
Declarative Debugging of Membership Equational Logic
Specifications?

R. Caballero, N. Martı́-Oliet, A. Riesco, and A. Verdejo

Facultad de Informática, Universidad Complutense de Madrid, Spain

Abstract. Algorithmic debugging has been applied to many declarative pro-
gramming paradigms; in this paper, it is applied to the rewriting paradigm em-
bodied in Maude. We introduce a declarative debugger for executable specifi-
cations in membership equational logic which correspond to Maude functional
modules. Declarative debugging is based on the construction and navigation of
a debugging tree which logically represents the computation steps. We describe
the construction of appropriate debugging trees for oriented equational and mem-
bership inferences. These trees are obtained as the result of collapsing in proof
trees all those nodes whose correctness does not need any justification. We use
an extended example to illustrate the use of the declarative debugger and its main
features, such as two different strategies to traverse the debugging tree, use of a
correct module to reduce the number of questions asked to the user, and selection
of trusted vs. suspicious statements by means of labels. The reflective features of
Maude have been extensively used to develop a prototype implementation of the
declarative debugger for Maude functional modules using Maude itself.
Keywords: declarative debugging, membership equational logic, Maude, func-
tional modules

1 Introduction

As argued in [23], the application of declarative languages out of the academic world
is inhibited by the lack of convenient auxiliary tools such as debuggers. The traditional
separation between the problem logic (defining what is expected to be computed) and
control (how computations are carried out actually) is a major advantage of these lan-
guages, but it also becomes a severe complication when considering the task of debug-
ging erroneous computations. Indeed, the involved execution mechanisms associated
to the control make it difficult to apply the typical techniques employed in imperative
languages based on step-by-step trace debuggers.

Consequently, new debugging approaches based on the language’s semantics have
been introduced in the field of declarative languages, such as abstract diagnosis, which
formulates a debugging methodology based on abstract interpretation [9,1], or declar-
ative debugging, also known as algorithmic debugging, which was first introduced by
E. Y. Shapiro [19] and that constitutes the framework of this work. Declarative de-
bugging has been widely employed in the logic [10,14,22], functional [21,17,16,18],
? Research supported by MEC Spanish projects DESAFIOS (TIN2006-15660-C02-01) and

MERIT-FORMS (TIN2005-09027-C03-03), and Comunidad de Madrid program PROMESAS
(S-0505/TIC/0407).



and multiparadigm [5,3,11] programming languages. Declarative debugging is a semi-
automatic technique that starts from a computation considered incorrect by the user
(error symptom) and locates a program fragment responsible for the error. The declar-
ative debugging scheme [15] uses a debugging tree as a logical representation of the
computation. Each node in the tree represents the result of a computation step, which
must follow from the results of its child nodes by some logical inference. Diagnosis
proceeds by traversing the debugging tree, asking questions to an external oracle (gen-
erally the user) until a so-called buggy node is found. A buggy node is a node containing
an erroneous result, but whose children all have correct results. Hence, a buggy node
has produced an erroneous output from correct inputs and corresponds to an erroneous
fragment of code, which is pointed out as an error.

During the debugging process, the user does not need to understand the computation
operationally. Any buggy node represents an erroneous computation step, and the de-
bugger can display the program fragment responsible for it. From an explanatory point
of view, declarative debugging can be described as consisting of two stages, namely the
debugging tree generation and its navigation following some suitable strategy [20].

In this paper we present a declarative debugger for Maude functional modules [7,
Chap. 4]. Maude is a high-level language and high-performance system supporting both
equational and rewriting logic computation for a wide range of applications. It is a
declarative language because Maude modules correspond in general to specifications
in rewriting logic [12], a simple and expressive logic which allows the representation
of many models of concurrent and distributed systems. This logic is an extension of
equational logic; in particular, Maude functional modules correspond to specifications
in membership equational logic [2,13], which, in addition to equations, allows the state-
ment of membership assertions characterizing the elements of a sort. In this way, Maude
makes possible the faithful specification of data types (like sorted lists or search trees)
whose data are defined not only by means of constructors, but also by the satisfaction
of additional properties.

For a specification in rewriting or membership equational logic to be executable in
Maude, it must satisfy some executability requirements. In particular, Maude functional
modules are assumed to be confluent, terminating, and sort-decreasing1 [7], so that, by
orienting the equations from left to right, each term can be reduced to a unique canonical
form, and semantic equality of two terms can be checked by reducing both of them to
their respective canonical forms and checking that they coincide. Since we intend to
debug functional modules, we will assume throughout the paper that our membership
equational logic specifications satisfy these executability requirements.

The Maude system supports several approaches for debugging Maude programs:
tracing, term coloring, and using an internal debugger [7, Chap. 22]. The tracing facili-
ties allow us to follow the execution on a specification, that is, the sequence of rewrites
that take place. Term coloring consists in printing with different colors the operators
used to build a term that does not fully reduce. The Maude debugger allows the user to
define break points in the execution by selecting some operators or statements. When

1 All these requirements must be understood modulo some axioms such as associativiy and
commutativity that are associated to some binary operations.



a break point is found the debugger is entered. There, we can see the current term and
execute the next rewrite with tracing turned on.

The Maude debugger has as a disadvantage that, since it is based on the trace, it
shows to the user every small step obtained by using a single statement. Thus the user
can loose the general view of the proof of the incorrect inference that produced the
wrong result. That is, when the user detects an unexpected statement application it is
difficult to know where the incorrect inference started.

Here we present a different approach based on declarative debugging that solves
this problem for functional modules. The debugging process starts with an incorrect
transition from the initial term to a fully reduced unexpected one. Our debugger, after
building a proof tree for that inference, will present to the user questions of the fol-
lowing form: “Is it correct that T fully reduces to T ′?”, which in general are easy to
answer. Moreover, since the questions are located in the proof tree, the answer allows
the debugger to discard a subset of the questions, leading and shortening the debugging
process.

The current version of the tool has the following characteristics:

– It supports all kinds of functional modules: operators can be declared with any com-
bination of axiom attributes (except for the attribute strat, that allows to specify
an evaluation strategy); equations can be defined with the otherwise attribute; and
modules can be parameterized.2

– It provides two strategies to traverse the debugging tree: top-down, that traverses
the tree from the root asking each time for the correctness of all the children of
the current node, and then continues with one of the incorrect children; and divide
and query, that each time selects the node whose subtree’s size is the closest one to
half the size of the whole tree, keeping only this subtree if its root is incorrect, and
deleting the whole subtree otherwise.

– Before starting the debugging process, the user can select a module containing only
correct statements. By checking the correctness of the inferences with respect to
this module (i.e., using this module as oracle) the debugger can reduce the number
of questions asked to the user.

– It allows the user to debug Maude functional modules where some equations and
memberships are suspicious and have been labeled (each one with a different label).
Only these labeled statements generate nodes in the proof tree, while the unlabeled
ones are considered correct. The user is in charge of this labeling. Moreover, the
user can answer that he trusts the statement associated with the currently questioned
inference; that is, statements can be trusted “on the fly.”

Detailed proofs of the results, additional examples, and much more information
about the implementation can be found in the technical report [4], which, together with
the Maude source files for the debugger, is available from the webpage http://maude.
sip.ucm.es/debugging.

2 For the sake of simplicity, our running example will be unparameterized, but it can easily be
parameterized, as shown in [4].



2 Maude functional modules

Maude uses a very expressive version of equational logic, namely membership equa-
tional logic (MEL) [2,13], which, in addition to equations, allows the statement of mem-
bership assertions characterizing the elements of a sort. Below we present the logic and
how its specifications are represented as Maude functional modules.

2.1 Membership equational logic

A signature in MEL is a triple (K,Σ,S) (just Σ in the following), with K a set of kinds,
Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K a pairwise dis-
joint K-kinded family of sets of sorts. The kind of a sort s is denoted by [s]. We write
TΣ,k and TΣ,k(X) to denote respectively the set of ground Σ-terms with kind k and of
Σ-terms with kind k over variables in X , where X = {x1 : k1, . . . ,xn : kn} is a set of K-
kinded variables. Intuitively, terms with a kind but without a sort represent undefined
or error elements. MEL atomic formulas are either equations t = t ′, where t and t ′ are
Σ-terms of the same kind, or membership assertions of the form t : s, where the term
t has kind k and s ∈ Sk. Sentences are universally-quantified Horn clauses of the form
(∀X)A0⇐ A1∧ . . .∧An, where each Ai is either an equation or a membership assertion,
and X is a set of K-kinded variables containing all the variables in the Ai. Order-sorted
notation s1 < s2 (with s1,s2 ∈ Sk for some kind k) can be used to abbreviate the condi-
tional membership (∀x : k)x : s2⇐ x : s1. A specification is a pair (Σ,E), where E is a
set of sentences in MEL over the signature Σ.

Models of MEL specifications are called algebras. A Σ-algebra A consists of a set Ak
for each kind k∈K, a function A f : Ak1×·· ·×Akn −→Ak for each operator f ∈Σk1...kn,k,
and a subset As ⊆ Ak for each sort s ∈ Sk, with the meaning that the elements in sorts
are well-defined, whereas elements in a kind not having a sort are undefined or error
elements. The meaning [[t]]A of a term t in an algebra A is inductively defined as usual.
Then, an algebra A satisfies an equation t = t ′ (or the equation holds in the algebra),
denoted A |= t = t ′, when both terms have the same meaning: [[t]]A = [[t ′]]A . In the same
way, satisfaction of a membership is defined as: A |= t : s when [[t]]A ∈ As.

A specification (Σ,E) has an initial model TΣ/E whose elements are E-equivalence
classes of terms [t]. We refer to [2,13] for a detailed presentation of (Σ,E)-algebras,
sound and complete deduction rules, initial algebras, and specification morphisms.

Since the MEL specifications that we consider are assumed to satisfy the executabil-
ity requirements of confluence, termination, and sort-decreasingness, their equations
t = t ′ can be oriented from left to right, t → t ′. Such a statement holds in an algebra,
denoted A |= t → t ′, exactly when A |= t = t ′, i.e., when [[t]]A = [[t ′]]A . Moreover, un-
der those assumptions an equational condition u = v in a conditional equation can be
checked by finding a common term t such that u→ t and v→ t. This is the notation we
will use in the inference rules and debugging trees studied in Sect. 3.

2.2 Representation in Maude

Maude functional modules, introduced with syntax fmod ... endfm, are executable
MEL specifications and their semantics is given by the corresponding initial member-
ship algebra in the class of algebras satisfying the specification.



In a functional module we can declare sorts (by means of keyword sort(s)); sub-
sort relations between sorts (subsort); operators (op) for building values of these sorts,
giving the sorts of their arguments and result, and which may have attributes such as
being associative (assoc) or commutative (comm), for example; memberships (mb) as-
serting that a term has a sort; and equations (eq) identifying terms. Both memberships
and equations can be conditional (cmb and ceq).

Maude does automatic kind inference from the sorts declared by the user and their
subsort relations. Kinds are not declared explicitly, and correspond to the connected
components of the subsort relation. The kind corresponding to a sort s is denoted [s].
For example, if we have sorts Nat for natural numbers and NzNat for nonzero natural
numbers with a subsort NzNat < Nat, then [NzNat] = [Nat].

An operator declaration like3

op _div_ : Nat NzNat -> Nat .

is logically understood as a declaration at the kind level

op _div_ : [Nat] [Nat] -> [Nat] .

together with the conditional membership axiom

cmb N div M : Nat if N : Nat and M : NzNat .

2.3 A buggy example: non-empty sorted lists

Let us see a simple example showing how to specify sorted lists of natural numbers in
Maude. The following module includes the predefined module NAT defining the natural
numbers.

(fmod SORTED-NAT-LIST is
pr NAT .

We introduce sorts for non-empty lists and sorted lists. We identify a natural number
with a sorted list with a single element by means of a subsort declaration.

sorts NatList SortedNatList .
subsorts Nat < SortedNatList < NatList .

The lists that have more than one element are built by means of the associative
juxtaposition operator __.

op __ : NatList NatList -> NatList [ctor assoc] .

We define now when a list (with more than one element) is sorted by means of a
membership assertion. It states that the first number must be smaller than the first of the
rest of the list, and that the rest of the list must also be sorted.

3 The underscores indicate the places where the arguments appear in mixfix syntax.



vars E E’ : Nat . var L : NatList . var OL : SortedNatList .
cmb [olist] : E L : SortedNatList if E <= head(L) /\ L : SortedNatList .

The definition of the head function distinguishes between lists with a single element
and longer ones.

op head : NatList -> Nat .
eq [hd1] : head(E) = E .
eq [hd2] : head(L E) = E .

We also define a sort function which sorts a list by successively inserting each nat-
ural number in the appropriate position in the sorted sublist formed by the numbers
previously considered.

op insertion-sort : NatList -> SortedNatList .
op insert-list : SortedNatList Nat -> SortedNatList .
eq [is1] : insertion-sort(E) = E .
eq [is2] : insertion-sort(E L) = insert-list(insertion-sort(L), E) .

The function insert-list distinguishes several cases. If the list has only one num-
ber, the function checks if it is bigger than the number being inserted, and returns the
sorted list. If the list has more than one element, the function checks that the list is
previously sorted; if the number being inserted is smaller than the first of the list, it is
located as the (new) first element, while if it is bigger we keep the first element and
recursively insert the element in the rest of the list.

ceq [il1] : insert-list(E, E’) = E’ E if E’ < E .
eq [il2] : insert-list(E, E’) = E E’ [owise] .
ceq [il3] : insert-list(E OL, E’) = E E’ OL
if E’ <= E /\ E OL : SortedNatList .

ceq [il4] : insert-list(E OL, E’) = E insert-list(OL, E’)
if E OL : SortedNatList [owise] .

endfm)

Now, we can reduce a term in this module. For example, we can try to sort the list
3 4 7 6 with

Maude> (red insertion-sort(3 4 7 6) .)
result SortedNatList : 6 3 4 7

But... the list obtained is not sorted! Moreover, Maude infers that it is sorted. Did
you notice the bugs? We will show how to use the debugger in Sect. 4.3 to detect them.

3 Declarative debugging of Maude functional modules

We describe how to build the debugging trees for MEL specifications. Detailed proofs
can be found in [4].



(Reflexivity)
e→ e

(Rf )

(Transitivity)
e1→ e′ e′→ e2

e1→ e2
(Tr)

(Congruence) e1→ e′1 . . . en→ e′n
f (e1, . . . , en)→ f (e′1, . . . , e′n)

(Cong)

(Subject Reduction)
e→ e′ e′ : s

e : s
(SRed)

(Membership)
{θ(ui)→ ti← θ(u′i)}1≤i≤n {θ(v j) : s j}1≤ j≤m

θ(e) : s
(Mb)

if e : s⇐ u1 = u′1∧·· ·∧un = u′n∧ v1 : s1∧·· ·∧ vm : sm

(Replacement) {θ(ui)→ ti← θ(u′i)}1≤i≤n {θ(v j) : s j}1≤ j≤m
θ(e)→ θ(e′)

(Rep)

if e→ e′⇐ u1 = u′1∧·· ·∧un = u′n∧ v1 : s1∧·· ·∧ vm : sm

Fig. 1. Semantic calculus for Maude functional modules

3.1 Proof trees

Before defining the debugging trees employed in our declarative debugging framework
we need to introduce the semantic rules defining the specification semantics. The infer-
ence rules of the calculus can be found in Fig. 1, where θ denotes a substitution.

They are an adaptation to the case of Maude functional modules of the deduction
rules for MEL presented in [13]. The notation θ(ui)→ ti← θ(u′i) must be understood as
a shortcut for θ(ui)→ ti, θ(u′i)→ ti. We assume the existence of an intended interpre-
tation I of the specification, which is a Σ-algebra corresponding to the model that the
user had in mind while writing the statements E, i.e., the user expects that I |= e→ e′,
I |= e : s for each reduction e→ e′ and membership e : s computed w.r.t. the specification
(Σ,E). As a Σ-algebra, I must satisfy the following proposition:

Proposition 1. Let S = (Σ,E) be a MEL specification and let A be any Σ-algebra. If
e→ e′ (respectively e : s) can be deduced using the semantic calculus rules reflexivity,
transitivity, congruence, or subject reduction using premises that hold in A , then A |=
e→ e′ (respectively A |= e : s).

Observe that this proposition cannot be extended to the membership and replace-
ment inference rules, where the correctness of the conclusion depends not only on the
calculus but also on the associated specification statement, which could be wrong.

We will say that e→ e′ (respectively e : s) is valid when it holds in I , and invalid
otherwise. Declarative debuggers rely on some external oracle, normally the user, in
order to obtain information about the validity of some nodes in the debugging tree.
The concept of validity can be extended to distinguish wrong equations and wrong



membership axioms, which are those specification pieces that can deduce something
invalid from valid information.

Definition 1. Let R ≡ (af ⇐ u1 = u′1∧ ·· ·∧un = u′n∧ v1 : s1∧ ·· ·∧ vm : sm), where af
denotes an atomic formula, that is, either an oriented equation or a membership axiom
in a specification S. Then:

– θ(R) is a wrong equation instance (respectively, a wrong membership axiom in-
stance) w.r.t. an intended interpretation I when
• There exist t1, . . . , tn such that I |= θ(ui)→ ti, I |= θ(u′i)→ ti for i = 1 . . .n.
• I |= θ(v j) : s j for j = 1 . . .m.
• θ(af ) does not hold in I .

– R is a wrong equation (respectively, a wrong membership axiom) if it admits some
wrong instance.

It will be convenient to represent deductions in the calculus as proof trees, where the
premises are the child nodes of the conclusion at each inference step. For example, the
proof tree depicted in Fig. 2 corresponds to the result of the reduction in the specifica-
tion for sorted lists described at the end of Sect. 2.3. For obvious reasons, the operation
names have been abbreviated in a self-explanatory way; furthermore, each node cor-
responding to an instance of the replacement or membership inference rules has been
labelled with the label of the equation or membership statement which is being applied.

In declarative debugging we are specially interested in buggy nodes which are in-
valid nodes with all its children valid. The following proposition characterizes buggy
nodes in our setting.

Proposition 2. Let N by a buggy node in some proof tree in the calculus of Fig. 1 w.r.t.
an intended interpretation I . Then:

1. N is the consequence of either a membership or a replacement inference step.
2. The equation associated to N is a wrong equation or a wrong membership axiom.

3.2 Abbreviated proof trees

Our goal is to find a buggy node in any proof tree T rooted by the initial error symptom
detected by the user. This could be done simply by asking questions to the user about
the validity of the nodes in the tree according to the following top-down strategy:

Input: A tree T with an invalid root.
Output: A buggy node in T .
Description: Consider the root N of T . There are two possibilities:

– If all the children of N are valid, then finish identifying N as buggy.
– Otherwise, select the subtree rooted by any invalid child and use re-

cursively the same strategy to find the buggy node.

Proving that this strategy is complete is straightforward by using induction on the height
of T . As an easy consequence, the following result holds:



is
(3

4
7
6)
→

il
(i
s(
4
7
6)
,
3)

is
2

is
(4

7
6)
→

il
(i
s(
7
6,

4)
)

is
2

is
(7

6)
→

il
(i
s(
6,

7)
)

is
2

is
(6
)
→

6
is

1

il
(i
s(
6,

7)
)
→

il
(6
,
7)

C
on

g
il
(6
,
7)
→

6
7

il2

il
(i
s(
6,

7)
)
→

6
7

Tr

is
(7

6)
→

6
7

Tr

il
(i
s(
7
6)
,
4)
→

il
(6

7,
4)

C
on

g

hd
(7
)
→

7
hd

1

6
7
:
SN
L

ol
is

t

il
(6

7,
4)
→

6
4
7

il3

il
(i
s(
7
6,

4)
)
→

6
4
7

Tr

is
(4

7
6)
→

6
4
7

Tr

il
(i
s(
4
7
6)
,
3)
→

il
(6

4
7,

3)
C

on
g

hd
(4

7)
→

7
hd

2
hd
(7
)
→

7
hd

1

4
7
:
SN
L

ol
is

t

6
4
7
:
SN
L

ol
is

t

il
(6

4
7,

3)
→

6
3
4
7

il3

il
(i
s(
4
7
6)
,
3)
→

6
3
4
7

Tr

is
(3

4
7
6)
→

6
3
4
7

Tr

Fi
g.

2.
Pr

oo
ft

re
e

fo
rt

he
so

rt
ed

lis
ts

ex
am

pl
e



(APT1) APT
(

T1 . . .Tn
af

(R)

)
=

APT ′
(

T1 . . .Tn
af

(R)

)
af

(with (R) any inference rule)

(APT2) APT ′
(

e→ e
(Rf )

)
= /0

(APT3) APT ′

 T1 . . .Tn
e1→ e′

(Rep)
T ′

e1→ e2
(Tr)

 =
{

APT ′(T1) . . .APT ′(Tn) APT ′(T ′)
e1→ e2

(Rep)

}

(APT4) APT ′
(

T1 T2
e1→ e2

(Tr)

)
= {APT ′(T1), APT ′(T2)}

(APT5) APT ′
(

T1 . . .Tn
e1→ e2

(Cong)

)
= {APT ′(T1), . . . ,APT ′(Tn)}

(APT6) APT ′
(

T1 T2
e : s

(SRed)

)
= {APT ′(T1), APT ′(T2)}

(APT7) APT ′
(

T1 . . .Tn
e : s

(Mb)

)
=
{

APT ′(T1) . . .APT ′(Tn)
e : s

(Mb)

}

(APT8) APT ′
(

T1 . . .Tn
e1→ e2

(Rep)

)
=
{

APT ′(T1) . . .APT ′(Tn)
e1→ e2

(Rep)

}
Fig. 3. Transforming rules for obtaining abbreviated proof trees

Proposition 3. Let T be a proof tree with an invalid root. Then there exists a buggy
node N ∈ T such that all the ancestors of N are invalid.

However, we will not use the proof tree T as debugging tree, but a suitable abbre-
viation which we denote by APT (T ) (from Abbreviated Proof Tree), or simply APT
if the proof tree T is clear from the context. The reason for preferring the APT to the
original proof tree is that it reduces and simplifies the questions that will be asked to the
user while keeping the soundness and completeness of the technique. In particular the
APT contains only nodes related to the replacement and membership inferences using
statements included in the specification, which are the only possible buggy nodes as
Proposition 2 indicates. Fig. 3 shows the definition of APT (T ). The Ti represent proof
trees corresponding to the premises in some inferences.

The rule APT 1 keeps the root unaltered and employs the auxiliary function APT ′ to
produce the children subtrees. APT ′ is defined in rules APT 2 . . .APT 8. It takes a proof
tree as input parameter and returns a forest {T1, . . . ,Tn} of APT s as result. The rules for
APT ′ are assumed to be tried top-down, in particular APT 4 must not be applied if APT3
is also applicable. It is easy to check that every node N ∈ T that is the conclusion of a
replacement or membership inference has its corresponding node N′ ∈ APT (T ) labeled
with the same abbreviation, and conversely, that for each N′ ∈ APT (T ) different from



the root, there is a node N ∈ T , which is the conclusion of a replacement or membership
inference. In particular the node associated to e1→ e2 in the righthand side of APT3 is
the node e1 → e′ of the proof tree T , which is not included in the APT (T ). We have
chosen to introduce e1 → e2 instead of simply e1 → e′ in the APT (T ) as a pragmatic
way of simplifying the structure of the APT s, since e2 is obtained from e′ and hence
likely simpler (the root of the tree T ′ in APT3 must be necessarily of the form e′→ e2
by the structure of the inference rule for transitivity in Fig. 1). We will formally state
below (Theorem 1) that skipping e1→ e′ and introducing instead e1→ e2 is safe from
the point of view of the debugger.

Although APT (T ) is no longer a proof tree we keep the inference labels (Rep) and
(Mb), assuming implicitly that they contain a reference to the equation or membership
axiom used at the corresponding step in the original proof trees. It will be used by the
debugger in order to single out the incorrect fragment of specification code.

Before proving the correctness and completeness of the debugging technique we
need some auxiliary results. The first one indicates that APT ′ transforms a tree with
invalid root into a set of trees such that at least one has an invalid root. We denote the
root of a tree T as root(T ).

Lemma 1. Let T be a proof tree such that root(T ) is invalid w.r.t. an intended interpre-
tation I . Then there is some T ′ ∈ APT ′(T ) such that root(T ′) is invalid w.r.t. I .

An immediate consequence of this result is the following:

Lemma 2. Let T be a proof tree and APT (T ) its abbreviated proof tree. Then the root
of APT (T ) cannot be buggy.

The next theorem guarantees the correctness and completeness of the debugging
technique based on APT s:

Theorem 1. Let S be a specification, I its intended interpretation, and T a finite proof
tree with invalid root. Then:

– APT (T ) contains at least one buggy node (completeness).
– Any buggy node in APT (T ) has an associated wrong equation in S.

The theorem states that we can safely employ the abbreviated proof tree as a basis
for the declarative debugging of Maude functional modules: the technique will find a
buggy node starting from any initial symptom detected by the user. Of course, these
results assume that the user answers correctly all the questions about the validity of the
APT nodes asked by the debugger (see Sect. 4.1).

The tree depicted in Fig. 4 is the abbreviated proof tree corresponding to the proof
tree in Fig. 2, using the same conventions w.r.t. abbreviating the operation names. The
debugging example described in Sect. 4.3 will be based on this abbreviated proof tree.

4 Using the debugger

Before describing the basics of the user interaction with the debugger, we make explicit
what is assumed about the modules introduced by the user; then we present the available
commands and how to use them to debug the buggy example introduced in Sect. 2.3.



is(6)→ 6
is1

il(6, 7)→ 6 7
il2

is(7 6)→ 6 7
is2

hd(7)→ 7
hd1

6 7 : SNL
olist

il(6 7, 4)→ 6 4 7
il3

is(4 7 6)→ 6 4 7
is2

hd(4 7)→ 7
hd2

hd(7)→ 7
hd1

4 7 : SNL
olist

6 4 7 : SNL
olist

il(6 4 7, 3)→ 6 3 4 7
il3

is(3 4 7 6)→ 6 3 4 7
is2

Fig. 4. Abbreviated proof tree for the sorted lists example

4.1 Assumptions

Since we are debugging Maude functional modules, they are expected to satisfy the ap-
propriate executability requirements, namely, the specifications have to be terminating,
confluent, and sort-decreasing.

One interesting feature of our tool is that the user is allowed to trust some state-
ments, by means of labels applied to the suspicious statements. This means that the
unlabeled statements are assumed to be correct. A trusted statement is treated in the
implementation as the reflexivity, transitivity, and congruence rules are treated in the
APT transformation described in Fig. 3; more specifically, an instance of the member-
ship or replacement inference rules corresponding to a trusted statement is collapsed in
the abbreviated proof tree.

In order to obtain a nonempty abbreviated proof tree, the user must have labeled
some statements (all with different labels); otherwise, everything is assumed to be cor-
rect. In particular, the buggy statement must be labeled in order to be found. When not
all the statements are labeled, the correctness and completeness results shown in Sect. 3
are conditioned by the goodness of the labeling for which the user is responsible.

Although the user can introduce a module importing other modules, the debugging
process takes place in the flattened module. However, the debugger allows the user to
trust a whole imported module.

As mentioned in the introduction, navigation of the debugging tree takes place by
asking questions to an external oracle, which in our case is either the user or another
module introduced by the user. In both cases the answers are assumed to be correct.
If either the module is not really correct or the user provides an incorrect answer, the
result is unpredictable. Notice that the information provided by the correct module need
not be complete, in the sense that some functions can be only partially defined. In the
same way, the signature of the correct module need not coincide with the signature of
the module being debugged. If the correct module cannot help in answering a question,
the user may have to answer it.

4.2 Commands

The debugger is initiated in Maude by loading the file dd.maude (available from http:
//maude.sip.ucm.es/debugging), which starts an input/output loop that allows the
user to interact with the tool.

As we said in the introduction, the generated proof tree can be navigated by using
two different strategies, namely, top-down and divide and query, the latter being the



default one. The user can switch between them by using the commands (top-down
strategy .) and (divide-query strategy .). If a module with correct definitions
is used to reduce the number of questions, it must be indicated before starting the de-
bugging process with the command (correct module MODULE-NAME .). Moreover,
the user can trust all the statements in several modules with the command (trust[*]
MODULE-NAMES-LIST .) where * means that modules are considered flattened.

Once we have selected the strategy and, optionally, the module above, we start the
debugging process with the command4

(debug [in MODULE-NAME :] INITIAL-TERM -> WRONG-TERM .)

If we want to debug only with a subset of the labeled statements, we use the command

(debug [in MODULE-NAME :] INITIAL-TERM -> WRONG-TERM with LABELS .)

where LABELS is the set of suspicious equation and membership axiom labels that must
be taken into account when generating the debugging tree.

In the same way, we can debug a membership inference with the commands

(debug [in MODULE-NAME :] INITIAL-TERM : WRONG-SORT .)
(debug [in MODULE-NAME :] INITIAL-TERM : WRONG-SORT with LABELS .)

How the process continues depends on the selected strategy. In case the top-down
strategy is selected, several nodes will be displayed in each question. If there is an
invalid node, we must select one of them with the command (node N .), where N is
the identifier of this wrong node. If all the nodes are correct, we type (all valid .).

In the divide and query strategy, each question refers to one inference that can be
either correct or wrong. The different answers are transmitted to the debugger with the
commands (yes .) and (no .). Instead of just answering yes, we can also trust some
statements on the fly if, once the process has started, we decide the bug is not there. To
trust the current statement we type the command (trust .).

Finally, we can return to the previous state in both strategies by using the command
(undo .).

4.3 Sorted lists revisited

We recall from Sect. 2.3 that if we try to sort the list 3 4 7 6, we obtain the strange
result

Maude> (red insertion-sort(3 4 7 6) .)
result SortedNatList : 6 3 4 7

That is, the function returns an unsorted list, but Maude infers it is sorted. We can debug
the buggy specification by using the command

Maude> (debug in SORTED-NAT-LIST : insertion-sort(3 4 7 6) -> 6 3 4 7 .)

4 If no module name is given, the current module is used by default.



is(6)→ 6
is1

il(6, 7)→ 6 7
il2

is(7 6)→ 6 7
is2

hd(7)→ 7
hd1

6 7 : SNL
olist

il(6 7, 4)→ 6 4 7
il3

is(4 7 6)→ 6 4 7
is2

Fig. 5. Abbreviated proof tree after the first question

With this command the debugger computes the tree shown in Fig. 4. Since the de-
fault navigation strategy is divide and query, the first question is

Is this transition (associated with the equation is2) correct?
insertion-sort(4 7 6) -> 6 4 7
Maude> (no .)

We expect insertion-sort to order the list, so we answer negatively and the sub-
tree in Fig. 5 is selected to continue the debugging. The next question is

Is this transition (associated with the equation is2) correct?
insertion-sort(7 6) -> 6 7
Maude> (yes .)

Since the list is sorted, we answer yes, so this subtree is deleted (Fig. 6 left). The
debugger asks now the question

Is this membership (associated with the membership olist) correct?
6 7 : SortedNatList
Maude> (yes .)

This sort is correct, so this subtree is also deleted (Fig. 6 right) and the next question
is prompted.

Is this transition (associated with the equation il3) correct?
insert-list(6 7, 4) -> 6 4 7
Maude> (no .)

With this information the debugger selects the subtree and, since it is a leaf, it con-
cludes that the node is associated with the buggy equation.

The buggy node is:
insert-list(6 7, 4) -> 6 4 7
With the associated equation: il3

hd(7)→ 7
hd1

6 7 : SNL
olist

il(6 7, 4)→ 6 4 7
il3

is(4 7 6)→ 6 4 7
is2

il(6 7, 4)→ 6 4 7
il3

is(4 7 6)→ 6 4 7
is2

Fig. 6. Abbreviated proof trees after the second and third questions



That is, the debugger points to the equation il3 as buggy. If we examine it

ceq [il3] : insert-list(E OL, E’) = E E’ OL
if E’ <= E /\ E OL : SortedNatList .

we can see that the order of E and E’ in the righthand side is wrong and we can proceed
to fix it appropriately.

We can check the fixed function by sorting again the list 3 4 7 6. We obtain now
the sorted list 3 4 6 7. Then, we have solved one problem, but if we reduce the un-
sorted list 6 3 4 7

Maude> (red 6 3 4 7 .)
result SortedNatList : 6 3 4 7

we can see that Maude continues assigning to it an incorrect sort.
We can check this inference by using the command

Maude> (debug 6 3 4 7 : SortedNatList .)

The first question the debugger prompts is

Is this membership (associated with the membership olist) correct?
3 4 7 : SortedNatList
Maude> (yes .)

Of course, this list is sorted. The following question is

Is this transition (associated with the equation hd2) correct?
head(3 4 7) -> 7
Maude> (no .)

But the head of a list should be the first element, not the last one, so we answer no.
With only these two questions the debugger prints

The buggy node is:
head(3 4 7) -> 7
With the associated equation: hd2

If we check the equation hd2, we can see that we take the element from the wrong
side.

eq [hd2] : head(L E) = E .

To debug this module we have used the default divide and query strategy. Let us
check it now with the top-down strategy. We debug again the inference

insertion-sort(3 4 7 6) -> 6 3 4 7

in the initial module with the two errors. The first question asked in this case is



Is any of these nodes wrong?
Node 0 : insertion-sort(4 7 6) -> 6 4 7
Node 1 : insert-list(6 4 7, 3) -> 6 3 4 7
Maude> (node 0 .)

Both nodes are wrong, so we select, for example, the first one. The next question is

Is any of these nodes wrong?
Node 0 : insertion-sort(7 6) -> 6 7
Node 1 : insert-list(6 7, 4) -> 6 4 7
Maude> (node 1 .)

This time, only the second node is wrong, so we select it. The debugger prints now

Is any of these nodes wrong?
Node 0 : 6 7 : SortedNatList
Maude> (all valid .)

There is only one node, and it is correct, so we give this information to the debugger,
and it detects the wrong equation.

The buggy node is:
insert-list(6 7, 4) -> 6 4 7
With the associated equation: il3

But remember that we chose a node randomly when the debugger showed two
wrong nodes. What happens if we select the other one? The following question is
printed.

Is any of these nodes wrong?
Node 0 : 6 4 7 : SortedNatList
Maude> (node 0 .)

Since this single node is wrong, we choose it and the debugger asks

Is any of these nodes wrong?
Node 0 : head(4 7) -> 7
Node 1 : 4 7 : SortedNatList
Maude> (node 0 .)

The first node is the only one erroneous, so we select it. With this information, the
debugger prints

The buggy node is:
head(4 7) -> 7
With the associated equation: hd2

That is, the second path finds the other bug. In general, this strategy finds different
bugs if the user selects different wrong nodes.

In order to prune the debugging tree, we can define a module specifying the sorting
function sort in a correct, but inefficient, way. This module will define the functions
insertion-sort and insert-list by means of sort.



(fmod CORRECT-SORTING is
pr NAT .
sorts NatList SortedNatList .
subsorts Nat < SortedNatList < NatList .
vars E E’ : Nat . vars L L’ : NatList . var OL : SortedNatList .
op __ : NatList NatList -> NatList [ctor assoc] .
cmb E E’ : SortedNatList if E <= E’ .
cmb E E’ L : SortedNatList if E <= E’ /\ E’ L : SortedNatList .

The sort function is defined by switching unsorted adjacent elements in all the
possible cases for lists.

op sort : NatList -> SortedNatList .
ceq sort(L E E’ L’) = sort(L E’ E L’) if E’ < E .
ceq sort(L E E’) = sort(L E’ E) if E’ < E .
ceq sort(E E’ L) = sort(E’ E L) if E’ < E .
ceq sort(E E’) = E’ E if E’ < E .
eq sort(L) = L [owise] .

We now use sort to implement insertion-sort and insert-list.

op insertion-sort : NatList -> SortedNatList .
op insert-list : SortedNatList Nat -> SortedNatList .
eq insertion-sort(L) = sort(L) .
eq insert-list(OL, E) = sort(E OL) .

endfm)

We can use this module to prune the debugging trees built by the debug commands
if we previously introduce the command

Maude> (correct module CORRECT-SORTING .)

Now, we try to debug the initial module (with two errors) again. In this example, all
the questions about correct inferences have been pruned, so all the answers are negative.
In general, the correct module does not have to be complete, so some correct inferences
could be presented to the user.

Maude> (debug in SORTED-NAT-LIST : insertion-sort(3 4 7 6) -> 6 3 4 7 .)

Is this transition (associated with the equation il3) correct?
insert-list(6 4 7, 3) -> 6 3 4 7
Maude> (no .)

Is this membership (associated with the membership olist) correct?
6 4 7 : SortedNatList
Maude> (no .)

Is this transition (associated with the equation hd2) correct?
head(4 7) -> 7
Maude> (no .)



The buggy node is:
head(4 7) -> 7
With the associated equation: hd2

The correct module also improves the debugging of the membership. With only one
question we obtain the buggy equation.

Maude> (debug in SORTED-NAT-LIST : 6 3 4 7 : SortedNatList .)

Is this transition (associated with the equation hd2) correct?
head(3 4 7) -> 7
Maude> (no .)

The buggy node is:
head(3 4 7) -> 7
With the associated equation: hd2

4.4 Implementation

Exploiting the fact that rewriting logic is reflective [6,8], a key distinguishing fea-
ture of Maude is its systematic and efficient use of reflection through its predefined
META-LEVEL module [7, Chap. 14], a feature that makes Maude remarkably extensi-
ble and that allows many advanced metaprogramming and metalanguage applications.
This powerful feature allows access to metalevel entities such as specifications or com-
putations as data. Therefore, we are able to generate and navigate the debugging tree
of a Maude computation using operations in Maude itself. In addition, the Maude sys-
tem provides another module, LOOP-MODE [7, Chap. 17], which can be used to specify
input/output interactions with the user. Thus, our declarative debugger for Maude func-
tional modules, including its user interactions, is implemented in Maude itself, as an
extension of Full Maude [7, Chap. 18]. As far as we know, this is the first declarative
debugger implemented using such reflective techniques.

The implementation takes care of the two stages of generating and navigating the
debugging tree. Since navigation is done by asking questions to the user, this stage has
to handle the navigation strategy together with the input/output interaction with the user.

To build the debugging tree we use the facts that the equations defined in Maude
functional modules are both terminating and confluent. Instead of creating the complete
proof tree and then abbreviating it, we build the abbreviated proof tree directly.

The main function in the implementation of the debugging tree generation is called
createTree. It receives the module where a wrong inference took place, a correct
module (or the constant noModule when no such module is provided) to prune the tree,
the term initially reduced, the (erroneous) result obtained, and the set of suspicious
statement labels. It keeps the initial inference as the root of the tree and uses an auxiliary
function createForest that, in addition to the arguments received by createTree,
receives the module “cleaned” of suspicious statements, and generates the abbreviated
forest corresponding to the reduction between the two terms passed as arguments. This
transformed module is used to improve the efficiency of the tree construction, because



we can use it to check if a term reaches its final form only using trusted equations, thus
avoiding to build a tree that will be finally empty.

Regarding the navigation of the debugging tree, we have implemented two strate-
gies. In the top-down strategy the selection of the next node of the debugging tree is
done by the user, thus we do not need any function to compute it. The divide and
query strategy used to traverse the debugging tree selects each time the node whose
subtree’s size is the closest one to half the size of the whole tree, keeping only this
subtree if its root is incorrect, and deleting the whole subtree otherwise. The function
searchBestNode calculates this best node by searching for a subtree minimizing an
appropriate function.

The technical report [4] provides a full explanation of this implementation, includ-
ing the user interaction.

5 Conclusions and future work

In this paper we have developed the foundations of declarative debugging of executable
MEL specifications, and we have applied them to implement a debugger for Maude
functional modules. As far as we know, this is the first debugger implemented in the
same language it debugs. This has been made possible by the reflective features of
Maude. In our opinion, this debugger provides a complement to existing debugging
techniques for Maude, such as tracing and term coloring. An important contribution of
our debugger is the help provided by the tool in locating the buggy statements, assuming
the user answers correctly the corresponding questions. The debugger keeps track of the
questions already answered, in order to avoid asking the same question twice.

We want to improve the interaction with the user by providing a complementary
graphical interface that allows the user to navigate the tree with more freedom. We are
also studying how to handle the strat operator attribute, that allows the specifier to
define an evaluation strategy. This can be used to represent some kind of laziness.

We plan to extend our framework by studying how to debug system modules, which
correspond to rewriting logic specifications and have rules in addition to memberships
and equations. These rules can be non-terminating and non-confluent, and thus behave
very differently from the statements in the specifications we handle here. In this context,
we also plan to study how to debug missing answers [14] in addition to the wrong
answers we have treated thus far.

References

1. M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and S. Lucas. Abstract diagnosis of func-
tional programs. In M. Leuschel, editor, Logic Based Program Synthesis and Transformation,
LNCS 2664, pages 1–16. Springer, 2002.

2. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in membership
equational logic. Theoretical Computer Science, 236:35–132, 2000.

3. R. Caballero. A declarative debugger of incorrect answers for constraint functional-logic
programs. In WCFLP ’05: Proceedings of the 2005 ACM SIGPLAN Workshop on Curry and
Functional Logic Programming, pages 8–13, New York, NY, USA, 2005. ACM Press.



4. R. Caballero, N. Martı́-Oliet, A. Riesco, and A. Verdejo. Declarative debugging of Maude
functional modules. Technical Report 4/07, Dpto. Sistemas Informáticos y Computación,
Universidad Complutense de Madrid, 2007. http://maude.sip.ucm.es/debugging.

5. R. Caballero and M. Rodrı́guez-Artalejo. DDT: A declarative debugging tool for functional-
logic languages. In Proc. 7th International Symposium on Functional and Logic Program-
ming (FLOPS’04), LNCS 2998, pages 70–84. Springer, 2004.

6. M. Clavel. Reflection in Rewriting Logic: Metalogical Foundations and Metaprogramming
Applications. CSLI Publications, Stanford University, 2000.

7. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Talcott. All
About Maude: A High-Performance Logical Framework, LNCS 4350. Springer, 2007.

8. M. Clavel and J. Meseguer. Reflection in conditional rewriting logic. Theoretical Computer
Science, 285(2):245–288, 2002.

9. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis. Journal of Logic
Programming, 39(1-3):43–93, 1999.

10. J. W. Lloyd. Declarative error diagnosis. New Generation Computing, 5(2):133–154, 1987.
11. I. MacLarty. Practical Declarative Debugging of Mercury Programs. PhD thesis, University

of Melbourne, 2005.
12. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical

Computer Science, 96(1):73–155, 1992.
13. J. Meseguer. Membership algebra as a logical framework for equational specification. In

F. Parisi-Presicce, editor, Recent Trends in Algebraic Development Techniques, 12th Inter-
national Workshop, WADT’97, LNCS 1376, pages 18–61. Springer, 1998.

14. L. Naish. Declarative diagnosis of missing answers. New Generation Computing, 10(3):255–
286, 1992.

15. L. Naish. A declarative debugging scheme. Journal of Functional and Logic Programming,
1997(3), April 1997.

16. H. Nilsson. How to look busy while being as lazy as ever: the implementation of a lazy
functional debugger. Journal of Functional Programming, 11(6):629–671, 2001.

17. H. Nilsson and P. Fritzson. Algorithmic debugging of lazy functional languages. Journal of
Functional Programming, 4(3):337–370, 1994.

18. B. Pope. Declarative debugging with Buddha. In Advanced Functional Programming - 5th
International School, AFP 2004, LNCS 3622, pages 273–308. Springer, 2005.

19. E. Y. Shapiro. Algorithmic Program Debugging. ACM Distinguished Dissertation. MIT
Press, 1983.

20. J. Silva. A comparative study of algorithmic debugging strategies. In Logic-Based Program
Synthesis and Transformation, LNCS 4407, pages 143–159. Springer, 2007.

21. N. Takahashi and S. Ono. DDS: A declarative debugging system for functional programs.
Systems and Computers in Japan, 21(11):21–32, 1990.

22. A. Tessier and G. Ferrand. Declarative diagnosis in the CLP scheme. In Analysis and
Visualization Tools for Constraint Programming, Constraint Debugging (DiSCiPl project),
pages 151–174, London, UK. Springer, 2000.

23. P. Wadler. Why no one uses functional languages. SIGPLAN Not., 33(8):23–27, August
1998.


