to the main object
with its new name, so it coincides with the name of the mobile object it is in.

The code describing the behavior of mobile objects is called application
code, and our main purpose in this work is to illustrate how such construction
can be used when developing our applications, and how a normal object-
oriented specification may be easily made mobile.

The system code for Mobile Maude, plus some related information, can be
found in http://maude.csl.sri.com/mobile-maude.

3 Conference Reviewing System

The ambitious wide area application we discuss in this section has been used by
different authors [3,13], although we follow the presentation by Luca Cardelli
in [2], where he describes it as a challenge for any wide area language to
demonstrate its usability.

The problem consists in managing a virtual program committee meeting for
a conference. Figure 1 shows (nearly all) the different steps in the conference
reviewing process; the numbers in the following description correspond to the
numbers in this figure. A conference is first announced (1), and an electronic
submission form is publicized. If interested in the submission, an author
fetches a submission form (2), which, after its activation (3, 4, 5), guides
most of the reviewing process. Each author fills its instance of the form and
attaches a paper (6). Once the submission form is completed, it finds its way
to the program chair (7), who collects the submissions (8) and assigns them
to committee members, by instructing each submission form to generate a

5

Durán and Verdejo

1. announcement

2. submission request

3

4

7

10

SubF

11

14

17

SubF

5. I’m here

6. paper

RepF

18. congratulations

FSubF

19

20. I’m here

21. final-paper

22

8. paper
9. create-reviews

RevF

SubF

RevF
15. review

RepF

16

23. final-paper

24. proceedings

RevF

12. paper
13. referee

FSubF

Conference
Chair

Author

Program
Chair

Reviewer

Fig. 1. Conference reviewing process.

review form for each assigned member (9, 10). Each review form then finds
its way to the committee member it has been assigned to (11, 12), who may
decide to review the paper directly, to refuse it, or to delegate it to another
reviewer. The review forms keep track of the reviewers they have passed by,
so that they can find their way back when completed or refused, allowing each
reviewer to check the work of its subreviewers. Eventually, a review is filled
(13). Then, the form performs various consistency checks, such as verifying
that the assigned scores are in range and that no required fields are left blank,
and it finds its way back to the program chair (14). Once the review forms
reach the program chair, this one accumulates the scores and the reviews for
each paper (15). Once the program chair has collected all the reviews for
a paper, this one is resolved. If the reviews are in agreement, the program
chair declares the form an accepted or rejected paper report form (16). If the
reports are in disagreement, the program chair declares the form an unresolved
review form, which circulates between the reviewers and the program chair,
accumulating further comments, until the program chair declares the paper
accepted or rejected. The program chair creates a new report form with
the result of the revision for such a paper, which then finds its way back to
the author (17), with appropriate congratulations (18) or regrets. Once it
reaches the author, it informs the author about the result of the reviewing
process. An accepted paper report form spawns then a final submission form
(19, 20), where the author attaches the final version of the paper (21). The

6

Durán and Verdejo

completed final submission form finds its way back to the program chair (22,
23), who merges them into the proceedings, and lets them find their way to
the conference chair (24).

From the previous description, we can identify different actors, which may
move freely from one process to another, and therefore they should be rep-
resented as mobile objects. In the Mobile Maude approach the specification
of the system consists of objects embedded inside mobile objects, which com-
municate to each other via messages. In addition to the term representing
its state, each mobile object carries the code managing the behavior of the
configuration of objects and messages representing such a state. The main
difference with respect to the specification of systems in Maude is that these
objects must be aware of the fact that they are inside mobile objects, and that
in order to communicate with (objects in) other mobile objects or to use some
of the system messages available, they must follow the appropriate procedure.

In the description of the system above there are also real people, and it is
assumed some kind of interaction between the mobile agents and these people.
Agents ask people diverse information, like a name, a paper, or a review report.
In our representation of the system these people are also represented by mobile
agents that have all the required information.

In order to simplify, we have minimized the information contained in mes-
sages, and we are not encrypting them. However, it is assumed that all mes-
sages are encrypted. Such an encryption could be easily added by using en-
crypt and decrypt functions as in [6].

In the following we present a sketch of the application code for the different
mobile objects that appear in the system. Although Mobile Maude requires
that each mobile object carries the module with the specification of the classes
and the behavior of the objects in its belly, because of presentation purposes,
we prefer to give here fragments of each of the modules following the natural
sequence in which the process happens. The complete specification, together
with execution examples, can be found in [8].

3.1 The Classes of the System

From the description above, we identify the following actors: authors, re-
viewers, conference chairs, program chairs, program committee members, and
different types of forms, namely, submission forms, review forms, report forms,
and final submission forms.

Authors have attributes to keep their personal data, their papers, and the
identifiers of the submission forms they interact with.

class Author | name : Name, paper : Default(Paper),
subm-form : Default(Mid) .

The attributes paper and subm-form are declared of sorts Default(Paper)
and Default(Mid), respectively, in such a way that they may have a default
value null. Thus, an author may or may not have a paper—in fact, an author

7

Durán and Verdejo

could have a set of papers but here we assume that an author is submitting at
most one paper—and an author has the identifier of a submission form only
while it is interacting with one.

A conference chair object has a mailing list, that is, a set of author identi-
fiers, the identifier of the program chair of the conference, and the final version
of the proceedings.

class ConfChair | mailing-list : Set(Mid), progr-chair : Mid,
proceedings : Set(Paper) .

In addition to the identifiers of the conference chair and the program com-
mittee members, a program chair object needs to keep information about the
reviewing process, and a way to collect the final papers to compose the pro-
ceedings. The reviewing information consists of a set with the identifiers of
the authors whose papers have been accepted but whose final papers have not
been received yet and information regarding each of the submissions. This
information is given by a term of sort SubmInfo, which is an alias for the sort
Tuple(Name,Mid,Paper,Set(Tuple(Mid,Score)),Int). That is, for each
submission it is stored the name, identifier and paper of the (contact) author,
the results from the referee reports and the number of rounds. The informa-
tion on the refereeing of each paper is stored in the review forms, the program
chair only keeps the identifier of such a review form and the score provided
by it for the given paper. In case of disagreement, the program chair declares
the paper unresolved and sends the review forms back to the reviewers. After
three rounds without agreement, the program chair will take a decision. The
final versions of the accepted papers are kept in the proceedings attribute.

class ProgrChair | conf-chair : Mid, pc-members : Set(Mid),
reviewers : Int, subms : Set(SubmInfo),
accepted : Set(Mid), proceedings : Set(Paper) .

A reviewer can give three different answers to a review message: it can
delegate in some other reviewer, it can refuse the review, or it can do it and
send back the result. Thus, a reviewer has attributes for keeping the set of its
subreviewers and the set of the papers it has already seen before, whatever it
decided to review, delegate, or refuse them.

class Reviewer | subreviewers : Set(Mid), done : Set(Paper) .

Program committee members are particular cases of reviewers, they do not
need any additional attributes. We may model this relationship by declaring
the class PCMember a subclass of Reviewer as follows.

class PCMember .
subclass PCMember < Reviewer .

The submission process is guided by submission form objects. In addition
to the identifiers of the conference chair, the program chair, and the author
it is assigned to, a submission form will carry the author’s information and
submitted paper. The submission form needs to be aware of its state, given by
a constant of sort SubmFormState, which may take values inactive, active,

8

Durán and Verdejo

towards-author, towards-pc, and finishing.

class SubmForm | conf-chair : Mid, author : Mid,
progr-chair : Mid, author-name : Default(Name),
paper : Default(Paper), state : SubmFormState .

A reviewer object may decide to review a paper assigned to it directly,
or to send it to another reviewer. The review form must keep track of the
chain of reviewers so that it can find its way back when either completed or
refused, and so that each reviewer can check the work of its subreviewers.
In case there is no agreement on the scores for a paper, a review form must
go back to its reviewer. Objects of class ReviewForm have two attributes of
sort List(Mid). The attribute chain contains initially the identifier of the
program committee member assigned to it, and all the successive subreviewers
are added to this list. When the paper is finally reviewed, the form finds
its way back by extracting the identifiers from the list in a last-in-first-out
manner. Nevertheless, instead of discarding these identifiers, they are included
in the list in the attribute chain-back, so that it can follow its reviewing path
again if necessary. As submission forms, review forms need to distinguish the
different states in which they can be. They do so with an attribute state of
sort ReviewFormState which may take values inactive, towards-reviewer,
back, unresolved-towards-reviewer, and unresolved-back.

class ReviewForm | paper : Paper, progr-chair : Mid,
refused : Set(Mid), chain : List(Mid),
chain-back : List(Mid), score : Default(Score),
state : ReviewFormState .

When a submission has been resolved, a report form is sent to the corre-
sponding author object to inform it about the result of the refereeing process
on its paper. The sort ReportFormState may take values inactive and
towards-author.

class ReportForm | paper : Paper, author : Mid, score : Score,
progr-chair : Mid, state : ReportFormState .

Finally, when the author receives an acceptance report form, a final sub-
mission form is created, which fetches a final paper and finds its way to the
program chair. The sort FinalSubmFormState may take values inactive,
towards-pc, and finished.

class FinalSubmForm | author : Mid, state : FinalSubmFormState,
paper : Paper, progr-chair : Mid .

3.2 The Submission Process

All the process is initiated by the conference chair by broadcasting the an-
nouncement message to all the potential authors in its mailing list. The
review-process-starts rule below is fired when a ConfChair object receives
a start message. The broadcasting is accomplished by generating messages
with contents announcement from : O, where O is the conference chair iden-

9

Durán and Verdejo

tifier, and with addressees each of the objects in the mailing-list set. The
operation broadcast is in charge of generating such a set of messages.

rl [review-process-starts] :
< O : ConfChair | mailing-list : OS > (to O : start) Conf & none
=> < O : ConfChair | > Conf & broadcast(OS, announcement from : O) .

Note the use of the _&_ constructor. Since the announcement messages are
sent to objects outside the mobile object in which the ConfChair object is lo-
cated, they are placed in its righthand side. The rule review-process-starts
is applied only if this outgoing messages tray is empty, making sure in this
way that any previous message has been handled. The _&_ operator is the top
operator of the term representing the state of the mobile object, and there-
fore, since there might be other objects and messages in its lefthand side, we
include a variable Conf of sort Configuration to match the rest. Note also
how an object may communicate to objects in other mobile objects, which
may be in different processes, in a completely transparent way. Most of the
communications in the rest of the example will take place inside processes,
moving the mobile objects to the processes in which the objects they want to
communicate to are located.

When an author object receives the announcement, it decides whether
requesting a submission form or not. Such a decision is modeled by the non-
deterministic election between a pair of rules which may be applied. They
request a form by sending a subm-request message to the conference chair,
who then creates the corresponding forms and sends them to the authors.

rl [author-gets-announcement] :
< O : Author | paper : P > (to O : announcement from : O’) Conf & none
=> < O : Author | > Conf & (to O’ : subm-request from : O) .

rl [author-gets-announcement] :
< O : Author | > (to O : announcement from : O’) => < O : Author | > .

Notice that since this last rule does not imply the sending of any message
out of the mobile object, we do not need to use the _&_ operator to wrap the
whole state.

When the conference chair object receives a subm-request message it cre-
ates a submission form, which must then find its way to the corresponding
author. The newo message allows an object in the belly of a mobile object to
create another mobile object with a given initial configuration and a module.
The module SUBMISSION-FORM includes the declaration of the SubmForm class
given in Section 3.1 and the rules describing its behavior.

rl [conf-chair-receives-submission-request] :
< O : ConfChair | progr-chair : O’ >
(to O : subm-request from : O’’) Conf & none
=> < O : ConfChair | > Conf &

newo(up(SUBMISSION-FORM),
< tmp-id : SubmForm | author : O’’, conf-chair : O,

progr-chair : O’, author-name : null,
paper : null, state : inactive >, tmp-id) .

10

Durán and Verdejo

As described in Section 2, Mobile Maude follows the convention of naming
the ‘main’ object in a mobile object as such a mobile object, so that it just
has to move messages down into its belly. The rule start-up below allows a
SubmForm object to change its provisional name when it receives a start-up

message. Changing the name of an object implies destroying the object in the
lefthand side of the rule and creating a new one in its righthand side with a
different name, and therefore all attributes must be given explicitly.

rl [start-up] :
< tmp-id : SubmForm | author : o(PI, I), state : inactive,

conf-chair : O’, progr-chair : O’’,
author-name : DN, paper : DP >

(to tmp-id : start-up(O)) Conf & none
=> < O : SubmForm | author : o(PI, I), state : towards-author,

conf-chair : O’, progr-chair : O’’,
author-name : DN, paper : DP >

Conf & go-find(o(PI, I), PI) .

When the submission form is created, it is put in the state towards-author,
and it sends the message go-find(o(PI, I), PI) to communicate to its mo-
bile object that it must find its way to the object with identifier o(PI, I),
the author it has been assigned to.

Once the form is created, it could initiate the validation process. However,
the submission form must communicate to the author locally, that is, the
interchange of messages between them must start once the form has reached
the author’s process. Since Mobile Maude guarantees that mobile objects
moving from one process to another are idle, we know that, once the go-find

command is given in the start-up rule, the form object will not be able to do
anything until the mobile object in which it is embedded is set to active, that
is, until it has reached the author’s process. Therefore, since there is no rule
taking a SubmForm object in towards-author state and a nonempty outgoing
messages tray, this object will not do anything until it reaches its destination.

Once the form reaches its corresponding author, the validation process
is started by sending a subm-form-gets-to-author message. Then, the
form goes to the inactive state, and it is in such a state until it gets an
activate-subm-form message from the author.

rl [request-activation] :
< O : SubmForm | author : O’, state : towards-author > Conf & none
=> < O : SubmForm | state : inactive > Conf &

(to O’ : subm-form-gets-to-author from : O) .

When an author receives such a message, it sends back a message to acti-
vate the form and in this way initiate the submission process. The submission
form then requests the author’s information and paper.

When a submission form receives the messages with the name and the
paper, its corresponding attributes are updated, and then it moves to the
program chair’s process. Note that N and P are, respectively, variables of sorts
Name and Paper, and therefore, if there is a match with this rule it is because

11

Durán and Verdejo

the name and the paper are not null any more.

rl [move] :
< O : SubmForm | author-name : N, paper : P, progr-chair : o(PI, I),

state : active > Conf & none
=> < O : SubmForm | state : towards-pc > Conf & go-find(o(PI, I), PI) .

A submission form object informs the program chair of its arrival by send-
ing a message to O : subm N O’’ P from : O’, with N an author’s name,
O’’ the identifier of the submission form object, and P a paper. Upon the
reception of such a message, the ProgrChair object adds an entry to its set
of registered submissions, and assigns it to the number of committee members
given by its attribute reviewers. The program chair asks the submission
form to create a review form for each committee member assigned by sending
it a gen-review-forms with the chosen members of the program committee.

3.3 The Reviewing Process

The review forms are created with newo messages. The create-review-forms
operation is in charge of generating these newo messages, one for each review
form to be generated. Note that the identifier of the program committee
member that the review form will try to reach after its creation is put as the
first of the identifiers in the chain of reviewers.

op create-review-forms : Paper Mid Set(Mid) -> MsgSet .
eq create-review-forms(P, O’, mt) = none .
eq create-review-forms(P, O’, O’’ . OS)

= newo(up(REVIEW-FORM),
< tmp-id : ReviewForm | state : inactive, score : null,

progr-chair : O’, chain : O’’,
chain-back : no-id, refused : mt, paper : P >, tmp-id)

create-review-forms(P, O’, OS) .
rl [gen-review-forms] :
< O : SubmForm | progr-chair : O’, paper : P >
(to O : gen-review-forms(OS)) Conf & none
=> < O : SubmForm | state : finishing > Conf &

create-review-forms(P, O’, OS) .

When a review form gets to the process of the reviewer it was looking for,
which would be a program committee member in the first place, it sends a
review message to the given reviewer and waits for an answer. The review

message includes as an argument the set of the reviewers it cannot delegate
on, including all the reviewers it has passed by before, and which should not
be used again in order to avoid loops, and those who have already rejected
the review. The function listToSet returns a set with the elements of the
list given as argument.

rl [ask-for-review] :
< O : ReviewForm | paper : P, chain : OL & O’,

state : towards-reviewer, refused : OS, score : null > Conf & none
=> < O : ReviewForm | state : inactive > Conf &

(to O’ : review P excluding (listToSet(OL) . OS) from : O) .

12

Durán and Verdejo

If a reviewer refuses a review, the review form has to go back to the last
reviewer who delegated, adding the refuser to the set in the refused attribute.

rl [review-refused] :
< O : ReviewForm | state : inactive, chain : OL & o(PI, I) & O’,

refused : OS >
(to O : cannot-review) Conf & none
=> < O : ReviewForm | state : towards-reviewer, chain : OL & o(PI, I),

refused : OS . O’ > Conf & go-find(o(PI,I), PI) .

Once a review is obtained, depending on whether there is only one reviewer
in the chain or more than one, the form goes back to the program chair—if
there is only one then it is the program committee member itself—or back to
the reviewer that delegated on this one.

rl [review-result] :
< O : ReviewForm | state : inactive,

chain : OL & O’ & o(PI, I), chain-back : OL’ >
(to O : review-result Sc) Conf & none
=> < O : ReviewForm | state : back, score : Sc,

chain : OL & O’, chain-back : o(PI, I) & OL’ >
Conf & go-find(o(PI, I), PI) .

In its way back, each reviewer checks the review. The review form passes
by the processes of each of the reviewers, in such a way that each time it
reaches the process of a new reviewer it requests a checking from the reviewer,
which may confirm or contradict the review.

When the review forms come back to the program chair’s process, they
send the results of the review to the program chair object, who saves this
information together with the corresponding submission.

rl [pc-gets-review-result] :
< O : ProgrChair | subms : ((N, O’’, P, TS, I) Subms) >
(to O : review-result P Sc from : O’)
=> < O : ProgrChair | subms : ((N, O’’, P, TS . (O’, Sc), I) Subms) > .

When the program chair has all the referee reports for a submission, it
must be resolved. If the reviews are in agreement, then the paper is accepted
or rejected. Otherwise, that is, if the reviews are in disagreement, the pro-
gram chair declares the review forms unresolved, and sends them back to the
members of the program committee to which the submission was assigned.
After three review rounds, the program chair resolves the submission deciding
what the majority of the reviewers decided.

crl [disagreement] :
< O : ProgrChair | subms : ((N, O’, P, TS, I) Subms), reviewers : I’ >
Conf & none
=> < O : ProgrChair | subms : ((N, O’, P, mt, I + 1) Subms) >

Conf & broadcast(reviewers(TS), unresolved)
if size(TS) == I’ and I < 2 and not agreement(TS) .

If the reviews are in agreement or the number of rounds reaches the limit,
the program chair creates a report form that will find its way back to the

13

Durán and Verdejo

author and sends termination messages to all the review forms related to this
paper. If there is an agreement then the decision function returns the agreed
score, otherwise the majority decides. In case of disagreement with an even
result then the paper is accepted.

crl [agreement] :
< O : ProgrChair | subms : ((N, O’, P, TS, I) Subms), accepted : OS,

reviewers : I’ > Conf & none
=> < O : ProgrChair | subms : Subms,

accepted : if decision(TS) == accept
then O’ . OS else OS fi > Conf &

newo(up(REPORT-FORM),
< tmp-id : ReportForm | paper : P, author : O’,
score : decision(TS), state : inactive, progr-chair : O >, tmp-id)

if size(TS) == I’ and (agreement(TS) or I == 2) .

3.4 The Report Process

When an accepted paper report form reaches an author, it sends a congrat-
ulations message and it transforms itself into a final submission form, which
will ask the author for the final version of the paper. Notice how we model
the transformation of an object of class ReportForm into an object of class
FinalSubmForm. The fact that such inner object keeps its identifer makes that
what at some point is a report form mobile object becomes a final submission
form mobile object.

rl [send-congratulations-and-transform-into-a-final-form] :
< O : ReportForm | paper : P, author : O’, score : accept,

state : towards-author, program-chair : O’’ > Conf & none
=> < O : FinalSubmForm | author : O’, state : inactive,

paper : P, program-chair : O’’ > Conf & (to O’ : congratulations) .

Finally, the final submission form with the final version of the paper sends
it to the program chair, which will merge the papers into the proceedings.
When the final versions of all accepted papers have arrived to the program
chair, and there is no unresolved submission, the program chair sends the
proceedings to the conference chair.

4 Related Work

Although Cardelli proposed this case study as a challenge for mobile languages,
it is a well known example [3] often used in the areas of workflow management
[10] and coordination languages.

The paper [10] describes this case study (such as we have implemented
it) as an administrative workflow, that is, it involves repetitive, predictable
processes with simple task coordination rules, where ordering and coordination
of tasks can be automated.

In [15] it is proposed a simulation solution to this case study using Mani-
fold, a strongly-typed, block-structured, event-driven coordination language,

14

Durán and Verdejo

where communication is asynchronous and the separation of computation and
communication concerns is strongly enforced. This approach structures the
application into a hierarchy of processes distinguished in coordinator and co-
ordinated processes, and focus on what can be automated and coordinated.
Being a requirements specification, the paper does not deal with mobility,
which the authors understand as an implementation issue.

The paper [14] presents a solution closer to ours, using the concept of active
(mobile) documents. It uses the PageSpace architecture, a design paradigm
for Web-based applications that are composed of autonomous agents perform-
ing their duties regardless of their physical positions. This architecture is
instantiated with a coordination language with mobility facilities. It follows
the MUD (Multi User Dungeon) metaphor, a cooperative interactive envi-
ronment shared by several people to socialize and interact. It is based on the
concepts of rooms, items and players (or users) which relate with our concepts
of processes and mobile objects.

Real systems implementing this application have been also described. The
paper [13] describes the electronic management systems developed for the
Fourth and Fifth International World Wide Web Conferences.

5 Conclusions

We have showed how Mobile Maude, an extension of Maude supporting mo-
bile computation, can be used to represent and specify ambitious wide area
applications by providing an implementation of a conference reviewing system.

The semantics of Mobile Maude is defined in an application-independent
way by a small set of rewrite rules. In addition to allowing us to execute
mobile systems, to prove properties on them, etc., this executable Maude
specification may allow us to identify possible deficiencies and experiment
with different alternatives. For example, the go-find message was not in
the original set of system messages. Moreover, we believe that new features
should be introduced in Mobile Maude, specially allowing new kinds of agent
communication and interaction. What happens, for example, if an object
moves to another process while it is interacting with another object? Perhaps,
there should be some kind of communication between the inner objects inside
a mobile object and the process where it is, such as asking if another mobile
object is also in the same process, or asking the process for notification when
another object leaves or arrives. Also, we may consider supporting group-
oriented events (where messages are sent to all the members in a group of
mobile agents) and collaboration (where collaborator agents and agent groups
are defined and interact with each other to obtain a shared objective) as in
the Concordia system [16].

As future work, we want to consider the verification of properties of mobile
systems, in particular those related to their reliability and security. Interesting
contributions on this direction are the works on modal logics for rewriting logic

15

Durán and Verdejo

[9] and the work on spatial logics [1].

Acknowledgements

The authors are grateful to Steven Eker, Patrick Lincoln and José Meseguer, with
which we are developing Mobile Maude, for the many discussions on the specification
of the conference reviewing system. We are also very thankful to Narciso Mart́ı-
Oliet and Roberto Bruni for their constructive comments on several drafts of the
paper and on the specification of the application. We would also like to thank the
anonymous referees for leading us to related work.

References

[1] L. Caires and L. Cardelli. A spatial logic for concurrency (Part I). In Theoretical
Aspects of Computer Software, TACS 2001, LNCS 2215, pages 1–37. Springer-
Verlag, 2001.

[2] L. Cardelli. Abstractions for mobile computations. In J. Vitek and C. Jensen,
editors, Secure Internet Programming: Security Issues for Mobile and Distributed
Objects, LNCS 1603, pages 51–94. Springer-Verlag, 1999.

[3] P. Ciancarini, O. Niestrasz, and R. Tolksdorf. A case study in coordination:
Conference management on the Internet, 1998. ftp://cs.unibo.it/pub/
cianca/coordina.ps.gz.

[4] P. Ciancarini and A. Wolf, editors. Proceedings 3rd International Conference on
Coordination Models and Languages, LNCS 1594. Springer-Verlag, 1999.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. Maude: Specification and programming in rewriting logic. Theoretical
Computer Science, 304, 2002. To appear.

[6] G. Denker, J. Meseguer, and C. Talcott. Protocol specification and analysis
in Maude. In N. Heintze and J. Wing, editors, Proc. of Workshop on Formal
Methods and Security Protocols, 25 June 1998, Indianapolis, Indiana, 1998.

[7] F. Durán, S. Eker, P. Lincoln, and J. Meseguer. Principles of Mobile
Maude. In D. Kotz and F. Mattern, editors, Agent Systems, Mobile Agents,
and Applications, Second International Symposium on Agent Systems and
Applications and Fourth International Symposium on Mobile Agents, ASA/MA
2000, LNCS 1882. Springer-Verlag, Sept. 2000.

[8] F. Durán and A. Verdejo. Cardelli’s challenge in Mobile Maude: A conference
reviewing system. Technical Report 124.02, Dpto. Sistemas Informáticos y
Programación, Universidad Complutense de Madrid, May 2002.

[9] J. L. Fiadeiro, T. Maibaum, N. Mart́ı-Oliet, J. Meseguer, and I. Pita. Towards
a verification logic for rewriting logic. In D. Bert, C. Choppy, and P. Mosses,
editors, Recent Trends in Algebraic Development Techniques, 14th International
Workshop, WADT’99, LNCS 1827, pages 438–458. Springer-Verlag, 2000.

16

Durán and Verdejo

[10] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow
management: From process modeling to workflow automation infrastructure.
Distributed and Parallel Databases, 3:119–153, 1995.

[11] D. Kotz and R. Gray. Mobile agents and the future of the Internet. ACM
Operating Systems Review, 33(3):7–13, August 1999.

[12] D. Lange and M. Oshima. Seven good reasons for mobile agents.
Communications of the Association of Computer Machinery, 42:88–89, March
1999.

[13] G. Mathews and B. Jacobs. Electronic management of the peer review process.
Computer Networks and ISDN Systems, 28(7–11):1523–1538, 1996.

[14] D. Rossi and F. Vitali. Internet-based coordination environments and
document-based applications: A case study. In Ciancarini and Wolf [4], pages
259–274.

[15] A. Scutellà. Simulation of conference management using an event-driven
coordination language. In Ciancarini and Wolf [4], pages 243–258.

[16] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and B. Peet. Concordia:
An infrastructure for collaborating mobile agents. In Mobile Agents. First
International Workshop, MA’97, LNCS 1219, pages 86–97. Springer-Verlag,
1997.

17

	Introduction
	Mobile Maude
	Conference Reviewing System
	The Classes of the System
	The Submission Process
	The Reviewing Process
	The Report Process

	Related Work
	Conclusions
	References

