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Abstract

Declarative debugging is a debugging technique that abstracts the execution details, that can be
difficult to follow in general in declarative languages, to focus on results. It relies on a data structure
called debugging tree, that represents the computation and is traversed by asking questions to the
user about the correction of the computation steps related to each node. Thus, the complexity of
the questions is an important factor regarding the applicability of the technique. In this paper we
present a transformation for debugging trees for Maude specifications that ensures that any subterm
occurring in a question has been previously replaced by the most reduced form that it has taken
during the computation, thus ensuring that questions become as simple as possible.

Keywords: declarative debugging, Maude, proof tree, transformation

Contents

1 Introduction 3

2 Debugging Proof Trees 3
2.1 Maude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Debugging trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Coloring Proof Trees 4

4 Reductions 7

5 Canonical Trees 8

6 Algorithm 14

7 Concluding Remarks 21



1 Introduction

Declarative debugging [8], also called algorithmic debugging, is a debugging technique that abstracts the
execution details, that can be difficult to follow in general in declarative languages, to focus on results.
It is a two-phase process [5]: first, a data structure representing the computation, the so-called debugging
tree, is built, in the second phase this tree is traversed following a navigation strategy and asking to an
external oracle about the correction of the computations associated to the current node until a buggy
node, that is an incorrect node with correct children, is found. The structure of the debugging tree must
ensure that buggy nodes are associated to incorrect fragments of the program. Thus, finding a buggy node
equals to finding a bug in the program. Since the oracle is usually the user, the number and complexity
of the questions are the main issues when discussing the applicability of the technique.

In the case of the declarative language Maude [3], we have addressed the problem of reducing the
number of questions in previous papers [6, 7]. In these works a debugging tree corresponds to a proof
tree for the wrong result in a suitable semantic calculus. In order to reduce the number of questions,
all the nodes in the tree that correspond to valid logic inferences are removed, keeping only those nodes
whose validity rely on the program statements. This simplified tree is called the abbreviated proof tree, or
APT. It has been proven that applying declarative debugging to APTs results in a correct and complete
debugging technique.

This paper faces the second issue: the complexity of the questions performed to the user. In particular
our goal is to display every term contained in a question in the most reduced form that it has reached
during the computation. For instance, if the APT contains a node f(a) → b and it also contains a → c,
then a question about f(c) → b is preferable to a question about f(a) → b in terms of simplicity. This
principle must be applied recursively, considering for instance if c has been reduced to another value.
However, the first näıve approach that consists of replacing each term by its reduced form is not safe,
because in general it produces APTs that do not correspond to a valid proof tree, and the technique can
become incorrect or incomplete.

Thus, our goal is to transform a proof tree T into another proof tree T ′ with the same root but whose
corresponding APT presents terms in their most reduced form, and then use this APT for debugging.
Since T ′ is also a proof tree for the same computation the soundness of the technique is not compromised,
and the theoretical results presented in previous papers remain valid.

The rest of the paper is organized as follows: Section 2 introduces Maude functional modules and the
debugging trees used to debug this kind of modules. Section 3 add colors to proof trees. Section 4 presents
the concept of reduction in relation to proof tree. Next, Section 5 presents the initial transformations
applied to the trees. This initial transformation is required by the algorithm of Section 6, which also
include the main theoretical result of this report. Finally, the work ends presenting some conclusions.
The theoretical principles introduced in this paper have been implemented in the declarative debugger
for Maude that can be found at http://maude.sip.ucm.es/debugging/.

2 Debugging Proof Trees

We present in this section Maude and the debugging trees used to debug Maude specifications.

2.1 Maude

For our purposes in this paper we are interested in the equational subset of Maude, which corresponds
with specifications in Membership Equational Logic (MEL) [2, 4]

Maude functional modules [3, Chap. 4], introduced with syntax fmod ... endfm, are executable
membership equational specifications and their semantics is given by the corresponding initial membership
algebra in the class of algebras satisfying the specification. In a functional module we can declare sorts (by
means of keyword sort(s)); subsort relations between sorts (subsort); operators (op) for building values
of these sorts, giving the sorts of their arguments and result, and which may have attributes such as being
associative (assoc) or commutative (comm), for example; memberships (mb) asserting that a term has a
sort; and equations (eq) identifying terms. Both memberships and equations can be conditional (cmb and
ceq). The executability requirements for equations and memberships are confluence, termination, and
sort-decreasingness [3].
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(Reflexivity) (Congruence)

t → t
Rf→

t1 → t′1 . . . tn → t′n

f(t1, . . . , tn) → f(t′1, . . . , t
′
n)

Cong→

(Transitivity) (Replacement)

t1 → t′ t′ → t2
t1 → t2

Tr→
{θ(ui) ↓ θ(u′i)}n

i=1 {θ(vj) : sj}m
j=1

θ(t) → θ(t′)
Rep→

if t → t′ ⇐
Vn

i=1 ui = u′i ∧
Vm

j=1 vj : sj

(Subject Reduction) (Membership)

t → t′ t′ : s

t : s
SRed

{θ(ui) ↓ θ(u′i)}n
i=1 {θ(vj) : sj}m

j=1

θ(t) : s
Mb

if t : s ⇐
Vn

i=1 ui = u′i ∧
Vm

j=1 vj : sj

Figure 1: Semantic calculus for Maude functional modules

2.2 Debugging trees

The debugging trees for Maude specifications [7] are conceptually built in two steps:1 first, a proof tree
is built with the proof calculus in Figure 1, which is a modification of the calculus in [2, 4], where we
assume that the equations are terminating and confluent and hence they can be oriented from left to
right, and that replacement and membership inference rules keep the applied statement as part of the
rule in order to point this statement as wrong when a buggy node is found. In the second step a pruning
function, called APT (see Figure 2), is applied to the proof tree in order to remove those nodes whose
correctness only depends on the correctness of their children (and thus they are useless for the debugging
process) and to improve the questions asked to the user. More specifically, this transformation tries to
present questions where all the subterms of the term being reduced are in normal form.

Proof trees and abbreviated proof tree nodes contain judgments. A judgment is either of the form
f(t1, . . . , tn) → t or t : s. If N is a node in a tree T we will use the notation TN to represent the subtree
of T rooted by N , root(T ) to indicate the judgment at the root node of T , and children(T ) for referring
to the forest of children nodes of the root of T .

3 Coloring Proof Trees

When examining a proof tree we are interested in distinguishing whether two syntactically identical terms
are copies of the same term or not. The idea is to achieve this goal by “painting” with the same color
related terms in a proof tree. Hence the same term can be repeated in several places in a proof tree, but
only those copies coming from the same original term will have the same color. Next we introduced some
basic definitions about term positions and colors. The notation for term positions is standard in term
rewriting texts, see for instance [1].

Definition 1.

1. A position of a term is a sequence of natural numbers separated by the symbol . that determines
one of its subterms. Given a term t by pos(t) we denote the set of positions in t, which is defined
as pos(X) = {ε}; pos(f(t1, . . . , tn)) = {ε} ∪ {i.p | i ∈ {1, . . . , n} ∧ p ∈ pos(ti)}, where ε denotes
the empty or top position. By t|p we denote the subterm of t at position p ∈ pos(t), defined as
t|ε = t; f(t1, . . . , tn)|i.p = ti|p. We extend positions to judgments in proof trees by considering
the symbols → and : as infix function symbols. For instance (f(t1, . . . , tn) → t)|1 = f(t1, . . . , tn),
(f(t1, . . . , tn) : s)|2 = s.

1The implementation applies these two steps at once.
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(APT1) APT

„
T1 . . . Tn

aj
R

«
=

APT ′
„

T1 . . . Tn

aj
R

«
aj

(with R any inference rule and aj any judgment)

(APT2) APT ′
„

t → t
Rf

«
= ∅

(APT3) APT ′

0@ T1 . . . Tn

t1 → t′
Rep

T ′

t1 → t2
Tr

1A =


APT ′(T1) . . .APT ′(Tn) APT ′(T ′)

t1 → t2
Rep

ff

(APT4) APT ′
„

T1 T2

t1 → t2
Tr

«
= {APT ′(T1), APT ′(T2)}

(APT5) APT ′
„

T1 . . . Tn

t1 → t2
Cong

«
= {APT ′(T1), . . . ,APT ′(Tn)}

(APT6) APT ′
„

T1 T2

t : s
SRed

«
= {APT ′(T1), APT ′(T2)}

(APT7) APT ′
„

T1 . . . Tn

t : s
Mb

«
=


APT ′(T1) . . .APT ′(Tn)

t : s
Mb

ff

(APT8) APT ′
„

T1 . . . Tn

t1 → t2
Rep

«
=


APT ′(T1) . . .APT ′(Tn)

t1 → t2
Rep

ff

Figure 2: Transforming rules for obtaining abbreviated proof trees

2. We say that a term t is colored if there is a mapping color :: t × pos(t) → N. We say that the
natural number color(t′, p) is the color of t′ for any t′ = t|p.

3. We say two terms t1, t2 are equally colored if pos(t1) = pos(t2) and color(t1, p) = color(t2, p) for
every p ∈ pos(t1).

4. We say that a proof tree T is colored if every judgment contained in a node of T is colored, and if:

(a) Every subterm at the root node N of the tree have a different, new color, i.e. color(N, p1) 6=
color(N, p2) for every p1 6= p2, p1, p2 ∈ pos(N).

(b) Every use of a program equation or membership axiom r in a replacement or membership
inference step must be colored with new colors and must verify color(r, p1) 6= color(r, p2) for
every p1 6= p2, p1, p2 ∈ pos(r), except for the occurrences of the same variable, which must
have the same color.

(c) In the inference rules at Figure 1 the same symbols represent equally colored occurrences of the
same term. For instance in a reflexivity step the lefthand and righthand side must correspond
to equally colored terms.

When talking about colored trees, the notation t1 = t2 indicates that t1 and t2 are equally colored.
Hence, talking about two occurrences of a colored term t means implicitly two copies of the same term
equally colored.

The following lemma is useful when relating occurrences of the same term in a colored tree:

Lemma 1. Let T be a colored proof tree. Then:

1. Every term t occurring in a node N of T different from the root

(a) Occurs also in the parent of N , or

(b) Occurs also in a sibling of N , or

(c) Neither of the two previous possibilities hold and t is a new term introduced by a membership
axiom or equation and it does not occur in T out of the subtree rooted by N .
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2. If a node N contains an occurrence of some term t but its parent N ′ does not include t, then t
cannot occur out of the subtree rooted by N ′.

3. Let N1, N2 be two nodes in T containing occurrences of the same term t, and let N be the deepest
common ancestor to N1, N2. Then all the nodes in the path from N to N1 and from N to N2,
except possibly N , contain t.

4. Let T1, T2 be two sibling proof trees in T and t a term in root(T1) not occurring in root(T2). Then
t cannot occur in T2.

5. If a node N is of the form t → t′ then the subtree TN :

(a) Cannot contain any node either of the form t1 → t′1 or t1 : s with t1 6= t and t occurring in t1.

(b) Cannot contain any node of the form t1 → t′1 with t′1 6= t and t occurring in t′1.

Proof.

1. From the definition of colored proof tree and the structure of the semantic rules of Figure 1 applied
to the parent of N :

• Reflexivity. This is not possible since this rule contains no premises and N must be one of the
premises.

• Transitivity. If N is the first premise, every subterm of t1 occurs at its parent and every
subterm of t′ as its sibling. Analogous for the other premise.

• Congruence. Then N is a premise of the form ti → t′i and all its subterm occur in its parent.

• Subject Reduction. If N is the premise t → t′, every subterm of t occur also in its parent, and
every subterm of t′ in its sibling. Analogous for t′ in the second premise.

• Membership. All the subterm coming from the instantiation by θ of a variable x occurring
in the lefthand side t of the membership axiom occur also at is parent in θ(t). The rest
of the subterms occurring in the premises correspond to new terms which by the proof tree
construction will have a new different color and that therefore cannot occur out of its own
subtree.

• Replacement. Analogous to the membership inference.

2. As we have seen in the previous result the repeated occurrences are shared either by the siblings
or by the parent. But if the parent of N does not contain t then the occurrences of the term can
reach the siblings of N , its immediate descendants and recursively to other nodes in the subtree
rooted by N ′, but t cannot occur out of this subtree where new occurrences of the same term will
have different colors and will therefore considered different.

3. We can prove that t is in every node between N and N1 using induction on the number n of nodes
in the path from N to N1 (analogous for the nodes in the path from N to N2): if n = 0 or n = 1
(basis) the result holds trivially: if n = 0 then N = N1, and if n = 1 then N if the parent of N1. If
n > 1 (inductive step) then we consider the parent N ′ of N1, N ′ 6= N . N ′ must contain t because
otherwise applying the previous result t cannot occur out of the subtree rooted by N ′ and N2 is
out of this subtree since N ′ is not an ancestor of N2. Then N ′ contains t, and the result follows
applying the inductive hypothesis to the path from N to N ′.

4. By contradiction: assume that N is a node of T2 containing t. The deepest common ancestor to
root(T1) and N must be obviously some ancestor N ′ of root(T1). Since T1 and T2 are siblings then
N ′ is ancestor of root(T2), and hence root(T2) is in the path from N ′ to N . Then by the previous
point root(T2) should contain t, which is a contradiction.

5. Analogous to the first item.

Unless stated the contrary explicitly, in the rest of the document it is assumed that every proof tree,
and therefore every APT and every node in a tree is colored. Therefore term and tree means implicitly
colored term and colored tree, respectively.
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4 Reductions

Definition 2. Let T be an APT, and t, t′ two terms. We say that t → t′ is a reduction w.r.t. T if there
is a node N ∈ T of the form t1 → t′1 verifying:

• pos(t, t1) 6= ∅

• t′ = t[t1 7→ t′1].

The notation t[t1 7→ t′1] indicates that t1 is replaced by t′1 in all the positions of t where t1 occurs
(taking into account colors). In this case we also say that t is reducible (w.r.t. T ). A reduction chain for
t will be a sequence of reductions t0 = t → t1 → t2 . . . s.t. each ti → ti+1 is a reduction w.r.t. T .

We are interested in the number of steps necessary to reduce all the nodes in an APT:

Definition 3. Let T be an APT. Then:

• The number of reductions of a term t with respect to the APT T , denoted as reduc(t, T ) is the sum
of the length of all the possible different reduction chains of t with respect to T .

• The number of reductions of a node of the form N = f(t1, . . . , tn) → b w.r.t. T , denoted as
reduc(N,T ) is defined as (

∑n
i=1 reduc(ti, T )) + reduc(b, T ).

• The number of reductions of a node of the form N = f(t1, . . . , tn) : s w.r.t. T , denoted as
reduc(N,T ) is defined as (

∑n
i=1 reduc(ti, T )).

In this definition the length of a reduction chain t0 → · · · → tn is defined as n.

Definition 4. We say that an occurrence of a term t occurring in an APT T is in normal form w.r.t.
T is there is no reduction for any subterm of t in T .

The following result ensures that every reduction chain ends with a normal form w.r.t. T . The
notation TR

a→b used in the proof and along the paper indicates that T has a root node a → b with is the
consequence of a inference step label R.

Lemma 2. Let T be an APT and t a term in T . Then every reduction chain t → t1 → t2 → . . .
starting at t is finite.

Proof. If t is already a normal form w.r.t. T the result holds trivially since there is no reduction chain
starting by t. Otherwise we define an order v between terms in a tree T based on the following auxiliary
definitions:

• SubTerm(t) = {t′ | t′ = t |p for some p ∈ pos(t)}.

• |T | = number of nodes in T .

• maxTree(T, t) = max{ |T Rep
t→t| | T Rep

t→t ∈ T}.

• t � t′ = maxTree(t) ≤ maxTree(t′).

• multi(t) = {|maxTree(T, t′) | t′ ∈ SubTerm(t) |}, with {| . . . |} the notation for representing multi-
sets. Observe that every subterm of t contributes to multi(t) with a single value even if it occurs
several times in t.

• v = multiset order induced by � on multi .

Given any reduction chain t0 = t → t1 → t2 → . . . we show that ti+1 v ti for every i ≥ 0 which
means that the reduction chain cannot be infinite, thus ending in a normal form.

A reduction ti → ti+1 indicates that there are positions p1 . . . , pk ∈ pos(ti), k > 0, such that ti |p1=
ti |pk

= f(t′1, . . . , t
′
n), with f some function symbol, and a node N in T of the form f(t′1, . . . , t

′
n) → b

conclusion of a replacement inference step with ti+1 = ti[f(t′1, . . . , t
′
n) 7→ b]. Then, proving multi(b) v

multi(f(t′1, . . . , t
′
n)) proves multi(ti+1) v multi(ti). The multiset multi(f(t′1, . . . , t

′
n)) must be of the form

multi(f(t′1, . . . , t
′
n)) = {| v1, . . . , vr,m|}

where m = maxTree(f(t′1, . . . , t
′
n)) ≥| TN |, with TN the subtree of T rooted by N , and for every

j = 1 . . . r, vj = maxTree(a′) for some a′ ∈ SubTerm(t′i), 1 ≤ n. Now we check the form of multi(ti+1),
which depends on the subterms of b. b corresponds to an instance of the righthand side of the replacement
rule applied at N . Therefore every subterm t′ of b is either:
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• A term which was already in the lefthand side f(t′1, . . . , t
′
n). This can only happen if it corresponds

to the instance of some variable x in the replacement rule such that x occurs in both the left and the
righthand side. In this case t′ is a subterm of some t′i with 1 ≤ i ≤ n, and therefore maxTree(t′) = vj

for some 1 ≤ j ≤ r.

• A value of the form c(t′1, . . . , t
′
n) with c occurring only in the righthand side of the original replace-

ment rule. Then by the construction of the colored proof trees c(t′1, . . . , t
′
n) has a different new color

that cannot occur out of TN . Therefore any replacement for c(t′1, . . . , t
′
n) must be inside TN and

maxTree(c(t′1, . . . , t
′
n)) <| TN |.

Then multi(b) can be obtained from multi(f(t′1, . . . , t
′
n)) by possible removing some of the values vj ,

1 ≤ j ≤ r and by replacing m by some values m′ < m. Therefore multi(b) v multi(f(t′1, . . . , t
′
n)).

Our technique assumes that there is only one normal form for each term in the tree.

Definition 5. Let T be a colored proof tree. We say that T is confluent if every term t occurring in T
has a unique normal form w.r.t. T .

Lemma 3. If t is in normal form w.r.t. T then every subterm of t is in normal form w.r.t. T .

Proof. Straightforward from Definition 4.

5 Canonical Trees

A given statement can allow different proof trees. In order to simplify the transformation algorithm it
will be useful to assume that the proof trees are in a canonical form defined as follows.

Definition 6. We define the canonical form of a proof tree T , which will be denoted from now on as
Canonical(T ), as

Canonical(T ) = RemInf (NTr(InsCong(T )))

that is, as the composition of the transformations InsCong (insert congruences, Figure 3), NTr (normalize
transitivities, Figure 4), and RemInf (remove superfluous inferences, Figures 5, 6).

It is assumed that the rules of each transformation are applied top-down, for example if both (NTr1)
and (NTr2) can be applied only the first one will be chosen.

Next we define and prove the possible forms of the trees obtained after each transformation. We start
by proving that the proof trees obtained by the InsCong have the following form, which we call formI :

Definition 7. We define the class formI as the set of trees consisting of:

1. A single node corresponding to a reflexivity inference step.

2. A tree with a congruence step at the root whose premises are in formI .

3. A replacement or membership applied to a term t with arity(t) = 0 whose premises are in formI .

4. A transitivity or a subject reduction whose premises are trees in formI .

5. A transitivity (respectively a subject reduction) whose left premise is a tree in formI rooted by a
congruence, and whose right premise is rooted by a replacement (respectively a membership) with
premises in formI .

Lemma 4. Let T a proof tree. Then InsCong(T ) is in formI .

Proof. We apply induction in the number of nodes n of T , distinguishing cases depending on the inference
step applied at the root of T .

Basis, n = 1

• Reflexivity. In this case the tree does not change and we obtain the same reflexivity, that corresponds
to a formI tree of type 1.
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(InsCong1)

InsCong

„
T1 . . . Tm

f(t1, . . . , tn) → t
Rep

«
=

t1 → t1
Rf . . .

tn → tn
Rf

f(t1, . . . , tn) → f(t1, . . . , tn)
Cong

InsCong(T1) . . . InsCong(Tm)

f(t1, . . . , tn) → t
Rep

f(t1, . . . , tn) → t
Tr

if n > 0

(InsCong2)

InsCong

„
T1 . . . Tm

f(t1, . . . , tn) : s
Mb

«
=

t1 → t1
Rf . . .

tn → tn
Rf

f(t1, . . . , tn) → f(t1, . . . , tn)
Cong

InsCong(T1) . . . InsCong(Tm)

f(t1, . . . , tn) : s
Mb

f(t1, . . . , tn) : s
SRed

if n > 0

(InsCong3)

InsCong

„
T1 . . . Tm

s
R

«
=

InsCong(T1) . . . InsCong(Tm)

s
R

s any judgment, R any inference rule

Figure 3: Insert Congruences (InsCong)

• Unconditional replacement. Assuming that the inference in the root is t → t′, we distinguish
whether arity(t) = 0 or not. In the first case (InsCong3) is applied, the tree does not change, and
it corresponds to a formI tree of type 3. In other case, (InsCong1) is applied and a formI tree of
type 4 is obtained.

• Unconditional membership. Analogous to the case above.

Inductive step, n > 1

• Conditional replacement. Assuming that the inference in the root is t → t′, we distinguish whether
arity(t) = 0 or not:

– If arity(t) = 0 then (InsCong3) is applied. The result trees have the form formI by hypothesis,
obtaining a tree of type 3.

– If arity(t) > 0 then (InsCong1) is applied. By hypothesis, the application of the function to
the premises returns trees of the form formI , the left premise has this form by construction
and the right premise is rooted by a replacement and its premises have the form formI , then
this tree has type 5.

• Conditional membership. Analogous to the case above.

• Congruence. By hypothesis the premises have form formI , and then the transformation has type
2.

• Transitivity. By hypothesis the premises have form formI , and then the transformation has type 4.

Next we define a new form, called formN , proving that NTr(InsCong(T )) is of this form.

Definition 8. We define the class formN as the set of trees consisting of:

1. A single node corresponding to a reflexivity inference step.

2. A tree with a congruence step at the root whose premises are in formN .

3. A replacement or membership with root corresponding to a term t with arity(t) = 0 whose premises
are in formN .
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(NTr1)

NTr

0@ Tt1→t2 Tt2→t3

t1 → t3
Tr Tt3→t4

t1 → t4
Tr

1A =

NTr

0@ NTr(Tt1→t2) NTr

„
Tt2→t3 Tt3→t4

t2 → t4
Tr

«
t1 → t4

Tr

1A
(NTr2)

NTr

0@ Tt1→t2 Tt2→t3

t1 → t3
Tr Tt3:s

t1 : s
SRed

1A =

NTr

0@ NTr(Tt1→t2) NTr

„
Tt2→t3 Tt3:s

t2 : s
SRed

«
t1 : s

SRed

1A
(NTr3)

NTr

„
T1 . . . Tn

aj
R

«
=

NTr(T1) . . .NTr(Tn)

aj
R

aj any judgment, R any inference rule

Figure 4: Normalize Transitivities (NTr)

4. A transitivity or a subject reduction whose premises are trees in formN , and with the left premise
not a transitivity.

5. A transitivity (respectively a subject reduction) whose left premise is a tree in formN rooted by a
congruence, and whose right premise is rooted either by a replacement (respectively a membership)
with premises in formN , or by a transitivity (respectively a subject reduction) with a replacement
of arity greater than 0 and with premises in formN as left premise, and a tree in formN as right
premise.

Lemma 5. Let T a proof tree of the form formI . Then NTr(T ) is in formN .

Proof. We apply complete induction, distinguishing cases on the possible forms of T according to Defi-
nition 7.

1. Reflexivity. In this case (NTr3) is applied, the tree does not change and it has type 1.

2. Congruence. By (NTr3) the result is a congruence and by the induction hypothesis its premises
are in form formN . Then the tree is in formN , type 2.

3. Replacement or membership for a term with arity 0. Analogous to the previous case and producing
a formN tree of type 3.

4. Transitivity with premises in form formI . If the left premise is not a transitivity, then (NTr3) is
applied and by using the induction hypothesis we obtain a formN tree of type 4.

If the left premise is a transitivity then the original tree has the form:

A1 A2

t → t′
Tr with A1 ≡

B1 B2

t → t1
Tr, A′

1, A
′
2 and A2 in formI . Then the transformation rule

(NTr1) yields:

NTr
(

A′
1 A′

2

t → t′
Tr

)
and

A′
1 ≡

B′
1 B′

2

t → t1
Tr
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(Merge1)

merge

„
Tt→t1 Tt1→t′

t → t′
Tr, Tt′→t′′

«
=

Tt→t1 merge (Tt1→t′ , Tt′→t′′)

t → t′′
Tr

(Merge2)

merge (Tt→t′ , Tt′→t′′) =
Tt→t′ Tt′→t′′

t → t′′
Tr

Figure 6: Merge Trees

where A′
1 = NTr(A1), A′

2 = NTr(A2), B′
1 = NTr(B1), and B′

2 = NTr(B2). By hypothesis we
know that A′

1 and A′
2 are in the form formN and B′

1 is not rooted by a transitivity. Thus, we apply
again NTr and we obtain

B′
1 NTr

(
T ≡ B′

2 A′
2

t1 → t′
Tr

)
t → t′

Tr

We distinguish the form of B2:

• If B2 is a tree of the form formN then T has the form formN and by hypothesis NTr(T ) is in
form formN of type 4.

• If B2 is a replacement with its premises of the form formC , the application of NTr transforms
it into a replacement with its premises of the form formN and we have a tree of type 4.

• If B2 is a transitivity with its left premise a replacement with its premises of the form formC

and its right premise a tree of form formC , the application of NTr transforms the tree into
another one whose left premise is a replacement whose premises are in the form formN , the
right premise builds a new tree in form formN with A′

2 and we obtain a tree of type 4.

• Transitivity whose left premise is a congruence and whose right premise is a replacement.
By hypothesis the premises have the form formN rooted respectively by a congruence and a
replacement, and the tree is of the type 4.

5. Subject reduction. Analogous to the transitivity.

Before introducing the last transformation RemInf (T ) we check that the auxiliary transformation
merge(T1, T2) transforms treen in formN into a new tree which is also in formN .

Lemma 6. Let T1 and T2 proof trees in formN . Then merge (T1, T2) is in formN .

Proof. We apply induction over the size n = |T1|+ |T2|.
Basis, n = 2
Since the trees cannot be rooted by a transitivity, the rule (Merge2) is applied and we obtain a proof

tree in form formN .
Inductive step, n > 2
We distinguish cases over T1.

• If it is not a transitivity, then the right premise is a tree of the form formN by hypothesis and we
obtain a tree of the form formN .

• If it is a transitivity, we apply (Merge1). We know that the left premise is on the form formN and
it is not another transitivity. By hypothesis, the new right premise of the tree is of the form formN

and thus the whole tree is on the form formN .

Finally we define the class formC which corresponds to the proof tree in canonical form .

Definition 9. We say that a proof tree is in canonical form when it is in formC , which is defined as
the set of proof trees consisting of:

12



1. A single node corresponding to a reflexivity inference step.

2. A tree with a congruence step at the root whose premises are in formC .

3. A replacement or membership applied to a term t with arity(t) = 0 whose premises are trees in
formC .

4. A transitivity of the form:

F
t1 → t3

Cong

F ′

t3 → t4
Rep

Tt4→t2

t3 → t2
Tr

t1 → t2
Tr

where F and F ′ are sequences of trees in formC and Tt4→t2 is in formC with t4 6= t2.

5. A transitivity of the form:

F
t1 → t3

Cong
F ′

t3 → t2
Rep

t1 → t2
Tr

where F and F ′ are sequences of trees in formC .

6. A transitivity of the form:

F
t1 → t3

Rep
Tt3→t2

t1 → t2
Tr

where F is a sequence of trees in formC , Tt3→t2 in formC , arity(t1) = 0 and Tt3→t2 not rooted by
a reflexivity.

7. A subject reduction of the form:

F
t1 → t2

Cong

F ′

t2 → t3
Rep

Tt3:s

t2 : s
SRed

t1 : s
SRed

where F and F ′ are sequences of trees in formC and Tt3:s is a tree in formC .

8. A subject reduction of the form:

F
t1 → t2

Cong
F ′

t2 : s
Mb

t1 : s
SRed

where F and F ′ are sequences of trees in formC .

9. A subject reduction of the form:

F
t1 → t2

Rep
Tt2:s

t1 : s
Tr

where F is a sequence of trees in formC , Tt2:s in formC , and arity(t1) = 0.

Lemma 7. Let T a proof tree of the form formN . Then RemInf (T ) is in canonical form, i.e.
RemInf (T ) is in formC .

Proof. We apply induction over the size of the trees:
Basis, n = 1

13



• Reflexivity, unconditional replacement and unconditional membership. The tree does not change
and we obtain a tree of type 1 and 3 respectively.

Inductive step, n > 1

• Congruence. By hypothesis the premises are in canonical form and we have a tree of type 2.

• Conditional replacement and membership. By hypothesis the premises are in canonical form and
thus the tree, after applying (RemInf1) we obtain a tree of type 3. respectively.

• Transitivity wit a reflexivity as left premise. In this case (RemInf4) is applied. By hypothesis the
right premise, that becomes the new tree, is in canonical form.

• Transitivity with a replacement with the arity of the lefthand side 0 as left premise. In this case by
hypothesis are in canonical form and we obtain a tree of type 9.

• Transitivity with a congruence as left premise. We distinguish cases in the right premise:

– Reflexivity. In this case (RemInf5) is applied. By hypothesis the application of RemInf to
the left premise, the new tree, is in canonical form.

– Replacement with the arity of the lefthand side 0. By hypothesis the premises are in canonical
form and we obtain a tree of type 6.

– Congruence. In this case (RemInf1) is applied, by Lemma 6 the premises are in the form
formN and we can apply the induction hypothesis, obtaining a tree of type 2.

– Transitivity.
∗ Its left premise is a reflexivity. We apply (RemInf3) and, since the tree is now smaller,

the proposition holds by induction.
∗ Its left premise is a replacement. We know that the right premise is in form formN , so

we apply (RemInf6). If the right premise is not a reflexivity the application of RemInf
preserves the transitivity and the replacement, while by induction the right premise is in
canonical form, and we obtain a tree of type 4; if it is a reflexivity we obtain a tree of
type 5.

∗ Its left premise is a congruence. In that case (RemInf2) is applied and the right premise
is either a tree of the form formN , a replacement or a transitivity with replacement as left
premise and a tree of the form formN as right premise. In the last two cases, when RemInf
is applied we obtain a replacement or a transitivity with a replacement as left premise
and a canonical tree as right one, so the next application of RemInf does not modify the
tree, that will have type 4 or 5. However, if this right premise is a tree of the form formN

the application of RemInf returns a tree in canonical form, and we have to distinguish
cases again. If this canonical tree is not rooted by a congruence or by a transitivity the
proof is analogous to the previous one; if it is a congruence we reason like in 5, while if
it is a transitivity we have to take into account that the right premise cannot be another
congruence, and thus the next merge will be the last one, obtaining a canonical tree by
using Lemma 6 and induction.

• Subject reduction. Analogous to transitivity.

Proposition 1. Let T be a proof tree. Then Canonical(T ) is a proof tree in canonical form with the
same root.

Proof. Straightforward from Lemmas 4, 5, and 7.

6 Algorithm

Definition 10. Let T be a confluent proof tree . We define the norm of T , represented by ‖ T ‖, as the
sum of the lengths of all the reduction chains that can be applied to terms in APT (T ). More formally:

‖ T ‖=
∑

N ∈ APT (T )
N 6= root(APT (T ))

reduc(N,APT (T ))

14



where reduc is the function defined in Definition 3.

Proposition 2. Let T be proof tree and T ′ = Canonical(T ). Then ‖ T ‖≥‖ T ′ ‖.

Proof. We prove the following auxiliary hypotheses:

1. APT (T ) = APT (InsCong(T )) for every proof tree T .

2. APT (T ) = APT (NTr(T )) for every proof tree T .

3. ‖ T ‖≥‖ RemInf (T ) ‖.

Then the result is established as follows: let T ′ = NTr(InsCong(T )). T ′ is a tree by Lemmas 4 and 5.
Then:

‖ RemInf (NTr(InsCong(T ))) ‖ ≤ (by definition 6 and by hypothesis 3 )
‖ NTr(InsCong(T )) ‖ = (by hypothesis 2)
‖ InsCong(T ) ‖ = (by hypothesis 1)
‖ T ‖

Next we prove the three auxiliary hypotheses.
1. APT (T ) = APT (InsCong(T )) for every proof tree T .
We prove the result by complete induction on the number of nodes of T , for the case where the inference
applied at the root is (InsCong1). The cases corresponding to (InsCong2), (InsCong3) are analogous.

If (InsCong1) has been applied, then: T =
T1 . . . Tm

f(t1, . . . , tn) → t
Rep, with n > 0, and InsCong(T ) is of

the form:

T ′ = t1 → t1
Rf . . .

tn → tn
Rf

f(t1, . . . , tn) → f(t1, . . . , tn)
Cong

InsCong(T1) . . . InsCong(Tm)
f(t1, . . . , tn) → t

Rep

f(t1, . . . , tn) → t
Tr

We check that APT (T ) = APT (T ′)

APT (T ) = (by (APT1)) =
APT ′

(
T1 . . . Tm

f (t1 , . . . , tn) → t
Rep

)
f (t1 , . . . , tn) → t

= (by (APT8)) =

=
APT ′(T1) . . .APT ′(Tm)

f (t1 , . . . , tn) → t
Rep

f (t1 , . . . , tn) → t

and

APT (T ′) = (by (APT1)) =
APT ′(T ′)

f (t1 , . . . , tn) → t
= (by (APT4)) =

APT ′

 t1 → t1
Rf . . .

tn → tn
Rf

f(t1, . . . , tn) → f(t1, . . . , tn)
Cong


APT ′

 InsCong(T1) . . . InsCong(Tm)
f(t1, . . . , tn) → t

Rep


f(t1, . . . , tn) → t

Using (APT5) and then (APT2) in the reflexivity premises, we have

APT ′

 t1 → t1
Rf . . .

tn → tn
Rf

f(t1, . . . , tn) → f(t1, . . . , tn)
Cong

 = ∅
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and by (APT8)

APT ′

 InsCong(T1) . . . InsCong(Tm)
f(t1, . . . , tn) → t

Rep

 =

APT ′(InsCong(T1)) . . .APT ′(InsCong(Tm))
f(t1, . . . , tn) → t

Rep

Therefore

APT (T ′) =
APT ′(InsCong(T1)) . . .APT ′(InsCong(Tm))

f(t1, . . . , tn) → t
Rep

f(t1, . . . , tn) → t

And the result follows by induction hypothesis.

2 APT (T ) = APT (NTr(T )) for every proof tree T . The reasoning is similar to the previous case.
3 ‖ T ‖≥‖ RemInf (T ) ‖. In this case we reason informally skipping the lengthy formal proof. The idea
is that this transformation cannot increase the norm of T because it does not introduce any new nodes
in the APT, with the only exception of the application of merge, where a new node t → t′′ is introduced
as consequence of a transitivity step. This new node will be in the APT if its left premise (Tt→t1 in
(Merge1) and Tt→t′ in (Merge2)) is a replacement inference (by rule (APT3)). However, observe that
in this case (APT3) removes the left premise. Therefore we substitute in the APT a node t → t1 (or
t → t′) by another t → t′′ (respectively t1 → t′′), and we know that the proof tree includes (both before
and after the transformation) the proof of t1 → t′′. Then it is possible to check that the norm is not
increased because t′′ admits less reductions than t′.

Lemma 8. Let T a proof tree rooted by t → t′ and t1, t2 terms such that t1 ∈ t, t1 6= t. Then the result
of replacing t1 by t2 in T is a proof tree.

Proof. We apply induction over the size n of the trees:
Basis, n = 1

• Reflexivity. If we substitute we obtain the same term in both sides and hence we have another
reflexivity.

• Unconditional replacement. We know that we can still apply the same equation because the lefthand
side of equations are patterns, and thus the matching cannot rely on terms that are not fully
reduced. Thus, the equation can be applied to the new term on the lefthand side. if the righthand
side contains t1 is because the equation propagates the value and we have to replace it as well, while
if it does not contain t1 there is no need of replacing any values, so in both cases we obtain a new
proof tree.

Inductive step, n > 1

• Congruence. First, we replace t1 in the premises. If a premise does not contain a proof tree it
remains unchanged and thus it is a proof tree, while if it contains t1 in its lefthand side it is a
proof tree by induction hypothesis (note that it is impossible to have t1 only in the righthand side,
because it occurred in the lefthand side of the root). Finally, the terms t1 that where justified by
the premises are justified now by the new premises, while the premises that where propagated from
the lefthand side are now propagated as t2.

• Conditional replacement. We can apply the equation for the same reasons shown in the basis, thus
we have to prove that the new premises fulfill the conditions of the equation. The conditions that
have got t1 in its lefthand side are by hypothesis proof trees once the replacement takes place,
and prove the corresponding conditions because these terms are obtained from the lefthand side of
the replacement (since they are colored) and thus it is necessary to change them. Similarly, the
conditions that do not contain t1 are proof trees because they do not change and prove the same
conditions than before.
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• Transitivity. The left premise contains t1 in its lefthand side and thus we can apply the induction
hypothesis. If the lefthand side of the right premise (i.e., the righthand side of the left premise)
also contains we can apply the induction hypothesis again and obtain a proof tree, while if it does
not contain it the premise remains unchanged and thus is a proof, obtaining again that the whole
tree is a proof tree.

Proposition 3. Let T be a confluent proof tree in canonical form such that ‖ T ‖ > 0. Then T
contains:

1. A node related to a judgment t1 → t′1 such that:

• It is either the consequence of a transitivity inference with a replacement as left premise, or
the consequence of a replacement inference which is not the left premise of a transitivity.

• t′1 is in normal form w.r.t. T .

2. A node related to a judgment t2 → t′2 with t1 ∈ t′2.

3. A node related to a judgment t3 → t′3 consequence of a transitivity step, with t1 6∈ t′3.

Proof. From the construction of APT (T ) it is easy to check by induction that every node in APT (T ) of
the form t4 → t′4 corresponds in T to either:

• The root of T (rule (APT1)).

• The consequence of a transitivity inference with a replacement as left premise.

• The consequence of a replacement inference which is not the left premise of a transitivity.

Since ‖ T ‖ > 0 from Definition 10 T contains a node different from the root
But in this case t4 → t′4 cannot be the root by the point 5 of Lemma 1 and the second point of

Definition 10. This proves the first point of the Lemma.
To check the second point we consider any occurrence of N2 in T (it must occur at least once because

every node in APT (T ) is also in T ), and an occurrence of t4 in N2. By Definition 10 N2 is not the root,
and by Lemma 1 we can track the occurrence of t4 to the father of N2 until a certain node N3 is reached
such that either N3 is the root or N3 does not contain t4. We check the two cases separately:

• N3 contains t4, and thus N3 is the root. Then N3 is either of the form t1 → t′1 with t4 ∈ t1, t4 6= t1,
t4 /∈ t′1 (since t′1 is in normal form), or of the form t1 : s with t4 ∈ t1.

• N3 does not contain t4.

Algorithm 1 presents the transformation in charge of reducing the norm of the proof trees until it
reaches 0. It first selects a node Nible (from reducible node), that contains a term that has been further
reduced during the computation,2 a node Ner (from reducer node) that contains the reduction needed by
the terms in Nible , and a node p0 limiting the range of the transformation. Note that we can distinguish
two parts in the subtree rooted by the node in p0, the left premise, where Nible is located, and the right
premise, where Ner is located. Then, we create some copies of these nodes in order to use them after the
transformations.

Step 6 replaces the proofs of the reduction t1 → t′1 by reflexivity steps t′1 → t′1. Since this trans-
formation is trying to use this reduction before its current position, a natural consequence will be to
transform all the appearances of t1 in the path between the old and the new position by t′1, what means
that in this particular place we would obtain the reduction t′1 → t′1 inferred, by Proposition 3, by either
a transitivity or a replacement rule, and with the appropriate proof trees as children. Since this would
be clearly incorrect, the whole tree is replaced by a reflexivity.

Step 7 replaces all the occurrences of t1 by t′1 in the right premise of p0, as explained in the previous
step. In this way, the right premise of p0 is a new subtree where t1 has been replaced by t′1 and all the
proofs related to t1 → t′1 have been replaced by reflexivity steps t′1 → t′1. Note that intuitively these
steps are correct because t′1 is required to be in normal form, the tree is confluent, and the norm of this

2We select the first one in post-order to ensure that this node is the one that generated the term.
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tree is 0, that is, all the possible reductions of terms with the same color have been already “joined” to
create a t1 → t′1 proof.

Step 8 replaces the occurrences of t1 by t′1 in the left premise of p0. We apply this transformation only
in the righthand sides because they are in charge of transmitting the information, and in this way we
prevent the algorithm from changing correct values (inherited perhaps from the root). This substitution
can be used thanks to the position p0, which ensures that only the righthand sides are affected.

Step 9 combines the reduction in Nible with the reduction in Ner (actually, it merges their copies, since
the previous transformations have modified them). If the term e we are further reducing corresponds to
the term t′ in the lefthand side of the judgment in Nible , then it is enough to use a transitivity to “join”
the two subtrees. In other case, the term we are reducing is a subterm of t′ and thus we must use a
congruence inference rule to reduce it, using again a transitivity step to infer the new judgment.

Finally, these transformation make the trees to lose their canonical form.

Algorithm 1. Let T be a proof tree in canonical form.

1. Let Tr = T

2. Loop while ‖ Tr ‖ > 0

3. Let Ner = t1 → t′1 be a node satisfying the conditions of item 1 in Proposition 3, Nible = t2 → t′2
the first node in T’s post-order verifying the conditions of item 2 in Proposition 3, and p0 the position
of the subtree of T rooted by the first (furthest from the root) ancestor of Nible satisfying item 3 in
Proposition 3, such that the right premise of the node in p0, Trp, has ‖ Trp ‖= 0.

4. Let Cer be a copy of the tree rooted by Ner in T .

5. Let Cible be a copy of the tree rooted by Nible in T and pible the position of Nible in T .

6. Let T1 be the result of replacing in T all the subtrees rooted by Ner by a reflexivity inference
step with conclusion t′1 → t′1.

7. Let T2 be the result of substituting all the occurrences of the term t1 by t′1 in the right premise
of the subtree at position p0 in T1.

8. Let T3 be the result of substituting all the occurrences of the term t1 with t′1 in the righthand
sides of the left premise of the subtree at position p0 in T2.

9. Let T4 be the result of replacing the subtree at position pible in T3 by the following subtree:

(a) t′2 = t1.
Cible Cer

t2 → t′1
Tr

(b) t′2 6= t1.

Cible

Cer

t′2 → t′2[t1 7→ t′1]
Cong

t2 → t′2[t1 7→ t′1]
Tr

10. Let Tr be the result of normalizing T4.

11. End Loop

Lemma 9. Let T a canonical proof tree such that ‖ T ‖> 0. Then the result of applying the steps 3 –
9 of Algorithm 1 to this tree is also a proof tree with the same root.

Proof. We prove first the following facts:

• Given the values Ner , Nible , Cer , Cible , and p0 from steps 3 – 5, any subtree T ′t4→t′4
of T containing

Nible and not containing Ner is a proof tree rooted by t4 → t′4[t1 7→ t′1] after applying steps 8 – 9
of Algorithm 1.

To prove this fact, note that the change done in step 9 (changing the righthand side of an inference)
affects all the nodes coming after this one in postorder:

Reflexivity This inference rule does not generate any changes.
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Transitivity A change in the left premise affects the right one, and thus affects the father, while
a change in the left one only affects the father.

Congruence A change in a premise only affects the father.

Replacement A change in the conditions can affect posterior conditions and the father (both due
to matching conditions).

Subject reduction Analogous to transitivity, although the father cannot be changed.

Membership Analogous to replacement, although the father cannot be changed.

Since the node changed in step 9 is the first one in preorder, to have a proof tree all the remaining
nodes have to be changed as stated in step 8 to remain a proof tree.

Finally, note that the step 8 changes the righthand side of the root, leading to t2 → t′2[t1 7→ t′1].

• Given a proof tree Tt4→t′4
, t1 ∈ t4, ‖ Tt4→t′4

‖= 0 then the tree obtained by applying steps 6 and 7
from Algorithm 1 to Tt4→t′4

is a proof tree rooted by t4[t1 7→ t′1] → t′4.

Proof. By induction on the size of the tree T . When |T | = 1 we can have:

– A reflexivity step, with t1 → t1 as consequence. Thus we have t1 = t′1 and the steps 6 and 7
return a proof tree which is constituted by a reflexivity step and t′1 → t′1 as consequence.

– An unconditional membership step. Since the specification is assumed to be sort-decreasing
and the lefthand side of memberships must contain a pattern, the substitution of t1 by a more
reduced term t′1 returns a proof tree.

– In that case this is the replacement with consequence t1 → t′1 and thus it is replaced by a
reflexivity, which is a valid proof tree.

Assuming the application of the steps is correct for proof trees |T | = n, we prove it for trees with
size |T | ≥ n:

– A transitivity step. We distinguish whether it is the transitivity that will be transformed into
a reflexivity step, and thus the fact follows trivially, or it has the form

Tt3→t′2
Tt′2→t′3

t3 → t′3
Tr

if t1 ∈ t′2 then the premises are proof trees by induction hypothesis and we have the proof tree:

Tt3[t1 7→t′1]→t′2[t1 7→t′1]
Tt′2[t1 7→t′1]→t′3

t3[t1 7→ t′1] → t′3
Tr

In other case, the steps do not affect the right premise, the left one is a proof tree by induction
hypothesis and we have the proof tree:

Tt3[t1 7→t′1]→t′2
Tt′2→t′3

t3[t1 7→ t′1] → t′3
Tr

– Congruence step. The result is straightforward by induction hypothesis.

– Replacement step with t → t′ as consequence. If it is replaced by a reflexivity, it is trivially a
proof tree. In other case, we have, for 0 ≤ i ≤ n, 0 ≤ j ≤ m

Tui→ri
Tu′i→ri

Tvj :sj

t2 → t′2
Rep

Since t′1 is in normal form with respect to the tree, we know that the ri do not contain t1. Thus,
if ui (analogously u′i) contains t1, the steps return a proof tree by induction hypothesis; in other
case, the steps do not affect the trees and thus remain as proof trees. We reason in the same
way for the membership conditions. Now we have to prove that the new tree stands for a valid
replacement step. The new term t2[t1 7→ t′1] matches the lefthand side of the equation because
it is a pattern, and thus cannot depend on unreduced functions. Moreover, the replacements
in the equations are also valid: the equalities, since we know that the t1 was reduced to t′1
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along the condition (because the tree is confluent) we have only anticipated its reduction, and
the condition will hold if and only if it held before the steps. We reason analogously, taking
into account that the specification is sort decreasing, for membership conditions.

– Subject reduction step. Analogous to transitivity, although the root does not change.

Note now that the first fact can be applied to the left premise of p0 and the second one to its right
premise, and thus after applying steps 3 – 9 of the algorithm they are still proof trees. Moreover, p0 is
not affected by the algorithm, and thus the rest of the tree is not affected by the algorithm, so we must
only check p0 is a correct transitivity inference. This is straightforward since:

• The left premise, initially rooted by tl → t′l is now rooted by tl → t′l[t1 7→ t′1] by the first fact.

• The right premise, rooted by tr → t′r, is now rooted by tr[t1 7→ t′1] → t′r by the second fact.

Lemma 10. Let T be a proof tree in canonical form s.t. ‖ T ‖> 0. Then the result of applying the
steps 3 – 9 of Algorithm 1 to Tr = T is a proof tree T ′′′ s.t. ‖ T ′′′ ‖<‖ T ‖, root(T ′′′) = root(T ).

Proof. The existence of the nodes N = t1 → t′1 and M = t2 → t′2 mentioned in the step 3 of the algorithm
is ensured by Lemma 3. Since M is the first node in post-order satisfying t1 ∈ t′2, t1 /∈ t2 it has to be
the consequence of a replacement inference, because only replacements can introduce values that do not
appear in their premises.

We first prove that root(T ′′′) = root(T ) by showing that t1 /∈ root(T ). It is easy to check that in this
case the algorithm steps 3 – 9 will not affect root(T ). The node root(T ) can be either of the form t4 → t′4
or t4 : s. Then:

• t1 /∈ t′4, T contains t1 → t′1 and t′4 is in normal form.

• t1 /∈ t4. From Lemma 3, we know that there exist at least one node with t1 in the righthand side
but not in the lefthand side. Since t1 /∈ t′4 is not one of these nodes and terms are colored, this
cannot happen if the term already exists in the root, and thus the root does not contain t1.

T ′′′ is confluent because T was confluent and the algorithm only copies and removes nodes, without
introducing any new replacement inference.

Lemma 9 proves that the transformation returns a proof tree.
Finally, we have to check that ‖ T ′′′ ‖<‖ T ‖. We consider the case case a) of step 9, which corresponds

to t′2 = t1. The case b) t′2 6= t1 is analogous. Let D be the first preorder ancestor of the node at position
pM in T verifying that it is either of the form t4 : s or of the form t4 → t′4 with t1 /∈ t4. Then it is easy to
check that the algorithm only affects the subtree TD, which must contain all the occurrences of N and
M and in particular TN and TM . Therefore we need to prove that ‖ T ′D ‖<‖ TD ‖, with T ′D the result of
applying the algorithm steps 3 - 9 to TD.

The only steps that actually modify TD are steps 6, 7 and 9. Replacing the nodes rooted by N by
reflexivity inferences t′1 → t′1 (step 6) can only make the tree norm smaller, and in any case never larger.
Replacing t1 by t′1 (step 7) cannot yield a larger norm since t′1 is in normal form. Finally step 9 replaces
the subtree at position pM by a new tree

T ′M =
TM TN

t2 → t′1
Tr

Now observe that TD contained the subtree TM at position pM . This node is replaced by T ′M in T ′D.
Since M was a replacement and not the left premise of a transitivity, it was part of APT (TD), and since
it was of the form t2 → t1 its righthand side contributed to the norm with a value greater than 0. In
T ′M the root of M is no longer part of the APT, since now is the left premise of a transitivity. Instead
we have t2 → t′1, and t′1 does not contribute to the norm because it is in normal form. Moreover, the
rest of the nodes from T ′M part of APT (T ′D) will correspond either to nodes TM (except its root) or to
nodes in TN , which were already in APT (TD). Observe that the algorithm does duplicate these nodes,
because T ′M is replacing an occurrence of TM and also because we have removed previously (step 6) all
the occurrences (at least one) of TN . Therefore ‖ T ′D ‖<‖ TD ‖.
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Theorem 1. Let T be a confluent proof tree in canonical form. Then the result of Algorithm 1 is a
proof tree Tr such that root(Tr) = root(T ) and ‖ Tr ‖= 0.

Proof. The result is a straightforward consequence of Proposition 2 and Lemma 10.

Theorem 2. Let T be a proof tree with invalid root. Then APT (T ) contains a buggy node which points
out an incorrect program statement.

Proof. Seen in [7]

Corollary 1. Let T be a confluent proof tree in canonical form s.t. root(T ) is invalid. Let Tr be the
result of applying Algorithm 1 to T . Then APT (Tr) contains a buggy node which points out an incorrect
program statement.

Proof. Straightforward consequence of Theorems 1 and 2.

7 Concluding Remarks

One of the main criticisms of the declarative debugging tools is the high complexity of the questions
performed to the user. Thus, if the same computation can be represented by different debugging trees,
we must choose the tree containing the simplest questions. In the cause of Maude functional modules, an
improvement in this direction is to ensure that judgments presented to the user contain terms reduced as
much as possible. We have presented a transformation that allows us to produce abbreviated proof trees
fulfilling this property starting with any valid proof tree for the computation. The result is a debugging
tree with questions as simple as possible without increasing the number of questions. Moreover, the
theoretical results supporting the debugging technique presented in previous papers remain valid since
we have proven that our transformation converts proof trees into proof trees for the same computation.

The transformations have been implemented in a working tool that can be used for debugging wrong
answers in Maude that can be found at http://maude.sip.ucm.es/debugging/.
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