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Abstract. We explore the features of rewriting logic and, in particular, of the rewriting logic language Maude as a
logical and semantic framework for representing and executing inference systems. In order to illustrate the general
ideas we consider two substantial case studies. In the first one, we represent both the semantics of Milner’s CCS
and a modal logic for describing local capabilities of CCS processes. Although a rewriting logic representation of
the CCS semantics is already known, it cannot be directly executed in the default interpreter of Maude. Moreover,
it cannot be used to answer questions such as which are the successors of a process after performing an action,
which is used to define the semantics of Hennessy-Milner modal logic. Basically, the problems are the existence
of new variables in the righthand side of the rewrite rules and the nondeterministic application of the semantic
rules, inherent to CCS. We show how these problems can be solved in a general, not CCS dependent way by
controlling the rewriting process by means of reflection. This executable specification plus the reflective control
of rewriting can be used to analyze CCS processes. The same techniques are also used to implement a symbolic
semantics for LOTOS in our second case study. The good properties of Maude as a metalanguage allow us to
implement a whole formal tool where LOTOS specifications without restrictions in their data types (given as ACT
ONE specifications) can be executed. In summary, we present Maude as an executable semantic framework by
providing easy-tool-building techniques for a language given its operational semantics.

Keywords: rewriting logic, Maude, executable semantic framework, internal strategies, CCS, Hennessy-Milner
modal logic, symbolic semantics for LOTOS, ACT ONE

1. Introduction

Rewriting logic [41, 44] was introduced in [43] as a unified model of concurrency in
which several well-known models of concurrent systems can be represented in a common
framework. This goal was further extended in [40] to the idea of rewriting logic as a logical
and semantic framework. It was shown that many other logics, widely different in nature,
can be represented inside rewriting logic in a natural and direct way. The general way in
which such representations are achieved is by:

• Representing formulas or, more generally, proof-theoretic structures, such as sequents,
as terms in an equational data type whose equations express structural axioms natural to
the logic in question.
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Desarrollo Formal de Sistemas Basados en Agentes Móviles (TIC2000-0701-C02-01).
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• Representing the rules of deduction of a logic as rewrite rules that transform certain
patterns of formulas into other patterns modulo the given structural axioms.

In this way an inference rule of the form

Ṡ1 . . . Sn

S0

can be mapped into a rewrite rule of the form S1 . . . Sn → S0 that rewrites multisets of
judgements Si . This mapping is correct from an abstract point of view, but in terms of
executability of the rewrite rules it is more appropriate to consider rewrite rules of the form
S0 → S1 . . . Sn that still rewrite multisets of judgements but go from the conclusion to the
premises, so that rewriting with these rewrite rules corresponds to searching for a proof
in a goal-directed way. Again this mapping is correct, and in both cases the intuitive idea
is that the rewriting relation corresponds to the horizontal bar separating conclusion from
premises in the typical textbook presentation of inference rules.

These techniques can be used to naturally specify a wide variety of inference systems,
as detailed in [40], including sequent systems for logics and also structural operational
semantics definitions for languages. In particular, the similarities between rewriting logic
and structural operational semantics [50] were noted in [43] and further explored in [40]. As
an illustrative example, the paper [40] completely develops a representation of Milner’s CCS
[46] in rewriting logic, extending ideas first introduced in [45]. However, this representation
of CCS cannot be directly executed in the default interpreter of Maude [11, 12, 14], a
high-level language and high-performance system supporting both equational and rewriting
logic computation.1 Maude should be viewed as a metalanguage in which the syntax and
semantics of other languages, including formal specification languages, can be formally
defined [10, 16].

In order to show the executability problems of the general representation of inference
systems in Maude, we use the representation of the CCS semantics [46], but we note that
the problems found and our solutions are not exclusive of the CCS representation. In fact,
we use them in Section 6 to implement a symbolic semantics for Full LOTOS [6, 37].

Basically, the problems with this kind of representations in Maude are the existence of
new variables in the righthand side of the rewrite rules and the nondeterministic application
of the semantic rules. We show how these two problems can be solved in a general way by
exploiting the reflective capabilities of rewriting logic and of Maude, that allow representing
rewriting logic inside itself [8, 17, 18], and in particular controlling the rewriting process.
Moreover, we show how the CCS semantics representation can be extended to traces of
actions and to the CCS weak transition relation [46]. This executable specification plus the
reflective control of rewriting can be used to analyze CCS processes and to answer questions
such as which are the successors of a process after performing an action. In summary, we
have managed to make the representation of CCS executable by using reflective techniques
in such a way that it can be used to define in Maude the semantics of Hennessy-Milner
modal logic [32].

The main goal of this paper has a very pragmatic character: we want to show in detail
how to bridge the gap from theory (rewriting logic) to practice (Maude) so that the rewriting
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logic specifications of inference systems in general, and of structural operational semantics
in particular, become executable. For this reason, we can talk about Maude as an executable
semantic framework, in which we provide easy-tool-building techniques for languages given
their operational semantics.

To show the generality of the techniques, we have developed several case studies. The
most ambitious one is Full LOTOS [37], but we believe that it is better to explain the
techniques with the CCS case study that already poses the main problems (nondeterminism
and new variables in the righthand side of rewrite rules) instead of using a bigger and more
complex language. In addition, we also describe a Hennessy-Milner logic [32] case study
that is easily built on top of CCS, and shows how the same techniques are applied to different
semantics.

The Full LOTOS case study extends those techniques to a bigger language and moreover
does this in such a way that the ACT ONE algebraic specifications [26] used in LOTOS to
define data types are really integrated into the operational semantics (this is the reason for
talking about Full LOTOS instead of just LOTOS), something that really breaks new ground
in this approach. In addition, by means of the metalanguage features supported by Maude,
the Full LOTOS semantics tool is also integrated with Full Maude [24], an extension of
Maude that adds modularization and parameterization mechanisms to the language: this
way in the same semantic framework we have built an entire environment with parsing,
pretty printing, and input/output processing of LOTOS specifications and commands for
executing them, hiding to the user the underlying use of Maude.

In the rest of this introduction we review the representation of the CCS semantics in
Maude in order to see in detail how the two problems we mentioned above arise. At the
same time, we introduce Maude syntax. We use the already mentioned Full Maude extension
[24] to take advantage of parameterization mechanisms.2

1.1. Syntax and semantics representation

To begin with, we show the representation of the CCS syntax in two functional modules,
that is, equational theories used to specify algebraic data types that defines actions and
processes. We declare sort(s), subsort(s), and operators op(s), which have user-
definable syntax.3 The operators’ precedence is set by means of the attributeprec. Equations
are declared with the keywords eq or ceq (for conditional ones). The imported module QID
is a useful built-in module providing quoted identifiers that in this case are used to represent
CCS labels as well as process identifiers. The importation is protecting, meaning that
the imported module semantics is not modified. The following modules are enclosed in
parentheses because they are introduced into Full Maude. In the operator declarations the
symbol represents the places for arguments in mixfix syntax. Comments are preceded
either by *** or by ---.

(fmod ACTION is
protecting QID .
sorts Label Act .
subsorts Qid < Label < Act .
op tau : -> Act . *** silent action
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op ~ : Label -> Label . *** complementary label
var N : Label .
eq ~ ~ N = N .

endfm)

(fmod PROCESS is
protecting ACTION .
sorts ProcessId Process .
subsorts Qid < ProcessId < Process .
op 0 : -> Process . *** inaction
op . : Act Process -> Process [prec 25] . *** prefix
op + : Process Process -> Process [prec 35] . *** summation
op | : Process Process -> Process [prec 30] . *** composition
op ‘[ / ’] : Process Label Label -> Process [prec 20] .

*** relabelling: [b/a] relabels "a" to "b"
op \ : Process Label -> Process [prec 20] . *** restriction

endfm)

Full CCS is represented, including (possibly recursive) process definitions by means of
contexts. A context is well-formed if a process identifier is defined at most once. We use
a conditional membership axiom (cmb) to establish which terms of sort AnyContext
are well-formed contexts (of sort Context). The evaluation of def(X, C) returns the
process associated to process identifier X if it exists; otherwise, it returns the error constant
not-defined.

(fmod CCS-CONTEXT is
protecting PROCESS .
sorts AnyProcess Context AnyContext .
subsort Process < AnyProcess .
subsort Context < AnyContext .
op =def : ProcessId Process -> Context [prec 40] .
op nil : -> Context .
op & : AnyContext AnyContext -> AnyContext

[assoc comm id: nil prec 42] .
op definedIn : ProcessId Context -> Bool .
op def : ProcessId Context -> AnyProcess .
op not-defined : -> AnyProcess .
op context : -> Context .
vars X X’ : ProcessId .
var P : Process .
var C : Context .
cmb (X =def P) & C : Context if not (X definedIn C) .
eq X definedIn nil = false .
eq X definedIn ((X’ =def P) & C) = (X == X’) or (X definedIn C) .
eq def (X, nil) = not-defined .
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eq def (X, ((X = def P) & C)) = P .
ceq def (X, ((X’ =def P) & C)) = def (X, C) if X =/= X’ .

endfm)

The constant context keeps the definitions of the process identifiers used in each CCS
specification. It is declared here because it is needed in the semantics (Section 2.1), but it
will be defined in an example below (see Section 2.4).

As said above, the general idea for the implementation in rewriting logic of the operational
semantics of CCS (or any other structural operational semantics) is to translate each semantic
rule either into a rewrite rule where the premises are rewritten to the conclusion, or into a
rewrite rule where the conclusion is rewritten to the premises. In [40] the first approach was
followed. In this paper, and due to executability reasons, we adopt the second one because
we want to be able to prove in a goal-directed way that a given transition is valid in CCS.

We represent in Maude the CCS transition judgement P
a→ P ′ by the term P -- -- a ->

P ′ of sort Judgement, built with the operator4

sort Judgement .
op -- -> : Process Act Process -> Judgement [prec 50] .

In general, a semantic rule has a conclusion and a set of premises, each one represented
by a judgement. So we need a sort to represent sets of judgements:

sort JudgementSet .
subsort Judgement < JudgementSet .
op emptyJS : -> JudgementSet .
op : JudgementSet JudgementSet -> JudgementSet

[assoc comm id: emptyJS prec 60] .

The union constructor is written with empty syntax ( ) and declared associative (assoc),
commutative (comm), and with the empty set as identity element (id: emptyJS). Matching
and rewriting take place modulo such properties, allowing in this way a more abstract
treatment of syntax. Idempotency is specified by means of an explicit equation:

var J : Judgement .
eq J J = J .

A semantic rule is implemented as a rewrite rule where the singleton set consisting of the
judgement representing the conclusion is rewritten to the set consisting of the judgements
representing the premises. Rewrite rules (introduced with the keywords rl or crl) are
declared in system modules, which are rewrite theories specifying concurrent systems.
Hence, system modules define the dynamic aspects of systems whereas functional modules
define static data types.
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For example, for the restriction operator5 of CCS we have the semantic rule

P
a→ P ′

P\l
a→ P ′\l

[a �= l ∧ a �= l̄],

which is translated to the following conditional rewrite rule where, using the fact that text
beginning with --- is a comment in Maude, the rule is displayed in such a way as to
emphasize the correspondence with the usual presentation in textbooks (although in this
case the conclusion is above the horizontal line):

crl [res] : P \ L -- A -> P’ \ L
=> ----------------------

P -- A -> P’ if (A =/= L) and (A =/= ~ L) .

Note that the side condition of the semantic rule becomes the condition of the rewrite rule.
As another example, the axiom schema

a.P
a→ P

defining the behaviour of the prefix operator gives rise to the rewrite rule

rl [pref] : A . P -- A -> P
=> ------------------

emptyJS.

Thus, a transition P
a→ P ′ is possible in CCS if and only if the judgement representing it

can be rewritten to the empty set of judgements by rewrite rules of the form described above
that define the operational semantics of CCS in a backwards search fashion. Intuitively, the
idea is that we start with a transition to be proved valid and work backwards using the
rewriting process in a goal-directed way, maintaining the set of transitions that have to be
fulfilled in order to prove the correctness of the initial transition. When this set is empty
we can conclude that the initial transition is a correct CCS transition, that is, the initial
transition can be rewritten to the empty set if and only if it is a valid transition in the CCS
operational semantics.

1.2. Executability problems

However, we have found two problems while working with this approach in Maude. These
problems are intrinsically related to the approach itself and not to the CCS operational
semantics. So, the proposed solutions are not CCS dependent and can be used to obtain ex-
ecutable representations of other inference systems. In Section 4 we use them to implement
the Hennessy-Milner modal logic, and in Section 6 we show how we have also used this
approach to implement a symbolic semantics for LOTOS [6].
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The first problem is that sometimes new variables which are not present in the conclusion
appear in the premises. For example, in one of the semantic rules for the parallel operator
we have

rl [par] : P | Q -- tau -> P’ | Q’
=> --------------------------------

P -- L -> P’ Q -- ~ L -> Q’.

where L is a new variable in the righthand side of the rewrite rule. Rules of this kind cannot
be directly used by the Maude default interpreter; they can only be used at the metalevel
using a strategy to instantiate the extra variables.

Another problem is that sometimes several rules can be applied to rewrite a judgement.
For example, for the summation operator we have, because of its intrinsic nondeterminism,

rl [sum] : P + Q -- A -> P’
=> --------------------

P -- A -> P’.

rl [sum] : P + Q -- A -> Q’
=> --------------------

Q -- A -> Q’.

Only one rule is enough by declaring the operator + to be commutative. However, in
the commutative case nondeterminism still arises because of possible multiple matches
(modulo commutativity) against the pattern P + Q.

In general, not all of these possibilities lead to the empty set of judgements. So, if we were
to use Maude’s default interpreter, it could choose the “wrong” rule to rewrite a judgement,
leading to a set of judgements that cannot be rewritten to the empty one (see Section 2.1).
Thus, we have to deal with the whole conceptual tree of all possible rewrites of a judgement,
and search if one of the branches leads to emptyJS.

1.3. Outline of the paper

In Section 2, we show how the problems described above can be solved in a general way in
Maude by using reflection to obtain an executable semantics in which we can prove whether
a transition P

a→ P ′ is possible or not.
In Section 3 we extend this representation in order to be able to answer different kinds of

questions, such as if process P can perform action a (and we do not care about the process
it becomes), or which are the successors of a process P after performing actions in a given
set As, that is, to obtain

succ(P, As) = {P ′ | P
a→ P ′ ∧ a ∈ As}.
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We also extend the CCS semantics to sequences of actions (or traces) and to the weak
transition semantics, which does not observe τ transitions.

In Section 4 we show how the same techniques can be used to define in Maude the
semantics of the Hennessy-Milner modal logic [32] for describing local capabilities of CCS
processes.

In Section 5 we describe how the CCS semantics and the Hennessy-Milner modal logic
can be represented and reasoned about within the theorem prover Isabelle [49], and compare
this framework with ours.

We show in Section 6 how the ideas presented in detail in this paper for the CCS semantics
can also be applied to build a tool for working with Full LOTOS specifications [37], based on
a symbolic semantics [6]. Although this section presents some improvements regarding the
semantics representation, we have not applied them to the CCS case study because we want
to present the whole process of defining an executable operational semantics in Maude step
by step, from the most basic to the complex results. The LOTOS semantics representation
is integrated with a translation of ACT ONE [26] data types specifications into functional
modules in Maude, in a tool where Full LOTOS specifications can be entered and executed.

In Section 7 we review related work on the use of logical frameworks to represent
inference systems and draw some conclusions.

We would like to point out again that our main goal in this paper is to describe in a
thorough manner how we can obtain executable representations in Maude from the oper-
ational semantics definitions of programming languages or process algebras, or inference
systems for logics in general. These executable representations can be seen as prototypes
of interpreters for languages or provers for logics, making it possible to experiment with
the different languages or logics, and also with different semantics for the same language.
At this time we are not interested in using Maude as a theorem prover in order to obtain
an abstract model of the semantics that would allow us to do metareasoning (such as for
example the theory of bisimulation for CCS), in contrast to the objectives in most of the
related work cited later in Sections 5 and 7.

2. Executable CCS semantics in Maude

In this section we show how the problem of new variables in the righthand side of a rewrite
rule is solved by using the concept of explicit metavariables presented in [56], and how
nondeterministic rewriting is controlled by means of a search strategy [5, 13]. The files with
all the Maude code can be found in [59]. All the code given in the following subsection is
part of the system module CCS-SEMANTICS.

2.1. Definition of the executable semantics

New variables in the righthand side of a rewrite rule represent “unknown” values when we are
rewriting; by using metavariables we make explicit this lack of knowledge. The semantics
with explicit metavariables has to bind them to concrete values when these values become
known.
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For the time being, metavariables are only needed as actions in the judgements, so we
declare a new sort for metavariables as actions:

sort MetaVarAct .
op ?‘( ‘)A : Qid -> MetaVarAct .
var NEW1 : Qid .

Note that the constructor for metavariables begins with ?; we will also use the question
mark as part of the identifiers of Maude variables for representing metavariables. Do not
confuse them with input actions in value-passing CCS. It is important to use as the domain
of the metavariables constructor a sort that provides an infinite number of names, to be used
as needed; among other possibilities we have chosen Qid.

We also introduce a new sort Act? of “possible actions,” which is the union of actions
and metavariables as actions (subsort declaration below):

sort Act? .
subsorts Act MetaVarAct < Act? .
var ?A : MetaVarAct .
var A? : Act? .

and modify the operator for building judgements in order to deal with this new sort of
actions,

op -- -> : Process Act? Process -> Judgement [prec 50] .

As mentioned above, a metavariable will be bound when its concrete value becomes known,
so we need a new judgement stating that a metavariable is bound to a concrete value

op ‘[ := ‘] : MetaVarAct Act -> Judgement .

and a way to propagate this binding to the rest of judgements where the bound metavariable
may be present. Since this propagation has to reach all the judgements in the current state
of the inference process, we introduce an operation to enclose the set of judgements and a
rule to propagate a binding,

sort Configuration .
op ’{’{ ’}’} : JudgementSet -> Configuration .
var JS : JudgementSet .
rl [bind] : {{ [?A := A] JS }} ⇒ {{ <act ?A := A > JS }} .

where we use the following overloaded auxiliary operations to perform the corresponding
substitutions

op <act := > : MetaVarAct Act Act? -> Act? .
op <act := > : MetaVarAct Act Judgement -> Judgement .
op <act := > : MetaVarAct Act JudgementSet -> JudgementSet .
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Now we are able to redefine the rewrite rules implementing the CCS semantics, taking care
of metavariables. For the prefix operator we retain the previous axiom

rl [pref] : A . P -- A -> P
=> ------------------

emptyJS .

and add a new rule for the case when a metavariable appears in the judgement

rl [pref] : A . P -- ?A -> P
=> ------------------

[?A := A] .

Note how the metavariable ?A present in the lefthand side judgement is bound to the
concrete action A taken from the process A . P. This binding will be propagated to any
other judgement in the set of judgements containing A . P -- ?A -> P.

For the summation operator, we generalize the rules allowing a more general variable A?
of sort Act?, since the behaviour is the same independently of whether a metavariable or
an action appears in the judgement:

rl [sum] : P + Q -- A? -> P’
=> ------------------

P -- A? -> P’ .

rl [sum] : P + Q -- A? -> Q’
=> ------------------

Q -- A? -> Q’ .

Nondeterminism is again present; we will deal with it in Section 2.3.
For the parallel operator, there are two rules for the cases when one of the composed

processes performs an action on its own,

rl [par] : P | Q -- A? -> P’ | Q
=> ----------------------

P -- A? -> P’ .

rl [par] : P | Q -- A? -> P | Q’
=> -----------------------

Q -- A? -> Q’ .
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and two additional rules dealing with the case when communication happens between both
processes,

rl [par] : P | Q -- tau -> P’ | Q’
=> -------------------------------------------

P -- ?(NEW1)A -> P’ Q -- ~ ?(NEW1)A -> Q’ .

rl [par] : P | Q -- ?A -> P’ | Q’
=> ------------------------------------------------------

P -- ?(NEW1)A -> P’ Q -- ~ ?(NEW1)A -> Q’ [?A := tau] .

where we have overloaded the ~ operator

op ~ : Act? -> Act? .

Note how the term ?(NEW1)A is used to represent a new metavariable. But NEW1 is again
a new variable (of sort Qid) in the righthand side of the above rules. So the modified
representation also has rules with new variables in the righthand side, but now they are
more localized: Rewriting has to be controlled by a strategy that instantiates the variable
NEW1 with a new (quoted) identifier each time one of the above rules is applied, in order to
build new metavariables. The main idea is that when some of these rules are really applied,
the term ?(NEW1)A is substituted by a closed term like ?(’mv1)A that will represent a new
metavariable. The strategy presented in Section 2.3 does this as well as implementing the
search in the tree of possible rewrites.

There are two rules dealing with the restriction operator of CCS: one for the case when
an action occurs in the lefthand side judgement,

crl [res] : P \ L -- A -> P’ \ L
=> -----------------------

P -- A -> P’ if (A =/= L) and (A =/= ~ L) .

and another one for the case when a metavariable occurs in the lefthand side judgement,

rl [res] : P \ L -- ?A -> P’ \ L
=> ----------------------------------------

P -- ?A -> P’ [?A =/= L] [?A =/= ~ L] .

In the latter case we cannot use a conditional rewrite rule as in the former case, because
the corresponding condition (?A =/= L) and (?A =/= ~ L) cannot be checked until we
know the concrete value of the metavariable ?A. Hence, we have to add a new kind of
judgement

op ‘[ =/= ‘] : Act? Act? -> Judgement .
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used to state constraints related with metavariables (which will be substituted by actions).
This constraint is eliminated when it is fulfilled,

crl [dist] : [A =/= A’] => emptyJS if A =/= A’ .

where (normal) actions are used.
For the relabelling operator of CCS we have similar rewrite rules.
Finally, process identifiers only need the generalization of the original rule by means of

a more general variable A?.

crl [def] : X -- A? -> P’
=> ----------------------------------

def(X, context) -- A? -> P’ if X definedIn context.

Using the above rules, we can begin to pose some questions about the capability of a
process to perform an action. For example, we can ask if the process ’a.’b.0 can perform
action ’a (becoming process ’b.0) by rewriting the configuration composed of a judgement
representing that transition:

Maude> (rew {{ ’a.’b.0 -- ’a -> ’b.0 }} .)
result Configuration : {{ emptyJS }}

Since a configuration consisting of the empty set of judgements is reached, we can
conclude that the transition is possible.

However, if we ask if the process ’a.0 + ’b.0 can perform action ’b becoming process
0, we get as result

Maude> (rew {{ ’a.0 + ’b.0 -- ’b -> 0 }} .)
result Configuration : {{ ’a.0 -- ’b -> 0 }}

meaning that the given transition is not possible, which is not the case. The reason is that
the configuration {{’a.0 + ’b.0 -- ’b -> 0 }} can be rewritten in two different ways,
and only one of them leads to a configuration consisting of the empty set of judgements, as
shown in the following tree:

{{ ’a.0 + ’b.0 -- ’b -> 0 }}

↙ ↘
{{ ’a.0 -- ’b -> 0 }} {{ ’b.0 -- ’b -> 0 }}

↓
{{ emptyJS }}
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Therefore, we need a strategy to search the tree of all possible rewrites. Before defining
this search strategy, we present the Maude features that allow us to define it.

2.2. Maude’s metalevel

Rewriting logic is reflective [8, 17, 18], that is, there is a finitely presented rewrite theory
U that is universal in the sense that we can represent any finitely presented rewrite theory
R (including U itself) and any terms t, t ′ in R as terms R̄ and t̄, t̄ ′ in U , and we then have
the following equivalence:

R � t → t ′ ⇔ U � 〈R̄, t̄〉 → 〈R̄, t̄〉.

In Maude, the key functionality of the universal theoryU has been efficiently implemented
in the functional module META-LEVEL, where

• Maude terms are reified as elements of a data type Term of terms;
• Maude modules are reified as terms in a data type Module of modules;
• reducing a term to normal form in a functional module and finding whether such a normal

form has a given sort are reified by a metalevel function meta-reduce;

op meta-reduce : Module Term -> Term .

• applying a rule of a system module to a subject term at the top is reified by a metalevel
function meta-apply;

op meta-apply : Module Term Substitution MachineInt -> ResultPair .

• rewriting a term in a system module using Maude’s default interpreter is reified by a
metalevel function meta-rewrite;

op meta-rewrite : Module Term MachineInt -> Term .

• parsing and pretty printing of a term in a signature (see Section 6.6), as well as key sort
operations such as comparing sorts in the subsort ordering of a signature, are also reified
by corresponding metalevel functions.

We briefly summarize here how Maude terms are metarepresented as terms of sort Term;
for a complete explanation we refer the reader to the Maude manual [11]. The signature for
representing terms is declared in the module META-LEVEL as follows:

sorts Term TermList .
subsorts Qid < Term < TermList .
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op { } : Qid Qid -> Term . *** constants
op [ ] : Qid TermList -> Term . *** ops. with

arguments
op , : TermList TermList -> TermList [assoc]. *** arguments

For example, the term ’a.0 + ’b.0, of sort Process is metarepresented as

’ + [ ’ . [ {’’a}’Qid,{’0}’Process ],
’ . [ {’’b}’Qid, {’0}’Process ] ]

2.3. Searching in the tree of rewrites

In this section we show how the reflective properties of Maude can be used to control the
rewriting of a term and the search in the tree of possible rewrites of a term. The depth-first
search strategy is based on the work in [4, 5, 13], modified to deal with the substitution
of metavariables explained in Section 2.1. It is completely general, so its definition is not
determined in any way by the CCS semantics representation given above. It is parameterized
over the module used to build rewrite trees (the module with the rewrite rules) and over the
predicate that defines the search goals.

The module implementing the search strategy is parameterized with respect to a con-
stant equal to the metarepresentation of the Maude module which we want to work with
(which will be the CCS-SEMANTICS module in Section 2.4 and the MODAL-LOGIC module
implementing the Hennessy-Milner modal logic in Section 4.3). Hence, we define a param-
eter theory to specify the requirements the parameter must satisfy: it must have a constant
(MOD) representing the module, a constant (labels) representing the list of labels of rewrite
rules to be applied, and a constant (num-metavar) representing the maximum number of
metavariables that have to be provided when a rule is applied.

(fth AMODULE is
including META-LEVEL .
op MOD : -> Module.
op labels : -> QidList .
op num-metavar : -> MachineInt .

endfth)

Keywords fth...endfth are used to define functional theories [11, 24]. Theories are used
to declare module interfaces, namely the syntactic and semantic properties to be satisfied
by the actual parameter modules used in an instantiation.

The module containing the strategy, that extends META-LEVEL, is then the parameterized
module SEARCH [M :: AMODULE].

Since we are defining a strategy to search a tree of possible rewrites, we need a notion
of search goal. For the strategy to be general enough, we assume that the metarepresented
module MOD has an operation ok (defined at the object level, see Section 2.4), that applies
to terms being rewritten and returns a value of sort Answer such that
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• ok(T) = solution means that the term T is one of the terms we are looking for, that
is, T denotes a solution;

• ok(T) = no-solution means that the term T is not a solution and no solution can be
found below T in the search tree;

• ok(T) = maybe-sol means that T is not a solution, but we do not know if there are any
solutions below it.

The strategy will control the possible rewrites of a term by means of the metalevel
function meta-apply. The evaluation of meta-apply(MOD,T,L,S,N) applies (discarding
the first N successful matches) a rule in module MOD with label L, partially instantiated with
substitution S, to the term T (at the top level). It returns the resulting fully reduced term
and the representation of the match used in the reduction, {T’, S’}, as a term of sort
ResultPair built by means of the operator { , }.

In Section 2.1 we saw the necessity of instantiating the new variables in the righthand
side of a rewrite rule in order to create new metavariables. If we want to use function
meta-apply with rules with new variables in the righthand side (like NEW1 in the rules
in Section 2.1), we have to provide a substitution in such a way that the rules are always
applied without new variables in the righthand side. We suppose that the new variables in the
righthand side of a rule are called NEW1, NEW2,... These variables are then substituted
by new (constant) identifiers, which are quoted numbers.6 The operation createSubst
receives as arguments the number of variables that have to be substituted and the greatest
number already used in a substitution.

vars N M : MachineInt .
op new-var : MachineInt -> Term .
eq new-var(N) = {conc(’’ , index (’, N))}’Qid .
op createSubst : MachineInt MachineInt -> Substitution .
eq createSubst(O, M) = none .
ceq createSubst(N, M) = createSubst(N - 1, M);

(conc(’NEW, conc(index(’ , N), ’@Qid))
<- new-var(M + N)) if N =/= 0 .

The operations conc and index are defined in the module QID and they are used to build
quoted identifiers. For example, the evaluation of new-var(5) returns the metarepresenta-
tion {’’5}’Qid of term ’5. To avoid the clash of names of variables Full Maude renames
them following the convention of adding the character ‘@’ plus the name of its sort. Thus,
for example, a variable ’NEW1 of sort Qid is renamed to ’NEW1@Qid.

The signature for building substitutions is declared in the moduleMETA-LEVEL as follows:

sorts Assignment Substitution .
subsort Assignment < Substitution .
op <- : Qid Term -> Assignment .
op none : -> Substitution .
op ; : Substitution Substitution -> Substitution

[assoc comm id: none] .
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Then, the evaluation of createSubst(3,5) returns the substitution

’NEW1@Qid <- {’’6}’Qid ; ’NEW2@Qid <- {’’7} ’Qid;
’NEW1@Qid <- {’’8}’Qid

used to replace the variables NEW1, NEW2, and NEW3 with new quoted identifiers.
We define now a new operation meta-apply’ which receives the greatest number M

used to substitute variables in computing T and uses createSubst for creating a correct
substitution for the new variables.

var L : Qid .
var T : Term .
var SB : Substitution .
op extTerm : ResultPair -> Term .
eq extTerm({T, SB}) = T .
op meta-apply’ : Term Qid MachineInt MachineInt -> Term .
eq meta-apply’ (T, L, N, M) = extTerm(meta-apply(MOD, T, L,

createSubst (num-metavar, M), N)) .

The operation meta-apply’ returns one of the possible one-step rewrites at the top level
of a given term. Next we define an operation allRew that returns all the possible one-step
sequential rewrites [43] of a given term T by using rewrite rules with labels in the list
labels. The third argument of allRew represents the greatest number M used to substitute
new variables in computing T. There is a TermList sort in module META-LEVEL, but it
does not have an identity element, which we need to represent the case when no rule can
be applied. So we extend the module as follows:

op ~ : -> TermList . *** empty term list
var TL : TermList .
eq ~, TL = TL .
eq TL, ~ = TL .

Notice that this new operator for representing the empty list of terms will not be used as the
identity element of the concatenation operator , , since this operator is already declared in
the predefined module META-LEVEL. So the system will not do matching modulo identity.
But we can add the previous equations, that will be used, as any other equation, from left
to right to simplify terms of sort TermList where the empty list constant ~ might appear.

The operations needed to find all the possible rewrites, and their definitions, are as follows:

op allRew : Term QidList MachineInt -> TermList .
op topRew : Term Qid MachineInt MachineInt -> TermList .
op lowerRew : Term Qid MachineInt -> TermList .
op rewArgs : Qid TermList TermList Qid MachineInt -> TermList .
op rebuild : Qid TermList TermList TermList -> TermList .
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var LS : QidList .
vars C S OP : Qid .
vars Before After : TermList .
eq allRew(T, nil, M) = ~ .
eq allRew(T, L LS, M) = topRew(T, L, 0, M), *** rew. at the top

lowerRew(T, L, M), *** rew. subterms
allRew(T, LS, M). *** rew. with labels LS

The evaluation of topRew(T, L, N, M) returns all possible one-step rewrites at the top
of term T by applying rule L, discarding the first N matches, and using numbers from M+1
on in order to create identifiers for new variables.

eq topRew(T, L, N, M) =
if meta-apply’(T, L, N, M) == error* then ~
else (meta-apply’(T, L, N, M), topRew(T, L, N + 1, M)) fi .

The evaluation of lowerRew(T,L,M) returns all possible one-step rewrites of the subterms
of term T by applying rule L, and using numbers from M+1 on in order to create identifiers
for new variables. If T is a constant (a term without arguments), the empty list of terms is
returned; otherwise, the operationrewArgs is used. This last operation is defined recursively
on its third argument, which represents the arguments of T not yet rewritten.

eq lowerRew({C}S, L, M) = ~ .
eq lowerRew(OP[TL], L, M) = rewArgs(OP, ~, TL, L, M) .
eq rewArgs(OP, Before, T, L, M) =

rebuild(OP, Before, allRew(T, L, M), ~) .
eq rewArgs(OP, Before, (T, After), L, M) =

rebuild(OP, Before, allRew(T, L, M), After),
rewArgs(OP, (Before, T), After, L, M) .

The evaluation of rebuild(OP, Before, TL, After) returns all the terms of the
form OP[Before, T, After] where T is a term in the list of terms TL. These built terms
are metareduced before being returned.

eq rebuild(OP, Before, ~, After) = ~ .
eq rebuild(OP, Before, T, After) =

meta-reduce(MOD, OP[Before, T, After]) .
eq rebuild(OP, Before, (T, TL), After) =

meta-reduce(MOD, OP[Before, T, After]),
rebuild(OP, Before, TL, After) .

For example, we can apply the operation allRew to the metarepresentation of the term
{{ ’a.0 + ’b.0 -- ’b -> 0 }} to calculate all its rewrites, and we get the metarepre-
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sentation of the terms {{ ’a.O -- ’b -> O }} and {{ ’b.O -- ’b -> O }}.7

Maude> (red allRew({{ ’a . 0 + ’b . 0 -- ’b -> 0 }}, labels, 0) .)

result TermList : {{ ’a . 0 -- ’b -> 0}}, {{ ’b . 0 -- ’b -> 0 }}

Now we can define a strategy to search in the (conceptual) tree of all possible rewrites of
a term T for a term that satisfies the ok predicate. Each node of the search tree is a pair,
whose first component is a term and whose second component is a number representing the
greatest number used as identifier for new variables in the process of rewriting the term.
The tree nodes that have been generated but not checked yet are maintained in a sequence.

sorts Pair PairSeq .
subsort Pair < PairSeq .
op < ‘, > : Term MachineInt -> Pair .
op nil : -> PairSeq .
op | : PairSeq PairSeq -> PairSeq [assoc id: nil] .
var PS : PairSeq .

We need an operation to build these pairs from the list of terms produced by allRew:

op buildPairs : TermList MachineInt -> PairSeq .
eq buildPairs(~, N) = nil .
eq buildPairs(T, N) = < T, N > .
eq buildPairs((T, TL), N) = < T, N > | buildPairs(TL, N) .

The operation rewDepth starts the search by calling the operation rewDepth’ with the
root of the search tree. rewDepth’ returns the first solution found in a depth-first way. If
there is no solution, the error* term is returned.

op rewDepth : Term -> Term .
op rewDepth’ : PairSeq -> Term .
eq rewDepth(T) = rewDepth’(< meta-reduce(MOD, T), O >) .
eq rewDepth’ (nil) = error* .
eq rewDepth’(< T, N > | PS) =

if meta-reduce(MOD, ’ok[T]) == {’solution}’Answer then T
else (if meta-reduce(MOD, ’ok[T]) == {’no-solution}’Answer then

rewDepth’(PS)
else rewDepth’(buildPairs(allRew(T, labels, N),

N + num-metavar) | PS)
fi)

fi .

We have defined a search strategy at the metalevel to solve the “problem” of nondeterministic
application of rewrite rules; this nondeterminism is essential to rewriting logic. The future
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version of the Maude system [15] will include a search command to look in the tree of
all rewrites of a term for terms that match a given pattern, and this will bring efficiency
advantages since the search will be integrated in the system implementation. However,
having defined the search at the metalevel has the advantage of allowing us to make it more
general. For example, we use a user-definable ok predicate to define search goals. Moreover,
we have been able to include the generation of new metavariables in the search process. For
all these reasons we could not use directly the new search command.

2.4. Some examples

Now we can test the formalization in Maude of the CCS semantics with some examples
involving different judgements. First, we specify a module CCS-OK that extends the CCS
syntax and semantic rules by defining some process constants to be used in the examples,
assigning a value to the constant context used by the semantics, and specifying also the
predicate ok that states when a configuration is a solution. In this case a configuration denotes
a solution when it is the empty set of judgements, meaning that the set of judgements at the
beginning is provable by means of the semantic rules.

(mod CCS-OK is
protecting CCS-SEMANTICS .
ops p1 p2 p3 : -> Process .
eq p1 = (’a.0) + (’b.0 | (’c.0 + ’d.0)) .
eq p2 = (’a.’b.0 | (~ ’c.0) [’a / ’c]) \ ’a .
eq context = (’Proc =def ’a.tau.’proc) .
eq p3 = (’Proc | ~ ’a.’b.0) \ ’a .
sort Answer .
ops solution no-solution maybe-sol : -> Answer .
op ok : Configuration -> Answer .
var JS : JudgementSet .
eq ok({{ emptyJS }}) = solution .
ceq ok({{ JS }}) = maybe-sol if JS =/= emptyJS .

endm)

In order to instantiate the generic module SEARCH, we need the metarepresentation of the
module CCS-OK. We use the Full Maude up function [11, 24] to obtain the metarepresen-
tation of a module or a term.

(mod META-CCS is
including META-LEVEL .
op METACCS : -> Module .
eq METACCS = up(CCS-OK) .

endm)



132 VERDEJO AND MARTÍ-OLIET

We declare a view [11, 24] in order to instantiate the parameterized generic module
SEARCH with it. Views are used to assert how a particular target module or theory is claimed
to satisfy a source theory. In the definition of a view we have to indicate its name, the source
theory, the target module or theory, and the mapping for each sort or operator.

(view ModuleCCS from AMODULE to META-CCS is
op MOD to METACCS.
op labels to (’bind ’pref ’sum ’par ’res ’dist ’rel ’def) .
op num-metavar to 3 .

endv)

(mod SEARCH-CCS is
protecting SEARCH[ModuleCCS] .

endm)

Module SEARCH-CCS includes the instantiation of the search strategy with the mod-
ule containing the CCS semantics, constant processes, CCS context, and the predicate ok
defined above.

Now we can test the examples using this module. First we can prove that process p1 can
perform action ’c becoming ’b.0 | 0.

Maude> (red rewDepth({{ p1 -- ’c -> ’b.0 | 0 }}) .)

result Term :{{ emptyJS }}

We can also prove that process p2 cannot perform action ’a (but see later).

Maude> (red rewDepth({{ p2 -- ’a -> (’b.0 | (~’c.0)[’a/’c])\’a }}) .)
result Term : error*

Process p2 can perform action tau becoming (’b.0 | 0[’a/’c])\’a.

Maude> (red rewDepth({{ p2 -- tau -> (’b.0 | 0 [’a/’c])\’a }}) .)

result Term :{{ emptyJS }}

In the same way, we can prove that process p3 can perform action tau.

Maude> (red rewDepth({{ p3 -- tau -> (tau.’Proc | ’b.0 )\’a }}) .)

result Term :{{ emptyJS }}

In all these examples, we have had to provide the resulting process. In the positive proofs
there is no problem (besides the cumbersome task of explicitly writing the resulting process),
but in the negative proof, that is, that p2 cannot perform action ’a, the given proof is not
completely correct: We have proved that process p2 cannot perform action ’a becoming
(’b.0 | (~’c.0) [’a/’c])\’a, but we have not proved that there is no way in which
p2 can execute action ’a. We will see at the end of Section 3.1 how this can be proved.
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The correctness of the obtained proofs is dependent on the correctness of the search
strategy; if it were incomplete, for example because it does not apply a rule that can be
applied, the “proof” that a process cannot perform a transition would not be valid. The
positive answers could also be invalid, for example if judgements to be proved were lost by
the search in some cases. However, the simplicity and generality of the search strategy are
advantages regarding these problems. Once we have a correct strategy that truly builds and
traverses the tree of all rewrites of a term, we have a correct strategy forever, since it does
not require any change when we modify the semantics representation below it, or even if
we change the semantics at all, for example, for other languages.

3. Extensions to obtain new kinds of results

We are now interested in answering questions such as: Can process P perform action a
(without caring about the process it becomes)? That is, we want to know if a transition
P

a→ P ′ is possible for some unspecified P ′, i.e., P ′ is unknown. This is the same problem
we found when new variables appeared in the premises of a semantic rule. The solution, as
we did with actions, is to define metavariables as processes.

3.1. Including metavariables as processes

As we did with actions, we declare a new sort of metavariables as processes,

sort MetaVarProc.
op ?‘( ‘)P : Qid -> MetaVarProc .

add a new sort of possible processes,

sort Process?.
subsorts Process MetaVarProc < Process? .
var ?P : MetaVarProc .
var P? : Process? .

and modify the operation to build the basic transition judgements

op -- -> : Process? Act? Process? -> Judgement [prec 50] .

For the prefix operator we have to add two new rules:8

rl [pref] : A . P -- A -> ?P
=> ------------------

[?P := P] .

rl [pref] : A . P -- ?A -> ?P
=> ----------------------

[?A := A] [?P := P] .
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where, as in the case of metavariables as actions, we have to define a new kind of judgement
that binds metavariables with processes, a rule to propagate these bindings, and operations
that perform the substitution:

op ‘[: = ’] : MetaVarProc Process? -> Judgement .
rl [bind] : {{ [?P := P] JS }} => {{ <proc ?P := P > JS }} .
op <proc := > : MetaVarProc Process Process? -> Process? .
op <proc := > : MetaVarProc Process Judgement -> Judgement .
op <proc := > : MetaVarProc Process JudgementSet -> JudgementSet .

For the rest of CCS operators, new rules have to be added to deal with metavariables in
the second process of the transition judgement (see code in [59]).

Now we can prove that process p1 (see Section 2.4) can perform action ’c, by rewriting
the judgement

p1 -- ’c -> ?(’any)P,

where the metavariable ?(’any)P means that we do not care about the resulting process.

Maude> (red rewDepth({{ p1 -- ’c -> ?(’any)P }}) .)

result Term :{{ emptyJS }}

We can also prove that process p2 cannot perform action ’a.

Maude> (red rewDepth({{ p2 -- ’a -> ?(’any)P }}) .)
result Term : error*

3.2. Successors of a process

Another interesting question is which are the successors of a process P after performing
actions in a given set As, that is,

succ(P, As) = {P ′ | P
a→ P ′ ∧ a ∈ As}.

Since we have metavariables as processes, we can rewrite the transition judgement

P -- A -> ?(’Proc)P

instantiating the variable A with actions in the given set. Those rewrites will bind the
metavariable ?(’proc)P with the successors of P, but two problems arise. The first one is
that we lose the bindings between metavariables and processes when they are substituted
by the rewrite rule bind (see Section 2.1). To solve this, we have to modify the operator that
builds configurations by keeping the set of bindings already produced in addition to the set
of judgements to be reduced
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op ‘{‘{ | ‘}‘} : JudgementSet JudgementSet -> Configuration .

The bindings will be saved in the second argument by the new bind rule:

rl [bind] :{{ [?P := P] JS | JS’ }} =>
{{ (<proc ?P := P > JS) | [?P := P] JS’ }} .

We also have to change the operation ok; now a configuration is a solution if its first part
represents the empty set of judgements:

vars JS JS’ : JudgementSet.
eq ok({{ empty JS | JS’ }}) = solution.
ceq ok({{ JS | JS’}}) = maybe-sol if JS =/= emptyJS .

Another problem is that rewDepth only returns one solution, but we can modify it in
order to get all, that is, in order to explore (in a depth-first way) the whole tree of rewrites to
find all the nodes that satisfy the predicate ok. The operation allSol, added to the module
SEARCH, returns a set of terms representing all the solutions.

sort TermSet .
subsort Term < TermSet .
op ‘{‘} : -> TermSet .
op U : TermSet TermSet -> TermSet [assoc comm id: {}] .
ceq T U T’ = T if meta-reduce(MOD, ’ == [T, T’]) == {’true}’Bool .
op allSol : Term -> TermSet .
eq allSol(T) = allSolDepth(< meta-reduce(MOD,T), 0 >) .
op allSolDepth : PairSeq -> TermSet .
eq allSolDepth(nil) = {} .
eq allSolDepth(< T, N > | PS) =
if meta-reduce(MOD, ’ok[T]) == {’solution}’Answer then

(T U allSolDepth(PS))
else (if meta-reduce(MOD, ’ok[T]) == {’no-solution}’Answer then

allSolDepth(PS)
else allSolDepth(buildPairs(allRew(T, labels, N),

N + num-metavar) | PS)
fi)

fi.

Now we can define (in the module CCS-SUCC, an extension of SEARCH-CCS) an op-
eration succ which, given the metarepresentation of a process and a set of metarep-
resentations of actions, returns the set of metarepresentations of the successors of the
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process9

op succ : Term TermSet → TermSet .
eq succ(T, {}) = {} .
eq succ(T, A U AS) = filter(

allSol({{ T -- A -> ?(’Proc)P | emptyJS }}), ?(’Proc)P)
U succ(T, AS) .

where filter is used to remove all the bindings involving metavariables different from
?(’proc)P.

We can illustrate how these functions work with the processes defined in the module
CCS-OK in Section 2.4. For example, we can compute the successors of process p1 after
performing either action ’a or action ’b:

Maude> (red succ(p1, ’a U ’b) .)
result TermSet : 0 | ( ’c.0 + ’d.0 ) U 0̄

3.3. Extending the semantics to traces

In the CCS semantics we have used until now, only judgements of the form P
a→ P ′ exist;

we now extend it to sequences of actions or traces, that is, to judgements of the form
P

a1a2...an−→ P ′. The semantic rules defining these new transitions are

P
ε−→ P

P
a1−→ P ′ P ′ a2...an−→ P ′′

P
a1a2...an−→ P ′′

where ε denotes the empty trace.
We can extend our framework by defining a new sort for traces

sort Trace .
subsort Act < Trace .
op nil : -> Trace .
op : Trace Trace -> Trace [assoc id: nil] .
var Tr : Trace .

and a new kind of judgements

op - -> : Process Trace Process -> Judgement [prec 50] .
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Then, we can translate the above semantic rules to corresponding rewrite rules in an
obvious way:

rl [nil] : P - nil -> P
=> ------------------

emptyJS .

rl [seq] : P - A Tr -> P’
=> ---------------------------------------------------

P -- A -> ?(NEW1)P ?(NEW1)P - Tr -> P’ .

As we have done with judgements dealing with actions, we can also extend judgements
dealing with traces in such a way that metavariables can be used as processes. We only have
to modify the operation for building this kind of judgements,

op - -> : Process? Trace Process? -> Judgement [prec 50] .

and add new rules for the case when a metavariable appears as the second process

rl [nil] : P - nil -> ?P
=> ------------------

[?P := P] .

rl [seq] : P - A Tr -> ?P
=> ---------------------------------------------------

P -- A -> ?(NEW1)P ?(NEW1)P - Tr -> ?P .

3.4. Extension to weak transition semantics

Another important transition relation defined in CCS, P
a⇒ P ′, does not observe τ transitions

[46]. It is defined as

P(
τ→)∗ Q Q

a→ Q′ Q′(
τ→)∗ P ′

P
a⇒ P ′

where (
τ→)∗ denotes the reflexive, transitive closure of

τ→. It is defined in the following
way for an arbitrary action a

P(
a→)∗ P

P
a→ P ′ P ′(

a→)∗ P ′′

P(
a→)∗ P ′′
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Finally, the weak transition semantics is extended to traces as follows:

P(
τ→)∗ P ′

P
ε⇒ P ′

P
a1⇒ P ′ P ′ a2...an⇒ P ′′

P
a1a2...an⇒ P ′′

We show in this section how these extensions can be specified in Maude. First, we define
the reflexive, transitive closure of the basic transition relation we have already implemented.
We need an operator to build the new kind of judgements

op ‘(-- ->‘)* : Process? Act Process? -> Judgement [prec 50] .

where we allow metavariables as processes because we need them for the implementation
of the weak transition relation. The rewrite rules defining the closure are as follows:

rl [refl] : P (-- A ->)* P
=> ----------------------

emptyJS .

rl [refl] : P (-- A ->)* ?P
=> ----------------------

[?P := P] .

rl [tran] : P (-- A ->)* P?
=> -----------------------------------------------

P -- A -> ?(NEW1)P ?(NEW1)P (-- A ->)* P? .

Note that the basic transition
a→ is included in its reflexive, transitive closure (

a→)∗, by
using first the tran rule and then one of the refl rules to rewrite the second premise.

In the same way, we can define in Maude the weak transition relation for both actions
and traces:

op == ==> : Process? Act Process? -> Judgement [prec 50] .
rl [act] : P == A ==> P?

=> ---------------------------------------------------
P (-- tau ->)* ?(NEW1)P ?(NEW1)P -- A -> ?(NEW2)P

?(NEW2)P (-- tau ->)* P? .
op == ==> : Process? Trace Process? -> Judgement [prec 50] .
rl [nil] : P = nil ==> P?

=> ----------------------------
P (-- tau ->)* p?

rl [seq] : P = A Tr ==> P?
=> -----------------------------------------------

P == A ==> ?(NEW1)P ?(NEW1)P = Tr ==> P? .
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And in the same way as before, we can define a function to compute the successors of a
process with respect to the weak transition semantics:

wsucc(P, As) = {P ′ | P
a⇒ P ′ ∧ a ∈ As}.

op wsucc : Term TermSet -> TermSet .
eq wsucc(T, {}) = {} .
eq wsucc(T, A U AS) = filter(

allSol({{ T == A ==> ?(’proc)P | emptyJS }}), ?(’proc)P)
U wsucc (T, AS) .

Continuing with our running example, the module CCS-OK of Section 2.4, we can now
prove that process p2 can perform an observable ’b (and we do not care about which process
it becomes):

Maude> (red rewDepth({{ p2 == ’b ==> ?(’any)P }}) .)

result Term : {{ emptyJS }}

We can also prove that the recursive process ’Proc can execute successively three ob-
servable ’a’s and then become the same process:

Maude> (red rewDepth({{ ’Proc = ’a ’a ’a ==> ’Proc }}) .)

result Term : {{ emptyJS }}

Finally, we can compute the successors of the recursively defined process ’Proc after
performing action ’a allowing τ transitions:

Maude> (red wsucc(’Proc, ’a) .)
result TermSet : tau . ’Proc U ’Proc

4. A modal logic for CCS processes in Maude

We show now how we can define in Maude the semantics of a modal logic for CCS processes
by using the operations of the previous sections.

4.1. Hennessy-Milner logic

We introduce a modal logic for describing local capabilities of CCS processes that we will
implement in Maude in the next section. This logic is a version of Hennessy-Milner logic
[32] and its semantics is presented in [57]. Formulas are as follows

� ::= tt | ff | �1 ∧ �2 | �1 ∨ �2 | [K ]�|〈K 〉�
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where K is a set of actions. The satisfaction relation describing when a process P satisfies
a property �, P |= �, is inductively defined as follows:

P |= tt

P |= �1 ∧ �2 iff P |= �1 and P |= �2

P |= �1 ∨ �2 iff P |= �1 and P |= �2

P |= [K ]� iff ∀Q ∈ {P ′ | P
a→ P ′ ∧ a ∈ K }.Q |= �

P |= 〈K 〉� iff ∃Q ∈ {P ′ | P
a→ P ′ ∧ a ∈ K }.Q |= �

4.2. Implementation in Maude

First, we define a sort HMFormula of modal logic formulas and operators to build these
formulas:

(mod MODAL-LOGIC is
protecting CCS-SUCC .
sort HMFormula .
ops tt ff : -> HMFormula .
op /\ : HMFormula HMFormula -> HMFormula .
op /\ : HMFormula HMFormula -> HMFormula .
op ‘[ ‘] : TermSet HMFormula -> HMFormula .
op < > : TermSet HMFormula -> HMFormula .

We define the modal logic semantics in the same way as we did with the CCS seman-
tics, that is, by defining rewrite rules that rewrite a judgement P |= � into the set of
judgements which have to be fulfilled. We use the same name for the sorts Judgement
and JudgementSet but notice that they are different from the ones declared in the module
CCS-SUCC.

sort Judgement .
op |= : Term HMFormula -> Judgement .
sort JudgementSet .
op emptyJS : -> JudgementSet .
subsort Judgement < JudgementSet .
op : JudgementSet JudgementSet -> JudgementSet
[assoc comm id: emptyJS] .

op forall : TermSet HMFormula -> JudgementSet .
op exists : TermSet HMFormula -> JudgementSet .
var P : Term. vars K PS : TermSet. vars Phi Psi : HMFormula .
rl [true] : P |= tt => emptyJS .
rl [and] : P |= Phi /\ Psi => (P | = Phi) (P |= Psi) .
rl [or] : P |= Phi \/ Psi => P |= Phi .
rl [or] : P |= Phi \/ Psi => P |= Psi .
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Figure 1. Module structure for the modal logic.

rl [box] : P |= [ K ] Phi => forall(succ(P, K), Phi) .
rl [diam] : P |= < K > Phi => exists(succ(P, K), Phi) .
eq forall({}, Phi) = emptyJS .
eq forall(P U PS, Phi) = (P |= Phi) forall(PS, Phi) .
rl [ex] : exists(P U PS, Phi) => P |= Phi .
endm

These rules are also nondeterministic. For example, the application of the two rules or is
nondeterministic because they have the same lefthand side, and the rule ex is also nonde-
terministic because of multiple matchings modulo associativity and commutativity of the
U operator.

We can instantiate the parameterized module SEARCH in Section 2.3 with the metarepre-
sentation of the module containing the definition of the modal logic semantics, so we obtain
the hierarchy of modules shown in figure 1. At the bottom we have the module CCS with
the CCS semantics implementation extended with the ok predicate needed by the search
strategy. Its metarepresentation CCS is used to instantiate the search strategy, and this instan-
tiation is used to define the Hennessy-Milner modal logic semantics in the module MODAL.
In turn, this module extended with its own definition of the predicate ok is metarepresented,
producing MODAL, and used to instantiate again the search strategy.

4.3. Examples

As an example taken from [57], we show how to prove some modal formulas satisfied by
a vending machine ’Ven defined in a CCS context by
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eq context = ’Ven =def ’2p . ’VenB + ’1p . ’VenL &
’VenB =def ’big . ’collectB . ’Ven &
’VenL =def ’little . ’collectL . ’Ven .

The process Ven may accept, initially, a 2p or 1p coin. If a 2p coin is deposited, the big
button may be pressed, and a big item can be collected. If a 1p coin is deposited, the little
button may be pressed, and a little item can be collected. After an item is collected, the
vending machine goes back to the initial state.

One of the properties that the vending machine fulfills is that a button cannot be pressed
before any money is deposited. This corresponds to the formula

Ven |= [big, little]ff

which can be proved in Maude:

Maude> (red rewDepth(’Ven |= [’big U ’little]ff) .)
result Term : emptyJS

Another interesting property that Ven satisfies is that after a 2p coin is inserted the little
button cannot be pressed whereas the big one can:

Maude> (red rewDepth(’Ven |= [’2p](([’little]ff)/\(<’big > tt))) .)
result Term: empty JS

Ven also satisfies that once a coin has been deposited no other coin can be inserted,

Maude> (red rewDepth(‘Ven |= [ ’1p U ’2p ] [ ’1p U ’2p ] ff) .)
result Term : emptyJS

Finally, after a coin is deposited and a button is pressed, an item (big or little) can be
collected:

Maude>(red rewDepth(

’Ven |= [’1p U ’2p][’big U ’little] < ’collectB U ’collectL > tt) .)
result Term: emptyJS

4.4. More modalities

If we want to give a special status to the (silent) τ action, we can introduce new modalities
[[K ]] and 〈〈K 〉〉 defined by means of the weak transition relation:

P|=[[K ]] � iff ∀ Q ∈ {P ′ | P
a=⇒ P ′ ∧ a ∈ K }. Q |= �

P|=〈〈K 〉〉 � iff ∃ Q ∈ {P ′ | P
a=⇒ P ′ ∧ a ∈ K }. Q |= �



TWO CASE STUDIES OF SEMANTICS EXECUTION IN MAUDE 143

The implementation in Maude of these new modalities is as follows:

op ‘[‘[ ‘]‘] : TermSet HMFormula -> HMFormula .
op << >>: TermSet HMFormula -> HMFormula .
rl [box]: P |= [[ K ]] Phi => forall(wsucc(P, K), Phi) .
rl [diam]: P |= << K >> Phi => exists(wsucc(P, K), Phi) .

where we use the operation wsucc of Section 3.4 to compute the successors of process
P with respect to the weak transition semantics (compare with the representation of the
previous modalities in Section 4.2).

We can now prove some properties of a railroad crossing system [57] specified in a CCS
context as follows:

eq context =
’Road =def ’car . ’up . ˜ ’ccross . ˜ ’down . ’Road &
’Rail =def ’train . ’green . ˜ ’tcross . ˜ ’red . ’Rail &
’Signal =def ˜ ’green . ’red . ’Signal

+ ~ ’up . ’down . ’Signal &
’Crossing =def (’Road | (’Rail | ’Signal))

\ ’green \ ’red \ ’up \ ’down .

The system consists of three components: Road, Rail, and Signal. Actions car and
train represent the approach of a car and a train, up opens the gates for the car, ccross is
the car crossing, down closes the gates, green is the receipt of a green signal by the train,
tcross is the train crossing, and red sets the light red.10

The process Crossing satisfies that whenever a car and a train arrive to the crossing,
only one of them is allowed to cross it.

Maude> (red rewDepth(

’Crossing |= [[’car]] [[’train]]((<< ˜ ’ccross>> tt)

\/(<<~ ’tcross>> tt))) . )

result Term : emptyJS
Maude> (red rewDepth(

’Crossing |= [[’car]] [[’train]]((<< ˜ ’ccross>> tt)

\/(<<~ ’tcross>> tt))) . )
result Term : error*

5. Comparison with Isabelle

In this section we describe how the CCS semantics and the Hennessy-Milner modal logic
can be represented and reasoned about within the theorem prover Isabelle [49], and compare
this framework with ours.
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5.1. A formalization of CCS in Isabelle

Isabelle is a generic system for implementing logical formalisms, and Isabelle/HOL is the
specialization of Isabelle for HOL, Higher-Order Logic [49].

Working with Isabelle means creating theories, which are named collections of types,
functions, and theorems. HOL contains a theory Main, which is the union of all the basic
predefined theories like arithmetic, lists, sets, etc. Our theories include this one as a parent
theory. In a theory there are types, terms, and HOL formulas. Terms are formed as in
functional programming by applying functions to arguments, and formulas are terms of
type bool.

Isabelle distinguishes between free and bound variables as usual. In addition, Isabelle
has a third kind of variable, called a schematic variable or unknown, which starts with a
?. Logically, an unknown is a free variable, but it may be instantiated (through unification)
to another term during the proof process. Unknowns correspond to what we have called
metavariables.

Inductive datatypes are part of almost every non-trivial application of HOL. They are
introduced by means of the keyword datatype, and defined by means of constructors. For
example, CCS processes are naturally modelled as the following datatype.

datatype process = Stop ("0")
| Prefix action process (" . " [120, 110] 110)
| Sum process process (infixl " + " 85)
| Par process process (infixl "|" 90)
| Rel process label label (" [ =: ]" [100,120,120] 100)
| Rest process label (" \ " [100, 120] 100)
| Id id

Functions (introduced with keyword consts) on datatypes are usually defined by primitive
recursion. The keyword primrec is followed by a list of equations. Using these tools we
can also define the CCS contexts (the complete code is available in [59]).

In order to define the CCS semantics in Isabelle/HOL, we define in an inductive way a set
trans of triples (P,a,P’). We use the usual mixfix notation P - a → P’ to represent
that (P,a,P’) ∈ trans. Inductiveness means that the set of transitions consists exactly
of those triples (P,a,P’) that can be derived from the set of transition rules. Inductively
defined sets are introduced in Isabelle by means of an inductive declaration, which consists
of introduction rules. These rules are straightforward translations of the CCS semantics
rules. An inference rule of the form

φ1 · · ·φn

φ

is formalised in Isabelle’s meta-logic as the axiom [[φ1; . . . ; φn]] =⇒ φ.
Although we do not use unknowns directly in the rules, when constructing a theory

Isabelle translates the rules into a standard form with all free variables converted into
schematic ones, so that they can be instantiated through unification.
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These are some of the rules defining the CCS semantics:

inductive trans
intros
prefi: "A . P − A → P"
sum1: "P1− A → P =⇒ P1 + P2 − A → P"
sum2: "P2− A → P =⇒ P1 + P2 − A → P"
par1: "P1− A → P =⇒ P1 | P2 − A → P | P2"
par2: "P2− A → P =⇒ P1 | P2 − A → P1 | P"
par3: [[p1−va L → P ; P2 − va (compl L) → Q]]

=⇒ P1 | P2 − tau → P | Q"

Simplification is one of the central theorem proving tools in Isabelle and many other
systems. In its most basic form, simplification means repeated application of equations
from left to right (term rewriting). To ease this process of simplification, theorems can
be declared to be simplification rules with the attribute [simp], in which case proofs by
simplification make use of these rules automatically. In addition the constructs datatype
and primrec implicitly declare useful simplification rules.

Isabelle proofs normally use resolution to support backward proof, where we start with
a goal and refine it to progressively simpler subgoals until all have been solved. Isabelle’s
classical reasoner is a family of tools that perform proofs automatically. We can extend
the scope of the classical reasoner by giving it new rules (intro:). The classical reasoner
uses search and backtracking in order to prove a goal. We use the force method, that applies
the classical reasoner and simplifier to one goal.

As we did with Maude (Section 2.4), we can test the Isabelle formalization of the CCS
semantics with some examples. Process constants are declared by means of definitions
(defs), which are intended to express abbreviations and are also declared to be simplification
rules.

consts p1 :: process
defs p1 def [simp]: "p1 ≡ ( va ( nm ’’a’’) . 0) +

(va (nm ’’b’’) . 0| (va (nm ’’c’’) . 0 + va (nm ’’d’’) . 0))’’

consts p2 :: process
defs p2 def [simp]: "p2 ≡ ( va ( nm ’’a ’’) . ( va ( nm ’’b’’) . 0 |

(va (nm ’’c ’’) . 0 ) [ nm ’’a’’ =: nm ’’c’’ ] )\ nm ’’a’’"

lemma "p1 − va (nm ’’c’’) → va (nm ’’b’’ ) . 0 |0"
by (force intro: trans. intros)

We can also prove that a process can perform a given action, using an unknown ?P, as
we did at the end of Section 3.1.

lemma "p2 − tau → ?P"
by (force intro: trans.intros)
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But in order to prove that a given transition is not possible, we cannot simply use one
of the automatic proof methods; instead, we have to use induction on the relation trans.
Isabelle generates an elimination rule for case analysis (cases rule) and an induction rule
associated with each inductively defined set.

lemma "¬(p2 − va (nm ’’a’’)→ ?P)"
apply clarsimp
by (erule trans.cases, clarsimp+)+

Note how an explicit negation is used in this case. We compare this with our approach in
the following section.

We can also define the modal logic syntax and semantics as we have done for CCS. We
use a datatype formula and an inductively defined set sat representing the satisfaction
relation.

inductive sat
intros
ttR[intro!]: " |= tt"
andR: "[[P|= Phi P |= Psi]] =⇒ P |= (Phi ∧ Psi)"
orR1: "P |= Phi =⇒ P |= (Phi ∨ Psi)"
orR2: "P |= Psi =⇒ P |= (Phi∨ Psi)"
diamR: "[[ P −A → Q ; A ∈ AS; Q |= Phi ]] =⇒ P |= 〈AS〉 Phi"
boxR: "∀ Q A .((P−A → Q ∧ A ∈ AS) −→ Q|= Phi))=⇒ P|= [ AS ] Phi"

In order to prove that a given process satisfies a formula, we have to use induction on
the relation sat. This is due to the universal quantifier in the boxR rule, which refers to
all the successors of a process. The ind cases method applies an instance of the cases
rule for the supplied pattern.

lemma "(va (nm ’’a’’) .va(nm’’b’’) .0)
|= [ {va (nm ’’ a’’)}] (〈 {va (nm ’’b’’)}〉 tt)"

apply (rule sat.boxR, clarify)
apply (ind cases "A. P − B → Q")
by (force intro: trans.intros sat.intros)

In the following we show how some properties about the vending machine of Section 4.3
can be proved in Isabelle.

defs Context def [simp]: "Context ≡
And (Defi ’’Ven’’ (va (nm ’’2p’’). Id ’’VenB’’ +

va (nm ’’1p’’). Id ’’VenL’’))
(And (Defi ’’VenB’’ (va (nm ’’big’’). va (nm ’’collectB’’) .

Id ’’Ven’’))
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(And (Defi ’’VenL’’ (va (nm ’’little’’). va (nm ’’collectL’’) .
Id ’’Ven’’))

Empty))"

lemma "Id ’’Ven’’ |= ([{va (nm ’’big’’),
va (nm ’’little’’)}] ff)"

apply (rule sat.boxR, clarify)
by (erule trans.cases, simp all, clarsimp) +

lemma "Id ’’Ven’’ |= [va (nm ’’2p’’)]
(([{ va (nm ’’little’’)}] ff) ∧ (({va (nm ’’big’’)}) tt))"

apply (rule sat.boxR, clarify)
apply (erule trans.cases, simp all, clarsimp) +
apply (rule sat.andR, rule sat.boxR, clarify)
apply (erule trans.cases, simp all, clarsimp)+
apply (force intro: trans.intros intro: sat.intros)
apply (rule sat.andR, rule sat.boxR, clarify)
apply (erule trans.cases, simp all, clarsimp)+
done

5.2. Comparison with the Maude representation

Isabelle has been designed as a logical framework and theorem prover. Hence, the concepts
of unknowns and unification are basic, and are already built in the system, in such a way
that the user does not have to worry about them. On the contrary, Maude does not directly
support unknowns. But, as we have seen, we can represent them within Maude and, due to its
reflective capabilities, deal with them by creating new fresh metavariables and propagating
their values when they become known.

Isabelle/HOL has also several automatic tools that help prove theorems. For example, as
we have seen above, Isabelle automatically generates an induction rule when an inductive
set is defined. Obviously, this adds a lot of power. But the user must know how to use all
these tools, that is, when to use introduction or elimination rules, or when to use induction,
for example. In Maude, we only use the rewrite rules that define the semantics and the
exhaustive search strategy that (blindly) uses them, being able to prove both sentences
about CCS and the modal logic in the same way.

As we commented in Section 2.4, negative proofs (for example, that a CCS transition
is not valid) in our approach rely on the completeness of our search strategy. In Isabelle a
theorem with an explicit negation can be proved by using induction.

Isabelle, as a logical framework, uses a higher-order logic to metarepresent the user-
defined object logics. It is in this metalogic where resolution takes places. Due to the
reflective property of rewriting logic, we can lower down this upper level, representing
higher-order concepts in a first-order framework. In a sense, this comparison can be sum-
marized by saying that we have shown in our CCS case study how higher-order techniques
can be used in a first-order framework by means of reflection; that is, reflection provides
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a first-order system like Maude with most of the power of a higher-order system like
Isabelle.

Moreover, rewriting logic is like a coin with two sides, where deduction can also be
interpreted as computation. This allows us to obtain information from proofs, as we did
with the operation succ of successors of a process. Although we can represent in Isabelle
the set of successors of a process, and prove whether a given process is in this set, we cannot
directly compute (or show) this set. However, Berghofer [1] has developed a mechanism for
obtaining programs from Isabelle specifications by interpreting inductively defined predi-
cates as logic programs. These Prolog-like programs (translated into functional programs)
let you enumerate solutions [1, 2].

Another advantage of using Maude is that it has been designed to be used as a metalan-
guage, where complete tools (including parsing, pretty printing, and input/output process-
ing) for the execution of other languages can be easily built. In Section 6.6 we will describe
how this is done for LOTOS in our second case study.

Isabelle/HOL has also been used to represent CCS semantics by Christine Röckl in
her PhD thesis [53]. She defines the CCS transition relation in an inductive way as we
have done and then defines equivalence relations between processes, like bisimulation and
observation equivalence, and proves properties about them in Isabelle. Röckl has also used
Isabelle/HOL to represent the π -calculus in different ways, with first-order and higher-order
abstract syntax [52–54].

HOL [29], a different but similar system to Isabelle/HOL, has been used by Monica Nesi
to formalise value-passing CCS [48] and a modal logic for it [47]. In both cases she is
interested in proving properties about the represented semantics themselves. Melham has
also used the HOL theorem prover to present a mechanized theory of the π -calculus [42].

In Section 7 we review some related works that use other logical frameworks to represent
CCS and other calculi.

6. Executing LOTOS

In this section we go one step further in the implementation of operational semantics in
Maude. We present a formal tool where LOTOS specifications without restrictions in their
data types can be executed. As we will see, the reflective features of rewriting logic and the
metalanguage capabilities of Maude make it possible to implement the whole tool in the
same semantic framework, and have allowed us to implement the LOTOS semantics and
to build an entire environment with parsing, pretty printing, and input/output processing of
LOTOS specifications.

The formal description technique LOTOS [37] was developed within ISO for the formal
specification of open distributed systems. Its behaviour description part is based on process
algebras, borrowing ideas from CCS [46] and CSP [34], and the mechanism to define and to
deal with data types is based on ACT ONE [26]. The union of the behaviour and data type
description parts is known as Full LOTOS. We use in this paper the term LOTOS to refer to
the whole language. LOTOS became an international standard in 1989; since then, LOTOS
has been used to describe hundreds of systems, and most of this success is due to the existence
of tools where specifications can be executed, compared, and analyzed [20, 25, 27, 28, 30].
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The standard defines LOTOS semantics by means of labelled transition systems, where
each data variable is instantiated by every possible value. That is the reason why most tools
ignore or restrict the use of data types. Calder and Shankland [6] have recently defined a
symbolic semantics for LOTOS which gives meaning to symbolic or data param-eterised
processes (see below) and avoids infinite branching.

6.1. LOTOS symbolic semantics

A symbolic semantics for LOTOS is given by associating a symbolic transition system
with each LOTOS behaviour expression [6]. Following [31], Calder and Shankland define
symbolic transition systems (STS) as transition systems which separate data from process
behaviour by making the data symbolic. STS’s are labelled transition systems with variables,
both in states and transitions, and conditions which determine the validity of a transition.
A symbolic transition system consists of:

• A (nonempty) set of states. Each state T is associated with a set of free variables, denoted
fv(T ).

• A distinguished initial state, T0.

• A set of transitions written as T
b α−→ T ′, where α is a simple or structured event and

b is a Boolean expression, such that fv(T ′) ⊆ fv(T ) ∪ fv(α), fv(b) ⊆ fv(T ) ∪ fv(α), and
#(fv(α) − fv(T )) ≤ 1.

In the symbolic semantics, open behaviour expressions label states (for example, the be-
haviour h!x ; stop), and transitions offer variables, under some conditions; these conditions
determine the set of values which may be substituted for variables.

In [6] the intuition and key features of this semantics are presented, together with axioms
and transition rules for each LOTOS operator. We present here only some of the seman-
tic rules. These are the rules whose translation into Maude will be given in Section 6.3
as illustration of our implementation techniques. The remaining rules together with their
implementation are available in [60].

a; P
tt a−→ P g?x : S[S P]; P

S P gx−→ P

P
b α−→ P ′

([S P]−>P)
b∧S P α−→ P ′

P
b α−→ P ′

hide g1, . . . , gn in P
b i−→ hide g1, . . . , gn in P ′

if name (α) ∈ {g1, . . . , gn}

P
b α−→ P ′

hide g1, . . . , gn in P
b α−→ hide g1, . . . , gn in P ′
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if name (α) �∈ {g1, . . . , gn}

P1
b α−→ P ′

1

P1|[g1, . . . , gn]|P2
bσ ασ−→ P ′

1σ [g1, . . . , gn]|P2

name (α) �∈ {g1, . . . , gn, δ}

σ =
{

[z/x] if α = gx and x ∈ vars(P2) where z ∈ new-var

[ ] otherwise

6.2. Representing LOTOS syntax in Maude

In this section we introduce the abstract LOTOS syntax. It is defined in the Maude functional
module LOTOS-SYNTAX. We use quoted identifiers to internally maintain LOTOS identifiers
of variables, sorts, and gates. Booleans are the only predefined data type. This syntax is not
complete, since LOTOS syntax may be extended in a user-definable way when ACT ONE
data type specifications are used. Values of these data types will be included in the type
DataExp below; we will see how this is done in Section 6.6. For simplicity, as it is done in
[6], we will assume that only one event offer can occur at an action.

(fmod LOTOS-SYNTAX is protecting QID .
sorts VarId SortId GateId .
op V: Qid -> VarId . op S: Qid -> SortId . op G: Qid -> GateId .
sort DataExp .
subsort VarId Bool < DataExp .
sort BehaviourExp .
op stop : -> BehaviourExp .
sorts SimpleAction StrucAction Action .
subsort GateId < SimpleAction .
subsorts SimpleAction StrucAction < Action .
op : GateId Offer -> StrucAction [prec 30] .
op ! : DataExp -> Offer [prec 25] .
op ? : IdDecl -> Offer [prec 25] .
op ; : Action BehaviourExp -> BehaviourExp [prec 35] .
op ‘[‘] : BehaviourExp BehaviourExp -> BehaviourExp [prec 40] .
sort GateIdList .
subsort GateId < GateIdList .
op ‘, : GateIdList GateIdList -> GateIdList [prec 35] .
op |‘[ ‘]| : BehaviourExp GateldList BehaviourExp ->

BehaviourExp [prec 40] .
op hide in : GateIdList BehaviourExp -> BehaviourExp [prec 40] .
[. . .]
endfm)
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6.3. Representing the LOTOS semantics in Maude

In order to represent in Maude the LOTOS symbolic semantics we follow the ideas presented
in Section 2. Here we describe only the main or new ideas.

First, we define the elements of a symbolic transition, that is, events and transition
conditions.

(mod LOTOS-SYMBOLIC-SEMANTICS is
protecting LOTOS-SYNTAX .
sorts SimpleEv StructEv Event TransCond .
subsort SimpleAction < SimpleEv .
op delta : -> GateId .
op : GateId DataExp -> StructEv .
subsort Bool SelecPred < TransCond .
op = : DataExp DataExp -> TransCond [prec 25] .

We define a sort of Judgements to represent the basic elements of a semantic rule.
Common judgements will be LOTOS transitions, but we will see below other kinds of
judgements.

In Section 2, we worked with sets of judgements. In this case, for efficiency reasons,
more concretely, in order to avoid multiple matching modulo commutativity, we work with
sequences of judgements. This means that judgements will be ordered and they will be
proved from left to right, that is, if the first judgement of a sequence cannot be reduced to
the empty sequence, then we know that the whole sequence cannot be reduced and we can
abandon it.

sorts Judgement JudgSeq .
op emptyJS : -> JudgSeq .
subsort Judgement < JudgSeq .
op : JudgSeq JudgSeq -> JudgSeq [assoc id: emptyJS prec 60] .
var J : Judgement. vars JS JS’ : JudgSeq .
sort Configuration .
op ‘{‘{ | ‘}‘} : JudgSeq JudgSeq -> Configuration .

However, this change may affect the way premises are written in a semantic rule, because
the reduction of a judgement should not require bindings produced by a later (on the right)
judgement.

In order to solve the problem of new variables in the righthand side of a rewrite rule, we
also use explicit metavariables. Metavariables are needed for transition conditions, events,
and behaviour expressions.

In the case of metavariables as transition conditions, we define a new sort MVTransCond,
an operator for building new metavariables from quoted identifiers, and also a new sort
TransCond? of “possible transition conditions.”
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sorts MVTransCond TransCond? .
subsorts MVTransCond TransCond < TransCond? .
op ?‘( ‘)b : Qid -> MVTransCond .

We also need a judgement for representing the binding of a metavariable to a con-
crete value, and rules to propagate this binding to the rest of judgements. In Section 2.1
we used auxiliary operations (like <act := > ) to perform the substitution of values for
metavariables. We defined them by means of equations that distinguish cases based on the
constructors of the terms where the substitution is being applied. We cannot do the same
now, because we do not know the syntax of data expressions. Instead, we use the operator
[[ / ]] to represent a syntactic substitution. The improvement is that we can define the

behaviour of this operator at the metalevel only once, as we will see in Section 6.5, in-
stead of using several overloaded auxiliary operations as we have done in Sections 2.1 and
3.1. A judgement for representing the equality of transition conditions is also needed. It is
eliminated when both metavariables have been bound to the same concrete value.

op ‘[ := ‘] : MVTransCond TransCond? -> Judgement .
op ‘[‘[ / ‘]‘] : JudgSeq TransCond MVTransCond -> JudgSeq .
vars b b’ : TransCond .
var ?b : MVTransCond .
var b? : TransCond? .
rl [bind] : {{ [?b := b] JS | JS }} =>
{{ (JS[[ b / ?b]]) | [?b := b] JS’ }}
op ‘[ == ‘] : TransCond? TransCond? -> Judgement .
rl [equal] : [b == b] => emptyJS .

We do the same for metavariables as events, and metavariables as behaviour expressions
(although we omit the code here).

Now we can define an operator for building symbolic transitions.

sort Transition . subsort Transition < Judgement .
op -- -- --> : BehaviourExp TransCond? Event? BehExp? ->

Transition [prec 50] .

Before giving the semantic rules, we define several auxiliary operations used by the
semantics. For example, in the semantics, a set new-var of fresh variable names is assumed.
For building new variable names, we use the same idea as in the CCS case for building new
metavariables. In the semantic rules we will use new-var(NEW1), where NEW1 is a new
variable in the righthand side of the rewrite rule, and which is substituted by new quoted
identifiers when the rules are applied (at the metalevel by the search strategy).

op new-var : Qid -> VarId .
eq new-var(Q) = V(conc(’z@, Q)) .



TWO CASE STUDIES OF SEMANTICS EXECUTION IN MAUDE 153

In the semantics definition a function vars is used to obtain the variables occurring in
a behaviour expression. Since a behaviour may have data expressions, and these are built
by means of a user-definable syntax, we cannot define at this level an operation to extract
the variables in a behaviour. We declare an operation vars which is defined by means of
another operation vars@metalevel which will be defined at the metalevel (see Section
6.5), where the behaviour (including data expressions) will be metarepresented as a Term
and we will be able to traverse it extracting (metarepresented) LOTOS variables.

sorts VarSet. subsort VarId < VarSet .
op vars : BehExp? -> VarSet .
op vars@metalevel : BehaviourExp -> VarSet .
eq vars(P) = vars@metalevel(P) .

Other kinds of auxiliary judgements are also used in the semantics representation: a
judgement for representing the fact that two actions have to be different, and a judgement
enclosing a Boolean predicate (which may have metavariables). Rules dist and bool show
how these judgements dissapear when they are fulfilled.

op ‘[ =/= ‘] : Event? Event? -> Judgement .
op < > : Bool -> Judgement .
crl [dist] : [a =/= a’] => emptyJS if a =/= a’ .
rl [bool] : < true > => emptyJS .

Now, we can represent the LOTOS symbolic semantics rules in Maude. We only present
some of the rewrite rules, namely those corresponding to the semantic rules shown in Section
6.1; the whole specification can be found in [60]. The first two rules correspond to the axioms
for the prefix operator, and their premises (below the horizontal line) bind the metavariables
in the conclusion (above the line). The third rule corresponds to the guarding operator and it
is quite direct. The fourth rule corresponds to the two semantic rules for the hiding operator
we saw above, and it uses an auxiliary operation hide which is reduced when the value of the
metavariable ? (NEW1)a becomes known. The fifth rule is more complicated: it deals with
one of the cases of the parallel operator. Its first premise looks for possible transitions of
the first component of the operator; the second premise requires that the name of the event
is not in the synchronization list and it is not δ; and the rest of premises bind the metavari-
ables. The auxiliary operation subsPar returns the required substitution (as shown in the
corresponding rule in Section 6.1). Observe the use of the operations vars and new-var.

rl [sym] : A; P -- ?b -- ?a --> ?P
=> ----------------------------------

[?b := true] [?a := A] [?P := P] .

rl [sym] : g ? x : s [SP] ; p -- ?b -- ?a --> ?P
=> --------------------------------------

[?b := SP] [?a := g x ] [?P := P] .
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rl [sym] : [SP] -> P -- ?b -- ?a --> ?P
=> -----------------------------------------------------

P -- ?(NEW1)b -- ?a --> ?P [?b := ?(NEW1)b /\ SP] .

rl [sym] : hide GIL in P -- ?b -- ?a --> ?P
=> ------------------------------------

P -- ?b -- ?(NEW1)a --> ?(NEW1)P
[?a := hide(?(NEW1)a, GIL)]
[?a := hide GIL in ?(NEW1)P] .

op hide : Event? GateIdList -> Event? .
ceq hide(a, GIL) = i if name(a) in GIL .
ceq hide(a, GIL) = a if not(name(a) in GIL) .

rl [sym] : P1 |[GIL]| P2 -- ?b -- ?a --> ?P
=> -----------------------------------
P1 -- ?(NEW1)b -- ?(NEW1)a --> ?(NEW1)P

< not(name(?(NEW1)a) in (GIL, delta) ) >
[?b := ?(NEW1)b subsPar(?(NEW1)a, vars(P2), new-var(NEW1))]
[?a := ?(NEW1)a subsPar(?(NEW1)a, vars(P2), new-var(NEW1))]
[?P := (?NEW1)P subsPar(?(NEW1)a, vars(P2), new-var(NEW1))]

|[GIL]|
P2 .

Notice how we have presented the rules assuming metavariables everywhere, that is, as
transition conditions, events and resulting behaviour expressions, instead of what we did for
CCS where we wrote several rules depending on the places where metavariables appeared.
Then, we have additional rules that reduce other kinds of transitions (without metavariables
everywhere) to the above ones. For example, if we did this simplification in the CCS case,
for the prefix operator we would have only the rule

rl [pref] : A. P -- ?A -> ?P
=> -------------------

[?A := A][?P := P]

But we would have the following general rules that allow other kinds of judgements as
“conclusions”:

rl [meta] : P -- A -> P’
=> ------------------------------

[P -- ?(NEW1)a -> ?(NEW2)P]
[?(NEW1)a == A] [?(NEW2)P == P’]
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rl [meta] : P -- ?A -> P’
=> --------------------

[P -- ?A -> ?(NEW2)P]
[?(NEW2)P == P’] .

rl [meta] : P -- A -> ?P
=> ----------------------

[P -- ? (NEW1)a -> ?P]
[?(NEW1)a == A]

The bindings of the form x = E, that may appear in a transition condition when two
behaviours synchronize, are not propagated to the resulting behaviour by the symbolic
semantics. Actually, the value of any variable can be figured out by tracing through the
conditions, traversing the symbolic transition system. However, the LOTOS tool we define
below (and which uses the semantics previously defined) will propagate these bindings in
order to show in a more readable way the possible transitions of a behaviour. We can define
the propagation of the bindings in a transition condition at this level.

op apply-subst : TransCond BehaviourExp -> BehaviourExp .
eq apply-subst(B, P) = P .
eq apply-subst(E1 = E2, P) =
if (E1 : VarId) and not(E2 : VarId) then P [[ E2 / E1 ]]
else if (E2 : VarId) and not(E1 : VarId) then

P [[ E1 / E2 ]]
else P fi fi .

eq apply-subst(b /\ b’, P ) = apply-subst(b, apply-subst(b’,P)) .
[...]

endm)

6.4. Search strategy

In order to execute the semantics we could use the general search strategy developed in
Section 2.3. However, we have modified that strategy for efficiency reasons. When we are
trying to rewrite a sequence of judgements, we only try to rewrite its first judgement. As we
said above, the judgements are ordered, and we have to test that all of them can be rewritten
to the empty sequence. So if the first judgement cannot be rewritten we do not need to
rewrite the rest, because we know that in the tree of rewrites there is no node representing
the empty sequence below the current node; thus, we can drop the sequence and search in
other places of the tree.

Now the search strategy has the following parameters: a constant (MOD) representing the
module, a constant (labels) representing the list of labels of rewrite rules to be applied,
a constant (num-metavar) representing the number of different metavariables that can
appear in the same rule, and a constant (operators) representing the list of operators
whose arguments have to be rewritten when looking for all the rewrites of a term.
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(fmod PARAMS is
including META-LEVEL .
op MOD : -> Module .
ops labels operators : -> QidList .
op num-metavar : -> MachineInt .

endfm)

This module is included by the SEARCH module, and the constants will be defined by the
module which uses the search strategy, for example, the module LOTOS-TOOLS below.

6.5. Using the semantics and search strategy

Now we can instantiate the search strategy with the LOTOS semantic rules in order to
make it executable. First, we specify a module LOTOS-OK extending the LOTOS syntax and
semantic rules by defining the predicate ok that states when a configuration is a solution.
A configuration denotes a solution when it represents the empty sequence of judgements,
thus denoting that the sequence of judgements at the beginning is provable by means of the
semantic rules. We define a sort PossibleTrans of possible transitions (from an initial
behaviour expression). These operators are used by the operations below to represent at the
object level the solutions returned by the search strategy.

(mod LOTOS-OK is
protecting LOTOS-SYMBOLIC-SEMANTICS .
sort Answer .
ops solution no-solution maybe-sol : -> Answer .
op ok : Configuration -> Answer .
vars JS JS’ : JudgSeq .
eq ok({{ emptyJS | JS’ }}) = solution .
ceq ok({{ JS | JS’}}) = maybe-sol if JS =/= emptyJS .
sort PossibleTrans .
op |-- -- --> : TransCond Event BehaviourExp -> PossibleTrans .
op nil : -> PossibleTrans .
op & : PossibleTrans PossibleTrans -> PossibleTrans

[assoc id: nil] .
endm)

The following module instantiates part of the constants in the module PARAMS; MOD is
the only one left undefined. MOD should have the metarepresented module with the syntax
and semantics of LOTOS, but, at this point, the syntax is not complete because the syntax
for data values has not been defined yet: it will be later defined by the user in ACT ONE
[26]. At that moment, we will be able to build a module that includes the functional modules
which are the translation of the ACT ONE modules and the LOTOS syntax and semantics.
We will metarepresent it and build a module with an equation that identifies the constant
MOD with this metarepresented module (see Section 6.6.4).
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(fmod LOTOS-TOOLS is
including SEARCH .
eq labels = ( ’bind ’dist ’equal ’bool ’sym) .
eq num-metavar = 2 .
eq operators = (’‘{‘{ | ‘}‘} ’ ) .

We have left two things pending, waiting for their completion at the metalevel: syntactic
substitution and extraction of variables from a behaviour expression. The reason why we
cannot specify them when defining the semantics is the same in both cases: the presence of
data expressions with user-definable syntax. At the metalevel a fixed, known syntax is used
to metarepresent terms, so we are now able to define both operations.

op replace : Term Term Term -> Term .
op replaceList : TermList Term Term -> TermList .
ceq ’ ‘[‘[ / ‘]‘] [ T, Y, X ] = replace(T, Y, X) if not(T : Qid) .
eq replace(T, Y, T) = Y .
ceq replace({C}S, Y, X) = {C}S if X =/= {C}S .
ceq replace(OP[TL], Y, X) =

meta-reduce(MOD, OP[replaceList (TL, Y, X) ]) if X =/= OP[TL] .
eq replaceList(T, Y, X) = replace(T, Y, X) .
eq replaceList((T,TL), Y, X) = replace(T,Y,X), replaceList(TL,Y,X) .

op vars@metalevel2 : TermList -> Term .
ceq ’vars@metalevel [ T ] = vars@metalevel2(T) if not(T : Qid) .
eq vars@metalevel2({C}S) = {’mt}’VarSet .
eq vars@metalevel2(V) = {’mt}’VarSet .
eq vars@metalevel2( ’V[TL] ) = ’V[TL] .
ceq vars@metalevel2( F[TL] ) = vars@metalevel2(TL) if F =/= ’V .
eq vars@metalevel2((TL,TL’)) = ’ U [ vars@metalevel2(TL),

vars@metalevel2(TL’) ] .

The operation transitions receives the metarepresentation of a LOTOS behaviour ex-
pression and returns a sequence with the metarepresentations of all its possible transitions
as metarepresented terms of sort PossibleTrans, defined in the module LOTOS-OK. The
transitions of process P are calculated by allSol, which searches in the tree whose root is
the transition

P -- ?(’b)b -- ?(’a)a --> ?(’P)P

op transitions : Term -> PairSeq .
op transitions : Term Machinelnt -> PairSeq .
op get-transitions : PairSeq -> PairSeq .
op apply-subst : PairSeq -> PairSeq .
eq transitions(T) = transitions(T, 0) .
eq transitions(T, N) = apply-subst(get-transitions(allSol(
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’‘{{ | ‘}‘} [’ -- --> [ T,
’?‘( ‘)b [ {’’b}’Qid ],
’?‘( ‘)a [ {’’a}’Qid ],
’?‘( ‘)P [ {’’P}’Qid ]],

’emptyJS’JudgSeq ], N))) .
[...]

endfm)

The operation get-transitions receives the solutions found and it returns a list of
possible transitions, one for each solution. It filters the bindings between metavariables and
values that go with each solution, looking for the concrete metavariables ?(’b)b, ?(’a)a,
and ?(’P)P. The operation apply-subst modifies each possible transition propagating
the bindings in the transition condition (if any) to the resulting behaviour expression.

The constant MOD should be defined by a module like the following one. It will be
introduced to the Full Maude database of modules when a LOTOS specification is entered
to our tool, although instead of LOTOS-OK, the metarepresented module will be called
EXT-LOTOS-OK and will include the extended syntax of user-definable data types. The up
function [24] is used to obtain the metarepresentation of the module LOTOS-OK.

(fmod FULL-LOTOS is
including LOTOS-TOOLS .
eq MOD = up(LOTOS-OK) .

endfm)

We can already use the FULL-LOTOS module, since it is executable. The transitions
operation allows us to know the possible transitions of a LOTOS behaviour (although with-
out data expressions); but it is quite cumbersome because we have to use metarepresented
terms to interact with this operation.

If we want to build a usable formal tool we need more. We have to build an environment
for it, including not only the execution aspect just described, but parsing, pretty printing,
and input/output. We show how it can be done by using the metalanguage features of Maude
in the next section.

6.6. Building the LOTOS tool environment

Maude has the following metalanguage features for parsing, pretty printing, and input/output
[11]:

• The syntax definition for the language L is accomplished by defining a data type
GrammarL, which can be done with very flexible user-definable mixfix syntax, that can
mirror the concrete syntax of L. Particularities at the lexical level of L can be accom-
modated by user-definable bubble sorts, that tailor the adequate notions of token and
identifier to the language in question. Bubbles correspond to pieces of a module in a



TWO CASE STUDIES OF SEMANTICS EXECUTION IN MAUDE 159

language that can only be parsed once the grammar introduced by the signature of the
module is available. This is specially important when L has user-definable syntax, as it
is our case with ACT ONE.

• Parsing and pretty printing for L is accomplished by the functions meta-parse and
meta-pretty-print in META-LEVEL. meta-parse receives as arguments the repre-
sentation of a module M and the representation of a list of tokens, and returns the
metarepresentation of the parsed term (a parse tree that may have bubbles) corresponding
to the list of tokens for the signature of M . meta-pretty-print receives the represen-
tation of a module M and a term t , and returns a list of quoted identifiers that encode the
string of tokens produced by pretty printing t in the syntax given by M .

• Input/output of L specifications and of commands for execution in L is accomplished
by the predefined module LOOP-MODE, that provides a generic read-eval-print loop. This
module has an operator [ , , ] that can be seen as a persistent object with an input
and output channel (the first and third arguments, respectively), and a state (given by
its second argument). In Section 6.6.4 we will see how we can extend the state used by
Full Maude. When something is written at Maude’s prompt enclosed in parentheses,11 it
is placed in the first slot of the loop object as a list of quoted identifiers. The output is
handled in the reverse way, that is, the list of quoted identifiers placed in the third slot of
the loop is printed on the terminal.

All these techniques have been used to extend Maude itself, in the implementation of
Full Maude [24]. We use this implementation not only because we want to use the auxiliary
functions defined there, as we will see in Section 6.6.2, but because we need the database
of modules maintained by Full Maude. Full Maude maintains as the state of the loop object
a database of modules entered into the system. It is needed for the execution of commands
in the modules and to perform the module operations defined by Full Maude. And we need
the database to be able to build new modules on the fly, when LOTOS specifications are
entered into the system, as we will see in Section 6.6.4.

6.6.1. The grammar of the LOTOS tool interface. We have to define first the signature
(syntax) of Full LOTOS (ACT ONE and LOTOS) and the signature of the commands we
are going to use in our tool to work with the entered specification.12 We do not include here
the signatures of ACT ONE and LOTOS; see [60] for the complete code.

Part of the syntax of Full LOTOS, due to the ACT ONE data types, is user-definable. As
we have already mentioned, Maude provides great flexibility to define this syntax thanks to
its mixfix front-end and to the use of bubbles [24].

The following module, LOTOS-TOOL-SIGN, includes the ACT ONE and LOTOS signa-
tures and the commands of our tool.

fmod LOTOS-TOOL-SIGN is
protecting ACTONE-SIGN .
protecting LOTOS-SIGN .
sort LotosCommand .
op show process . : -> LotosCommand .
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op show transitions . : -> LotosCommand .
op show transitions of . : BehaviourExp -> LotosCommand .
op cont . : Machinelnt -> LotosCommand .
op cont . : -> LotosCommand .

endfm

The first command is used to show the current process, that is, the behaviour expression
used if we omit it in the rest of commands. The second and third commands are used to
show the possible transitions (defined by the symbolic semantics) of the current or explicitly
given process, that is, they start the execution of a process. The fourth command is used to
continue the execution with one of the possible transitions, the one indicated in the argument
of the command. cont is a shorthand for cont 1.

In order to parse some input using the built-in function meta-parse, we need to give the
metarepresentation of the signature in which the input is going to be parsed. By including the
module LOTOS-TOOL-SIGN in the metarepresented module LOTOS-GRAMMAR (not shown
here) we get the metarepresentation of the signature. The LOTOS-GRAMMAR module will be
used in calls to the meta-parse function in order to get the input parsed in this signature.
Notice that from the call to meta-parse we will get a term representing the parse tree
of the input (maybe with bubbles). This term will then be transformed into a term of an
appropriate data type.

6.6.2. The translation of ACT ONE modules. Instead of defining a datatype for repre-
senting ACT ONE modules in Maude and operations to transform the parse tree returned by
meta-parse into a value of this datatype, we are going to use Maude functional modules to
represent (internally) ACT ONE modules. Since Full Maude already has a function (pro-
cessUnit) to transform a parse tree (maybe with bubbles) representing a functional module
into a functional module, we have to define only a function translate that translates
a parse tree representing an ACT ONE module into a parse tree representing a functional
module.

Qidlist
meta-parse

> PreModuleAct One
translate

> PreModule
processUnit

> FModule

The operation translate has three arguments: the name of the LOTOS specification
entered, the parse tree returned by meta-parse representing a list of ACT ONE datatype
specifications, and a Full Maude database of modules. It returns this database modified by
introducing a functional module for each ACT ONE datatype and one more module (with
the name of the specification) which includes the introduced modules. This last module will
be used to represent all the data types. We only show the translation of sort declarations.

fmod ACTONE-TRANSLATION is
protecting DATABASE-HANDLING .
op translate : Term Term Database -> Database .
op translateDeclList : Term -> Term .
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Figure 2. An ACT ONE specification and its translation.

When an ACT ONE sort declaration for sort T is found, it is not only translated into
a Maude sort declaration for sort T, but we also have to declare T as a subsort of sort
DataExp (since values of the declared type could be used in a behaviour expression to be
communicated) and the sort of LOTOS variables VarId has to be declared as a subsort of
type T (since LOTOS variables could be used to build values of this type).

eq translateDeclList(’sorts [’token[T]]) =
’ [’sort .[’sortToken[T]],

’ [’subsort .[’< [’sortToken[T], ’sortToken[{’’DataExp}’Qid]]]
’subsort .[’ < [’sortToken[{’’VarId}’Qid], ’sortToken[T]]]]] .

Figure 2 shows an example of how an ACT ONE specification (on the left) is translated
into functional Maude modules (on the right).

6.6.3. LOTOS input processing. When LOTOS behaviour expressions are introduced,
either as part of a whole specification or in a tool command, they have to be transformed
into elements of the data type BehaviourExp in the module LOTOS-SYNTAX (Section 6.2).
The parse tree returned by meta-parse with module LOTOS-GRAMMAR may have bubbles
(where data expressions may appear) that have to be parsed again using the user-defined
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syntax. This syntax can be found in the functional module that includes all the modules
which are the translations of the types defined in ACT ONE (see module SPEC in figure
2). Moreover, the behaviour itself can define new syntax, since it can declare new LOTOS
variables by means of ? offers and these variables may appear in expressions. For example,
when processing the behaviour expression

g ? x : nat ; h ! s(x) + s(0) ; stop

the data expression s(x) + s(0) should be parsed using the signature in the module SPEC
extended with variable x of sort nat.

fmod LOTOS-PARSING is
protecting META-LEVEL .
protecting UNIT-DECL-PARSING .
op parseProcess : Term Module VarSet -> Term .
op parseAction : Term Module VarSet -> TermVars .
[...]

endfm

We use the operation parseProcess to make this translation. It receives as arguments
the term returned by meta-parse (representing a behaviour expression), the metarepre-
sented module with the data types syntax (module SPEC in figure 2), and the set of free
variables that may appear in the behaviour expression, and returns a behaviour expression
without bubbles. It uses the operation parseAction that returns, in addition to the term
metarepresenting the given action (without bubbles), the variables declared in the action (if
any).

6.6.4. Extending the database by inheritance. In [24] it is explained how the persistent
state of the Full Maude system is given by a single object (of class DatabaseClass), which
maintains the database of the system. We can extend the Full Maude system by defining
subclasses of DatabaseClass inheriting its behaviour and adding new functionalities to
it, new attributes, etc.

mod LOTOS-DATABASE-HANDLING is
inc EXT-DATABASE-HANDLING. pr META-LOTOS-TOOL-SIGN .
pr ACTONE-TRANSLATION. pr LOTOS-PARSING .
sort Lotos-DB .
subsort Lotos-DB < DatabaseClass .
op Lotos-DB : -> Lotos-DB .

We declare attributes to keep the LOTOS process we are working with, the set of possible
transitions of this process (computed whenever the corresponding command is executed),
and both the trace of events and the conjunction of transition conditions of transitions
already executed.
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op lotosProcess : : Term -> Attribute .
op transitions : : Term -> Attribute .
op trace : : Term -> Attribute .
op condition : : Term -> Attribute .

Then, we define rules that describe the behaviour associated with the new commands.
We only show here—and refer to [60] for the complete code—the rule that deals with the
introduction of LOTOS specifications. It says that if a specification is in the input attribute,
then the database of modules has to be modified by introducing modules corresponding to
the data types (by means of the operation translate), a module EXT-LOTOS-SYNTAX that
includes the data types and the LOTOS syntax, a module EXT-LOTOS-OK that includes the
data types and the LOTOS symbolic semantics, and a module FULL-LOTOS that includes
the instantiation of the search strategy and defines the constant MOD to be equal to the
metarepresentation of module EXT-LOTOS-OK. The lotosProcess attribute is also set to
the process introduced in the specification (after being parsed with parseProcess).

rl [spec] :
< O : X@ Lotos-DB |

input : (’specification behaviour endspec[T,T’, T’’]),
output : nil,
db : DB, default : MN, lotosProcess : T’’’, Atts >

=> < O : X@Lotos-DB | input : nilTermList,
output : (’Introduced ’specification parseModName(T)),
db : processUnit(meta-parse(EXT-GRAMMAR,

’fmod ’FULL-LOTOS ’is
’including ’LOTOS-TOOLS ’.
’eq ’MOD ’= ’up ’‘( ’EXT-LOTOS-OK ’‘) ’ .

’endfm),
evalUnit(
mod ’EXT-LOTOS-OK is
nilParameterList
including parseModName(T) .
including ’LOTOS-OK .
sorts none .
none none none none none none endm,

evalUnit(
fmod ’EXT-LOTOS-SYNTAX is
nilParameterList
including parseModName(T) .
including ’LOTOS-SYNTAX .
sorts none .
none none none none none endfm,

translate(T, T’, DB)))),
default : parseModName(T),
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lotosProcess : parseProcess(T’’, getFlatUnit(parseModName
(T),

translate(T, T’, DB)),mt), Atts > .
[...]
endm

6.6.5. The Full Maude environment of the LOTOS tool. Finally, we give the rules to
initialize the loop and to specify the communication between the loop (the input/output of
the system) and the persistent state of the system. The following module is a redefinition
of module FULL-MAUDE presented in [24], and it can handle both Full Maude and LOTOS
commands and specifications.

mod LOTOS-TOOL&FULL-MAUDE is
protecting LOTOS-DATABASE-HANDLING .
including LOOP-MODE .

The init rule initializes the persistent object as an object of class Lotos-DB by initial-
izing its attributes.

rl [init] : init
=> [nil,

< o : Lotos-DB |
db : evalUnit(CONFIGURATION,

evalUnit(TRIV, evalUnit(UP, emptyDatabase))),
input : nilTermList, output : nil,
default : ’META-LEVEL,
lotosProcess : error*,
transitions : error*,
condition : ({’true}’TransCond),
trace : ({’nil}’Trace) >,

nil].

There are two in rules; the first one uses the EXT-GRAMMAR to parse Full Maude modules
and commands, while the second one uses the LOTOS-GRAMMAR to parse LOTOS specifica-
tions and commands; we only show the second one.

rl [in] :
[QIL,
< O : X@Lotos-DB | input : nilTermList,

output : nil, Atts >,
QIL’]
=> if meta-parse(LOTOS-GRAMMAR, QIL) == error*

then [nil,
< O : X@Lotos-DB |
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input : nilTermList,
output : (’ERROR: ’incorrect ’input ’ .), Atts >,

QIL’]
else [nil,

< O : X@Lotos-DB |
input : meta-parse(LOTOS-GRAMMAR, QIL),
output : nil, Atts >,

QIL’]
fi .

The out rule, dealing with output to the Maude system, is left unmodified.

crl [out] :
[QIL, < O : X@Database | output : QIL’, Atts >, QIL’’]
=> [QIL, < O : X@Database | output : nil, Atts >, (QIL’ QIL’’)]

if QIL’ =/= nil .
endm

After introducing this last module into the Maude system, the extended version of Full
Maude is ready to receive (Full) Maude modules. We can then introduce the modules defined
in Section 6.3 in the database, so as to be able to use them when needed. At that moment
the LOTOS tool becomes usable, and LOTOS specifications can be entered and executed.

6.7. Execution example

This is an example of an interaction with the LOTOS tool.

Maude> (specification SPEC
type Naturals is

[as shown above]
endtype
type Extended-Naturals is Naturals

[as shown above]
endtype
behaviour

h ! 0 ; stop
[]
( g ! (s(0)) ; stop

|[ g ]|
g ? x : nat ; h ! (x + s(0)) ; stop )

endspec)
Introduced specification SPEC
Maude> (show transitions .)
TRANSITIONS:
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1. |-- x = s(0) -- g s(0) --> stop |[ g ]| h ! s(s(0)) ; stop
2. |-- true -- h 0 --> stop

Maude> (cont 1 .)
Trace: g s(0) Condition: x = s(0)
TRANSITIONS:
1. |-- true -- h s(s(0)) --> stop |[ g ]| stop

Maude> (cont.)
Trace: (g s(0)) (h s(s(0))) Condition: x = s(0)
No more transitions .

7. Conclusion

We have shown how inference systems can be represented in rewriting logic and its Maude
implementation in a general and fully executable way. In order to present the general ideas
in concrete case studies, we have represented the CCS structural operational semantics and
an environment for executing Full LOTOS specifications. We have solved the problems
of new variables in the righthand side of the rules and nondeterminism by means of the
reflective features of rewriting logic and its realization in the Maude module META-LEVEL.
In particular, we have used metavariables (together with the substitution capability of the
metalevel operation meta-apply) to solve the issue of the new variables, and a search strat-
egy which deals with conceptual trees of rewrites to solve the problem of nondeterminism.
The presented solutions are not CCS (or LOTOS) dependent and can be used to implement
a wide variety of inference systems and operational semantics definitions.

The proposed methodology in the general case can be summarized as follows:

• An algebraic data type specification is used to represent the syntax of the inference system
in question, including syntax for judgements and for multisets of judgements.

• An inference rule S1...Sn
S0

is mapped into a rewrite rule S0 → S1 . . . Sn that rewrites
multisets of judgements.

• New variables appearing in the righthand side of such a rule are replaced by metavariables,
handled and instantiated at the metalevel. This can also be done in other places, as shown
in the CCS extensions, and it is even possible to have “metavariables everywhere” as we
have done in the Full LOTOS case study.

• The metavariable handling requires adding new judgements for keeping the variable
instantiation and for propagating substitutions in multisets of judgements. This can be
done in a systematic way.

• Execution of the inference system is handled at the metalevel, by means of a generic
search operation that simultaneously takes care of metavariables. Indeed, we have used
the same search operation for CCS, for the Hennessy-Milner logic, and for Full LOTOS.

• Using the metalanguage features of Maude, the implementation of the inference system
for a logic or language can be extended into an environment for such a logic or language,
as we have illustrated in the Full LOTOS case study.
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Going back to the CCS case study, we have also seen how the CCS semantics can be
extended to answer questions about the capability of a process to perform an action by
considering metavariables as processes in the same way as we had done with actions.
Having metavariables as processes allows extending the semantics to traces, defining weak
transition semantics, and finding all the successors of a process after performing an action.
In its turn, this allows a representation of the semantics of the Hennessy-Milner modal logic
in a quite similar way as it is done in its mathematical definition.

We have compared our approach with the Isabelle/HOL one, concluding that Maude,
being so general a framework, can be used for applying higher-order techniques in a first-
order framework by means of reflection.

The implementation of the symbolic semantics for Full LOTOS shows how this kind
of semantics representations can be extended in two different ways. First, the ACT ONE
algebraic specifications are really integrated into the operational semantics, something that
really breaks new ground in this approach to executing structural operational semantics.
Second, the semantics tool has also been integrated with Full Maude, so that we have
provided a Full LOTOS environment with parsing, pretty printing, and execution commands,
in which the input/output processing hides from the user the underlying use of Maude.

Other specific-purpose tools, such as the Concurrency Workbench of the New Century
(CWB-NC) [20], are more efficient and expressive than our tool. The goal of our prototype
is not only to experiment with processes and their capabilities, but also with the semantics
itself, represented at a very high mathematical level, by adding or modifying some rules.
The design of CWB-NC exploits the language-independence of its analysis routines by lo-
calizing language-specific procedures; this enables users to change the system description
language by using the Process Algebra Compiler [19], that translates the operational se-
mantics definitions into SML code. We have followed a similar approach, although we have
tried to maintain the semantics representation at as high a level as possible, always trying
hard not to lose executability. In this way we avoid translating the semantics representations
into other languages.

In Section 5.2 we have already cited related work on representations of inference systems
in the logical framework Isabelle/HOL. Other logical frameworks and theorem provers
have also been used to represent inference systems. The interactive proof development
environment Coq [36], based on the Calculus of Constructions extended with inductive
types, has been used to represent the π -calculus [35, 33] and the µ-calculus [55] applied to
CCS. Coq is used to encode Natural Semantics in [58].

LEGO, an interactive proof development system [39], is used in [62] to formalise a
verification system for CCS. It combines theorem proving and model checking by using a
theorem prover to reduce or divide the problems to ones which can be model checked.

Typol [23] is a formal language to represent inference rules and operational semantics.
Typol programs are compiled into Prolog to create executable type-checkers and interpreters
directly from their specifications [22]. Although our implementation is much in the style
of logic programming, one advantage over Typol is the possibility of working with user-
definable data types and in general algebraic specifications modulo equational axioms.
Moreover, in our approach other strategies could be employed besides depth-first search,
while keeping the same underlying specification.
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XSB [51], a logic programming system that extends Prolog-style SLD resolution with
tabled resolution [7], has been used to implement a model checker for value-passing CCS
and the modal mu-calculus in [21].

We are currently studying possible extensions of the Interactive Theorem Prover tool (ITP
[8, 9]) written in Maude in order to carry (metareasoning) proofs about inductive properties
of our operational semantics representations.
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Notes

1. An alternative system supporting rewriting logic computation is ELAN [3] but we do not use it because it
does not provide the reflective features that we need in our case studies.

2. The Maude system, including the Full Maude extension, and its documentation are available in Maude’s web
site at http://maude.cs.uiuc.edu.

3. Due to parsing restrictions, some characters ([ ] { } ( ),) have to be preceded by the quote character
‘ when declaring them in Full Maude.

4. The Maude code presented in the rest of this section is declared in a system module CCS-SEMANTICS
that includes the module CCS-CONTEXT above, and which defines the CCS semantics representation (see
complete code in [59]).

5. We could easily generalize the restriction operator from P\l to P\{l1, . . . , ln}, but this would only make the
syntax more complex without adding anything new to the semantics representation. The same applies to the
relabelling operator.

6. By quoted numbers we mean special quoted identifiers (of sort Qid) that have an integer after the quote, like
’3.

7. In [59] the reader can find these examples as they are introduced in the Maude system; here we use t̄ for the
metarepresentation of term t . We can also avoid the need to introduce metarepresented terms if we use the
parsing and pretty printing capabilities provided by Maude. We have used them for implementing a tool for
LOTOS, see Section 6.6.

8. The last rule would be the only one needed if we simplified the rules as described in Section 6.
9. In this definition we also use t̄ for the metarepresentation of term t . The reader can find in [59] how these

metarepresented terms are written in Maude.
10. Notice that the overbar denotes in this paragraph the complementary label, instead of the metarepresentation.
11. As we have done with the modules and commands in previous sections, since they will be introduced into

Full Maude.
12. There is an important separation between the signature used by the users to write their specifications and the

abstract syntax we defined in Section 6.2.

References

1. S. Berghofer, “Proofs, programs and executable specifications in higher order logic,” PhD thesis, Institut für
Informatik, Technische Universität München, 2003.



TWO CASE STUDIES OF SEMANTICS EXECUTION IN MAUDE 169

2. S. Berghofer and T. Nipkow, “Executing higher order logic,” in P. Callaghan, Z. Luo, J. McKinna, and R.
Pollack (Eds.), Types for Proofs and Programs: International Workshop, TYPES 2000, Durham, UK, Selected
Papers, Vol. 2277 of Lecture Notes in Computer Science, Springer-Verlag, 2002.
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