
Under consideration for publication in Formal Aspects of Computing

Specification and Verification of the
Tree Identify Protocol of IEEE 1394
in Rewriting Logic
Alberto Verdejo, Isabel Pita, and Narciso Mart́ı-Oliet

Dpto. de Sistemas Informáticos y Programación
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Abstract. We present three descriptions, at different abstract levels, of the tree identify protocol from the
IEEE 1394 serial multimedia bus standard. The descriptions are given using the language Maude based on
rewriting logic. Particularly, the time aspects of the protocol are studied. We prove the correctness of the
protocol in two steps. First, the descriptions are validated by an exhaustive exploration of all the possible
states reachable from an initial configuration of a network, checking that always only one leader is chosen.
Then, we give a formal proof showing that the desirable properties of the protocol are always fulfilled by
any network, provided that the network is connected and acyclic.
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1. Introduction

Rewriting logic [Mes92, Mes98] and its implementation language Maude [CDE+02, CDE+00b] have emerged
as an excellent framework where communication protocols can be specified and analyzed [DMT98, DMT00].
Rewriting logic was first proposed by Meseguer as a unified framework for concurrency in 1990. Since then
much work has been done on the use of rewriting logic as a logical and semantic framework [MOM93], and on
the development of the Maude language [CDE+02]. In the last few years the application of rewriting logic and
Maude to the specification of real systems has started, mainly for applications of distributed architectures
and communication protocols [DMT98]. A formal methodology for specifying and analyzing communication
protocols is presented in [DMT00]. It is arranged as a sequence of increasingly stronger methods, including:

1. Formal specification, in order to obtain a formal model of the system, in which ambiguities are clarified.

2. Execution of the specification, for simulation and debugging purposes, leading to better versions of the
specification.

Correspondence and offprint requests to: Alberto Verdejo, Dpto. de Sistemas Informáticos y Programación, Facultad de
Matemáticas, Universidad Complutense, 28040 Madrid, Spain. e-mail: alberto@sip.ucm.es
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3. Formal model-checking analysis, in order to find errors by considering all possible behaviors of highly
distributed and nondeterministic systems.

4. Narrowing analysis, in which all behaviors from the possibly infinite set of states described by a symbolic
expression are analyzed.

5. Formal proof, where the correctness of critical properties is verified by using a formal technique.

In this paper we use methods 1–3 to specify and analyze three descriptions of the tree identify protocol
of the IEEE 1394 serial multimedia bus standard (the “FireWire”), and we use method 5 to verify them. We
have not been able to perform any narrowing analysis because the current Maude system does not support
it yet.

As this volume shows, this example is becoming something of a benchmark for formal methods [MS00,
SMR01]. We show how Maude, a high-level language and high-performance system supporting both equa-
tional and rewriting logic computation, can also be used as a formal specification language. We use the
object-oriented specification style of Maude [CDE+02], which allows formalization of both synchronous and
asynchronous concurrent object systems. We add time aspects (quite important for this protocol) to these

object-oriented specifications following ideas presented in [ÖM02].
Most of the works presented in [SMR01] use abstract formalisms and tools which are not well suited for

directly executing the protocol itself, although, of course, all those tools have different important strengths
of their own. The point is that executable specification methods and tools can complement those strengths in
new ways. As pointed out in [Ölv00], one can think of rewriting logic (and Maude) as covering an intermediate
operational level, that can substantially help in bridging the gap between more abstract, property-oriented,
specifications and actual implementations by providing support for executable specifications, support for
useful techniques of automated or semi-automated formal reasoning (such as strategy-based formal analysis,
see Section 5) and a precise mathematical model of the system.

This paper does not provide an introduction nor explanation of the protocol, because the volume contains
a common introduction with this material [MRS02]. In Section 2 Maude and its object-oriented specifications
are presented. In Section 3 we present a simple description of the protocol (without time aspects) that clarifies
the ideas used in this kind of specifications. Section 4 shows how time aspects can be added to a rewrite
theory and specially to an object-oriented specification, and presents two more descriptions of the protocol
handling with all its time aspects. In Section 5 it is shown how the reflective features of rewriting logic and
Maude can be used to perform a model-checking analysis of all possible behaviors of the protocol starting
with the initial configuration of any concrete network. In Section 6 we present a detailed proof by induction
showing that the desirable properties of the protocol are always fulfilled by any network, provided that it
is connected and acyclic. Finally, in Section 7 we present an evaluation of our approach as suggested in
[MRS02] and we draw some conclusions in Section 8.

2. Object-oriented specification in Maude

Maude is a high level, general purpose language and high performance system (93–319 K AC rewrites per
second on a highend Linux PC) based on rewriting logic [Mes92], a logic of change in which deduction
directly corresponds to the change. In rewriting logic the state of a system is formally specified as an
algebraic data type (by means of an equational specification). In this kind of specifications we can define
new types (by means of keyword sort(s)); subtype relations between types (subsort); operators (op(s)) for
building values of these types, giving the types of their arguments and result, and which may have attributes
as being associative (assoc) or commutative (comm), for example; and equations (eq) that identify terms
built with these operators. This data types are specified in functional modules (with syntax fmod...endfm)
whose equations are supposed to be confluent and terminating.

The dynamic behavior of such a distributed system is then specified by rewrite rules of the form t −→ t′,
that describe the local, concurrent transitions of the system. That is, when a part of a system matches the
pattern t this part can be transformed into the corresponding pattern t′. Labelled rewrite rules (rl [label])
are included in system modules (with syntax mod...endm).

Regarding object-oriented specifications, an object is represented as a term < O : C | a1 : v1,...,
an : vn > where O is the object’s name, belonging to a set Oid of object identifiers, C is its class, the ai’s
are the names of the object’s attributes, and the vi’s are their corresponding values. Messages are defined
by the user for each application.
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In a concurrent object-oriented system the concurrent state, which is called a configuration, has the
structure of a multiset made up of objects and messages that evolves by concurrent rewriting (modulo the
multiset structural axioms of associativity, commutativity, and identity) using rules that describe the effects
of communication events between some objects and messages. The rewrite rules in the module specify in a
declarative way the behavior associated with the messages. The general form of such rules is

M1 . . .Mn 〈O1 : F1 | atts1〉 . . . 〈Om : Fm | attsm〉

−→ 〈Oi1 : F ′
i1
| atts ′i1〉 . . . 〈Oik

: F ′
ik
| atts ′ik

〉 〈Q1 : D1 | atts
′′
1〉 . . . 〈Qp : Dp | atts

′′
p〉 M ′

1 . . .M ′
q if C

where k, p, q ≥ 0, the Ms are message expressions, i1, . . . , ik are different numbers among the original
1, . . . ,m, and C is a rule condition. The result of applying a rewrite rule is that the messages M1, . . . ,Mn

disappear; the state and possibly the class of the objects Oi1 , . . . , Oik
may change; all the other objects Oj

vanish; new objects Q1, . . . , Qp are created; and new messages M ′
1, . . . ,M

′
q are sent.

Since the above rule involves several objects and messages in its lefthand side, we say that it is a
synchronous rule. It is conceptually important to distinguish the special case of rules involving at most one
object and one message in their lefthand side. These rules are called asynchronous and have the form

(M) 〈O : F | atts〉 −→ (〈O : F ′ | atts ′〉) 〈Q1 : D1 | atts
′′
1 〉 . . . 〈Qp : Dp | atts

′′
p〉 M ′

1 . . .M ′
q if C

By convention, the only object attributes made explicit in a rule are those relevant for that rule. In
particular, the attributes mentioned only in the lefthand side of the rule are preserved unchanged, the
original values of attributes mentioned only in the righthand side of the rule do not matter, and all attributes
not explicitly mentioned are left unchanged. Object-oriented modules are introduced by means of keywords
omod...endom.

3. First description of the protocol (with synchronous communication)

We begin with a simple description of the protocol, without time considerations, where communication
between nodes is assumed to be synchronous, i.e., a message is sent and received simultaneously; therefore,
there is no need for acknowledgements, and contention cannot arise.

In the IEEE 1394 standard we have nodes and communications between nodes, that relate naturally to
objects and messages. Nodes are represented by objects of class Node with the following attributes:

• neig : SetIden, the set of identifiers of the neighbor nodes with whom this node has not yet communi-
cated. This is initialized to the set of all nodes (object identifiers) connected to this node and decreases
with every “be my parent” request until it is either empty (and this node is the root) or it has one
element (which is the parent of this node); and

• done : Bool, a flag which is set when the tree identify phase of the protocol has finished for this node,
because it has been elected as the root node or because it already knows which node is its parent.

Since communication is synchronous in this description, we do not need messages to represent the “be my
parent” requests or the acknowledgements. However, we add a “leader” message which is sent by the elected
leader to indicate that a leader has been chosen. This provides us with a means of checking the requirement
that a single leader is eventually elected (see Section 5).

The following module introduces identifiers (a supersort of the predefined quoted identifiers) and multisets
of identifiers. An identifier is a singleton set and bigger multisets are built by juxtaposition. This union
operator is defined as being associative, commutative, and with the empty set as identity element. Pattern
matching will be performed modulo these attributes in such a way that a pattern like J NEs (see below)
represents any multiset with an element J and rest NEs.

(fmod IDENTIFIERS is protecting QID .
sorts Iden SetIden . subsorts Qid < Iden < SetIden .
op empty : -> SetIden .
op __ : SetIden SetIden -> SetIden [assoc comm id: empty] .

endfm)

The object-oriented module describing the protocol starts declaring the node identifiers as valid object
identifiers, the class Node with its attributes, and the message leader:
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(omod FIREWIRE-SYNC is protecting IDENTIFIERS .
subsort Iden < Oid .
class Node | neig : SetIden, done : Bool .
msg leader_ : Iden -> Msg .

Now we have to describe the node’s behavior by means of rewrite rules. The first rule describes how a
node J, which has only one identifier I in its attribute neig, sends a “be my parent” request to the node I,
and how node I receives the request and removes J from its set of communications still to make; node J also
finishes the identify phase by setting the attribute done.

vars I J : Iden . var NEs : SetIden .
rl [rec] : < I : Node | neig : J NEs, done : false > < J : Node | neig : I, done : false >

=> < I : Node | neig : NEs > < J : Node | done : true > .

Note that nondeterminism arises when there are two connected nodes with only one identifier in their
attribute neig. Any one of them can act as the sender.

The other rule states when a node is elected as the leader.

rl [leader] : < I : Node | neig : empty, done : false > => < I : Node | done : true > (leader I) .
endom)

4. Timed, asynchronous communication description

The previous description is very simple, but is not an accurate depiction of events in the real protocol, where
messages are sent along wires of variable length, and therefore message passing is asynchronous and subject
to delay. Since the communication is asynchronous, acknowledgement messages are needed, and a particular
problem arises when two nodes might simultaneously request each other to be its parent, leading to root
contention [MRS02]. Using only the asynchronous explicit communication via messages of Maude leads us to
a description of the protocol which does not work as expected, in the sense that there is the possibility that
the root contention phase and the receive “be my parent” requests phase alternate forever. Hence the timing
aspects of the protocol cannot be ignored, and in the root contention phase nodes have to wait a short or
long (randomly chosen) time period before resending the “be my parent” requests. Other time aspects like
the detection of cycles and the force root parameter are handled in our third description (Section 4.3).

We have to say that we do not represent some of the concrete details of the protocol as described in
[IEE95], giving more abstract descriptions. In particular, we represent communication between nodes by
means of (discrete) messages, instead of the continuous assertion and deassertion of signals on wires used in
the standard. The reason is the level of abstraction we want to keep, and not the incapability of our approach
to formalize these aspects. We could have used objects to represent wires with attributes having the current
signal values. Then, the nodes could detect the wire state by examining the corresponding attribute.

Before showing this new, timed description, we briefly summarize the ideas in [Ölv00, ÖM02] about how
to introduce time in rewriting logic and Maude, and particularly in an object-oriented specification. We
think that this introduction of time aspects in a specification is quite natural and modular.

4.1. Time in rewriting logic and Maude

A real-time rewrite theory is a rewrite theory with a sort Time that represents the time values, and which
fulfills several properties, like being a commutative monoid (Time,+, 0) with additional operations ≤, <, and
−. (“monus”). We use the module TIMEDOMAIN to represent the time values, with a sort Time whose values
are the natural numbers, and which is a subsort of the sort TimeInf, which in addition contains the constant
INF representing ∞ (see [Ölv00]).

Rules are divided into tick rules, that model the elapse of time on a system, and instantaneous rules,
that model changes in (part of) the system and are assumed to take zero time. To ensure that time ad-
vances uniformly in all the parts of a state, we need a new sort ClockedSystem, with a free constructor
{_|_} : State Time -> ClockedSystem. In the term { s | t }, s denotes the global state and t denotes
the total time elapsed in a computation if in the initial state the clock had value 0. Uniform time elapse is
then ensured if every tick rule is of the form { s | t } −→ { s′ | t+ τ }, where τ denotes the duration of
the rule.
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These ideas can also be applied to object-oriented systems [ÖM02]. In this case, the global state will be
a term of sort Configuration, and since it has a rich structure, it is both natural and necessary to have an
explicit operation δ denoting the effect of time elapse on the whole state. In this way, the operation δ will be
defined for each possible element in a configuration of objects and messages, describing the effect of time on
this particular element, and there will be equations which distribute the effect of time to the whole system.
In this case, tick rules should be of the form { s | t } −→ { δ(s, τ) | t+ τ }.

An operation mte giving the maximum time elapse permissible to ensure timeliness of time-critical actions,
and defined separately for each object and message, is also useful, as we will see below. The general module
TIMEDOOSYSTEM declares these operations, and how they distribute over the elements (see Appendix A).

4.2. Second description of the protocol

In this second description each node passes through different phases. When a node is in the rec phase, it is
receiving “be my parent” requests from its neighbors. In the ack phase, the node sends acknowledgements
“you are my child” to all the nodes which sent “be my parent” in the previous phase. In the waitParent
phase, the node waits for the acknowledgement from its parent. In the contention phase, the node waits a
long or short time before resending the “be my parent” request. A node is in the self phase when either it
has been elected as the leader, or it has received the acknowledgement from its parent.

The attributes of the class Node, defined in a module extending TIMEDOOSYSTEM, are now the following:

class Node | neig : SetIden, children : SetIden, phase : Phase, rootConDelay : DefTime .

The children attribute represents the set of children to be acknowledged; phase represents the phase
in which the node is; and rootConDelay is an alarm used in the root contention phase. The sort DefTime
extends Time with a new constant noTimeValue used when the clock is disabled.

In addition to the leader message, we introduce two new messages which have as arguments the sender,
the receiver, and the time needed to reach the receiver:

msg from_to_be‘my‘parent‘with‘delay_ : Iden Iden Time -> Msg .
msg from_to_acknowledgement‘with‘delay_ : Iden Iden Time -> Msg .

For example, the message from I to J be my parent with delay T denotes that a “be my parent”
request has been sent from node I to node J, and it will reach J in T units of time. A message with delay 0
is urgent, in the sense that it has to be attended by the receiver before time elapses. The mte operation will
ensure that this requirement is fulfilled, as we will see below.

The first rule1 states that a node I in the rec phase, and with more than one neighbor, can receive a “be
my parent” request with delay 0 from its neighbor J. The identifier J is stored in the children attribute:

crl [rec] : (from J to I be my parent with delay 0)
< I : Node | neig : J NEs, children : CHs, phase : rec >

=> < I : Node | neig : NEs, children : J CHs > if NEs =/= empty .

When a node is in the rec phase and there is only one connection unused, either it may move to the next
phase, ack, or it can receive the last request before going into this phase:

rl [recN-1] : < I : Node | neig : J, children : CHs, phase : rec >
=> < I : Node | phase : ack > .

rl [recLeader] : (from J to I be my parent with delay 0)
< I : Node | neig : J, children : CHs, phase : rec >

=> < I : Node | neig : empty, children : J CHs, phase : ack > .

In the acknowledgement phase the node sends acknowledgements “you are my child” to all the nodes
which previously sent “be my parent” requests:

rl [ack] : < I : Node | children : J CHs, phase : ack >
=> < I : Node | children : CHs > (from I to J acknowledgement with delay timeLink(I,J)) .

1 Although for the sake of simplicity we present here local rules rewriting terms of sort Configuration, in fact in the full
specification we use global rules that rewrite terms of sort ClockedSystem. This is done in order to avoid, basically, problems
with function mte which has Configuration as an argument sort.
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The operation timeLink : Iden Iden -> Time represents a table with the time values denoting the
delays between nodes.

When all acknowledgements have been sent, either the node has the set neig empty and therefore
is the root node, or it sends a “be my parent” request on the so far unused connection and awaits an
acknowledgement from the parent. Note that leaf nodes skip the initial receive requests phase and move
straight to this point.

rl [ackLeader] : < I : Node | neig : empty, children : empty, phase : ack >
=> < I : Node | phase : self > (leader I) .

rl [wait1] : < I : Node | neig : J, children : empty, phase : ack >
=> < I : Node | phase : waitParent >

(from I to J be my parent with delay timeLink(I,J)) .

rl [ackParent] : (from J to I acknowledgement with delay 0) < I : Node | neig : J, phase : waitParent >
=> < I : Node | phase : self > .

Having modeled the communication by means of messages, and considering a fault-free medium, the
confirmation from the acknowledged children is not necessary. This disagrees with the IEEE 1394 standard,
where the parent waits for confirmations from all its children before sending its own “be my parent” request.

If a parent request has been sent, then the node waits for an acknowledgement. If a parent request arrives
instead, then the node and the originating node of the parent request are in contention for leader.

In the IEEE 1394 standard, contention is resolved by choosing a random Boolean b and waiting for a short
or long time depending on b before sampling the relevant port to check for a “be my parent” request from the
other node. If the request is there then this node should agree to be the root and send an acknowledgement
to the other; if the message is not present, then this node will resend its own “be my parent” request.

In our representation, a random Boolean is chosen (by means of the value N in the random number
generator RAN) and a wait time selected. If a “be my parent” request arrives during that time then the wait
aborts and the request is dealt with; if the wait time expires then the node resends “be my parent.” Objects
of class RandomNGen are pseudorandom number generators.

rl [wait2] : (from J to I be my parent with delay 0)
< I : Node | neig : J, phase : waitParent > < RAN : RandomNGen | seed : N >

=> < I : Node | phase : contention,
rootConDelay : if (N % 2 == 0) then ROOT-CONT-FAST else ROOT-CONT-SLOW fi >

< RAN : RandomNGen | seed : random(N) > .

rl [contenReceive] : (from J to I be my parent with delay 0) < I : Node | neig : J, phase : contention >
=> < I : Node | neig : empty, children : J, phase : ack, rootConDelay : noTimeValue > .

rl [contenSend] : < I : Node | neig : J, phase : contention, rootConDelay : 0 >
=> < I : Node | phase : waitParent, rootConDelay : noTimeValue >

(from I to J be my parent with delay timeLink(I,J)) .

The correctness of this random selection is addressed in [SV99] where it is proved that the root contention
resolution algorithm is guaranteed to terminate successfully eventually (with probability one). This result
is extended in [FS02] where a relationship between the number of attempts to resolve contention and the
probability of a successful outcome is derived.

We have to define how time affects objects and messages, that is, we have to define the delta operation
denoting the effect of time elapse on objects and messages, and also which is the maximum time elapse mte
allowed (to ensure timeliness of time-critical actions) by an object or message. In Appendix A the complete
definition of these operations for the third description of the protocol (see Section 4.3) is given. See [VPMO01]
for the full details of this description.

The tick rule that lets time pass if there is no rule that can be applied immediately is as follows:

crl [tick] : { C | T } => { delta(C, mte(C)) | T plus mte(C) } if mte(C) =/= INF and mte(C) =/= 0 .

Due to our definition of the operation mte, this rule can only be applied when no other rules are enabled.
We could have modeled the nondeterministic elapsing of time by means of a tick rule like this one:

rl [tick’] : { C | T } => { delta(C, T’) | T plus T’ } .

with a new variable T’ in the right-hand side representing the time increment. This kind of rules with new
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variables cannot be directly used by the default Maude interpreter, but they can be used at the metalevel
(see Section 5) by a strategy that instantiates the variable T’ with different time values, ensuring timeliness
of time-critical actions. However, we are not interested in the intermediate states between the result state
of an instantaneous rule and the next state where another time-critical action has to be performed. That is,

if there are transitions s0
t1−→ s1

t2−→ s2
t3−→ · · ·

tn−→ sn where sj (0 ≤ j < n) are states where time tj+1 can
pass and sn is the first state from s0 where an action has to occur, we model them by means of a unique

transition s0
t
−→ sn, with t =

∑n
i=1 ti. Of course, this affects the set of observable states, as commented in

Section 5.1.
We consider only networks with more than one node, where every node has the possibility to ask another

node to be its parent. If networks with only one node were considered, we should add a rule that declares
the only node as the leader.

4.3. Third description of the protocol

There are two timing considerations that we have not dealt with in the second description. The first one
is whether or not the CONFIG-TIMEOUT has been exceeded. This indicates that the network has been set
up incorrectly (i.e., it includes a loop) and an error has to be reported. The second timing consideration
concerns the force root parameter, fr. Normally it is possible for a node to move to the ack phase when n−1
communications have been made (where n is the number of neighbors of the node). Setting fr forces the
node to wait a bit longer, in the hope that all n communications will be made (and the node becomes then
the leader). These two considerations affect only the first phase of the protocol, the receive “be my parent”
requests phase.

The class Node is modified by adding three new attributes:

class Node | neig : SetIden, children : SetIden, phase : Phase, rootConDelay : DefTime,
CONFIG-TIMEOUTalarm : DefTime, fr : Bool, FORCE-ROOTalarm : DefTime .

The attribute CONFIG-TIMEOUTalarm is an alarm initialized with the time constant CONFIG-TIMEOUT,
and it is decreased when time elapses. If it reaches the value 0, the node realizes that the network has a loop;
an error is reported via the message error; and the node’s attribute phase is set to the new Phase value
error.

The fr Boolean attribute is set to true when the node is intended to be the leader. In this case, the
FORCE-ROOTalarm attribute is initialized to the time constant FRTIME, which determines how long a node
delays going into the next phase although it has already received “be my parent” requests from all but one
of its neighbors. This alarm is also decreased when time elapses, and when it reaches the value 0, it is turned
off, setting its value to noTimeValue and the fr attribute to false. If the fr attribute is initially false, the
FORCE-ROOTalarm is initialized to noTimeValue.

Let us now see how the rewrite rules are modified. The rec rule is not modified because it is not affected
by the new considerations. Two rules are added, controlling when the alarms notify that the value 0 has
been reached, and showing what has to be done in each case:

rl [error] : < I : Node | phase : rec, CONFIG-TIMEOUTalarm : 0 >
=> < I : Node | phase : error > error .

rl [stopAlarm] : < I : Node | phase : rec, fr : true, FORCE-ROOTalarm : 0 >
=> < I : Node | fr : false, FORCE-ROOTalarm : noTimeValue > .

The recN-1 rule is modified because now a node in the rec phase moves to the next phase only if its fr
attribute has the value false. In this case the CONFIG-TIMEOUT alarm is turned off:

rl [recN-1] : < I : Node | neig : J, children : CHs, fr : false, phase : rec >
=> < I : Node | phase : ack, CONFIG-TIMEOUTalarm : noTimeValue > .

Both alarms are also turned off if the last “be my parent” request is received while the node is in the
rec phase:

rl [recLeader] : (from J to I be my parent with delay 0)
< I : Node | neig : J, children : CHs, phase : rec >

=> < I : Node | neig : empty, children : J CHs, phase : ack, fr : false,
FORCE-ROOTalarm : noTimeValue, CONFIG-TIMEOUTalarm : noTimeValue > .
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(omod EXAMPLE is protecting FIREWIRE-ASYNC .
op network7 : -> Configuration .
op dftATTRS : -> AttributeSet .
eq dftATTRS = children : empty, phase : rec,

rootConDelay : noTimeValue .
eq network7 = < ’a : Node | neig : ’c, dftATTRS >

< ’b : Node | neig : ’c ’d, dftATTRS >
< ’c : Node | neig : ’a ’b ’e, dftATTRS >
< ’d : Node | neig : ’b, dftATTRS >
< ’e : Node | neig : ’c ’f ’g, dftATTRS >
< ’f : Node | neig : ’e, dftATTRS >
< ’g : Node | neig : ’e, dftATTRS >
< ’Random : RandomNGen | seed : 13 > .

eq timeLink(’a,’c) = 7 . eq timeLink(’b,’c) = 7 .
eq timeLink(’b,’d) = 10 . eq timeLink(’c,’e) = 20 .
eq timeLink(’e,’f) = 8 . eq timeLink(’e,’g) = 10 .
var I J : Qid . ceq timeLink(J,I) = timeLink(I,J) if I < J .

endom)
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Fig. 1. Maude description of a network with seven nodes

The rest of the rules, describing the next phases, are kept unmodified, which shows the modularity
obtained by having the different protocol phases handled by different rewrite rules. However, the operations
delta and mte are redefined because they have to deal with objects with more time-dependent attributes
(see Appendix A).

4.4. Executing the specification with an example in Maude

The descriptions of the protocol are directly executable on the Maude system. We can take advantage of this
fact in order to get confidence on the correctness of the protocol. First, we define a configuration denoting
the initial state of the network we want to check, using the timed description. We want to point out that
the protocol descriptions are completely general, and the rewrite rules describing them can be applied to
any network. In order to illustrate the execution of the protocol, we need to start with a concrete network
(defined in an extension of the module with the protocol description), and we have chosen the network shown
in Figure 1.

We can ask the Maude system to rewrite the initial configuration by using its default strategy:

Maude> (rew { network7 | 0 } .)
result ClockedSystem : { leader ’c
< ’e : Node | neig : ’c, restATTRS > < ’d : Node | neig : ’b, restATTRS > < ’a : Node | neig : ’c, restATTRS >
< ’f : Node | neig : ’e, restATTRS > < ’b : Node | neig : ’c, restATTRS > < ’g : Node | neig : ’e, restATTRS >
< ’c : Node | neig : empty, restATTRS > < ’Random : RandomNGen | seed : 9655 > | 920 }

where, in order to make the term presentation more readable, we have substituted by hand the attributes
which are the same for all nodes, as follows:

restATTRS = children : empty, phase : self, rootConDelay : noTimeValue

5. Model-checking analysis

There are two desirable properties that this protocol has to fulfill: A single leader is chosen (safety), and
a leader is eventually chosen (liveness). The execution provided by the default interpreter is not enough to
ensure that these properties are always fulfilled. We may go further in our analysis by means of an exhaustive
exploration of all possible behaviors of the protocol. We show in this section how the reflective capabilities
of rewriting logic and Maude [Cla00, CM02, CDE+02] can be used to show that the specifications of the
protocols work in the expected way when applied to an arbitrary concrete network. This is done by checking
that these two properties are fulfilled at the end of the protocol in all possible behaviors of the protocol
starting with the initial configuration representing the concrete network.

Rewriting logic is reflective [Cla00, CM02], that is, there is a finitely presented rewrite theory U that is
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universal in the sense that we can represent any finitely presented rewrite theory R (including U itself) and
any terms t, t′ in R as terms R and t, t′ in U , and we then have the following equivalence

R ` t −→ t′ ⇔ U ` 〈R, t〉 −→ 〈R, t′〉.

In Maude, key functionality of the universal theory U has been efficiently implemented in the functional
module META-LEVEL, where Maude terms are reified as elements of a data type Term, Maude modules are
reified as terms in a data type Module, the process of reducing a term to normal form is reified by a function
meta-reduce, and the process of applying a rule of a system module to a subject term is reified by a function
meta-apply [CDE+02]. Intuitively, this means that we can have a Maude module M (metarepresented) as
data in another module that extends META-LEVEL, which controls the rewriting process in M in a user-
definable way. In the following section we (briefly) show how we can define a search strategy that explores
the conceptual tree of all rewrites of a term.

5.1. Search strategy

We validate our specifications by making an exhaustive exploration of all possible behaviors in the tree of
possible rewrites of a term representing the initial state of the network. In this tree we search for all the
irreducible terms and observe that in each irreducible, reachable term only one leader message exists. The
depth-first search strategy is based on the work in [BMM98, CDE+00a], and it is completely general in
the sense that it does not depend on the concrete system module whose rules are used to build the search
tree. So the search strategy does not depend neither on the concrete protocol description we are testing nor
on the concrete network we want to check. The module SEARCH implementing the search strategy extends
META-LEVEL and is parameterized with respect to a constant equal to the metarepresentation of the Maude
module which we want to work with (see Appendix A). The strategy controls the possible rewrites of a
term by means of meta-apply. This operation returns one of the possible one-step rewrites at the top
level of a given term. We first define an operation allRew that returns all the possible one-step sequential
rewrites [Mes92] of a given term T by using rewrite rules with labels in the list labels.

The operations needed to find all the possible rewrites are as follows:

op allRew : Term QidList -> TermList .
op topRew : Term Qid MachineInt -> TermList .
var T : Term . var L : Qid . var LS : QidList .
eq allRew(T, nil) = ~ .
eq allRew(T, L LS) = topRew(T, L, 0), *** rewrite at the top of T with rule L

allRew(T, LS) . *** rewrite with labels LS

Now we can define an operation allSol to search in the (conceptual) tree of all possible rewrites of a
term T for irreducible terms, that is, terms that cannot be rewritten anymore (see Appendix A). In the
concrete application of this search strategy used in the following section, the terms in the tree nodes are
ClockedSystems, and the children of a node X are the terms reachable from X by application of one of the
rewrite rules in module EXAMPLE. Due to our treatment of time (see Section 4), if a search tree node X has
more than one child it is because X represents a configuration where several time-critical actions can be
performed nondeterministically. On the contrary, if X represents a configuration where time can pass, it will
have only one child X ′ reachable from X by application of the rewrite rule tick (Section 4.2) and X ′ will
represent a configuration where another time-critical action has to be performed.

Nondeterminism and multiple matches modulo associativity are the reasons of the state explosion in the
search tree. This, and the fact that we are continuously moving between the object level and the metalevel
when traversing the tree, make the model-checking analysis somewhat inefficient (despite of the high perfor-
mance of Maude rewriting). The near future implementation of Maude 2.0 [CDE+00c] will include a built-in
search command and an LTL model checker which will considerably increase the efficiency of this kind of
analysis.

5.2. Using the strategy with an example

We show now how the strategy is used to prove that the third description of the protocol always works well,
in all possible behaviors, when applied to the concrete network in module EXAMPLE (Figure 1). In Appendix A
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Fig. 2. A symmetric network

it can be seen how the metarepresentation of module EXAMPLE is obtained and used to instantiate the generic
module SEARCH. Next, we can test this example. The Maude result is as follows:

Maude> (down EXAMPLE : red allSol(up(EXAMPLE, { network7 | 0 })) .)
result ClockedSystem : { leader ’c
< ’e : Node | neig : ’c, restATTRS > < ’d : Node | neig : ’b, restATTRS >
< ’a : Node | neig : ’c, restATTRS > < ’f : Node | neig : ’e, restATTRS >
< ’b : Node | neig : ’c, restATTRS > < ’g : Node | neig : ’e, restATTRS >
< ’c : Node | neig : empty, restATTRS > < ’Random : RandomNGen | seed : 9655 > | 920 }

We observe that only one leader has been elected in the only irreducible, reachable configuration. It is
not surprising that only one configuration is reachable although all possible behaviors are checked, because
the protocol is not so nondeterministic when time is added. Time constraints put severe restrictions on
the allowed behaviors. However, the search strategy can be applied starting with a network where several
different irreducible states can be reachek. For example, from the network shown in Figure 2 (defined in a
module EXAMPLE2 similar to the module EXAMPLE above) several configurations can be reached, but all of
them have only one leader chosen, as expected.

Maude> (down EXAMPLE2 : red allSol(up(EXAMPLE2, { network6 | 0 })) .)
result ClockedSystem : { leader ’c
< ’e : Node | neig : ’c, restATTRS > < ’a : Node | neig : ’c, restATTRS > < ’b : Node | neig : ’c, restATTRS >
< ’f : Node | neig : ’e, restATTRS > < ’g : Node | neig : ’e, restATTRS >
< ’c : Node | neig : empty, restATTRS > < ’Random : RandomNGen | seed : 9655 > | 997 }
& { leader ’e
< ’a : Node | neig : ’c, restATTRS > < ’c : Node | neig : ’e, restATTRS > < ’b : Node | neig : ’c, restATTRS >
< ’f : Node | neig : ’e, restATTRS > < ’g : Node | neig : ’e, restATTRS >
< ’e : Node | neig : empty, restATTRS > < ’Random : RandomNGen | seed : 9655 > | 997 }

The presence of only one leader message does not exclude (on its own) the possibility of a sequence of
leaders being declared and undeclared. But a simple examination of the rewrite rules shows that no leader
message appears in the left-hand side of rewrite rules and there is no operation that removes this kind of
messages. Thus, once a leader message appears in a configuration, it never disappears.

The model checking strategy has to be executed on a concrete network. So we should run it with many
different networks to be sure that the protocol works in all possible cases. That is the reason why we propose
a third kind of analysis in the following section, where the necessity of starting with a concrete network is
not present.

6. Detailed proof by induction

The desirable properties for this protocol are that a single leader is chosen, and that this leader is eventually
chosen, as stated in Section 5. To prove them, we define observations that allow us to state properties of a
configuration of the system. Then we observe the changes made by the rewrite rules in the configurations
until the leader is chosen. Currently we are working on a specification logic and tools to automatically
generate these proofs [FMMO+00].

6.1. Verification of synchronous description

For the synchronous case, we define the following observation:

• nodes is a set of pairs 〈A;S〉 where A is a network node identifier and S is the set of nodes such that
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B ∈ S iff both < A : Node | neig : B NEs, done : false > and < B : Node | done : false >
appear in the configuration.

If we take the second component of each pair 〈A;S〉 to be the adjacency list of the node represented
in the first component, then nodes represents the network (directed graph) with the nodes in the initial
configuration for which the protocol has not finished yet.

We assume that the network is initially correct, in the sense that the set nodes represents a symmetric
(that is, the links are bidirectional), connected, and acyclic network. We have checked that if these conditions
are fulfilled initially, then they are always fulfilled.

The desirable properties of the protocol are derived by induction from the following:

1. If there are at least two pairs in nodes then the rule rec can be applied. We know that if |nodes| ≥ 2,
then there exist A and B such that < A ; B > ∈ nodes, because it is connected and acyclic. Since the
network is symmetric, we know that there exists NEs such that < B ; A NEs > ∈ nodes. Thus, the rule
rec can be applied.

2. The cardinality of nodes always decreases in one unit when a rule is applied. The proof is straightforward
from the rules that model the system.

3. Since nodes is symmetric, if there is only one pair < A ; S > in nodes, its set of neighbors S is empty.

4. Since nodes is connected and symmetric, there may be at most one element in nodes such that its set of
neighbors is empty.

6.2. Verification of second description

The method above is extended in order to prove the correctness of the timed descriptions. Remember that
in this description we are not considering cycles or networks with only one node. The main idea is to have
different observations for the sets of nodes in each phase and look for sets of nodes that represent symmetric,
connected, and acyclic networks. We will prove that if the sets are not empty then some actions can take
place, and the number of elements in the sets decreases until all sets are empty. Given a configuration of
objects and messages, we consider the following observations defined by sets of pairs:

RecN : < A ; B NEs CHs > ∈ RecN ,N > 0 iff < A : Node | neig : B NEs, children : CHs, phase : rec >,

where N is the number of node identifiers in the node’s attribute neig.

AckC : < A ; B CHs> ∈ AckC , C > 0 iff < A : Node | neig : B, children : CHs, phase : ack > or

< A : Node | neig : empty, children : B CHs, phase : ack >

where C is the number of node identifiers in the node’s attribute children.

Ack0 : < A ; B > ∈ Ack0 iff < A : Node | neig : B, children : empty, phase : ack >,

< A ; empty > ∈ Ack0 iff < A : Node | neig : empty, children : empty, phase : ack >

Wait : < A ; B > ∈Wait iff < A : Node | neig : B, phase : waitParent >

and there is no message from B to A acknowledgement with delay T in the system.

ContentionT : < A ; B > ∈ ContentionT iff < A : Node | neig : B, phase : contention, rootConDelay : T >

where T is the value of the rootConDelay attribute.

All the sets are pairwise disjoint, since a node cannot be in two phases at the same time.

6.2.1. Network properties

Now, the set Nodes is defined by Nodes =
⋃

N RecN ∪
⋃

C AckC ∪
⋃

T ContentionT ∪Wait.
There are not two pairs in Nodes with the same first component; then, if we take the second component

of each pair to be the adjacency list of the node represented in the first component, Nodes represents a
network (directed graph), and initially Nodes =

⋃

N RecN , because all the other subsets are empty. Notice
that the set containing only the pair < A ; empty > represents a network with only one node.

If
⋃

N RecN represents, at the beginning, a symmetric, connected and acyclic network, then Nodes repre-
sents always a symmetric, connected and acyclic network. We have checked that this is true by (structural)
induction on our rewrite rules (see [VPMO01]).
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6.2.2. Safety properties

Informally speaking, we prove that a single leader is chosen by proving that if a rewrite rule is applied in the
system, at most one node is removed from the network represented by the set Nodes. Then if the algorithm
finishes, that is, if the set Nodes becomes empty, at the end the network represented by Nodes will have only
one node that will be represented by a pair of the form < A ; empty >. Hence the rule ackLeader can be
applied and a leader is declared. There cannot be more than one leader, since the network is connected.

If the set Nodes becomes empty, there should be a leader. Two rules remove pairs from Nodes :

• ack. If we observe the state reached when we apply this rule, we have removed a node identifier B from
the second component of a pair < A ; B CHs >, and a pair of the form < B ; A >. In the network
represented by Nodes this means that we have removed node B from the network.

• ackLeader. If we observe the state reached when we apply this rule, we have removed a pair of the
form < A ; empty > from the set Nodes, and this means that we have removed node A from the
network.

There is only one leader. Since the network represented by Nodes is always connected, there can only
be a pair of the form < A ; empty > in Nodes if the network has only one node. Since we do not add
nodes to the network, we can only have one leader.

6.2.3. Liveness properties

Informally speaking, we prove that if there are pairs in Nodes then we can apply some rewrite rule in the
system, and if we apply a rule, some positive number that depends on the pairs in Nodes decreases, and
becomes zero when there are no more pairs in Nodes. Then Nodes should become empty, which means that
the algorithm has finished. The contention phase presents some problems, since the function does not
decrease sometimes when the rules that treat the contention are applied. In this part we prove termination
using the assumption that we are in a fair system and contention cannot occur forever.

Property 1: If there are pairs in Nodes, then there is at least one rule that can be applied in
the system. Since the network represented by the pairs in Nodes is acyclic, then either the network has
only one node, or the network has at least one leaf, that is, there is a pair of the form < A ; B CHs > in
Nodes with B the only value in the neig attribute of node A. In the first case we can apply rule ackLeader.
In the second case, and since the network is symmetric, there is < B ; A NEs CHs’ > in Nodes. We have
checked that for each possible pair of nodes, at least a rewrite rule can be applied [VPMO01].

Property 2: A node can only come into the contention phase a finite number of times. We have
proved (see [VPMO01] for the full details) that in a fair system, and assuming that

ROOT-CONT-FASTÀ max{I,J}(timeLink(I,J)) (1)

ROOT-CONT-SLOWÀ max{I,J}(timeLink(I,J)) (2)

ROOT-CONT-SLOW− ROOT-CONT-FASTÀ max{I,J}(timeLink(I,J)) (3)

a node cannot be forever changing between the contention and waitParent phases by applying rules wait2
and contenSend; equivalently, the rewrite rule contenReceive will be applied.

We mean by fairness that all the rewrite rules that can be applied will be applied, and that the random
number generator produces even and odd numbers and therefore the rootConDelay attribute of a node in
the contention phase can be either ROOT-CONT-FAST or ROOT-CONT-SLOW. Equations 1, 2, and 3 express that
both constants are much greater than the maximum link delay between the nodes, and that their difference
is also much greater [IEE95].

If a node goes out of the contention phase by means of the contenReceive rule, it will not go back to
the contention phase since it will be in the ack phase with no neighbors. Then, the only rules that can be
applied to it are first ack, and then ackLeader.

Property 3: Application of rules decreases f(Configuration). Let N be the total number of nodes in
the network and T the maximum delay of the timeLink table. We define:
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rec(I) =

{

5 ∗ N ∗ T ∗ n if < I ; NEs > ∈ Recn

0 otherwise

ack(I) =

{

4 ∗ T ∗ (n + 1) if < I ; J CHs > ∈ Ackn

0 otherwise

wait(I) =

{

1 if < I ; J > ∈ Wait
0 otherwise

nm(C) = number of messages with time in C

times(C) = sum of times in messages in C

Consider the function f(C) =
(

∑

I∈Node rec(I)+ ack(I)+ wait(I)
)

+ nm(C) + times(C).

For each rewrite rule different from contenReceive and contenSend we have checked that the value of
the function decreases after applying the rule (see [VPMO01]).

Rules contenReceive and contenSend do not decrease the value of the function, but on the contrary,
they increase it. This does not matter since we have proved that these rules cannot be applied forever for a
pair of nodes, and that if two nodes solve their contention they will not have another contention.

Since f(C) ≥ 0 and it decreases when we apply the rewrite rules, then, although it can be increased by
a finite quantity, we conclude that we cannot apply rewrite rules forever in the system.

6.2.4. Total correctness

Since we cannot apply rules forever in the system (Property 3), the set Nodes should become empty (Prop-
erty 1), and if this set becomes empty there should be one and only one leader (Section 6.2.2).

6.3. Verification of third description

First we will prove that by using this description of the protocol cycles are detected. Then we will show
how the new rules affect the proof of correctness given for the timed asynchronous description with no cycle
detection in Section 6.2.

6.3.1. If there is a cycle in the network, an error message is generated.

Property 1: If a node is in a cycle, then it does not change from the rec phase until an error
message is generated. If the node is in a cycle it has at least two neighbors. The rules that change a node
from the rec phase are recN-1 and recLeader, which cannot be applied since the node has more than one
neighbor, and error, which generates the error message.

Property 2: If the network has a cycle, then the CONFIG-TIMEOUTalarm attribute of some node
that is in the cycle is set to 0. We divide the set of nodes in two subsets: one with the nodes that are in
a cycle, and the other with the nodes that are not in a cycle. If a node is not in a cycle, there are a finite
number of rewrites that can take place before it reaches the self phase. If a node is in a cycle, rule rec can
be applied at most as many times as the number of nodes in the network that are connected to this node
but are not in the cycle. Once there is no rewrite rule different from tick that can be applied to the nodes,
only time can pass changing the CONFIG-TIMEOUTalarm attribute. This attribute will decrease in the nodes
of the cycle until some of them become 0.

Property 3: If the CONFIG-TIMEOUTalarm attribute of a node is set to 0 and the node does not
change from the rec phase, the value of the CONFIG-TIMEOUTalarm attribute does not change any
more. The rules that change the value of the CONFIG-TIMEOUTalarm attribute are:

• recN-1 and recLeader, that change the phase of the node to the ack phase.

• tick, that decreases the value of the attribute. But this rule cannot be applied if CONFIG-TIMEOUTalarm
is 0, since in this case the mte operation is evaluated to 0.

• error, that changes the phase of the node to the error phase.

Property 4: If there is a cycle in the network then an error is generated. By Properties 2 and
3, there is a node whose CONFIG-TIMEOUTalarm attribute is set to 0, and this value cannot change, and by
Property 1, the node should be in the rec phase. Looking at the lefthand side of the error rewrite rule we
check that it can be applied, and since we assume that we are in a fair system the error message will be
generated.
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6.3.2. Total correctness

We prove that, if there is no error, a single leader is chosen and that the leader is eventually chosen. We can
extend the method used in the previous proofs in order to deal with the new rules and the rules that have
changed. We consider the same observations as in the case with no cycle detection, since although we have
introduced a new phase, error, this is a final phase in the sense that once a node is in that phase there is
no rewrite rule in the system that can be applied to it.

Since we suppose that there is no error, we also have that the network represented by the set Nodes is
symmetric, connected, and acyclic.

The proof of the safety properties does not change, since we suppose that there is no error, and then we
do not introduce any rewrite rule that removes pairs from the set Nodes.

The proof of the liveness properties is slightly changed. First, Property 1 of Section 6.2.3 needs to take into
account the new definition of the recN-1 rewrite rule, in particular the value of the fr and FORCE-ROOTalarm
attributes (see [VPMO01]). The proof of Property 2 does not change, since the new rules do not affect the
contention phase. For Property 3, we change the function definition of nm(C) and times(C) to take into
account also objects with time values, and we check that the new rules decrease the function’s value.

Since the three properties are verified, the liveness property is fulfilled and therefore we have total
correctness, as before.

7. Evaluation

We have specified all the parts of this protocol in a formal way, by using rewriting logic as implemented in
the Maude system. We consider that the timed object-oriented approach followed is particularly expressive
for this kind of protocols. We have also analysed the whole protocol in two different ways. One is fully
automated and consists in the exhaustive exploration of all the states reachable from the initial state of a
concrete network (arbitrarily choosen). The other one is manual and provides a mathematical proof of the
safety and liveness requirements for any network.

We think that our solution is easy to change or extend. Indeed, we have presented three specifications at
different levels of abstraction. However, the formal proofs are quite sensible to changes, although they are
also modular, which lets us reuse and extend the second proof when we are verifying the third description.

The specifications were produced in two weeks by someone with great experience in the use of Maude,
but with less knowledge on the introduction of time in rewriting logic, which was learnt during this period.
The formal proofs were developed in three more weeks.

All the concepts involved in this specification framework are easy to understand by an average engineer,
so we think that the understanding of our solution would be quickly undertaken by someone with little
knowledge of rewriting and algebraic specifications.

8. Conclusion

We have shown how rewriting logic and Maude can be used to specify and analyze at different abstract
levels a communication protocol such as the FireWire tree identify protocol. We have also shown how the
timing aspects of the protocol can be modeled in an easy and structured way in rewriting logic, by means
of operations that define the effect of time elapse and rewrite rules that let time pass.

We see this work as another contribution to the research area of specification and analysis of several kinds
of communication protocols in Maude, as described in [DMT98, DMT00], as well as to the development of the
formal methodology that we have summarized in the introduction. As far as we know, this paper describes
the first examples where the strongest method of formal proof has been applied to a protocol in the context
of Maude programs. In our opinion, it is necessary to have more examples in order to consolidate this
methodology, and to develop tools that can help in the simulation and analysis of such examples.
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A. Complete Maude code (for third description)

(omod TIMEDOOSYSTEM is protecting TIMEDOMAIN . protecting QID .
sorts State ClockedSystem .
subsort Configuration < State . subsort Qid < Oid .
op ‘{_|_‘} : State Time -> ClockedSystem .
op delta : Configuration Time -> Configuration .
vars CF CF’ : Configuration . var T : Time .
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eq delta(none, T) = none .
ceq delta(CF CF’, T) = delta(CF, T) delta(CF’, T) if CF =/= none and CF’ =/= none .
op mte : Configuration -> TimeInf .
eq mte(none) = INF .
ceq mte(CF CF’) = min(mte(CF), mte(CF’)) if CF =/= none and CF’ =/= none .

endom)

(fmod IDENTIFIERS is protecting QID .
sorts Iden SetIden . subsorts Qid < Iden < SetIden .
op empty : -> SetIden .
op __ : SetIden SetIden -> SetIden [assoc comm id: empty] .

endfm)

(fmod TIMEDPHASES is
sort Phase .
ops rec ack waitParent contention self error : -> Phase .

endfm)

(omod RANDOM is protecting TIMEDOOSYSTEM .
class RandomNGen | seed : MachineInt .
op random : MachineInt -> MachineInt . *** random(x) generates the next random number
var N : MachineInt . var T : Time . var RAN : Oid .
eq random(N) = ((104 * N) + 7921) % 10609 .
eq delta(< RAN : RandomNGen | >, T) = < RAN : RandomNGen | > .
eq mte(< RAN : RandomNGen | >) = INF .

endom)

(omod FIREWIRE-ASYNC is
protecting IDENTIFIERS . protecting TIMEDPHASES . protecting RANDOM .
class Node | neig : SetIden, children : SetIden, phase : Phase, rootConDelay : DefTime,

CONFIG-TIMEOUTalarm : DefTime, fr : Bool, FORCE-ROOTalarm : DefTime .
msg from_to_be‘my‘parent‘with‘delay_ : Iden Iden Time -> Msg .
msg from_to_acknowledgement‘with‘delay_ : Iden Iden Time -> Msg .
msg leader_ : Iden -> Msg .
msg error : -> Msg .
*** Time constants
ops ROOT-CONTEND-FAST ROOT-CONTEND-SLOW CONFIG-TIMEOUT FRTIME : -> Time .
eq ROOT-CONTEND-FAST = 250 . eq ROOT-CONTEND-SLOW = 580 . eq CONFIG-TIMEOUT = 166600 . eq FRTIME = 84000 .
op timeLink : Iden Iden -> Time .
var RAN : Oid . var PH : Phase . vars I J K : Iden . var N : Nat .
vars NEs CHs : SetIden . var C : Configuration . vars T T’ : Time . vars DT DT’ : DefTime .
crl [rec] : { (from J to I be my parent with delay 0)

< I : Node | neig : J NEs, children : CHs, phase : rec > C | T }
=> { < I : Node | neig : NEs, children : J CHs > C | T } if NEs =/= empty .

rl [error] : { < I : Node | phase : rec, CONFIG-TIMEOUTalarm : 0 > C | T }
=> { < I : Node | phase : error > error C | T } .

rl [stopAlarm] : { < I : Node | phase : rec, fr : true, FORCE-ROOTalarm : 0 > C | T }
=> { < I : Node | fr : false, FORCE-ROOTalarm : noTimeValue > C | T } .

rl [recN-1] : { < I : Node | neig : J, children : CHs, fr : false, phase : rec > C | T }
=> { < I : Node | phase : ack, CONFIG-TIMEOUTalarm : noTimeValue > C | T } .

rl [recLeader] : { (from J to I be my parent with delay 0)
< I : Node | neig : J, children : CHs, phase : rec > C | T }

=> { < I : Node | neig : empty, children : J CHs, phase : ack, fr : false,
FORCE-ROOTalarm : noTimeValue, CONFIG-TIMEOUTalarm : noTimeValue > C | T } .

rl [ack] : { < I : Node | children : J CHs, phase : ack > C | T }
=> { (from I to J acknowledgement with delay timeLink(I,J))

< I : Node | children : CHs > C | T } .
rl [ackLeader] : { < I : Node | neig : empty, children : empty, phase : ack > C | T }

=> { < I : Node | phase : self > (leader I) C | T } .
rl [ackParent] : { < I : Node | neig : J, children : empty, phase : ack > C | T }

=> { < I : Node | phase : waitParent >
(from I to J be my parent with delay timeLink(I,J)) C | T } .

rl [wait1] : { (from J to I acknowledgement with delay 0)
< I : Node | neig : J, phase : waitParent > C | T }

=> { < I : Node | phase : self > C | T } .
rl [wait2] :{ (from J to I be my parent with delay 0)

< I : Node | neig : J, phase : waitParent > < RAN : RandomNGen | seed : N > C | T }
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=> { < I : Node | phase : contention,
rootConDelay : if (N % 2 == 0) then ROOT-CONTEND-FAST else ROOT-CONTEND-SLOW fi >

< RAN : RandomNGen | seed : random(N) > C | T } .
rl [contenReceive] : { (from J to I be my parent with delay 0)

< I : Node | neig : J, phase : contention > C | T }
=> { < I : Node | neig : empty, children : J, phase : ack,

rootConDelay : noTimeValue > C | T } .
rl [contenSend] : { < I : Node | neig : J, phase : contention, rootConDelay : 0 > C | T }

=> { < I : Node | phase : waitParent, rootConDelay : noTimeValue >
(from I to J be my parent with delay timeLink(I,J)) C | T } .

*** Timed behaviour
eq delta(< I : Node | phase : rec, CONFIG-TIMEOUTalarm : DT, FORCE-ROOTalarm : DT’ >, T) =

if DT == noTimeValue then
(if DT’ == noTimeValue then < I : Node | >
else < I : Node | FORCE-ROOTalarm : DT’ monus T > fi)

else (if DT’ == noTimeValue then < I : Node | CONFIG-TIMEOUTalarm : DT monus T >
else < I : Node | CONFIG-TIMEOUTalarm : DT monus T, FORCE-ROOTalarm : DT’ monus T > fi) fi .

eq delta(< I : Node | phase : contention, rootConDelay : DT >, T) =
if DT == noTimeValue then < I : Node | > else < I : Node | rootConDelay : DT monus T > fi .

ceq delta(< I : Node | phase : PH >, T) = < I : Node | >
if (PH == ack or PH == waitParent or PH == self or PH == error) .

eq delta( leader I, T ) = leader I .
eq delta( error, T ) = error .
eq delta( from I to J be my parent with delay T, T’) =

from I to J be my parent with delay (T monus T’) .
eq delta( from I to J acknowledgement with delay T, T’) =

from I to J acknowledgement with delay (T monus T’) .
eq mte( from I to J be my parent with delay T ) = T .
eq mte( from I to J acknowledgement with delay T ) = T .
eq mte( leader I ) = INF .
eq mte( error ) = INF .
eq mte(< I : Node | neig : J K NEs, phase : rec, CONFIG-TIMEOUTalarm : DT, FORCE-ROOTalarm : DT’ >) =

if DT == noTimeValue then (if DT’ == noTimeValue then INF else DT’ fi)
else (if DT’ == noTimeValue then DT else min(DT, DT’) fi) fi .

eq mte(< I : Node | neig : J, phase : rec, fr : true, FORCE-ROOTalarm : T >) = T .
eq mte(< I : Node | neig : J, phase : rec, fr : false >) = 0 .
eq mte(< I : Node | phase : ack >) = 0 .
eq mte(< I : Node | phase : waitParent >) = INF .
eq mte(< I : Node | phase : contention, rootConDelay : T >) = T .
eq mte(< I : Node | phase : self >) = INF .
eq mte(< I : Node | phase : error >) = INF .
crl [tick] : { C | T } => { delta(C, mte(C)) | T plus mte(C) } if mte(C) =/= INF and mte(C) =/= 0 .

endom)

*** Search strategy
(fth AMODULE is including META-LEVEL .

op MOD : -> Module . op labels : -> QidList .
endfth)

(fmod SEARCH[M :: AMODULE] is
sort TermSet . subsort Term < TermSet .
vars T T’ : Term . var TL : TermList . var TS : TermSet .
var N : MachineInt . var L : Qid . var LS : QidList . var SB : Substitution .
op ~ : -> TermList .
eq ~, TL = TL . eq TL, ~ = TL .
op extTerm : ResultPair -> Term .
eq extTerm({T, SB}) = T .
op meta-apply’ : Term Qid MachineInt -> Term .
op allRew : Term QidList -> TermList .
op topRew : Term Qid MachineInt -> TermList .
eq meta-apply’(T, L, N) = extTerm(meta-apply(MOD, T, L, none, N)) .
eq allRew(T, nil) = ~ .
eq allRew(T, L LS) = topRew(T, L, 0) , allRew(T, LS) .
eq topRew(T, L, N) = if meta-apply’(T, L, N) == error* then ~

else (meta-apply’(T, L, N) , topRew(T, L, N + 1)) fi .
op ‘{‘} : -> TermSet .
op _U_ : TermSet TermSet -> TermSet [assoc comm id: {}] .
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op _isIn_ : Term TermSet -> Bool .
eq T U T = T .
eq T isIn {} = false .
eq T isIn (T’ U TS) = if meta-reduce(MOD, ’_==_[T, T’]) == {’true}’Bool then true

else (T isIn TS) fi .
op allSol : Term -> TermSet .
op allSolDepth : TermList TermSet -> TermSet .
eq allSol(T) = allSolDepth(meta-reduce(MOD,T), {}) .
eq allSolDepth(~, TS) = {} .
eq allSolDepth( T, TS ) = if T isIn TS then {}

else ( if allRew(T, labels) == ~ then T
else allSolDepth(allRew(T, labels), TS U T) fi ) fi .

eq allSolDepth( (T, TL), TS ) = if T isIn TS then allSolDepth(TL, TS)
else ( if allRew(T, labels) == ~ then ( T U allSolDepth(TL, TS) )

else allSolDepth((allRew(T, labels), TL), TS U T) fi ) fi .
endfm)

*** Example
(omod EXAMPLE is protecting FIREWIRE-ASYNC .

op network7 : -> Configuration .
op defaultATTRS : -> AttributeSet .
eq defaultATTRS = children : empty, phase : rec, fr : false, FORCE-ROOTalarm : noTimeValue,

CONFIG-TIMEOUTalarm : CONFIG-TIMEOUT, rootConDelay : noTimeValue .
eq network7 = < ’a : Node | neig : ’c, defaultATTRS > < ’b : Node | neig : ’c ’d, defaultATTRS >

< ’c : Node | neig : ’a ’b ’e, defaultATTRS > < ’d : Node | neig : ’b, defaultATTRS >
< ’e : Node | neig : ’c ’f ’g, defaultATTRS > < ’f : Node | neig : ’e, defaultATTRS >
< ’g : Node | neig : ’e, defaultATTRS > < ’Random : RandomNGen | seed : 13 > .

eq timeLink(’a,’c) = 7 . eq timeLink(’b,’c) = 7 . eq timeLink(’b,’d) = 10 .
eq timeLink(’c,’e) = 40 . eq timeLink(’e,’f) = 7 . eq timeLink(’e,’g) = 7 .
var I J : Qid . ceq timeLink(J,I) = timeLink(I,J) if I < J .
op _&_ : ClockedSystem ClockedSystem -> ClockedSystem [assoc comm] .
var S : ClockedSystem .
eq S & S = S .

endom)

(mod META-FIREWIRE is including META-LEVEL .
op METAFW : -> Module .
eq METAFW = up(EXAMPLE) .
op labelsIDs : -> QidList .
eq labelsIDs = (’rec ’error ’stopAlarm ’recN-1 ’recLeader ’ack ’ackLeader

’ackParent ’wait ’contenReceive ’contenSend ’tick ) .
endm)

(view ModuleFW from AMODULE to META-FIREWIRE is
op MOD to METAFW . op labels to labelsIDs .

endv)

(mod SEARCH-FW is
protecting SEARCH[ModuleFW] .
op downSol : TermSet -> Term .
var T : Term . var TS : TermSet .
eq downSol({}) = error* .
eq downSol(T) = T .
ceq downSol(T U TS) = ’_&_[T, downSol(TS)] if TS =/= {} .

endm)

*** Section 4.4
(select EXAMPLE .)
(rew { network7 | 0 } .)

*** Section 5.2
(select SEARCH-FW .)
(down EXAMPLE : red downSol(allSol(up(EXAMPLE, { network7 | 0 }))) .)


