
The Journal of Logic and
Algebraic Programming 67 (2006) 226–293

��� ����	
���

����
	�

����
��
����
���	

www.elsevier.com/locate/jlap

Executable structural operational semantics
in Maude �

Alberto Verdejo∗, Narciso Martı́-Oliet
Departamento de Sistemas Informáticos y Programación, Universidad Complutense de Madrid,

C/Prof. José Garcı́a Santesmases s/n, Madrid 28040, Spain

Abstract

This paper describes in detail how to bridge the gap between theory and practice when implement-
ing in Maude structural operational semantics described in rewriting logic, where transitions become
rewrites and inference rules become conditional rewrite rules with rewrites in the conditions, as made
possible by the new features in Maude 2. We validate this technique using it in several case studies:
a functional language Fpl (evaluation and computation semantics), an imperative language WhileL
(evaluation and computation semantics), Kahn’s functional language Mini-ML (evaluation or natural
semantics), Milner’s CCS (with strong and weak transitions), and Full LOTOS (including ACT ONE
data type specifications). In addition, on top of CCS we develop an implementation of the Hennessy–
Milner modal logic for describing local capabilities of processes, and for LOTOS we build an entire
tool where Full LOTOS specifications can be entered and executed (without user knowledge of the
underlying implementation of the semantics). We also compare this method based on transitions as
rewrites with another one based on transitions as judgements.
c© 2005 Elsevier Inc. All rights reserved.

Keywords: Rewriting logic; Maude 2; Executability; Structural operational semantics; Metalan-
guage; CCS; LOTOS; ACT ONE

1. Introduction

In the context of proposing rewriting logic as a logical and semantic framework, the
paper [49] illustrated several different ways of mapping inference systems into rewriting
logic. A very general possibility is to map an inference rule of the form

� Research supported by MCyT projects Desarrollo Formal de Sistemas Basados en Agentes Móviles (TIC2000-
0701-C02-01) and Métodos y Herramientas Lógicas para el Diseño y la Verificación de Software Multiparadigma
(TIC2002-01167).
∗ Corresponding author. Tel.: +34 91 3947554; fax: +34 91 3947529.

E-mail addresses: alberto@sip.ucm.es (A. Verdejo), narciso@sip.ucm.es (N. Martı́-Oliet).

1567-8326/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jlap.2005.09.008

www.elsevier.com/locate/jlap
mailto:alberto@sip.ucm.es
mailto:narciso@sip.ucm.es

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 227

S1 . . .Sn

S0

into a rewrite rule of the form S1 . . .Sn −→ S0 that rewrites multisets of judgements Si.
This mapping is correct from an abstract point of view, as justified in [49], but thinking
in terms of executability of the rewrite rules, it is more appropriate to consider rewrite
rules of the form S0 −→ S1 . . .Sn that still rewrite multisets of judgements but go from the
conclusion to the premises, so that rewriting with these rules corresponds to searching for
a proof in a bottom-up way. Again, this mapping is correct, and in both cases the intuitive
idea is that the rewriting relation corresponds to the horizontal bar separating conclusion
from premises in the typical textbook presentation of inference rules. We call this method
transitions as judgements, and it will be briefly presented in Section 8.

These mappings can be applied to a wide variety of inference systems, as explained in
[49], including sequent systems for logics and also structural operational semantics defin-
itions for languages. However, in the operational semantics case, judgements Si typically
have the form of some kind of transition Pi → Qi between states so that it makes sense
to consider the possibility of mapping directly this transition relation between states to
a rewriting relation between terms representing the states. When thinking this way, an
inference rule of the form

P1 → Q1 . . . Pn → Qn

P0 → Q0

becomes a conditional rewrite rule of the form

P0 −→ Q0 if P1 −→ Q1 ∧ . . .∧Pn −→ Qn,

where the condition includes rewrites. In this way, the semantic rules become (conditional)
rewrite rules, where the transition in the conclusion becomes the main rewrite of the
rule, and the transitions in the premises become rewrite conditions. We call this method
transitions as rewrites.

Rules of this form were already considered by Meseguer in the seminal paper [52] on
rewriting logic. At the logical level, this mapping is again correct, but one must be careful
to take into account in the mapping additional information appearing in the transitions
of the operational semantics. For example, in structural operational semantics for process
algebras it is essential for the transitions to have some labelling information that provides
the mechanism for synchronization. How to solve these details in the particular case of
Milner’s CCS [54] was already shown in [49]. Moreover, the papers [13,22] showed the
good properties of this semantic mapping for CCS.

The recent availability of the rewriting logic language Maude 2 [17,19,18] has made it
possible to put into practice the approach based on transitions as rewrites, because Maude 2
allows indeed conditional rules with rewrites in the conditions, where those rewrites are
solved at execution time by means of a built-in search mechanism. Thus, we undertook the
project of carefully implementing in a fully executable way the CCS operational semantics
in order to practically assess the ideas summarized above that theoretically were elegant
and correct. CCS was taken only as a first example; the desired solutions in our search
of executability should be general enough to handle many other operational semantics
definitions, considering the approach of transitions as rewrites and using conditional rules
with rewrites in the conditions.

To validate this approach we have thus far considered several different operational
semantics for programming languages. On the one hand we have implemented all the
evaluation (big step) and computation (small step) semantics presented by Hennessy in [36]

228 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

for functional and imperative programming languages, including several variants like call-
by-value versus call-by-name, or using substitutions versus extending the environment.
This paper describes in detail most of them, but for reasons of space we have left out
the semantics of an abstract machine for the functional programming language we present
and the semantics of a non-deterministic guarded command language. Those semantics,
as well as the complete code for some modules that are abbreviated in this paper, can
be found in [76,73]. Another functional language whose semantics we have implemen-
ted is Kahn’s Mini-ML [46]; the letrec syntactic construct in this language requires a
special treatment that deserves consideration. With this variety of examples we intend
to show the general applicability of the techniques introduced in this paper, making it
clear that they are independent of the kind of language as well as of the kind of chosen
semantics.

On the other hand, in addition to the operational semantics of the CCS process algebra,
we have implemented in Maude a symbolic semantics for LOTOS [45], following this
technique of transitions as rewrites. Moreover, in the case of these process algebras we
show how the implementation of the semantics can be used to develop formal analysis
tools. In the CCS case we integrate it with an implementation of the Hennessy–Milner
modal logic [38] for describing local capabilities of processes; and in the LOTOS case,
we integrate it with a translation of ACT ONE [28] data type specifications into functional
modules in Maude, building an entire tool where Full LOTOS specifications can be entered
and executed (without user knowledge of the underlying implementation of the semantics).

In our opinion, the approach based on transitions as rewrites is really simpler than the
one based on transitions as judgements, because it is closer to the mathematical textbook
presentation of the operational semantics and in general requires less auxiliary structures
or operations. However, there is still the need to bridge some gaps between theory and
practice, and in this case the new frozen attribute available in Maude 2 has also played
an important role, as described in detail in Section 6.2. The declaration of an operator
as frozen forbids rewriting its arguments, thus providing another way of controlling the
rewriting process.

An important and very outstanding characteristic of all our implementations provided
by the Maude language and system is the integration in the same framework of all the
specification levels necessary to implement in detail the semantics of a given language.
First, writing the grammar for the (abstract) syntax of the language corresponds to defining
the algebraic signature in the corresponding algebraic specification. Then, all the data
and corresponding operations necessary for the implementation are described by means
of equational specifications. On top of them, the (dynamic) semantics of the language
is defined by means of rewrite rules, as we have described above. Although we do not
treat this in this paper, it is also possible to describe the static semantics of a language
(like type checking, for example) using these techniques, but in this case, the approach
based on transitions as judgements may be more appropriate. In addition, if more control
is necessary one can use reflection to go up to the metalevel, as we do for instance in
Section 6.4 to define the semantics of a modal logic that requires considering all possible
rewrites (or transitions). The integration of all these aspects is precisely what allows our
development of a semantics for Full LOTOS, where the ACT ONE data type specifications
are translated into functional Maude modules. Furthermore, the metalanguage features of
Maude allow us to build in a fully integrated way a tool for Full LOTOS that includes
input/output, parsing (taking into account the user-definable syntax of ACT ONE specific-
ations), execution, pretty-printing, etc. in such a way that the Maude definition is hidden

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 229

from the user that only needs to know about the Full LOTOS specifications that are to be
executed.

Concerning the implementation of the operational semantics, the methods that we de-
scribe in this paper assume that we are given a correct structural operational semantics
for a language. Of course, it is also possible to develop such an implementation precisely
with the purpose of prototyping a proposed semantics and then modify it according to the
information obtained by the tests in the execution. Assuming the semantics is given, the
first step consists in identifying the structure necessary to build the left-hand and right-hand
sides of the rewrites. Although this may be very simple in some cases, in our examples
we can see that usually there is additional structure that has to be taken into account,
like environments in the case of functional languages that we put in the left-hand side,
or synchronization labels in the case of process algebras that we put in the right-hand
side.

Having done this, in general, translating the operational semantics rules into rewrite
rules is a quite systematic process. However, one has to make sure that those rules are
executable and, moreover, that they execute as one expects. For example, in the CCS
example, we will see the use of the frozen attribute to ensure that rewriting only takes
place at the top of a state, and that rewrite conditions do not give rise to non-terminating
executions. As another example, the mathematical rule for the letrec construct of Mini-ML
is not executable, because there is an existential variable in the condition that appears both
in the left-hand and right-hand sides of a rewrite and that in principle one does not know
how to instantiate.

All the examples in this paper provide full details about our treatment of these se-
mantics. After a brief review of the main features of Maude 2 in Section 2, the following
sections develop the details of several case studies: a functional language Fpl (evalu-
ation and computation semantics with variants), an imperative language WhileL (evaluation
and computation semantics), Kahn’s functional language Mini-ML (evaluation or natural
semantics), Milner’s CCS (with strong and weak transitions, plus the Hennessy–Milner
logic), and Full LOTOS (including ACT ONE data type specifications and a complete
tool). Section 8 summarizes the transitions as judgements approach and compares it with
the transitions as rewrites. Section 9 reviews some related work and Section 10 concludes
the paper describing some ideas for future work.

Some results in this paper were previously reported in the conference papers [75,71].
The Maude code corresponding to the modules presented in the following sections can be
found in http://www.ucm.es/sip/alberto/esf.

2. Rewriting logic and Maude

Rewriting logic was introduced by Meseguer [52] as a unified model of concurrency in
which several well-known models of concurrent systems can be represented in a common
framework. Since then much work has been done on the use of rewriting logic as a logical
and semantic framework [49,50], in which many different logics, models of computation,
and a wide range of languages, can be represented, given a precise semantics, and executed.
Among the advantages of rewriting logic, we may emphasize the following:
• It is a simple formalism, with only a few rules of deduction that are easy to understand

and justify.

http://www.ucm.es/sip/alberto/esf

230 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

• It is very flexible and expressive, capable of representing change in systems with very
different structure.

• It allows user-definable syntax, with complete freedom to choose the operators and
structural properties appropriate for each problem.

• It is intrinsically concurrent, representing concurrent change and supporting reasoning
about such change.

• It supports modelling of concurrent object-oriented systems in a simple and direct
way.

• It has initial models, that can be intuitively understood as providing “no junk” and “no
confusion”.

• It is realizable in the wide spectrum logical language Maude, supporting executable
specification and programming.
Maude is a high-level language and high-performance system supporting both equa-

tional and rewriting logic computation. We use in this paper Maude 2 [17,19,18], which
implements a new version of rewriting logic with greater generality and expressiveness, as
described in [9]; in particular, Maude 2 allows rewrite conditions which are essential for
the implementation of the semantic definitions we are going to present.

In rewriting logic and Maude the data on the one hand and the state of a system on
the other are both formally specified as an algebraic data type by means of an equational
specification. In this kind of specifications we can define new types (by means of the
keyword sort); subtype relations between types (subsort); operations (op) for building
values of these types, giving the types of their arguments and result, and which may have
attributes as being associative (assoc) or commutative (comm), for example; and equations
(eq) that identify terms built with these operators. The following functional module (with
syntax fmod...endfm) defines the natural numbers with an addition operation:

fmod NATURAL-NUMBERS is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
op _+_ : Nat Nat -> Nat [assoc comm].
vars N M : Nat .
eq 0 + N = N .
eq s(N) + s(M) = s(s(N + M)) .

endfm

Equations are assumed to be confluent and terminating, so that we can use the equations
to reduce a term t to a unique canonical form t ′ that is equivalent to t (they represent the
same value).

Maude uses a very expressive version of equational logic, namely membership equa-
tional logic [3,53], that (in addition to all the above) allows the statement of membership
assertions (mb) characterizing the elements of a sort. For example, we can extend the
NATURAL-NUMBERS module with the following two memberships

mb 0 : Even .
mb s(s(E:Even)) : Even .

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 231

defining a subsort Even of even natural numbers. Notice the on-the-fly declaration for the
variable E of sort Even. In Maude 2 a variable is an identifier composed of a name, a colon,
and a sort name; in this way, variables do not have to be declared in variable declarations,
although such declarations are still allowed for convenience, and in that case only the name
of the variable is used as its identifier.

Membership equational logic also has a notion of (implicit) error supersorts called
kinds, which in Maude are not explicitly declared, but are instead represented as sort names
between square brackets. Using kinds, we can declare partial operations (at the level of
sorts), like for example the following integer division operation on natural numbers:

op _div_ : Nat Nat -> [Nat] .

Notice that this is not at all the only possible way of treating partiality in membership
equational logic. For example we could also define a subsort NzNat of non-zero natural
numbers and then declare _div_ as a total operation

op _div_ : Nat NzNat -> Nat .

The dynamic behaviour of a distributed system is specified by rewrite rules of the form
t −→ t ′, that describe the local, concurrent transitions of the system. That is, when a part
of a system matches the pattern t, it can be transformed into the corresponding instance
of the pattern t ′. Rewrite rules are included in system modules (with syntax mod...endm).
For example, the following module defines non-deterministic natural numbers and non-
deterministic choice. A module M can import another module M′ in three different ways:
protecting (abbreviated by pr), extending (ex), and including (inc). Intuitively, im-
porting in protecting mode means that no junk and no confusion are added to M′ when
we include it in M; importing in extending mode allows “junk”, but rules out confusion;
and importing in including mode imposes no requirements.

mod NONDETERMINISTIC-NATURAL-NUMBERS is
protecting NATURAL-NUMBERS .
sort NdNat .
subsort Nat < NdNat .
op _?_ : NdNat NdNat -> NdNat [assoc comm].
var N : Nat . var ND : NdNat .
rl [choice] : N ? ND => N .

endm

A multiset of natural numbers is regarded as a non-deterministic natural number of sort
NdNat, that is, a number that could be any among those in the multiset. The operation _?_
denotes the union of non-deterministic natural numbers, which is associative and commut-
ative, and the choice rule provides non-deterministic choice. Notice that the double arrow
symbol => is used to represent rewrite rules, while the single arrow symbol -> is used to
declare the operators.

Rewrite rules can take the most general possible form in the variant of rewriting logic
built on top of membership equational logic [9], that is, they can be of the form

232 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

t −→ t ′ if

(∧
i

ui = vi

)
∧

(∧
j

w j : s j

)
∧

(∧
k

pk −→ qk

)

with no restriction on which new variables may appear in the right-hand side or in the
condition. Conditions in rules are formed by an associative conjunction connective /\,
allowing equations (both ordinary equations t = t’, and matching equations t := t’
where new variables occurring in t become instantiated by matching [17,19]), member-
ships (t : s), and rewrites (t => t’) as conditions. In that full generality the execution
of a system module will require strategies that control at the metalevel the instantiation
of the extra variables in the condition and in the right-hand side. However, a quite general
class of system modules, called admissible modules, are executable by Maude 2’s default
interpreter. Essentially, the admissibility requirement ensures that all the extra variables
will eventually become instantiated by matching [17]. The default Maude strategy for
rewriting, represented by the rewrite (abbreviated rew) command, applies the rules in
a top-down rule-fair way.

When executing a conditional rule, the satisfaction of all its conditions is attempted
sequentially from left to right; but notice that, besides the fact that many matches for the
equational conditions may be possible due to the presence of equational axioms, we also
have to deal with the fact that solving rewrite conditions requires search, including search-
ing for new solutions when previous ones fail to satisfy subsequent conditions. Therefore,
the default interpreter supports search computations. The search command looks for all
the rewrites of a given term that match a given pattern satisfying some condition (we will
see some examples in Section 3.2).

Another Maude 2 feature which is very important for our intended semantics applica-
tions is the frozen attribute [19,9]. When an operation is declared as frozen, its arguments
cannot be rewritten by rules (it is also possible to declare operations with only some argu-
ments frozen, but we will not make use of this generality). This is important in situations
where the rewriting process should only happen at the top, like in many operational se-
mantics for process algebras, like CCS, as we will see in Section 6.2; however, there are
more reasons for using the frozen attribute, related in general to avoiding situations of
non-termination in the execution of rewrite conditions, as we will explain in some detail in
Section 6.2.

Maude should be viewed as a metalanguage [16] in which the syntax and semantics of
computational models and languages can be formally defined, and in which entire envir-
onments for such languages can be built (including parsers, execution environments, pretty
printing, and input/output). We will see how an environment of this kind has been built for
LOTOS in Section 7.4.

Reflection is the main feature to achieve these powerful metalanguage functionalities.
Rewriting logic is reflective [14,20], that is, there is a finitely presented rewrite theory U
that is universal in the sense that we can represent any finitely presented rewrite theory R
(including U itself) and any terms t, t ′ in R as terms R and t, t ′ in U, and we then have the
following equivalence:

R � t −→ t ′ ⇐⇒ U � 〈R , t〉 −→ 〈R , t ′〉.
Intuitively, this means that we can work with theories as data at the metalevel, combining
and manipulating them, and controlling the rewriting process.

In Maude, the key functionality of the universal theory U has been efficiently imple-
mented in the functional module META-LEVEL, where Maude terms are reified as elements

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 233

of a data type Term, Maude modules are reified as terms in a data type Module, the process
of reducing a term to normal form is reified by a function metaReduce, and the process of
applying a rule of a system module to a subject term is reified by a function metaApply
[19]. These basic operations can be combined to build strategies [14] that control the
process of rewriting.

Search is also reified at the metalevel by means of the operation metaSearch (used
in Section 6.4), which receives as arguments the metarepresented module to work in, the
starting term for search, the pattern to search for, a side condition, the kind of search (which
may be ’* for zero or more rewrites, ’+ for one or more rewrites, and ’! for only matching
normal forms), the depth of search, and the required solution number which is used to index
all possible solutions. It returns the term matching the pattern, its type, and the substitution
produced by the match.

For creating an environment for a language using Maude, we need generic syntax defin-
ition, meta-parsing, and meta-pretty printing capabilities that can deal with expressions in
any language, including languages like Maude itself whose modules have user-definable
syntax. And we need a general facility for input/output that can be customized for each
language of interest. Section 7.4 explains how all this is done in Maude thanks to its
reflective design, in our application of these techniques to the development of a tool for
Full LOTOS.

3. The functional language Fpl

We begin our description of how to implement structural operational semantics in Maude
with a simple functional language. Fpl (Functional Programming Language [36]) is a
language with arithmetic and Boolean expressions, if-then-else, local variable declara-
tions (let), function declarations defined by the user (with at least one parameter and the
possibility of mutual recursion), and function calls.

In this paper we describe the implementation of two different semantics for Fpl: a quite
abstract evaluation semantics and a more detailed computation semantics. The implement-
ation of an even more concrete semantics which uses an abstract machine can be found in
[76,73]. A different functional language (Mini-ML) is implemented later in Section 5.

3.1. Functional syntax definition

The abstract syntax of Fpl, with an obvious intuitive meaning, is described in Fig. 1.
A program consists of an expression together with a declaration, 〈e,D〉. Intuitively, D
supplies the definitions for all the function names in e. By using membership assertions
we could define when a program 〈e,D〉 is well-formed, that is, when all the functions
used in e uniquely are defined in D, but we have not done so here in order to simplify the
presentation.1

This syntax is implemented in the following functional module FPL-SYNTAX. Note
that the signature structure corresponds to the grammar structure defined by the syntax
of the language in Fig. 1 (the prec attribute is used to associate precedence values to
the different operators, so that parentheses are not necessary to disambiguate terms [19];

1 The way membership assertions are used to check uniqueness of definitions is illustrated in module
CCS-CONTEXT in Section 6.1.

234 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

Fig. 1. Abstract syntax for Fpl.

when the precedence value is smaller, the corresponding operator has a higher priority). In
addition, as can be expected in a really executable semantics, we had to fill in the details
that in the textbook presentation are left out, like the definition of the natural numbers, and
the use of lists to represent information that appears as ellipsis “. . . ” in Fig. 1.

fmod FPL-SYNTAX is
protecting QID .
sorts Var Num Op Exp BVar Boolean BOp BExp FunVar

VarList NumList ExpList Prog Dec .
op V : Qid -> Var .
subsorts Var Num < Exp .
op BV : Qid -> BVar .
subsorts BVar Boolean < BExp .
op FV : Qid -> FunVar .
ops + - * : -> Op .
op 0 : -> Num .
op s : Num -> Num .
subsort Exp < ExpList .
op nil : -> ExpList .
op _,_ : ExpList ExpList -> ExpList [assoc id: nil prec 30] .
op ___ : Exp Op Exp -> Exp [prec 20] .
op If_Then_Else_ : BExp Exp Exp -> Exp [prec 25] .
op let_=_in_ : Var Exp Exp -> Exp [prec 25] .
op _(_) : FunVar ExpList -> Exp [prec 15] .
ops T F : -> Boolean .
ops And Or : -> BOp .
op ___ : BExp BOp BExp -> BExp [prec 20] .
op Not_ : BExp -> BExp [prec 15] .

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 235

op Equal : Exp Exp -> BExp .
subsort Var < VarList < ExpList .
op _,_ : VarList VarList -> VarList [assoc prec 30] .
subsort Num < NumList < ExpList .
op _,_ : NumList NumList -> NumList [assoc prec 30] .
op <_,_> : Exp Dec -> Prog .
op nil : -> Dec .
op _‘(_‘)<=_ : FunVar VarList Exp -> Dec [prec 30] .
op _&_ : Dec Dec -> Dec [assoc comm id: nil prec 40] .
op exDec1 : -> Dec .
eq exDec1 =
FV(’Fac)(V(’x)) <= If Equal(V(’x),0) Then s(0)

Else V(’x) * FV(’Fac)(V(’x) - s(0)) &
FV(’Rem)(V(’x) , V(’y)) <= If Equal(V(’x),V(’y)) Then 0

Else If Equal(V(’y) - V(’x), 0) Then V(’y)
Else FV(’Rem)(V(’x) , V(’y) - V(’x)) .

endfm

We use the predefined quoted identifiers, of sort Qid, for representing variable identi-
fiers in the language Fpl. Instead of declaring this sort as a subsort of Var, since Qid is
also used to represent Boolean variables, we have constructors V and BV that transform
the Qids to values of sorts Var and BVar, respectively. As arithmetic constants we use
the natural numbers in Peano notation, with constructors 0 and s; we have decided not to
use any predefined numerical type in our presentation of this semantics in order to avoid
confusion between the available operations and the ones being defined.

In addition to the complete syntax of Fpl, the above module includes a constant exDec1,
with a set of function declarations that we will use later on.

We define in another functional module AP an operation Ap for the application of a
binary operator to two already evaluated arguments. Again, this module supplies some
details that are usually left out in a textbook presentation of the semantics. A third func-
tional module ENV is used to define environments that associate values to variables, either
arithmetic or Boolean (we use the feature of operator overloading to use the same notation
in both cases). These two modules are independent of the concrete representation of the
semantics.

fmod AP is
protecting FPL-SYNTAX .
op Ap : Op Num Num -> Num .
vars n n’ : Num .
eq Ap(+, 0, n) = n .
eq Ap(+, s(n), n’) = s(Ap(+, n, n’)) .
eq Ap(*, 0, n) = 0 .
eq Ap(*, s(n), n’) = Ap(+, n’, Ap(*, n, n’)) .
eq Ap(-, 0, n) = 0 .
eq Ap(-, s(n), 0) = s(n) .
eq Ap(-, s(n), s(n’)) = Ap(-, n, n’) .

endfm

236 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

fmod ENV is
protecting FPL-SYNTAX .
sorts Value Variable .
subsorts Num Boolean < Value .
subsorts Var BVar < Variable .
sort ENV .
op mt : -> ENV .
op _=_ : Var Num -> ENV [prec 20] .
op _=_ : BVar Boolean -> ENV [prec 20] .
op __ : ENV ENV -> ENV [assoc id: mt prec 30] .
op _(_) : ENV Var -> Num .
op _(_) : ENV BVar -> Boolean .
op _[_/_] : ENV Num Var -> ENV [prec 35] .
op _[_/_] : ENV Boolean BVar -> ENV [prec 35] .
op remove : ENV Variable -> ENV .
vars X X’ : Variable . vars V W : Value . var rho : ENV .
eq (X = V rho)(X’) = if X == X’ then V else rho(X’) fi .
eq rho [V / X] = (X = V) rho .
eq (X = V) rho (X = W) = (X = V) rho .

endfm

Operations mt, _=_ and __ (in the module ENV) are used to build empty environments,
singleton environments, and union (with overriding) of environments, respectively. The
operation _(_) is used to look up the value associated to a variable in an environment, and
it is defined recursively by means of an equation.2 The operation _[_/_] is used to modify
the binding between a variable and a value in an environment, and it is defined by adding
to the left a new binding to the environment. The last equation removes repetitions.

3.2. Evaluation semantics

The evaluation semantics for Fpl is given by means of two relations: =⇒A and =⇒B,
corresponding, respectively, to arithmetic and Boolean expressions. For evaluating an arith-
metic expression e we need an environment ρ which assigns concrete values to the variables
occurring in e, and a set of declarations D giving a context for the function names in e.
Thus, judgements in this semantics will have the form D,ρ � e=⇒Av. The same happens
with Boolean expressions since, although function calls are only arithmetic expressions,
these expressions can also be used to build Boolean expressions by means of the Equal
operator. Judgements for evaluating Boolean expressions will be of the form D,ρ� be =⇒B

bv.
By definition, we have that ρ � 〈e,D〉 =⇒ v if and only if D,ρ � e=⇒Av. The semantic

rules for the transition relation =⇒A are shown in Fig. 2. For space reasons, in the following
we will not show the semantic rules for Boolean expressions nor their implementation (all
details can be found in [76,73]).

2 For the sake of simplicity, we have not specified the result of looking up the value of an undefined variable,
because we will assume that a well-formed program has all its free variables defined in the environment. However,
in Section 6.1 we will see an example of how to handle this situation.

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 237

Fig. 2. Evaluation semantics for Fpl, =⇒A.

The rule FunR says that for evaluating F(e1, . . . ,ek), first all the arguments have to be
evaluated, and then the body of the definition of F has to be evaluated, in an environment
where the formal parameters have been bound to the values of the corresponding actual
parameters. This is the mechanism known as call-by-value. Below we will also see the
alternative known as call-by-name.

The semantics uses the operation Ap for applying a binary operator to two arguments,
implemented above in the module AP. Variable environments and the operation for the
modification of their bindings are implemented in the module ENV. The next module
EVALUATION has the rewrite rules representing the evaluation semantics for Fpl, both for

arithmetic and Boolean expressions.

mod EVALUATION is
protecting AP . protecting ENV .

In order to represent the semantic rules in Maude, first the elements on both sides of
the arrow in a judgement have to be represented as terms in Maude. In this semantics,
on the left we have a set of declarations, an environment, and an expression. These three
elements are represented by a term of sort Config. On the right we can have an arithmetic
or Boolean expression, or a list of arithmetic expressions (as we will see in a moment).
Notice the use of the sort Config to ensure that both sides of the rewrite rules are going to
have a common sort.3

sort Config .
subsorts Num Boolean NumList < Config .
op _,_|-_ : Dec ENV Exp -> Config [prec 40] .
op _,_|-_ : Dec ENV BExp -> Config [prec 40] .
op _,_|-_ : Dec ENV ExpList -> Config [prec 40] .

3 In general, it is enough for both sides of a rewrite rule to have the same kind.

238 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

The axioms (semantic rules without premises) are translated as (unconditional) rewrite
rules, where the transition in the conclusion simply becomes the rewrite rule. Rules CR
and VarR are two examples.

vars D D’ : Dec . var rho : ENV . var n : Num .
var x : Var . var v v’ : Num . var F : FunVar .
var op : Op . vars e e’ : Exp . var be : BExp .
var el : ExpList . var xl : VarList . var vl : NumList .

rl [CR] : D,rho |- n => n .
rl [VarR] : D,rho |- x => rho(x) .

The rest of the semantic rules (with premises) are translated to conditional rewrite rules
where the main rewrite corresponds to the transition in the conclusion, and the rewrites
in the conditions correspond to the transitions in the premises. Conditions are ordered
(remember that they are checked sequentially from left to right), and therefore information
can flow from one condition to the next; this happens in the rule LocR below, where the
value of v is obtained in the first condition and is later used in the second.

crl [OpR] : D,rho |- e op e’ => Ap(op,v,v’)
if D,rho |- e => v /\ D,rho |- e’ => v’ .

crl [IfR1] : D,rho |- If be Then e Else e’ => v
if D,rho |- be => T /\ D,rho |- e => v .

crl [IfR2] : D,rho |- If be Then e Else e’ => v’
if D,rho |- be => F /\ D,rho |- e’ => v’ .

crl [LocR] : D,rho |- let x = e in e’ => v’
if D,rho |- e => v /\ D,rho[v / x] |- e’ => v’ .

The rule FunR presents a problem: the number of premises is not fixed, because it
depends on the concrete function call that has to be evaluated, specifically on the number
of arguments that it has. We solve this problem by considering the list of actual parameters
as a new syntactic category, consisting of non-empty lists of arithmetic expressions, and
we write a semantic rule that evaluates lists of expressions (with length at least two). The
modified rule FunR and the new rule ExpLR for the evaluation of lists of expressions are
the following:4

FunR

D,ρ � el=⇒Avl
D,ρ[vl/xl] � e=⇒Av

D,ρ � F(el)=⇒Av
F(xl) ⇐ e is in D

ExpLR
D,ρ � e=⇒Av D,ρ � el=⇒Avl

D,ρ � e,el=⇒Av,vl

4 Notice that there is no rule for the evaluation of the empty list, and that the single expression list is covered
by the previous rules (Fig. 2).

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 239

Their representation as rewrite rules is as follows:

*** call-by-value
crl [FunR] : D,rho |- F(el) => v

if D,rho |- el => vl /\ F(xl)<= e & D’ := D /\
D,rho[vl / xl] |- e => v .

crl [ExpLR] : D,rho |- e, el => v, vl
if D,rho |- e => v /\ D,rho |- el => vl .

*** rules for Boolean expressions
[...]

endm

Note how the condition F(xl)<= e & D’ := D in the rule FunR extracts from the set
of declarations D the declaration corresponding to the function F. The resolution of the
conditions through matching modulo associativity and commutativity binds variables xl,
e, and D’.

The module EVALUATION is an admissible module, directly executable in Maude 2.
Next we show some examples. In [36] this semantics is illustrated using as an example the
program 〈Rem(3,5),D〉, where D is the declaration of function Rem(x,y) that calculates
the remainder of dividing y by x. The set of declarations exDec1 given in the module
FPL-SYNTAX in Section 3.1 already includes a recursive declaration of the function Rem,

together with a recursive declaration of the factorial function Fac. The next command
evaluates the program above in our Maude implementation.

Maude> rew exDec1, mt |- FV(’Rem)(s(s(s(0))), s(s(s(s(s(0)))))) .
result Num: s(s(0))

Notice that this evaluation semantics does not allow partial evaluation because all the
right-hand sides of the rules are final values.

We can use the search command to check that a given expression can only be reduced
to a unique value.

Maude> search exDec1, mt |- FV(’Fac)(s(s(s(0)))) =>+ V:Num .
Solution 1 (state 1)
V:Num --> s(s(s(s(s(s(0))))))

No more solutions.

This command is also useful to prove that a given transition is possible in the semantics,
that is, that it is derivable by using the semantic rules. For example, the following execution
proves that the judgement D,ρ � Fac(2)=⇒A2 is derivable in the Fpl evaluation semantics,
where Fac is the factorial function.

Maude> search exDec1, mt |- FV(’Fac)(s(s(0))) =>+ s(s(0)) .
Solution 1 (state 1)
empty substitution

No more solutions.

240 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

We can also ask Maude to trace the rewriting process, showing us in which order
the rules are applied. In [76,73] we show some of these traces and compare them with
derivation trees.

We said above that the rule FunR corresponds to call-by-value. The alternative call-by-
name does not evaluate the parameters and simply substitutes them directly in the body of
the definition. The rule describing this behaviour is the following:

FunR′ D,ρ � e[e1/x1, . . . ,ek/xk]=⇒Av
D,ρ � F(e1, . . . ,ek)=⇒Av

F(x1, . . . ,xk) ⇐ e is in D

where a simultaneous substitution operation is used to substitute the expressions e1, . . . ,ek

in the actual parameters for variables x1, . . . ,xk in an expression e.
The definition of this substitution operation e[e′/v] has to take into account the peculi-

arities of free and bound variables, to avoid the capture of variables, and in such a way that
only free variables are substituted. This substitution may have to introduce new variables
that do not appear either in e or in e′. The following functional module SUBSTITUTION
defines this operation. In the case of simultaneous substitution e[e1/x1, . . . ,ek/xk], we
assume that the substituted variables only occur in e, so it is reduced to several simple
substitutions.

The operation new, given a (finite) set of variables VS, returns a variable not in VS. To
obtain this value variables z1, z2, etc., are tried until a variable not in the set is found. A
new variable is needed when substituting in a let expression that declares a variable also
occurring in the substituting expression.

The module has been abbreviated by omitting the equations defining the free variables
operation as well as auxiliary operations on sets of variables. The complete executable
module can be found in [76,73].

fmod SUBSTITUTION is
protecting FPL-SYNTAX . protecting CONVERSION .
sort VarSet . subsort Var < VarSet .
op mt : -> VarSet .
op _U_ : VarSet VarSet -> VarSet [assoc comm id: mt] .
eq x U x = x . *** idempotency
op FVar : Exp -> VarSet . *** free variables in an expression
op new : VarSet -> Var .
op new : VarSet Nat -> Var .
op newvar : Nat -> Var .
var n : Num . vars x y x’ : Var . vars e e’ e1 e2 : Exp .
var op : Op . var F : FunVar . var be : BExp .
var el : ExpList . var VS : VarSet . var N : Nat .
var xl : VarList .
eq new(VS) = new(VS, 1) .
eq new(VS, N) = if newvar(N) not-in VS then newvar(N)

else new(VS, N + 1) fi .
eq newvar(N) = V(qid("z" + string(N,10))) .

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 241

*** substitution of an expression for a variable
op _[_/_] : Exp Exp Var -> Exp .
eq y [e’ / x] = if x == y then e’ else y fi .
eq n [e’ / x] = n .
eq (e1 op e2) [e’ / x] = (e1 [e’ / x]) op (e2 [e’ / x]) .
eq (If be Then e1 Else e2) [e’ / x] =

If (be[e’ / x]) Then (e1[e’ / x]) Else (e2[e’ / x]) .
eq (let x = e1 in e2) [e’ / x] = let x = (e1 [e’ / x]) in e2 .
ceq (let y = e1 in e2) [e’ / x] =

let y = (e1 [e’ / x]) in (e2 [e’ / x])
if x =/= y /\ y not-in FVar(e’) .

ceq (let y = e1 in e2) [e’ / x] =
let x’ = (e1 [e’ / x]) in ((e2[x’ / y]) [e’ / x])
if x =/= y /\ y in FVar(e’) /\

x’ := new(FVar(e’) U FVar(e2)) .
eq F(el) [e’ / x] = F(el [e’ / x]) .

*** multiple simultaneous substitution
op _[_/_] : Exp ExpList VarList -> Exp .
eq e [e’, el / x, xl] = (e [e’ / x])[el / xl] .

endfm

Once the substitution is defined, we can write the rewrite rule that implements call-by-
name:

*** call-by-name
crl [FunR’] : D,rho |- F(el) => v

if F(xl)<= e & D’ := D /\ D,rho |- (e[el / xl]) => v .

We can test this semantics with the program 〈Rem(3,5),D〉, evaluated by the next
command:

Maude> rew exDec1, mt |- FV(’Rem)(s(s(s(0))), s(s(s(s(s(0)))))) .
result Num: s(s(0))

3.3. Computation semantics

In this section we implement a computation (or small step) semantics for the language
Fpl that describes the sequence of primitive operations that the evaluation of an expression
gives rise to. As in the evaluation semantics, variable environments and function declara-
tions are needed. The semantic judgements to evaluate arithmetic and Boolean expressions
are D,ρ� e−→A e′ and D,ρ� be−→B be′. The semantic rules that define these judgements
for −→A are shown in Fig. 3.

The modules AP, ENV, and SUBSTITUTION are used without modification. The fol-
lowing module COMPUTATION contains the implementation of the new semantic rules. The
same techniques as in the previous section are used. Note how the rule FunRc1 expresses
the non-deterministic choice of one of the arguments to be rewritten, by means of the

242 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

Fig. 3. Computation semantics for Fpl, −→A.

pattern matching between the list of arguments and the pattern el,e,el’ modulo associ-
ativity and identity (the empty list). This pattern also includes the cases with one or two
arguments, which are handled by making empty some of the lists.

mod COMPUTATION is
protecting AP . protecting ENV . protecting SUBSTITUTION .
sort Config . subsorts Num Boolean < Config .
op _,_|-_ : Dec ENV Exp -> Config [prec 40] .
vars D D’ : Dec . var rho : ENV . vars e e’ e’’ : Exp .
vars v v’ : Num . var op : Op . var x : Var .
var be : BExp . var F : FunVar . vars el el’ : ExpList .
var xl : VarList . var vl : NumList .
rl [VarRc] : D,rho |- x => rho(x) .
rl [OpRc1] : D,rho |- v op v’ => Ap(op,v,v’) .
crl [OpRc2] : D,rho |- e op e’ => e’’ op e’

if D,rho |- e => e’’ .
crl [OpRc3] : D,rho |- e op e’ => e op e’’

if D,rho |- e’ => e’’ .
crl [IfRc1] : D,rho |- If be Then e Else e’ => If be’ Then e Else e’

if D,rho |- be => be’ .
rl [IfRc2] : D,rho |- If T Then e Else e’ => e .
rl [IfRc3] : D,rho |- If F Then e Else e’ => e’ .
crl [LocRc1] : D,rho |- let x = e in e’ => let x = e’’ in e’

if D,rho |- e => e’’ .
rl [LocRc2] : D,rho |- let x = v in e’ => e’[v / x] .

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 243

crl [FunRc1] : D,rho |- F(el,e,el’) => F(el,e’,el’)
if D,rho |- e => e’ .

crl [FunRc2] : D,rho |- F(vl) => e[vl / xl]
if F(xl)<= e & D’ := D .

*** rules for Boolean expressions
[...]

endm

We can use this implementation of the computation semantics for evaluating the expres-
sion Rem(3,5), considered in the previous section.

Maude> rew exDec1, mt |- FV(’Rem)(s(s(s(0))), s(s(s(s(s(0)))))) .
result Exp: If Equal(s(s(s(0))),s(s(s(s(s(0)))))) Then 0
Else If Equal(s(s(s(s(s(0))))) - s(s(s(0))),0) Then s(s(s(s(s(0)))))

Else FV(’Rem)(s(s(s(0))),s(s(s(s(s(0))))) - s(s(s(0))))

What we have obtained is the resulting expression after the first step. Although the
module COMPUTATION is admissible, we cannot use it directly, in an easy way, to know to
which final value an expression is evaluated. The reason is that, since we are working now
with a computation semantics, each rule (or rewrite) represents one step. The right-hand
sides of the rewrite rules are expressions, although the left-hand sides are terms of sort
Config with a set of declarations, an environment, and an expression.5 In this way, the
application of these rules cannot be concatenated by using the transitivity rule of rewriting
logic, since once we apply a rule the resulting term does no longer match the left-hand side
of any rule. (On the other hand, this structure of their left-hand side ensures that the rules
are only applied at the top, thus avoiding undesired rewrite steps inside expressions, for
example.)

We can solve this problem by implementing the reflexive, transitive closure of trans-
itions −→A and −→B. Consider the first one; if we implemented it as follows:

rl [zero] : D,rho |- v => v . *** no step
crl [more] : D,rho |- e => v

if D,rho |- e => e’ *** one step
/\ D,rho |- e’ => v . *** all the rest

then we would have executability problems, since the rules zero and more themselves
could be used to try to resolve the first condition of rule more, giving rise to infinite loops.

5 A different representation of the computation semantics could use rewrites of the form (D,rho |- e) =>
(D,rho |- e’), but this would go against our intention of following as faithfully as possible the textbook
presentation of the semantics, and more important, it would go against the more general philosophy of not
repeating information that is not changed by the execution, typical of functional languages semantics.

244 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

Fig. 4. Modification of the rules without using substitutions.

To avoid this problem, we use a different constructor _,_|=_ to build the terms in the
left-hand side of these rules. In this way, we control which rules can be applied to resolve
each one of the conditions.

op _,_|=_ : Dec ENV Exp -> Config [prec 40] .

rl [zero] : D,rho |= v => v .
crl [more] : D,rho |= e => v

if D,rho |- e => e’ /\ D,rho |= e’ => v .

Now we can use the complete implementation for evaluating the expression Rem(3,5).

Maude> rew exDec1, mt |= FV(’Rem)(s(s(s(0))), s(s(s(s(s(0)))))) .
result Num: s(s(0))

The semantic rules in Fig. 3 use the syntactic substitution of values for variables in an
expression. However, environments were precisely introduced with the purpose of keeping
the bindings between variables and values, so it could be preferable not hiding part of this
goal by using substitutions. One way of removing the use of substitutions is to define the
semantic rules LocRc and FunRc as it is done in Fig. 4.

The following rewrite rules implement these new semantic rules. We have used an
auxiliary operation buildLet to build the result expression in the second rule FunRc.
Specifically, the operation buildLet takes as arguments a list x1, . . . ,xn of variables, a list
v1, . . . ,vn of values such that vi is the value to which variable xi has to be bound, and an
expression e, and it returns the expression let x1 = v1 in . . . let xn = vn in e. The following
equations define it recursively on the received lists.

op buildLet : VarList NumList Exp -> Exp .
eq buildLet(nil, nil, e) = e .
eq buildLet(x, v, e) = let x = v in e .
eq buildLet((x,xl), (v,vl), e) = let x = v in buildLet(xl, vl, e) .

crl [LocRc1] : D,rho |- let x = e in e’ => let x = e’’ in e’
if D,rho |- e => e’’ .

crl [LocRc2] : D,rho |- let x = v in e => let x = v in e’

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 245

if D,rho[v / x] |- e => e’ .
rl [LocRc3] : D,rho |- let x = v in v’ => v’ .
crl [FunRc1] : D,rho |- F(el,e,el’) => F(el,e’,el’)

if D,rho |- e => e’ .
crl [FunRc2] : D,rho |- F(vl) => buildLet(xl, vl, e)

if F(xl)<= e & D’ := D .

We can evaluate again the expression Rem(3,5) with the new semantics. The result
obviously coincides with the one obtained previously.

Maude> rew exDec1, mt |= FV(’Rem)(s(s(s(0))), s(s(s(s(s(0)))))) .
result Num: s(s(0))

4. The imperative language WhileL

In this section we present two operational semantics for a simple imperative program-
ming language called WhileL in [36]. A program is a sequence of commands that can
modify the memory, which is a collection of addresses where values are stored. As we
have done for the functional language Fpl, we first describe the implementation of an
evaluation semantics for WhileL and then the implementation of a computation semantics
for the same language.

We have also implemented the semantics of the guarded command language GuardL in
[36], which is a generalization of the language WhileL obtained by allowing non-
determinism; see [76,73].

4.1. Imperative syntax definition

The abstract syntax for the language WhileL is shown in Fig. 5, and it is implemented
in the module WHILE-SYNTAX. Notice again how the signature structure faithfully corres-
ponds to the grammar structure defined by the abstract syntax of the language. As we did
for Fpl, we add the sort Num of natural numbers with constructors 0 and s.

fmod WHILE-SYNTAX is
protecting QID .
sorts Var Num Op Exp BVar Boolean BOp BExp Com Prog .
op V : Qid -> Var .
subsorts Var Num < Exp .
op 0 : -> Num .
op s : Num -> Num .
ops + - * : -> Op .
op ___ : Exp Op Exp -> Exp [prec 20] .
op BV : Qid -> BVar .
subsorts BVar Boolean < BExp .
ops T F : -> Boolean .

246 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

ops And Or : -> BOp .
op ___ : BExp BOp BExp -> BExp [prec 20] .
op Not_ : BExp -> BExp [prec 15] .
op Equal : Exp Exp -> BExp .
op skip : -> Com .
op _:=_ : Var Exp -> Com [prec 30] .
op _;_ : Com Com -> Com [assoc prec 40] .
op If_Then_Else_ : BExp Com Com -> Com [prec 50] .
op While_Do_ : BExp Com -> Com [prec 60] .
subsort Com < Prog .

endfm

4.2. Evaluation semantics

The evaluation semantics for WhileL is given by means of three relations: =⇒A, =⇒B,
and =⇒C, corresponding to each one of the syntactic categories Exp (arithmetic expres-
sions), BExp (Boolean expressions), and Com (commands). Environments are also used
to keep the value of variables. However, here the variables play a quite different role to
that played in the functional language Fpl; now they represent memory addresses and,
as said above, computation proceeds by modifying the contents of this memory. There-
fore, although we reuse in the Maude code the same module ENV, we use the “memory”
terminology in the text.

The evaluation relation =⇒A for arithmetic expressions (Fig. 6) takes a pair containing
an expression and a memory, and it returns a value, the result of evaluating the expres-
sion in this memory. The module EVALUATION-EXP implements the relation =⇒A. The
evaluation relation =⇒B for Boolean expressions is similar and is not shown here (see
[76,73]).

Fig. 5. Abstract syntax for WhileL.

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 247

Fig. 6. Evaluation semantics for WhileL, =⇒A.

The sort Config is used to describe the structure of a rule’s left-hand side, consisting
of a memory and an expression. Then Num is made a subsort of Config, thus ensuring that
both sides of a rule have a common sort.

mod EVALUATION-EXP is
protecting ENV . protecting AP .
sort Config . subsort Num < Config .
op <_,_> : Exp ENV -> Config .
var n : Num . var x : Var . var st : ENV .
vars e e’ : Exp . var op : Op . vars v v’ : Num .
rl [CR] : < n, st > => n .
rl [VarR] : < x, st > => st(x) .
crl [OpR] : < e op e’, st > => Ap(op,v,v’)

if < e, st > => v /\ < e’, st > => v’ .
*** rules for Boolean expressions
[...]

endm

The evaluation relation for commands =⇒C takes a pair containing a command and
a memory and it returns a new memory. Intuitively, the returned memory is the result of
modifying the initial memory by means of the executed command. In this way, a judgement
(C,s) =⇒C s′ means that when the command C is executed on the memory s, the execution
finishes and the final state of the memory is s′. The definition of the relation =⇒C is shown
in Fig. 7, and it is implemented in the module EVALUATION-WHILE.

mod EVALUATION-WHILE is
protecting EVALUATION-EXP .
subsort ENV < Config .
op <_,_> : Com ENV -> Config .
var x : Var . vars st st’ st’’ : ENV . var e : Exp .
var v : Num . var be : BExp . vars C C’ : Com .
crl [AsR] : < x := e, st > => st[v / x]

if < e, st > => v .
rl [SkipR] : < skip, st > => st .
crl [IfR1] : < If be Then C Else C’, st > => st’

if < be, st > => T /\ < C, st > => st’ .
crl [IfR2] : < If be Then C Else C’, st > => st’

248 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

Fig. 7. Evaluation semantics for WhileL, =⇒C .

if < be, st > => F /\ < C’, st > => st’ .
crl [ComR] : < C ; C’, st > => st’’

if < C, st > => st’ /\ < C’, st’ > => st’’ .
crl [WhileR1] : < While be Do C, st > => st

if < be, st > => F .
crl [WhileR2] : < While be Do C, st > => st’

if < be, st > => T /\
< C ; (While be Do C), st > => st’ .

endm

As an example of application of these rules let us consider the following program

z := 0;

While Not (Equal(x,0)) Do

z := z+ y;

x := x−1

that calculates the product x ∗ y and saves the result in z. We execute it starting with a
memory s where s(x) = 2, s(y) = 3, and s(z) = 1.

Maude> rew < V(’z) := 0 ;
(While Not Equal(V(’x), 0) Do

V(’z) := V(’z) + V(’y) ;
V(’x) := V(’x) - s(0)),

V(’x) = s(s(0)) V(’y) = s(s(s(0))) V(’z) = s(0) > .
result ENV: V(’x) = 0 V(’y) = s(s(s(0))) V(’z) = s(s(s(s(s(s(0))))))

4.3. Computation semantics

The basic commands in WhileL are assignments that modify the memory by changing
the value associated to a variable. A computation semantics for WhileL has to describe the

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 249

Fig. 8. Computation semantics for WhileL, −→C .

basic operations that each command can make, and in which order they are made. The
judgement (C,s) −→C (C′,s′) means that the command C can execute a basic operation
that changes the memory from s to s′, being C′ the remainder of C that has still to be
executed.

In this section, we assume that we are not interested in how arithmetic and Boolean
expressions are computed, so we do not define relations −→A and −→B, using instead
the evaluation relations =⇒A and =⇒B in the previous section. The rules defining the
relation −→C for commands are shown in Fig. 8, where (C,s)

√
indicates that the execu-

tion of command C has finished. The definition of this termination predicate is shown in
Fig. 9.

The implementation of these semantic rules is shown in the module COMPUTATION-WHILE
below. The termination predicate has also been implemented by means of rules, that rewrite
a pair containing a command and a memory to the constant Tick. Rewrite rules are needed
instead of equations, because the predicate definition uses transitions in the premises of
rules IfRt in Fig. 9.

mod COMPUTATION-WHILE is
protecting EVALUATION-EXP .
op <_,_> : Com ENV -> Config .
sort Config2 .
op (_,_) : Com ENV -> Config2 .
op Tick : -> Config2 .
var x : Var . vars st st’ : ENV . var e : Exp .

Fig. 9. Termination predicate for WhileL.

250 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

var v : Num . var be : BExp . vars C C’ C’’ : Com .
*** Computation semantics for WhileL
crl [AsRc] : < x := e, st > => < skip, st[v / x] >

if < e, st > => v .
crl [IfRc1] : < If be Then C Else C’, st > => < C’’, st’ >

if < be, st > => T /\
< C, st > => < C’’, st’ > /\ C =/= C’’ .

crl [IfRc2] : < If be Then C Else C’, st > => < C’’, st’ >
if < be, st > => F /\

< C’, st > => < C’’, st’ > /\ C’ =/= C’’ .
crl [ComRc1] : < C ; C’, st > => < C’’ ; C’, st’ >

if < C, st > => < C’’, st’ > /\ C =/= C’’ .
crl [ComRc2] : < C ; C’, st > => < C’’, st’ >

if (C, st) => Tick /\
< C’, st > => < C’’, st’ > /\ C’ =/= C’’ .

crl [WhileRc1] : < While be Do C, st > => < skip, st >
if < be, st > => F .

crl [WhileRc2] : < While be Do C, st > => < C ; (While be Do C), st >
if < be, st > => T .

*** Termination predicate for WhileL
rl [Skipt] : (skip, st) => Tick .
crl [IfRt1] : (If be Then C Else C’, st) => Tick

if < be, st > => T /\ (C, st) => Tick .
crl [IfRt2] : (If be Then C Else C’, st) => Tick

if < be, st > => F /\ (C’, st) => Tick .
crl [ComRt] : (C ; C’, st) => Tick

if (C, st) => Tick /\ (C’, st) => Tick .
endm

Note how in rule IfRc1, for example, the condition C =/= C’’ is used. This is needed
here because the resolution of condition < C, st > => < C’’, st’ > means rewriting
< C, st > zero or more times until the pattern < C’’, st’ > is matched. Since C’’

and st’ are not bound before the condition is solved, the first attempt consists in the zero
rewrites case, which matches < C’’, st’ >. To avoid this case (we want one step to be
made) we require C =/= C’’.6

We can execute the same example program from the previous section.

Maude> rew < V(’z) := 0 ;
(While Not Equal(V(’x), 0) Do

V(’z) := V(’z) + V(’y) ;

6 Notice that the idea of writing t =>+ t’ as an abbreviation for t => t’ /\ t =/= t’ is not appropriate
because it does not follow the Maude syntax for rewrite conditions as explained in Section 2.

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 251

V(’x) := V(’x) - s(0)),
V(’x) = s(s(0)) V(’y) = s(s(s(0))) V(’z) = s(0) > .

result Config: < skip, V(’x) = 0 V(’y) = s(s(s(0)))
V(’z) = s(s(s(s(s(s(0)))))) >

The command rew applies rewrite rules (following its default strategy) until no more
rules can be applied. The obtained result corresponds to the value returned by the evaluation
semantics, since both semantics are deterministic.

Here we do not need to implement explicitly the reflexive, transitive closure of transition
−→C, as we did in Section 3.3 for the computation semantics of Fpl, because now the left-
hand and right-hand sides of the rewrite rules have the same form, so the application of
rules can be concatenated. But we can use the command rew [n] to see which is the
obtained expression after the application of n rules. For example, after two applications of
rules, variable z has been set to 0 and the loop has been unfolded once.

Maude> rew [2] < V(’z) := 0 ;
(While Not Equal(V(’x),0) Do
V(’z) := V(’z) + V(’y) ;
V(’x) := V(’x) - s(0)),
V(’x) = s(s(0)) V(’y) = s(s(s(0))) V(’z) = s(0) > .

result Config: < V(’z) := V(’z) + V(’y) ;
V(’x) := V(’x) - s(0) ;
(While Not Equal(V(’x), 0) Do

V(’z) := V(’z) + V(’y) ; V(’x) := V(’x) - s(0)),
V(’x) = s(s(0)) V(’y) = s(s(s(0))) V(’z) = 0 >

5. Mini-ML

In this section we implement the evaluation semantics (or natural semantics) for the
functional language Mini-ML as described by Kahn in [46]. The abstract syntax, such as it
is defined in [46], is presented in Fig. 10. Notice how this syntax presentation is closer to
the signature of an algebraic specification, although numbers and identifiers need further
details. The syntax defines a λ-calculus extended with products, if, let, and letrec. In an
expression λP.E, P is a pattern, which is either an identifier, like the variable x, or a pair of
patterns (P1, P2), like the pattern (x,(y,z)).

The Mini-ML syntax is implemented by means of the following module:

fmod MINI-ML-SYNTAX is
protecting QID .
sort Num TruthVal Var .
op 0 : -> Num .
op s : Num -> Num .
ops true false : -> TruthVal .
op id : Qid -> Var .
sorts Exp Value Pat NullPat Lambda .
subsorts NullPat Var < Pat .

252 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

Fig. 10. Abstract syntax for Mini-ML.

op () : -> NullPat .
op (_,_) : Pat Pat -> Pat .
op (_,_) : Var Var -> Var .
subsorts TruthVal Num < Value .
op (_,_) : Value Value -> Value .
subsorts Value Var Lambda < Exp .
op _+_ : Exp Exp -> Exp [prec 20] .
op not : Exp -> Exp .
op _and_ : Exp Exp -> Exp .
op if_then_else_ : Exp Exp Exp -> Exp [prec 22] .
op (_,_) : Exp Exp -> Exp .
op __ : Exp Exp -> Exp [prec 20] .
op _._ : Pat Exp -> Lambda [prec 15] .
op let_=_in_ : Pat Exp Exp -> Exp [prec 25] .
op letrec_=_in_ : Pat Exp Exp -> Exp [prec 25] .

endfm

The Mini-ML semantics is defined in [46] by means of judgements of the form ρ �
E ⇒ α, where E is a Mini-ML expression, ρ is an environment, and α is the result of the
evaluation of E in ρ. Functions are handled like any other value; for example, they can be
passed as parameters to other functions, or returned as the value of an expression.

Semantic values are:
• integer values;
• Boolean values true and false;
• closures of the form [[λP.E,ρ]], where P is a pattern, E is an expression, and ρ is an

environment; and
• pairs of semantic values of the form (α,β), where of course α and β can also be pairs,

giving rise to trees of semantic values.

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 253

Fig. 11. Evaluation semantics for Mini-ML.

The semantic rules of Mini-ML, such as they are presented in [46], are shown in Fig. 11.
The implementation of the environments and the semantic rules, except for the operator

letrec which is problematic and will be treated afterwards, is quite straightforward fol-
lowing the ideas already described in the previous sections and is shown in the following
modules. Again, the sort Config is used to describe the structure in each side of a rule,
including as before the environment in the left-hand side. The operation _|-val-of_
is used to obtain the value associated to an identifier in an environment. We have made
explicit an addition operation on expressions, which is left implicit in the original paper.

fmod ENV is
including MINI-ML-SYNTAX .
sort Pair .
op _->_ : Pat Value -> Pair [prec 10] .
sort Env .
subsort Pair < Env .
op nil : -> Env .
op _*_ : Env Env -> Env [assoc id: nil prec 20] .
op Clos : Lambda Env -> Value .

endfm

mod MINI-ML-SEMANTICS is
protecting ENV .
sort Config .
op _|-_ : Env Exp -> Config [prec 40] .
op _|-val-of_ : Env Var -> Config [prec 40] .
subsort Value < Config .
vars RO RO1 : Env . vars N M : Num . vars P P1 P2 : Pat .
vars E E1 E2 E3 : Exp . vars I X : Qid . vars A B C : Value .
rl [number] : RO |- N => N .

254 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

crl [add] : RO |- E1 + E2 => C if
RO |- E1 => A /\ RO |- E2 => B /\ C := sum(A,B) .

op sum : Num Num -> Num .
eq sum(0,N) = N .
eq sum(s(N),M) = s(sum(N,M)) .
rl [true] : RO |- true => true .
rl [false] : RO |- false => false .
rl [lambda] : RO |- \ P . E => Clos(\ P . E, RO) .
crl [id] : RO |- id(I) => A

if RO |-val-of id(I) => A .
crl [if] : RO |- if E1 then E2 else E3 => A

if RO |- E1 => true /\ RO |- E2 => A .
crl [if] : RO |- if E1 then E2 else E3 => A

if RO |- E1 => false /\ RO |- E3 => A .
crl [pair] : RO |- (E1, E2) => (A, B)

if RO |- E1 => A /\ RO |- E2 => B .
crl [app] : RO |- E1 E2 => B

if RO |- E1 => Clos(\ P . E, RO1) /\
RO |- E2 => A /\ (RO1 * P -> A) |- E => B .

crl [let] : RO |- let P = E2 in E1 => B
if RO |- E2 => A /\ (RO * P -> A) |- E1 => B .

*** set VAL_OF
rl [val_of] : RO * id(I) -> A |-val-of id(I) => A .
crl [val_of] : RO * id(X) -> B |-val-of id(I) => A

if X =/= I /\ RO |- id(I) => A .
crl [val_of] : RO * (P1, P2) -> (A, B) |-val-of id(I) => C

if RO * P1 -> A * P2 -> B |-val-of id(I) => C .
endm

We evaluate now some of the expressions used as examples in [46]. For example, we
can illustrate the block structure of the language and the use of patterns with the following
expression, which is evaluated to 3.

let (x,y) = (2,3) in let (x,y) = (y,x) in x

Maude> rew nil |- let (id(’x), id(’y)) = (s(s(0)), s(s(s(0))))
in let (id(’x), id(’y)) = (id(’y), id(’x)) in id(’x) .

result Num: s(s(s(0)))

We can also use higher-order functions, like in

let succ = λx.x+1 in let twice = λ f .λx.(f (f x)) in ((twice succ) 0)

Maude> rew
nil |- let id(’succ) = (\ id(’x) . (id(’x) + s(0)))

in let id(’twice) = (\ id(’f) . (\ id(’x) .
(id(’f) (id(’f) id(’x)))))

in ((id(’twice) id(’succ)) 0) .
result Num: s(s(0))

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 255

However, the semantic rule for the operator letrec cannot be implemented in a direct
way, since the rule

crl [letrec] : RO |- letrec P = E2 in E1 => B if
(RO * P -> A) |- E2 => A /\ (RO * P -> A) |- E1 => B .

is not admissible due to the fact that the variable A in the first rewrite condition is a new
variable that appears both in the left-hand side and in the right-hand side of the rewrite
condition, and thus its value cannot be obtained by matching.

This requires to modify the (textbook) presentation of the semantic rule that defines
this operator. Since we work with call-by-value, it only makes sense to allow recursive
definitions of λ-abstractions; this kind of values is the only one for which we can guarantee
termination of its evaluation given that a λ-abstraction evaluates directly to a closure. For
this case, Reynolds presents in [61, p. 230] the following rule for letrec with only one
variable as parameter, and with v /= u:

ρ � (λv .e)(λu . letrec v = λu .e′ in e′) ⇒ α
ρ � letrec v = λu .e′ in e ⇒ α

The intuitive idea is that in the premise the recursive definition has been unfolded once.
Under call-by-value, the argument (λu . letrec v = λu .e′ in e′) can only be evaluated if it is
a function, which is then evaluated to a closure. A similar treatment of recursion appears
in the semantics of Standard ML [55].

We have generalized this rule to the Mini-ML case, where we can have definitions with
patterns:

ρ � (λP . E′) E∗ ⇒ α
ρ � letrec P = E in E′ ⇒ α

where P and E have the same form (regarding nesting), E contains only λ-abstractions, and
E∗ has the same form as E except that the body of each function has been substituted by a
letrec, as we have done in the previous (simple) case. The implementation in Maude, which
faithfully follows the corresponding formal definition of E∗, is the following one:

op e* : Pat Exp Exp -> Exp .

eq e*(P, E, \ P’ . E1) = \ P’ . (letrec P = E in E1) .
eq e*(P, E, (E1, E2)) = (e*(P, E, E1), e*(P, E, E2)) .

crl [letrec] : RO |- letrec P = E in E’ => A
if RO |- (\ P . E’) e*(P, E, E) => A .

Now we are ready to evaluate other examples in [46]:

letrec (even,odd) = (λx . if x = 0 then true else odd(x−1),
λx . if x = 0 then false else even(x−1))

in even(3).

Maude> rew
nil |- letrec (id(’even), id(’odd)) =

((\ id(’x) . (if (id(’x) = 0) then true

256 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

else (id(’odd) (id(’x) - s(0))))),
(\ id(’x) . (if (id(’x) = 0) then false

else (id(’even) (id(’x) - s(0)))))
)

in id(’even) s(s(s(0))) .
result TruthVal: false

6. CCS

In this section we describe in detail an implementation of the structural operational
semantics for Milner’s Calculus of Communicating Systems, CCS [54]. The main novelty
with respect to the implementation of the previous languages is the use of the frozen at-
tribute. We will also see how Maude can be used to implement other kinds of semantics, as
illustrated with the semantics of the Hennessy–Milner logic [38] on top of CCS; however,
in this logic example we will need to use also Maude’s metalevel.

First, we provide a very brief introduction to CCS. We assume a set A of names; the
elements of the set A = {a | a ∈ A} are called co-names, and the members of the (disjoint)
union L = A∪A are labels naming ordinary actions. The function a �→ a is extended to
L by defining a = a. There is a special action called silent action and denoted τ, intended
to represent internal behaviour of a system, and in particular the synchronization of two
processes by means of complementary actions a and a. Then the set of actions is L ∪{τ}.
The set of processes is intuitively defined as follows:
• 0 is the inactive process that does nothing.
• If α is an action and P is a process, α.P is the process that performs α and subsequently

behaves as P.
• If P and Q are processes, P+Q is the process that may behave as either P or Q.
• If P and Q are processes, P |Q represents P and Q running concurrently with possible

communication via synchronization of a pair of ordinary actions a and a.
• If P is a process and f : L → L is a (finite) relabelling function such that f (a) = f (a),

P[f] is the process that behaves as P but with the actions relabelled according to f ,
assuming f (τ) = τ.

• If P is a process and L ⊆ L is a (finite) set of ordinary actions, P\L is the process that
behaves as P but with the actions in L∪L prohibited.

• If P is a process, X is a process identifier, and X =def P is a defining equation where P
may recursively involve X , then X is a process that behaves as P.
As an example, we can define three mutually recursive processes (this example has been

taken from [66]):

Ven =def 2p.VenB+1p.VenL

VenB =def big.collectB.Ven

VenL =def little.collectL.Ven

The process Ven may accept, initially, a 2p or 1p coin. If a 2p coin is deposited, the big
button may be pressed, and a big item can be collected. If a 1p coin is deposited, the little
button may be pressed, and a little item can be collected. After an item is collected, the
vending machine goes back to the initial state.

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 257

Fig. 12. CCS operational semantics rules.

The intuitive explanation about the meaning of operators given above can be made
precise in terms of the structural operational semantics shown in Fig. 12, that defines a
labelled transition system for CCS processes. To simplify the presentation, we have already
assumed that the operators for summation and parallel composition are commutative and
associative, thus using a more abstract syntax and eliminating the need for symmetric cases
in the corresponding rules.

6.1. CCS syntax

We define the CCS syntax in Maude. Quoted identifiers are used to represent labels and
process identifiers. Notice the attributes assoc and comm for the summation and parallel
composition operators. All the non-constant operators for building processes have been
defined as frozen; we explain the reason for this in Section 6.2.

fmod CCS-SYNTAX is
protecting QID .
sorts Label Act ProcessId Process .
subsorts Qid < Label < Act .
subsorts Qid < ProcessId < Process .
op ˜_ : Label -> Label .
eq ˜ ˜ L:Label = L:Label .
op tau : -> Act .
op 0 : -> Process .
op _._ : Act Process -> Process [frozen prec 25] .
op _+_ : Process Process -> Process [frozen assoc comm prec 35] .
op _|_ : Process Process -> Process [frozen assoc comm prec 30] .
op _[_/_] : Process Label Label -> Process [frozen prec 20] .
op __ : Process Label -> Process [frozen prec 20] .

endfm

We represent full CCS, including (possibly recursive) process definitions by means of
contexts. We have defined these contexts together with operations to work with them in the
module CCS-CONTEXT below. It includes a constant context used to keep the definitions
of the process identifiers used in each CCS specification.

258 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

fmod CCS-CONTEXT is
protecting CCS-SYNTAX .
sort Context .
op _=def_ : ProcessId Process -> Context [prec 40] .
op nil : -> Context .
op _&_ : [Context] [Context] -> [Context] [assoc comm id : nil prec 42] .
op _definedIn_ : ProcessId Context -> Bool .
op def : ProcessId Context -> [Process] .
op context : -> Context .
vars X X’ : ProcessId .
var P : Process .
vars C C’ : Context .
cmb (X =def P) & C : Context if not(X definedIn C) .
eq X definedIn nil = false .
eq X definedIn (X’ =def P & C’) = (X == X’) or (X definedIn C’) .
eq def(X, (X’ =def P) & C’) = if X == X’ then P else def(X, C’) fi .

endfm

Notice how the union of contexts _ & _ is a partial operation defined at the level of kinds,
that is, [Context] instead of Context. The union of two contexts is a correct context, that is,
a term of sort Context, if the defined process identifiers are disjoint. The conditional mem-
bership assertion (introduced by the keyword cmb) establishes this fact, using the auxiliary
operation _definedIn_. The partial lookup operation def, for getting the definition of a pro-
cess identifier, is also defined at the kind level. The term def(X,C) is reduced to the definition
associated to the process identifier X in C if X is defined in C. Otherwise, such term does not
reduce, remaining at the level of kind [Context] as an error term.

For example, we can define the constant context as the concatenation of the declara-
tions for the three processes defining the vending machine.

eq context = (’Ven =def ’2p . ’VenB + ’1p . ’VenL) &
(’VenB =def ’big . ’collectB . ’Ven) &
(’VenL =def ’little . ’collectL . ’Ven) .

6.2. Implementation of CCS operational semantics

In order to implement the CCS semantics in Maude with transitions as rewrites, we
want to interpret a CCS transition P a−−→ P′ as a rewrite. However, rewrites have no labels,
which are essential in the CCS semantics; therefore, we instead make the label a part of
the resulting term, obtaining in this way a rewrite of the form P −→ {a}P′, where {a}P′

is a value of sort ActProcess, a supersort of Process. The following module, which is
an admissible module [17] and therefore directly executable, includes the CCS semantics
implementation.

mod CCS-SEMANTICS is
protecting CCS-CONTEXT .
sort ActProcess .
subsort Process < ActProcess .

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 259

op {_}_ : Act ActProcess -> ActProcess [frozen] .
vars L M : Label . var A : Act .
vars P P’ Q Q’ : Process . var X : ProcessId .
*** Prefix
rl [Pref] : A . P => {A}P .
*** Summation
crl [Sum] : P + Q => {A}P’ if P => {A}P’ .
*** Composition
crl [Par1] : P | Q => {A}(P’ | Q) if P => {A}P’ .
crl [Par2] : P | Q => {tau}(P’ | Q’) if P => {L}P’ /\ Q => {˜ L}Q’ .
*** Relabelling
crl [Rel1] : P[M / L] => {M}(P’[M / L]) if P =>{L}P’ .
crl [Rel2] : P[M / L] => {˜ M}(P’[M / L]) if P =>{˜ L}P’ .
crl [Rel3] : P[M / L] => {A}(P’[M / L]) if P =>{A}P’ /\

A =/= L /\ A =/= ˜ L .
*** Restriction
crl [Res] : P \ L => {A}(P’ \ L) if P => {A}P’ /\

A =/= L /\ A =/= ˜ L .
*** Definition
crl [Def] : X => {A}P if (X definedIn context) /\

def(X,context) => {A}P .
endm

In this semantic representation, the rewrite rules have the property of being sort-
increasing, i.e., in a rewrite t −→ t ′, the least sort of t ′ is bigger than the least sort of t.
If we restrict ourselves to terms that are well formed in the sense that they can be assigned
a sort (and not only a kind), a rule cannot be applied unless the resulting term is well
formed, that is, it has a sort. For example, although A . P−→ {A}P is a correct transition,
we cannot derive (A . P) | Q −→ ({A}P) | Q because the right-hand side term is not
well formed. In this way, rewrites are only allowed to happen at the top of a process term,
and not inside the term.

However, this mechanism to block undesired sort-increasing rewrites is no longer im-
plemented in Maude 2, because in the current system design term rewriting can happen
at the level of kinds, and not only at the level of sorts, in order to allow error recovery.
Therefore, our solution has been to declare all the syntax operators as frozen, which
prevents the arguments of the corresponding operators from being rewritten by rules; see
module CCS-SYNTAX in Section 6.1. This has not been necessary in the previous sections,
because there all the additional structure (like environments) were put in the left-hand side
of the rules and this directly disallowed the application of rewrite rules inside terms (that
is, the congruence rule of rewriting logic could not be applied).

Moreover, in the presence of rewrite conditions and infinite processes (those with an
infinite number of successors), the frozen attribute will become much more useful, as we
are going to see right now. If we have the rewrite condition P => {A}Q, and assume that
the attribute frozen is not used, then P is tried to be rewritten in any possible way, and the
result is matched against the pattern {A}Q. For instance, if in a correct application of this
rule P is of the form (A . P’) | Q’, then P is rewritten to ({A}P’) | Q’ although then
the result is rejected. The problem appears when we have recursive processes, because the
built-in search that tries to satisfy the rewrite condition can become infinite and then not

260 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

terminate. For example, if P’ above is recursive, given by P’ = A . P’, then P is rewritten
to ({A}P’) | Q’, ({A}{A}P’) | Q’, etc.,

although all these results are going to be rejected because they are not well formed. Moreover,
these rewrites do not correspond to any transition in the CCS semantics, where transitions
always occur at the top of a process.

Although the frozen attribute solves the previous problem, it still appears when we
want to know all the possible rewrites of the above process P’ which are of the form {A}Q
with Q of sort Process (as we do in Section 6.4 to implement the modal logic semantics).
In this case, P’ is rewritten to {A}P’, but also to {A}{A}P’, {A}{A}{A}P’, etc.,

and only the first rewrite matches the pattern {A}Q. Thus, we have to declare also the
operator {_}_ as frozen.

In summary, we use the frozen attribute to ensure that rewrites happen only at the top
as well as to avoid infinite loops in the search process when we know that the search would
be unsuccessful, although the search may be unsuccessful for two different reasons: either
because the built terms are not well formed, as in ({A}P’) | Q’, and that is the reason
why the syntax operators are frozen; or because the terms do not match the given pattern,
as in {A}{A}P’, and that is the reason why {_}_ is frozen.

A disadvantage is that with the shape of rewrite rules in CCS-SEMANTICS and all the
constructor operators being declared as frozen, we have lost the ability of proving that a
process can perform a sequence of actions, or trace, because the rules can only be used to
obtain one-step successors. The congruence rule of rewriting logic cannot be used because
the operators are frozen, and the transitivity rule cannot be used because all the rules rewrite
to something of the form {A}Q, and there is no rule with this pattern in the left-hand side.
This is not a problem if we want to use the semantics only in the definition of the modal
logic semantics, because there only one-step successors are needed.

However, we can solve this by extending the semantics with rules that generate the
transitive closure of the CCS transitions as follows:

sort TProcess .
subsort TProcess < ActProcess .
op [_] : Process -> TProcess [frozen] .
crl [refl] : [P] => {A}Q if P => {A}Q .
crl [tran] : [P] => {A}AP if P => {A}Q /\ [Q] => AP .

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 261

Notice how we use the “dummy” operator [_]. If we did not use it in the left-hand
side of the above rules, the left-hand side of both the head of the rule and the rewrites in
conditions would be variables that match any term and then the rule itself could be used
in order to solve its first condition, giving rise to an infinite loop. In addition, the dummy
operator has also been declared as frozen in order to avoid useless rewrites like for example
[A . P] −→ [{A}P]. This dummy operator is used to control which rules we want
to be applied to resolve the conditions in rules refl and tran. This is a similar technique
to that used in Section 3.3 when a different operator _,_|=_ was used to represent the
reflexive, transitive closure of the transition relation −→A.

The resulting representation of CCS, with these two last rules, is semantically correct
in the sense that given a CCS process P, there are processes P1, . . . ,Pk such that

P
a1−→ P1

a2−→ ·· · ak−→ Pk

if and only if [P] can be rewritten into {a1}{a2}...{ak}Pk (see [49]).
By using the Maude 2 search command, we can find all the possible one-step suc-

cessors of a process, or all the successors after performing a given action.

Maude> search ’a . ’b . 0 | ˜ ’a . 0 =>+ AP:ActProcess .
Solution 1 (state 1)
AP:ActProcess --> {˜ ’a}0 | ’a . ’b . 0

Solution 2 (state 2)
AP:ActProcess --> {’a}’b . 0 | ˜ ’a . 0

Solution 3 (state 3)
AP:ActProcess --> {tau}0 | ’b . 0

No more solutions.

Maude> search ’a . ’b . 0 + ’c . 0 =>+ {’a}AP:ActProcess .
Solution 1 (state 2)
AP:ActProcess --> ’b . 0

No more solutions.

If we add the following equation to the module CCS-SEMANTICS, defining the recursive
process ’Proc in the CCS context, we prove that ’Proc can perform the trace ’a ’b ’a:

eq context = ’Proc =def ’a . ’b . ’Proc .

Maude> search [1] [’Proc] =>+ {’a}{’b}{’a}X:Process .
Solution 1 (state 5)
X:Process --> ’b . ’Proc

We have asked Maude to search for just one way ([1]) in which the term [’Proc]
can be rewritten into the pattern {’a}{’b}{’a}X:Process. The search command per-
forms a breadth-first search in the conceptual tree of all possible rewrites of term [’Proc],
and since there is a solution, it finds it. However, if we asked to search for more solutions,
the search would not terminate, although there are no more solutions, because the search
tree is infinite. Notice that looking in an infinite tree for a solution that does not exist charac-
terizes nontermination for this kind of search.

262 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

6.3. Extension to weak transition semantics

Another important transition relation defined for CCS, P
a=⇒ P′, does not observe τ

transitions [54]. It is defined in the first row of Fig. 13, where
τ−→∗ denotes the reflexive,

transitive closure of τ−−→ , which is also defined as indicated in the second row of Fig. 13.
We can also implement this transition relation by means of rewrites; a transition

P
τ−→∗ P will be represented as a rewrite P −→ {τ}∗ P′ and a transition P

a=⇒ P′ will
be represented as a rewrite P −→ {{a}}P′. We use again the technique of introducing
“dummy” operators to prevent undesired uses of the new rewrite rules in the verification of
the rewrite conditions. The proposed implementation is as follows:

sorts Act*Process ObsActProcess .
op {tau}*_ : Process -> Act*Process [frozen] .
op {{_}}_ : Act Process -> ObsActProcess [frozen] .
sort WProcess .
subsorts WProcess < Act*Process ObsActProcess .
op |_| : Process -> WProcess [frozen] .
op <_> : Process -> WProcess [frozen] .
rl [Refl*] : | P | => {tau}* P .
crl [Tran*] : | P | => {tau}* R if P => {tau}Q /\

| Q | => {tau}* R .
crl [Weak] : < P > => {{A}} P’ if | P | => {tau}* Q /\

Q => {A}Q’ /\
| Q’ | => {tau}* P’ .

Notice that both the new semantics operators, {tau}*_ and {{_}}_, as well as the
dummy operators, |_| and <_>, are declared as frozen, for the same reasons already
explained in Section 6.2.

We can use the search command to look for all the weak successors of a given process
after performing action ’a.

Maude> search < tau . ’a . tau . ’b . 0 > =>+ {{ ’a }}AP:ActProcess .
Solution 1 (state 2)
AP:ActProcess --> tau . ’b . 0

Fig. 13. CCS weak transition.

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 263

Fig. 14. Modal logic satisfaction relation.

Solution 2 (state 3)
AP:ActProcess --> ’b . 0

No more solutions.

6.4. Hennessy–Milner modal logic

We now want to implement the Hennessy–Milner modal logic for describing local cap-
abilities of CCS processes [38,66]. Formulas are built according to the following grammar:

Φ ::= tt | ff | Φ1 ∧Φ2 | Φ1 ∨Φ2 | [K]Φ | 〈K〉Φ | [[K]]Φ | 〈〈K〉〉Φ,

where K is a (finite) set of actions. The satisfaction relation describing when a process P
satisfies a property Φ, denoted P |= Φ, is inductively defined in Fig. 14.

We have that any process satisfies the formula tt and none satisfies the formula ff. A
process P satisfies the formula Φ1 ∧Φ2 if it satisfies both Φ1 and Φ2, and it satisfies the
formula Φ1 ∨Φ2 if it satisfies either Φ1 or Φ2. A process P satisfies the formula [K]Φ built
with the universal (box) modal operator if all the one-step successors of P after performing
an action in the set K satisfy the formula Φ. On the other hand, a process P satisfies the
formula 〈K〉Φ built with the existential (diamond) modal operator if at least one of its
K successors satisfies Φ. The modal operators [[]] and 〈〈 〉〉 refer to the case in which
successors are obtained by means of the weak transition relation.

Since the definition of the satisfaction relation uses the transitions of CCS, we could try
to implement it at the same level, with rules like the following ones:

rl [and] : P |= Phi /\ Psi => true if P |= Phi => true /\
P |= Psi => true .

rl [dia] : P |= < A > Phi => true if P => {A}Q /\ Q |= Phi => true .

which implement the behaviour of the conjunction and of the existential modal operator.
These rules are correct, and they exactly represent what the satisfaction relation of the

modal logic expresses. For example, the condition of the second rule represents that there
exists a process Q such that P a−−→ Q and Q |= Φ, which is the definition of the diamond
modal operator. That is because the variable Q is (implicitly) existentially quantified in
the rule condition. But we find a problem with the definition of the box modal operator,
because it uses a universal quantifier over the possible transitions of a process. If we want
to work with all the possible one-step rewrites of a term, we need to go up to the metalevel.

264 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

By using the operation metaSearch, we have defined an operation succ that returns all the
(metarepresented) successors of a process after performing actions in a given finite set.

The definition of the operation succ in the module SUCC below uses two auxiliary op-
erations. The evaluation of allOneStep(T,N,X) returns all the one-step rewrites of term
T (skipping the first N solutions) that match the pattern X by using rules in the module MOD
(the metarepresentation of CCS-SEMANTICS denoted by the term [’CCS-SEMANTICS] in the
module SUCC shown below). The evaluation of filter(F,TS,AS) returns the metarepres-
ented processes P such that the term F[A,P] is in TS and A is in AS. In order to look for the
term A in the term set AS, we compare terms in the module MOD. This is because different
metarepresented terms, like ’’a.Qid and ’’a.Act, can represent the same action in the
module CCS-SEMANTICS. The operation filter is used in the definition of succ(T,TS) to
remove from all the successors of process T those processes that are reached by performing
an action not in the set TS.

Having defined these operations in such a general form, we can implement the operation
wsucc that returns all the weak successors with the same operations.

fmod SUCC is
protecting META-LEVEL .
op MOD : -> Module .
eq MOD = [’CCS-SEMANTICS] .
sort TermSet .
subsort Term < TermSet .
op mt : -> TermSet .
op _U_ : TermSet TermSet -> TermSet [assoc comm id: mt] .
op _isIn_ : Term TermSet -> Bool .
op allOneStep : Term Nat Term -> TermSet .
op filter : Qid TermSet TermSet -> TermSet .
op succ : Term TermSet -> TermSet .
op wsucc : Term TermSet -> TermSet .
var M : Module . var F : Qid . vars T T’ X : Term .
var N : Nat . vars TS AS : TermSet .
eq T isIn mt = false .
eq T isIn (T’ U TS) =

(getTerm(metaReduce(MOD, ’_==_[T,T’])) == ’true.Bool)
or (T isIn TS) .

eq filter(F, mt, AS) = mt .
ceq filter(F, X U TS, AS) =

(if T isIn AS then T’ else mt fi) U filter(F, TS, AS)
if F[T,T’] := X .

eq allOneStep(T,N,X) =
if metaSearch(MOD, T, X, nil, ’+, 1, N) == failure then mt
else getTerm(metaSearch(MOD, T, X, nil, ’+, 1, N)) U

allOneStep(T, N + 1, X) fi .
eq succ(T,TS) = filter((’‘{_‘}_),

allOneStep(T, 0, ’AP:ActProcess), TS) .
eq wsucc(T,TS) = filter((’‘{‘{_‘}‘}_),

allOneStep(’<_>[T], 0, ’OAP:ObsActProcess), TS) .
endfm

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 265

Using the operations succ and wsucc we have equationally implemented the satisfaction
relation of the modal logic. Notice how the semantics for the modal operators is defined
by unfolding to a conjunction or disjunction where the successors of the given process are
used.

fmod MODAL-LOGIC is
protecting SUCC .
sort HMFormula .
ops tt ff : -> HMFormula .
ops _/_ _\/_ : HMFormula HMFormula -> HMFormula .
ops <_>_ [_]_ : TermSet HMFormula -> HMFormula .
ops <<_>>_ [[_]]_ : TermSet HMFormula -> HMFormula .
ops forall exists : TermSet HMFormula -> Bool .
op _|=_ : Term HMFormula -> Bool .
var P : Term . vars K PS : TermSet . vars Phi Psi : HMFormula .
eq P |= tt = true .
eq P |= ff = false .
eq P |= Phi /\ Psi = P |= Phi and P |= Psi .
eq P |= Phi \/ Psi = P |= Phi or P |= Psi .
eq P |= [K] Phi = forall(succ(P, K), Phi) .
eq P |= < K > Phi = exists(succ(P, K), Phi) .
eq P |= [[K]] Phi = forall(wsucc(P, K), Phi) .
eq P |= << K >> Phi = exists(wsucc(P, K), Phi) .
eq forall(mt, Phi) = true .
eq forall(P U PS, Phi) = P |= Phi and forall(PS, Phi) .
eq exists(mt, Phi) = false .
eq exists(P U PS, Phi) = P |= Phi or exists(PS, Phi) .

endfm

Using two examples from [66], we show how we can prove in Maude that a modal
formula is satisfied by a CCS process. The first example deals with the vending machine
defined just before Section 6.1.

One of the properties that the vending machine satisfies is that buttons cannot be pressed
initially, that is, before a coin is inserted. We can prove in Maude that Ven |= [big,
little]ff:

Maude> red ’’Ven.Qid |= [’’big.Act U ’’little.Act] ff .
result Bool: true

It also satisfies that after a coin is deposited and the corresponding button is pressed, an
item (big or little) can be collected.

Maude> red ’’Ven.Qid |= [’’1p.Act U ’’2p.Act]
[’’big.Act U ’’little.Act]
< ’’collectB.Act U ’’collectL.Act > tt .

result Bool: true

266 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

We can also prove that a process does not satisfy a given formula. For example, we can
prove that after inserting a coin 1p in the vending machine, it is not possible to press button
big and collect a big item.

Maude> red ’’Ven.Qid |= < ’’1p.Act > < ’’big.Act >
< ’’collectB.Act > tt .

result Bool: false

The second example deals with a railroad crossing system specified as follows:

eq context = (’Road =def ’car . ’up . ˜ ’ccross . ˜ ’down . ’Road) &
(’Rail =def ’train . ’green . ˜ ’tcross . ˜ ’red . ’Rail) &
(’Signal =def ˜ ’green . ’red . ’Signal + ˜ ’up . ’down . ’Signal) &
(’Crossing =def ((’Road | (’Rail | ’Signal))

\ ’green \ ’red \ ’up \ ’down)) .

The system consists of three components: Road, Rail, and Signal. Actions car and
train represent the approach of a car and a train, up opens the gates for the car, ccross is
the car crossing, down closes the gates, green is the receipt of a green signal by the train,
tcross is the train crossing, and red sets the light red.

The process ’Crossing satisfies that when a car and a train arrive at the crossing,
exactly one of them has the possibility to cross it.

Maude> red ’’Crossing.Qid |= [[’’car.Act]] [[’’train.Act]]
((<< ’˜_[’’ccross.Act] >> tt) \/ (<< ’˜_[’’tcross.Act] >> tt)) .

result Bool: true
Maude> red ’’Crossing.Qid |= [[’’car.Act]] [[’’train.Act]]

((<< ’˜_[’’ccross.Act] >> tt) /\ (<< ’˜_[’’tcross.Act] >> tt)) .
result Bool: false

7. Full LOTOS

In this section, we go one step further in the implementation of structural operational
semantics, by presenting a complete tool, implemented completely in Maude, where Full
LOTOS specifications can be entered and executed.

LOTOS (Language of Temporal Ordering Specification) [45] is a formal description
technique developed within ISO for the formal specification of open distributed systems.
As in the case of CCS, it is based on the intuitive and well known black box analogy
[54] where systems are described as black boxes with buttons, that represent their entire
capability of communication. The basic idea is that systems can be specified by defining the
temporal relation among the interactions that constitute the externally observable behaviour
of a system. As stated in [54] “the behaviour of a system is exactly what is observable, and
to observe a system is exactly to communicate with it”.

LOTOS is composed of a behaviour description part based on process algebras, bor-
rowing ideas from CCS [54] and CSP [41], for describing systems, and an algebraic
language (ACT ONE [28]) to describe the abstract data types. The union of the behaviour

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 267

and data type description parts is known as Full LOTOS; we normally use here the term
LOTOS to refer to the whole language. LOTOS became an international standard (IS-
8807) in 1989; since then LOTOS has been used to describe hundreds of systems, and
most of this success is due to the existence of tools where specifications can be executed,
compared, and analyzed. A lot of work has been done regarding LOTOS implementations
[35,34,27,21,30].

LOTOS is a large language and a complete presentation is outside the scope of this
paper. We present below a brief introduction and refer the reader to [45,2] for more in-
formation.

The main components of LOTOS are actions and processes. The basic processes are
stop (indicating inaction) and exit(ep1, . . . ,epn) (indicating successful termination with
data values). Actions occur at gates, and may have data offers associated with them. Action
g d1 . . .dn occurs at gate g with data offers d1 . . .dn. A data offer can be a value (denoted by
!, e.g., g!2) or a variable over a set of values (denoted by ?, e.g., g?x:Nat). Actions may be
subject to selection predicates, written g d1 . . .dn[SP], where SP is a Boolean condition that
may restrict the allowed data values. There are two special actions: i, the internal event,
and δ which is the successful termination event.

Actions and processes are combined using the following operators:
Action prefixing: g d1 . . .dn ; P, meaning “behave like the action g d1 . . .dn and then

behave like the process P”.
Choice: P1 []P2, meaning “behave either like P1 or like P2”. Another version of choice non-

deterministically chooses a gate name from a given list, choice g in [g1, . . . ,gn][] P.
Parallelism: P1 |[g1, . . . ,gn]| P2, “meaning perform the behaviours P1 and P2 in parallel,

synchronizing on actions in the list g1, . . . ,gn”.
Enable: P1 >> P2, meaning “behave like P1 and when that terminantes successfully, be-

have like P2”.
Disable: P1 [> P2, meaning “behave like P1, but at any time (before P1 finishes) P2 may

interrupt and assume control”.
Guard: [SP]-> P, meaning “behave as P if the Boolean condition SP is satisfied”.
Hide: hide G in P, meaning “behave like P, but if an action in G occurs then convert it to

the internal action i”.
Renaming: P[S] allows the gate names in P to be renamed, according to the function S.
Variable declaration: let x1=E1,. . .,xn=En in P, meaning “bind xi to the value Ei in P”.

For example, the following term represents a process that is able to receive a natural
number smaller that 10 at gate g (and bind that value to variable x), then receive a natural
number at gate h, and then send the value in x through gate h before finishing:

g?x:Nat [x < 10]; h?y:Nat; h!x;stop

The standard defines LOTOS semantics by means of labelled transition systems, where
each data variable is instantiated with every possible value of its corresponding type, result-
ing in infinite transition systems (both in breadth and in depth). Fig. 15 shows the labelled
transition system for the LOTOS process given above. That is the reason why most of the
tools ignore or restrict the use of data types. Calder and Shankland [12] have defined a
symbolic semantics for LOTOS which gives meaning to symbolic, or data parameterised
processes (see Section 7.1) and avoids infinite branching.

In this section we focus on the use of rewriting logic and Maude to implement, following
the transitions as rewrites approach, a complete formal tool based on a symbolic semantics
where LOTOS specifications can be executed without having to impose restrictions in their

268 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

Fig. 15. Standard semantics: labelled transition system.

data types. The reflective features of rewriting logic and the good properties of Maude as
a metalanguage [16] make it possible to implement the whole tool in the same semantic
framework. Specifically, we have obtained an efficient implementation of the operational
semantics of the behaviour part of LOTOS, which has been integrated with ACT ONE spe-
cifications that are automatically translated to functional modules in Maude, and finally we
have built an entire environment with parsing, pretty printing, and input/output processing
of LOTOS specifications. Our aim has been to implement a formal tool that can be used
by everyone without knowledge of the concrete implementation, but where the semantics
representation is at a sufficiently abstract level that it can be understood and modified by
anybody familiar with operational semantics.

7.1. LOTOS symbolic semantics

The implementation of the LOTOS symbolic semantics given here is based on the work
presented in [12] by Calder and Shankland. A symbolic semantics for LOTOS is given by
associating a symbolic transition system with each LOTOS behaviour expression P. Fol-
lowing [37], Calder and Shankland define symbolic transition systems (STS) as transition
systems which separate the data from process behaviour by making the data symbolic. STS
are labelled transition systems with variables, both in states and transitions, and conditions
which determine the validity of a transition. A symbolic transition system consists of:
• A (non-empty) set of states. Each state T is associated with a set of free variables,

denoted fv(T).
• A distinguished initial state, T0.

• A set of transitions written as T b α−−−−−→ T ′, where α is an event and b is a Boolean
expression, such that fv(T ′) ⊆ fv(T)∪ fv(α) and fv(b) ⊆ fv(T)∪ fv(α).

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 269

Fig. 16. Symbolic transition system.

In the symbolic semantics, open behaviour expressions label states (for example,
h!x;stop), and transitions offer variables, under some conditions; these conditions de-
termine the set of values which may be substituted for variables.

In [12] the intuition and key features of this semantics are presented, together with
axioms and inference rules for each LOTOS operator. We will present some of them,
together with their representation in Maude, in Section 7.2.2. Fig. 16 shows an example
of STS.

As we will see in Section 7.2.3, the obtained representation is itself executable, although
without values, apart from the predefined Booleans. The LOTOS symbolic semantics is
parameterized over the set of values and data expressions; for this reason, if we want to
build a usable formal tool, we also need to handle data types, specified using ACT ONE
[28].

Instead of defining a data type for representing ACT ONE modules in Maude and oper-
ations to represent the reduction process in ACT ONE, we have implemented an automatic
translation from ACT ONE modules into functional modules in Maude. We are then able to
use Maude’s high-performance reduction engine. We present in Section 7.3 this translation
and then show how the modules are extended to be used by the semantics.

In Section 7.4 we show how the semantics implementation and the ACT ONE modules
translation are integrated to build an entire environment for our formal tool, where LOTOS
specifications with complete freedom in their data types and (possibly recursive) process
definitions, can be entered and executed by means of a user interface that completely hides
the concrete implementation details.

7.2. LOTOS symbolic semantics in Maude

In order to implement the LOTOS symbolic semantics in Maude following the trans-

itions as rewrites approach, we interpret a LOTOS transition T b α−−−−−→ T ′ as a rewrite
T −→ {b}{α}T ′. Since the rewriting logic arrow has no labels, we write them as part of
the right-hand side term, as we did in the CCS case (see Section 6.2).

In the following, the Maude modules will be abbreviated due to space reasons; the
complete code can be found in [72].

7.2.1. LOTOS syntax
There are two different types of syntax: the concrete syntax used by the specifier (see

[72], for full details), and the abstract syntax used by the semantic definition and imple-
mentation and introduced in this section. It is defined in the Maude functional module
LOTOS-SYNTAX, which includes DATAEXP-SYNTAX. We use the predefined quoted identi-
fiers to build LOTOS variable, sort, gate, and process identifiers. Booleans are the only
predefined data type. LOTOS syntax is extended in a user-definable way when ACT ONE

270 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

data types specifications are used. Values of these data types will extend the type DataExp
below. We shall see how this is done in Section 7.3.

fmod DATAEXP-SYNTAX is
protecting QID .
sort VarId .
op V : Qid -> VarId .
sort DataExp .
subsort VarId < DataExp . *** A LOTOS variable is a data expression.
subsort Bool < DataExp . *** Booleans are a predefined data type.

endfm

fmod LOTOS-SYNTAX is
protecting DATAEXP-SYNTAX .
sorts SortId GateId ProcId .
op S : Qid -> SortId . op G : Qid -> GateId . op P : Qid -> ProcId .
sort BehExp .
op stop : -> BehExp .
op exit(_) : ExitParam -> BehExp .
op _;_ : Action BehExp -> BehExp [frozen prec 35] .
op _[]_ : BehExp BehExp -> BehExp [frozen prec 40] .
op _|[_]|_ : BehExp GateIdList BehExp -> BehExp [frozen prec 40] .
op hide_in_ : GateIdList BehExp -> BehExp [frozen prec 40] .
[...]

endfm

7.2.2. LOTOS symbolic semantics implementation
First, we define Contexts, which are used to keep the definitions of processes intro-

duced in a LOTOS specification. In order to execute a process instantiation, the process
definition has to be looked for in the context. The actual context is built when the LOTOS
specification is entered to the tool (we will see how this is done in Section 7.4.2). In the
semantics, a constant context is assumed, representing the collection of process defin-
itions. We could say that the semantics is parameterized over this constant, that will be
instantiated when a concrete specification is used.

fmod CONTEXT is
protecting LOTOS-SYNTAX .
sort Context .
op context : -> Context .
[...]

endfm

Now, we can implement the LOTOS symbolic semantics. First we show some opera-
tions used in the semantic definition that present problems when implementing them, and
how we have solved these problems in Maude.

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 271

In the semantics, a set new-var of fresh variable names is assumed. As mentioned in
[12], strictly speaking, any reference to this set requires a context, i.e., the variable names
occurring so far. Instead of complicating the implementation with this other context, we
have preferred to use a predefined Maude utility imported from module ORACLE, where a
constant NEWQ is defined. Each time NEWQ is rewritten, it is rewritten to a different quoted
identifier. With the following definition, we have the set of fresh variable names.

op new-var : -> VarId .
eq new-var = V(NEWQ) .

A (data) substitution is written as [z/x], where z is substituted for x. It seems to be
easy to implement equationally, and we present below some equations showing how the
substitution operation distributes over the syntax of behaviour expressions. However, if
we want to allow user-definable data expressions by means of an ACT ONE specifica-
tion, we cannot completely define this operation now, because we do not know at this
point the syntax of data expressions. We will describe in Section 7.3.1 how the module
containing the new syntax is automatically extended to define this operation on new data
expressions.

op _[_/_] : BehExp DataExp VarId -> BehExp .
op _[_/_] : DataExp DataExp VarId -> DataExp .
vars E E’ E1 : DataExp .
var g : GateId . var O : Offer . var SP : SelecPred .
var x : VarId . var b : TransCond . var GIL : GateIdList .
var S : SortId . var a : Event . vars P P’ P1 : BehExp .
eq stop [E’ / E] = stop .
eq g ! E1 ; P [E’ / E] = g ! (E1[E’ / E]) ; (P[E’ / E]) .
eq P1 [] P2 [E’ / E] = (P1[E’ / E]) [] (P2[E’ / E]) .
[...]

An operation vars, used to obtain the variables occurring in a behaviour expression,
gives rise to the same problem, that is, we cannot define it completely at this level since
data expressions syntax is user-definable. We will see in Section 7.3.1 how it is extended
automatically for new data expressions.

sort VarSet . subsort VarId < VarSet .
op mt : -> VarSet .
op _U_ : VarSet VarSet -> VarSet [assoc comm id: mt] .
eq x U x = x . *** idempotency
op vars : BehExp -> VarSet .
op vars : DataExp -> VarSet .
eq vars(stop) = mt .
eq vars(g ? x : S ; P) = x U vars(P) .
eq vars(P1 [] P2) = vars(P1) U vars(P2) .
eq vars(x) = x .
[...]

272 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

As mentioned above, a transition T b α−−−−−→ T ′, where T and T ′ are behaviour ex-
pressions, b is a transition condition, and α is an event, will be represented as a rewrite
T −→ {b}{α}T ′, where the right-hand side term is of sort TCondEventBehExp.

sort TCondEventBehExp .
subsort BehExp < TCondEventBehExp .
op {_}{_}_ : TransCond Event BehExp -> TCondEventBehExp [frozen] .

The operator {_}{_}_ used to build the values in the right-hand side of the rewrite rules
representing the semantic rules has been declared frozen. The reason is to avoid undesired
rewrites which can lead to infinite searches. In this way, with the command search or
the metalevel operation metaSearch we can obtain the one-step successors of a behaviour
expression.

The LOTOS symbolic semantics consists of 28 rules. We present some of those rules
and their representation as rewrite rules in Fig. 17; the complete set of rules can be found
in [72]. We also show the inference rules to ease the comparison between the mathemat-
ical and Maude representations. The inference rules are not exactly the ones presented in
[12]: we have generalized them to allow multiple event offers at an action, because this in
necessary in practice.

The rules for the prefix operator show how axioms are represented as rewrite rules
without conditions. The choice range rule shows how non-deterministic choice can be
made by using rewrite rules. The hide rules show how side conditions in the inference rules
are added as conditions in the rewrite rules. Finally, the general parallelism rule shows how
external definitions can be used, as the one defining the substitution (not shown in Fig. 17).

After having implemented all the semantics rules for behaviour expressions, we have
the following conservativity result: Given a LOTOS behaviour expression P, there are a
transition condition b, an event a, and a behaviour expression P′ such that

P b a−−−−−→ P′

if and only if P can be rewritten to {b}{a}P’ using the presented rules.
In [12], the concept of a term is also defined, consisting of an STS paired with a sub-

stitution. Transitions between terms are then defined. We have also implemented these
transitions in a way similar to the implementation of transitions for behaviour expressions
(see [72]).

7.2.3. Execution example
By using the Maude search command, we can find all the possible transitions of a

behaviour expression.

Maude> search
G(’g) ; G(’h) ; stop

|[G(’g)]|
(G(’a) ; stop [] G(’g) ; stop) =>+ X:TCondEventBehExp .

Solution 1 (state 1)
X:TCondEventBehExp --> {true}{G(’a)}G(’g) ; G(’h) ; stop |[G(’g)]| stop
Solution 2 (state 2)
X:TCondEventBehExp --> {true}{G(’g)}G(’h) ; stop |[G(’g)]| stop
No more solutions.

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 273

Fig. 17. Some LOTOS semantics rules and their implementation in Maude.

Maude> search G(’h) ; stop |[G(’g)]| stop =>+ X:TCondEventBehExp .
Solution 1 (state 1)
X:TCondEventBehExp --> {true}{G(’h)}stop |[G(’g)]| stop
No more solutions.

274 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

But we have to write behaviour expressions using the abstract syntax (like the gate
identifier G(’h)) and we cannot use data expressions, apart from the predefined Booleans,
because we have not introduced yet any ACT ONE specification. These specifications are
part of a Full LOTOS specification, and therefore are user-definable. We will see in the
following sections how to give semantics to ACT ONE specifications and how they can be
integrated with the previous LOTOS semantics implementation.

7.3. ACT ONE modules translation

We want to be able to introduce into our tool user-defined ACT ONE specifications,
which will then be translated internally to Maude functional modules.

We first have to define ACT ONE’s syntax. In Maude, the syntax definition for a lan-
guage L is accomplished by defining a data type GrammarL ; this can be done with very
flexible user-definable mixfix syntax, that can mirror the concrete syntax of L . Particular-
ities at the lexical level of L can be accommodated by user-definable bubble sorts, that
tailor the adequate notions of token and identifier to the language in question. Bubbles
correspond to pieces of a module in a language that can only be parsed once the grammar
introduced by the signature of the module is available [16]. This is specially important
when L has user-definable syntax, as it is our case with ACT ONE. The grammar of ACT
ONE is defined in a module ACTONE-GRAMMAR that can be found in [72].

The idea is that the syntax of a language that allows modules including syntactic char-
acteristics defined by the user can be seen in a natural way as a syntax with two different
levels: one that we can call the top level syntax of the language, and another one user-
definable that is introduced in each module. Bubble sorts allow us to reflect this dupli-
city of levels. In order to illustrate this concept, let us consider the following ACT ONE
specification defining natural numbers modulo 3:

type NAT3 is
sorts Nat3
opns
0 : -> Nat3
s_ : Nat3 -> Nat3

eqns
ofsort Nat

s s s 0 = 0 ;
endtype

The boxed character sequences are not part of the top-level syntax of ACT ONE. In fact,
they can only be parsed with the grammar associated to the signature in the specification
NAT3.

After having defined the module with ACT ONE syntax, we can use the metalevel
operation metaParse, which receives as arguments the representation of a module M and
the representation of a list of tokens, and returns the metarepresentation of the parsed term
(a parse tree that may have bubbles) of that list of tokens for the signature of M.

The next step consists in defining an operation translate that receives the parsed term
and returns a functional module with the same semantics as the introduced ACT ONE
specification. The syntactic analysis of possible bubbles is also done in this second step.

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 275

QidList
metaParse−−−−−→GrammarACT ONE

translate−−−−−−→FModule

Notice that we start with a QidList (a list of quoted identifiers), that is obtained from
the user input (see Section 7.4.3).

With our translation we immediately achieve the following result, because we are just
modifying the syntactic presentation of an algebraic specification: given an ACT ONE
specification SP, and terms t and t ′ in SP, we have

SP |= t ≡ t ′ ⇐⇒ M |= tM ≡ t ′M

where M = translate(metaParse(ACTONE-GRAMMAR,SP)), and tM and t ′M are the rep-
resentations of t and t ′ in M.

Before presenting in more detail how the translation is implemented, let us see how
these two steps are performed with the previous example module NAT3. If we execute the
operation metaParse with the metarepresented module ACTONE-GRAMMAR (which contains
the top level syntax of ACT ONE) and the following list of quoted identifiers

’type ’NAT3 ’is
’sorts ’Nat3
’opns
’0 ’: ’-> ’Nat3
’s_ ’: ’Nat3 ’-> ’Nat3

’eqns
’ofsort ’Nat
’s ’s ’s ’0 ’= ’0 ’;

’endtype

we obtain the next metarepresented term, that includes metarepresented tokens and bubbles:

’type_is_endtype[
’token[’’NAT3.Qid],
’__[’sorts_[’token[’’Nat3.Qid]],
’__[’opns_[

’__[’_:‘->_[’token[’’0.Qid],’token[’’Nat3.Qid]],
’_:_->_[’token[’’s_.Qid],’token[’’Nat3.Qid],

’token[’’Nat3.Qid]]]],
’eqns_[

’ofsort__[’token[’’Nat.Qid],
’_=_;[’bubble[’__[’’s.Qid’’,s.Qid’’,s.Qid’’,0.Qid]],

’bubble[’’0.Qid]]]]]]]

Tokens and bubbles have as arguments metarepresented lists of quoted identifiers, that
is, values of sort QidList metarepresented. These values have to be parsed again (going
down one level in the representation) with the user-defined syntax (given in the opns part
of the ACT ONE specification).

If we now execute the translateType operation commented below, we obtain the
following metarepresented Maude functional module, of sort FModule:

276 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

fmod ’NAT3 is
including ’DATAEXP-SYNTAX .
sorts ’Nat3 .
subsort ’VarId < ’Nat3 .
subsort ’Nat3 < ’DataExp .
op ’0 : nil -> ’Nat3 [none] .
op ’s_ : ’Nat3 -> ’Nat3 [none] .
none
eq ’s_[’s_[’s_[’0.Nat3]]] = ’0.Nat3 .

endfm

This functional module is the translation into Maude of the NAT3 specification in ACT
ONE that we have seen at the beginning of this section.

The translation is performed by the following operations defined at the metalevel:

op translateType : Term -> FModule .
op translateType : Term FModule FModule -> FModule .
op translateDeclList : Term FModule FModule -> FModule .

The first operation is the main one. It receives as argument the term returned by
metaParse and it returns its translation as a functional module. To do that it uses the
generalized operation translateType with three arguments: the ACT ONE specification
not yet translated, the Maude module with the already made translation, and the Maude
module with (only) the signature in the translated part.

vars T T’ T’’ : Term .
vars M M’ : Module .
eq translateType(T) =

translateType(T, addImportList(including ’DATAEXP-SYNTAX .,
emptyFModule), emptyFModule) .

eq translateType(’type_is_endtype[’token[T’],T’’], M, M’) =
translateDeclList(T’’, M,
addDecls(M’,extractSignature(’type_is_endtype[’token[T’],T’’]))) .

The operation translateDeclList goes through the list of declarations inside a data
type specification, and it adds to its second argument the translation of each element.

For example, when an ACT ONE sort declaration for sort T is found, it is not only
translated into a Maude sort declaration for sort T, but we also have to declare the type
T as a subsort of the sort DataExp (since values of the declared type could be used in

a behaviour expression to be communicated) and the sort of LOTOS variables VarId
has to be declared as a subsort of the type T (since LOTOS variables could be used to
build data expressions of this type). This is done in this way because we want to integrate
ACT ONE modules with LOTOS specifications, but the translation is useful by itself, since
it provides us with a tool in Maude where ACT ONE specifications can be entered and
executed.

eq translateDeclList(’sorts_[’token[T]], M, M’) =
addSubsortDeclSet(subsort downQid(T) < ’DataExp .,

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 277

Fig. 18. ACT ONE specification translation.

addSubsortDeclSet(subsort ’VarId < downQid(T) .,
addSortSet(downQid(T), M))) .

We show another translation example in Fig. 18. The ACT ONE specification on the left
is translated into the Maude functional module on the right.

7.3.1. Module extensions
In Section 7.2.2 we saw that the operation that performs the syntactic substitution and

the operation that extracts the variables occurring in a behaviour expression were not
completely defined. The reason why we cannot define them completely when defining the
semantics is the same in both cases: the presence of data expressions with user-definable
syntax, and thus unknown at that moment.

Now that we know the ACT ONE specification and we have translated it into a func-
tional module, we can define these operations on data expressions using the new syntax.
Due to the metaprogramming features of Maude, we can do it automatically. We have
defined operations that take a module M and return the same module M but where equa-
tions defining the substitution and extraction of variables over expressions built using the
signature in M have been added.

For example, if the operation addOpervars is applied to the Maude functional module
Naturals in Fig. 18, it adds the following equations:

eq vars(0) = mt .
eq vars(s(v1:Nat)) = vars(v1:Nat) .
eq vars(v1:Nat + v2:Nat) = vars(v1:Nat) U vars(v2:Nat) .

Notice that in principle this is not the most natural way of defining this operation over
Nat terms, because the only constructors of sort Nat are 0 and s, and hence one could
think that the first two equations would be enough. However, here we are defining the
operation over expressions that can contain LOTOS variables, so the third equation is also
needed.

We next explain how the operation addOpervars is implemented. Its argument is a
module M corresponding to the translation of an ACT ONE specification. So the operations
declared in M can be used to build LOTOS expressions of a certain sort. The operation

278 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

addOpervars goes through the list of operator declarations, and for each of them it adds
an equation defining how variables are extracted from terms whose top operator is that one.
The module UNIT used below includes operations for building metarepresented modules
from their components: sort declarations, operations, equations, rules, etc.

fmod MODULE-EXTENSIONS is
protecting UNIT .
op addOpervars : Module -> Module .
op addOpervars : OpDeclSet Module -> Module .
op addOpervars : Qid TypeList Qid Module -> Module .
op buildArgs : TypeList Nat -> TermList .
op buildArgs2 : Qid TermList -> TermList .
var M : Module . vars OP S A A’ : Qid . var ARGS : TypeList .
var T : Term . var TL : TermList . var AttS : AttrSet .
var ODS : OpDeclSet . var N : Nat .
eq addOpervars(M) = addOpervars(opDeclSet(M), M) .
eq addOpervars(none, M) = M .
eq addOpervars(op OP : ARGS -> S [AttS] . ODS, M) =

addOpervars(ODS, addOpervars(OP, ARGS, S, M)) .
eq addOpervars(OP, nil, S, M) =

addEquationSet(eq ’vars[conc(OP,conc(’.,S))] = ’mt.VarSet ., M) .
eq addOpervars(OP, A ARGS, S, M) =

addEquationSet(eq ’vars[OP[buildArgs(A ARGS, 1)]] =
if ARGS == nil then ’vars[buildArgs(A ARGS, 1)]
else ’_U_[buildArgs2(’vars, buildArgs(A ARGS, 1))] fi ., M) .

eq buildArgs(A, N) = conc(conc(index(’v,N),’:), A) .
eq buildArgs(A A’ ARGS, N) = buildArgs(A,N),buildArgs(A’ ARGS,N + 1) .
eq buildArgs2(OP, T) = OP[T] .
eq buildArgs2(OP, (T,TL)) = OP[T], buildArgs2(OP,TL) .

endfm

The equations added by the operation addOpervars together with the equation

eq vars(x) = x .

that we saw in Section 7.2.2 define how to extract variables from LOTOS data expressions
built with user-defined syntax.

7.4. Building the LOTOS user interface

We want to implement a formal tool where complete LOTOS specifications (with ACT
ONE data type specifications, a main behaviour expression, and process definitions) are
entered and executed. In order to execute or simulate the specification, we want to be able
to traverse the symbolic transition system generated for the main behaviour expression by
using the symbolic semantics instantiated with the data types given in ACT ONE and the
given process definitions. We present here the main ideas used in our implementation; full
details can be found in [72].

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 279

The following module defines the commands of our tool.

fmod LOTOS-TOOL-SIGN is
protecting LOTOS-SIGN .
sort LotosCommand .
op show process . : -> LotosCommand .
op show transitions . : -> LotosCommand .
op show transitions of_. : BehExp -> LotosCommand .
op cont_. : Nat -> LotosCommand .
op cont . : -> LotosCommand .
op show state . : -> LotosCommand .

endfm

The first command is used to show the current process. The second and third commands
are used to show the possible transitions (defined by the symbolic semantics) of the cur-
rent or explicitly given process, that is, they start the execution of a process. The fourth
command is used to continue the execution with one of the possible transitions, the one
indicated in the argument of the command. Command cont is a shorthand for cont 1. The
sixth command is used to show the current state of execution, that is, the current condition,
trace, and possible next transitions.

7.4.1. LOTOS input processing
When LOTOS behaviour expressions are introduced, either as part of a whole spe-

cification or in a tool command, they have to be transformed into elements of the data
type BehExp in the module LOTOS-SYNTAX (Section 7.2.1). The parse tree returned by
metaParse with module LOTOS-GRAMMAR may have bubbles (where data expressions may
appear) that have to be parsed again using the user-defined syntax. This syntax is obtained
by translating the types defined in ACT ONE into functional modules, as explained above.
Moreover, the behaviour itself can define new syntax, since it can declare new LOTOS vari-
ables by means of ? offers, and these variables may appear in expressions. For example,
when processing the behaviour expression

g ? x : Nat ; h ! s(x) + s(0) ; stop

the data expression s(x) + s(0) should be parsed using the fact that x is a variable of
sort Nat.

We use the operation parseProcess to perform this translation. It takes as arguments
the term returned by metaParse (representing a behaviour expression), the metarepres-
ented module with the data types syntax (obtained from the ACT ONE specification), and
the set of free variables that may appear in the behaviour expression. It returns a behaviour
expression without bubbles. It uses the operation parseAction that, besides the term
metarepresenting the given action (without bubbles), returns the variables declared in the
action (if any).

The operation parseDataExp takes an expression with bubbles, a module with the syn-
tax with which the expression has to be parsed, and a set of LOTOS variables which may
appear in the expression (that is, the expression was found in the scope of these variables).
In order to correctly parse the expression with bubbles, information about the variables has
to be included in the expression as Maude variables. The resulting term may have Maude

280 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

variables, that have to be transformed into LOTOS variables (which have the form V(Q),
where Q is a quoted identifier).

Finally, the operation parseProcDeclList is used to build a metarepresented context
that includes the definitions of the processes declared in a specification.

7.4.2. Tool state handling
In our tool, the persistent state of the system is given by a single object which maintains

the tool state. This object has the following attributes:
• semantics, to keep the actual module where behaviour expressions can be executed,

that is, the module LOTOS-SEMANTICS in Section 7.2.2 extended with the syntax and
semantics for new data expressions;

• lotosProcess, to keep the behaviour expression that labels the node in the symbolic
transition system that has been reached during the execution;

• transitions, to keep the set of possible transitions from lotosProcess;
• trace, to keep the sequence of events performed in the path from the root of the STS to

the current node;
• condition, to keep the conjunction of transition conditions in that path; and
• input and output, to handle the communication with the user.

We declare the following class by using the notation for classes in object-oriented
modules [19]:

class ToolState | semantics : Module, lotosProcess : Term,
transitions : TermSeq, trace : Term, condition : Term,
input : QidList, output : QidList .

Then we describe by means of rewrite rules the behaviour of the tool when a LOTOS
specification or the different commands are entered into the system. For example, there is
a rule which processes a LOTOS specification entered into the system. We allow LOTOS
specifications with four arguments: the name of the specification, an ACT ONE specifica-
tion defining the data types to be used, the main behaviour expression, and a list of process
definitions (either the ACT ONE specification or the list of processes can be empty). No
local declarations are allowed. When a specification is entered, the semantics attribute
is set to a new module built as follows: first, the ACT ONE part of the specification is
translated to a functional module; then, equations defining the extraction of variables and
substitution are added (as explained in Section 7.3.1); the resulting module is joined with
the metarepresentation of module LOTOS-SEMANTICS; and, finally, an equation defining the
constant context (Section 7.2.2) with the definitions of processes given in the specification
is added. The lotosProcess attribute is also updated to the behaviour expression in the
introduced specification (after having converted it to a term of sort BehExp), and the rest of
attributes are initialized.

rl [spec] :
< O : X@ToolState |
input : (’specification__behaviour_where_endspec[’token[T],

T’,T’’,T’’’]),
output : nil,
semantics : SemM, lotosProcess : T1,

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 281

transitions : TS,
trace : T3,
condition : T4, Atts >

=> < O : X@ToolState | input : nilTermList,
output : (’\n ’Introduced ’specification getName(T) ’\n),
semantics : addEquationSet(eq ’context.Context =

parseProcDeclList(T’’’,
addDecls(translateType(T’), SYN)) .,

addDecls(SEM, addOperSubs(
addOpervars(translateType(T’))))),

lotosProcess : parseProcess(T’’,
addDecls(translateType(T’), SYN),mt),

transitions : mt,
trace : ’nil.Trace,
condition : ’true.Bool, Atts > .

Tool commands are handled by rules as well. For example, there is a rule that handles the
show transitions command. It modifies the transitions attribute by using an opera-
tion which receives a module with the semantics implementation (extended with the syntax
and semantics of data expressions) and a term t representing a behaviour expression, and
returns the sequence of terms representing the possible transitions of t. It is implemented
in the same way as the function succ in Section 6.4.

rl [show-transitions] :
< O : X@ToolState |

input : ’show‘transitions‘..LotosCommand, output : nil,
semantics : SemM, lotosProcess : T,
transitions : TS, trace : T1, condition : T2, Atts >

=> < O : X@ToolState |
input : nilTermList,
output : (meta-pretty-print-trace(SemM, T1)
meta-pretty-print-condition(SemM, T2)
meta-pretty-print-transitions(SemM, transitions(SemM,T))),

semantics : SemM, lotosProcess : T,
transitions : transitions(SemM,T),
trace : T1, condition : T2, Atts > .

7.4.3. The LOTOS tool environment
Input/output of specifications and of commands is accomplished by the predefined

module LOOP-MODE [19], that provides a generic read-eval-print loop. This module has an
operator [_,_,_] that can be seen as a persistent object with an input and output channel
(the first and third arguments, respectively), and a state (given by its second argument).
We have complete flexibility for defining this state. In our tool we use an object of the
ToolState class. When something is written in the Maude prompt enclosed in parentheses
it is placed in the first slot of the loop object, as a list of quoted identifiers. Then it is parsed
by using the appropriate grammar, and the parsed term is put in the input attribute of the

282 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

tool state object. Finally, the rules describing the tool state handling process it. The output
is handled in the reverse way, that is, the list of quoted identifiers placed in the third slot of
the loop is printed on the terminal.

7.5. An execution example

We give an example of an interaction with the LOTOS tool. Although we use here a
very simple example, we have used the tool to execute larger examples [72], including
the Alternating Bit Protocol and the Sliding Window Protocol (with more than 550 lines
of code) [70]. Our tool has proved to be quite practical, giving the answer to the entered
commands in a few milliseconds.

Maude> (specification SPEC
type Naturals is

[as shown above]
endtype
behaviour
h ! 0 ; stop [] (g ! (s(0)) ; stop

|[g]|
g ? x : Nat ; h ! (x + s(0)) ; stop)

endspec)

Maude> (show transitions .)
Trace : nil
Condition : true
TRANSITIONS :
1. {true}{h 0}stop
2. {x = s(0)}{g s(0)}stop |[g]| h ! s(s(0)); stop

Maude> (cont 2 .)
Trace : g s(0)
Condition : x = s(0)
TRANSITIONS :
1. {true}{h s(s(0))}stop |[g]| stop

Maude> (cont .)
Trace :(g s(0))(h s(s(0)))
Condition : x = s(0)
No more transitions .

7.6. Comparison with other LOTOS tools

The Concurrency Workbench of the New Century (CWB-NC) [21] is an automatic
verification tool where systems in several specification languages can be executed and
analyzed. Regarding LOTOS, CWB-NC accepts Basic LOTOS, because it does not support
value-passing process algebras. The design of the system exploits the language-indepen-

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 283

dence of its analysis routines by localizing language-specific procedures, which enables
users to change the system description language by using the Process Algebra Compiler,
that translates the operational semantics definitions into SML code. We have followed a
similar approach, although we have tried to keep the semantics representation at a very
abstract level, without losing executability. We have also implemented the semantics of
the Hennessy–Milner modal logic for CCS (Section 6.4) and the subset of FULL [11]
corresponding to this logic for LOTOS. Both implementations follow the same idea, us-
ing an operation to calculate the one-step successors of a process, which in turn uses
the operational semantics definitions. Thus, the implementation of the formal analysis
algorithm, that is, the representation in Maude of the modal logic semantics, is the same
in both cases, resulting in similar achievements as the CWB-NC on keeping separated the
language-specific features from the general ones.

The Caesar/Aldebaran Development Package (CADP) [30] is a toolbox for protocol
engineering, with several functionalities, from interactive simulation (as we do in our
tool) to formal verification. In order to support different specification languages, CADP
uses low-level intermediate representations, which forces the implementer of a new se-
mantics to write compilers that generate these representations. CADP has already been
used to implement FULL [10], although with the severe restrictions to finite types and
to the standard semantics of LOTOS instead of the symbolic one on which FULL is
based.

8. Transitions as judgements

As we mentioned in the introduction, a very general possibility to represent in rewriting
logic an operational semantics consists in mapping an inference rule of the form

S1 . . .Sn

S0

into a rewrite rule of the form S0 −→ S1 . . .Sn that rewrites multisets of judgements going
from the conclusion to the premises, so that rewriting with these rewrite rules corresponds
to searching for a proof in a bottom-up way. We summarize here the main ideas used in
this approach, where transitions become judgements and inference rules become rewrites.
To illustrate the ideas we use the evaluation semantics of Fpl presented in Section 3.2. An
implementation of the CCS operational semantics and the Hennessy–Milner modal logic
using this approach can be found in [74].

We can use directly the modules FPL-SYNTAX (with the syntax of Fpl), AP (with the
definition of the application operation Ap used by the semantics), and ENV (with the defin-
ition of the environments for variables) given in Section 3.1, since they are independent of
the operational semantics representation.

In order to represent the semantic rules, a judgement D,ρ � e=⇒Av is represented by a
term D,rho |- e ==>A v of sort Judgement, built by means of the following operator
(it is important not to confuse the arrow ==> which is part of the operator with the arrow
=> in a rewrite rule):

sort Judgement .
op _,_|-_==>A_ : Dec ENV Exp Num -> Judgement [prec 50] .

284 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

In general, a semantic rule has a conclusion and a set of premises, each one represented
by means of a judgement. Thus we need a data type for representing sets of judgements:

sort JudgementSet .
subsort Judgement < JudgementSet .
op emptyJS : -> JudgementSet .
op __ : JudgementSet JudgementSet -> JudgementSet

[assoc comm id: emptyJS prec 60] .

The union constructor is written with empty syntax (__), and declared associative
(assoc), commutative (comm), and with the empty set as identity element (id: emptyJS).
Matching and rewriting take place modulo such properties, allowing in this way a more
abstract treatment of syntax.

A semantic rule is implemented as a rewrite rule where the singleton set consisting of the
judgement representing the conclusion is rewritten to the set consisting of the judgements
representing the premises. Axiom schemas (semantic rules without premises), like CR or
VarR in Fig. 2, are represented by means of rewrite rules that rewrite the representation of
the conclusion to the empty set of judgements. If the semantic rule has a side condition,
it is represented as a Boolean condition in a conditional rewrite rule. Next we show some
examples:7

rl [CR] : D,rho |- n ==>A n
=> ------------------

emptyJS .
crl [VarR] : D,rho |- x ==>A v

=> ------------------
emptyJS

if v == rho(x) .
crl [OpR] : D,rho |- e op e’ ==>A v’’

=> --------------------------
D,rho |- e ==>A v
D,rho |- e’ ==>A v’

if v’’ == Ap(op, v, v’) .
rl [IfR1] : D,rho |- If be Then e Else e’ ==>A v

=> -------------------------------------
D,rho |- be ==>B T
D,rho |- e ==>A v .

rl [IfR2] : D,rho |- If be Then e Else e’ ==>A v’
=> --------------------------------------

D,rho |- be ==>B F
D,rho |- e’ ==>A v’ .

7 By using the fact that text beginning with --- is a comment in Maude, the rules are displayed in such a way
as to emphasize the correspondence with the usual presentation in textbooks (although in this case the conclusion
is above the horizontal line).

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 285

Notice how rules VarR and OpR have suffered a modification in order to avoid terms
like rho(x) or Ap(op, v, v’), which are not patterns, in the conclusion (left-hand side
of the rewrite rule). They are instead used in a side condition.

In this way, we start with a transition to be proved valid and we work backwards using
the rewriting process, maintaining the set of transitions that have to be fulfilled in order to
prove the correctness of the initial transition. The initial transition can be rewritten to the
empty set if and only if it is a valid transition in the operational semantics.

However, we found two problems while working with this approach. The first one is that
sometimes new variables appear in the premises which are not present in the conclusion
(for example, in rule OpR above v and v’ are new variables in the right-hand side). Rules
of this kind cannot be directly used by the Maude default interpreter; they can only be used
at the metalevel using a strategy to instantiate the extra variables. The second problem is
that sometimes several rules can be applied to rewrite a judgement, but in general, not
all of the possibilities lead to an empty set of judgements. So we have to deal with the
whole computation tree of possible rewrites of a judgement, searching to see if one of the
branches leads to emptyJS.

In [74] we presented general solutions to these problems by modifying the semantics
representation (at the object level) and controlling the rewriting process by means of a
strategy at the metalevel.

The presence of new variables was solved by using the concept of explicit metavariables
presented in [64] in a very similar context, which make explicit the lack of knowledge that
new variables in the right-hand side of a rewrite rule represent. The semantics with explicit
metavariables has to bind them to concrete values when these values become known. Thus,
we introduced in the semantics representation mechanisms to deal with these bindings and
propagate them to other judgements where the bound metavariable may be present. The
modified representation also has rules with new variables in the right-hand side, but now
they are localized. The strategy that controls the rewriting process (see below) is in charge
of instantiating these variables in order to build new metavariables.

The problem of non-deterministic application of rewrite rules was solved by a general
search strategy defined at the metalevel. The strategy traverses the conceptual tree of all
possible rewrites of a term, built by using the rewrite rules representing the semantics,
searching for the term representing the empty set of judgements. If it is found, the transition
represented at the root of this tree is a valid semantic transition.

In [74], for the CCS case, we also extended the operational semantics implementation
by including metavariables as processes (before that, we only needed metavariables as
actions). If we start the search strategy with a judgement where the process in the right-
hand side of the CCS transition is a metavariable, like in P -- a --> ?P, and the search
reaches the empty set, then the metavariable ?P has to be bound to one of the one-step
successors of the process in the left-hand side, P, after performing action a. By extending
the search strategy to find not only the first way to reach the empty set, but all the possible
ways, we implemented an operation that returns all the successors of a process after per-
forming a given action. This operation was then used to implement the Hennessy–Milner
modal logic for CCS processes [66], by following the same techniques for dealing with new
variables and with non-determinism as in the CCS semantics, that is, by defining rewrite
rules that rewrite a modal logic judgement P |= Φ into the set of judgements which have to
be satisfied (as specified by the logic’s semantics) [74]. The search strategy has to be used
again, now to check if a modal logic judgement is true. Each time the strategy is used, the
module with the rewrite rules that defines the search tree has to be metarepresented. Thus,

286 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

we obtained three levels of representation. The CCS semantics rules are in the first level.
They are controlled by the search strategy at the second level, where the operation that
returns all the successors of a process and the modal logic semantics are defined. Finally,
the modal logic semantics is controlled by the search strategy at the third level.

8.1. Comparison with the transitions as rewrites approach

The transitions as judgements approach has a marked role as prover, in which the re-
writing process corresponds to finding a proof of the initial judgement being rewritten.
Intuitively, the idea is that we start with a transition to be proved valid and we work back-
wards using the rewriting process in a goal-directed way, maintaining the set of transitions
that have to be fulfilled in order to prove the correctness of the initial transition. When this
set is empty we can conclude that the initial transition is a correct transition, that is, the
initial transition can be rewritten to the empty set if and only if it is a valid transition in the
operational semantics.

On the other hand, the transitions as rewrites approach leads us to implementations with
a marked role as interpreters, where given an environment and an expression, rules rewrite
them to the value they are reduced by the operational semantics.

However, Maude allows us to use either implementation in either role, like a prover
or like an interpreter. The use of metavariables to solve the problem of new variables
in the right-hand side of a rule (as mentioned above), as well as the adaptation of the
representation to deal with those metavariables, has as a lateral effect that we can use the
obtained representation using the transitions as judgements approach like an interpreter that
calculates, given an expression, the value to which it is evaluated, without having to start
with a complete judgement that includes this value. If, for example, we want to evaluate
expression e with a set of declarations D and in an environment rho, we can rewrite
the judgement D,rho |- e ==>A ?(’result) where ?(’result) is a metavariable.
In the rewriting process of this judgement, the metavariable will be bound to the result
of evaluating e. In Section 3.2 we saw how the search command is useful to use the
transitions as rewrites implementation as a prover, where we can check if a given judgement
is derivable from the semantics rules.

In our opinion the implementation following the transitions as rewrites approach has
several advantages. This implementation is closer to the mathematical, logical presenta-
tion of the semantics. An operational semantics rule establishes that the transition in the
conclusion is possible if the transitions in the premises are possible, and that is precisely
the interpretation of a conditional rewrite rule with rewrite conditions. The alternative
approach needs auxiliary structures like the multisets of judgements to be proved valid
and mechanisms like the generation of new metavariables and their propagation when their
concrete values become known. This forced us to implement at the metalevel a search
strategy that checks if a given multiset can be reduced to the empty set and generates
new metavariables each time they are needed. It is the necessity of new metavariables
what makes the strategy unavoidable. We could not use the search command of Maude 2,
because it cannot handle rewrite rules with new variables in the right-hand side whenever
they are not bound in any of the conditions, and that is what happens in this kind of
implementations [74]. With the transitions as rewrites approach the necessity of searching
appears in the rewrite conditions, but the Maude 2 system solves the problem, because it is
able to handle these conditions together with new variables bound in some condition.

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 287

There are also differences found in the things that are done at the object level (level of
the semantics representation) and at the metalevel (by using reflection). In the transitions as
judgements approach, the search strategy traverses the conceptual tree with all the possible
rewrites of a term, moving continuously between the object level and the metalevel. In the
implementations described in this paper, the search occurs completely at the object level,
which makes it considerably faster and simpler.

9. Related work

We can find in the literature several works dedicated to the representation and imple-
mentation of operational semantics. We cite here some of the most related to our work.

Probably the work most closely related to ours is the one by Christiano Braga in his
Ph.D. thesis [5], where he describes an interpreter for MSOS specifications [6] in the
context of Peter Mosses’s modular structural operational semantics [56]. In the interpreter
implementation the approach of transitions as rewrites is used, by making an extension of
Maude implemented using the reflective features of Maude itself that allows conditional
rules with rewrites in the conditions. We have instead used Maude 2, obtaining a con-
siderable efficiency enhancement. This line of work has been continued very recently by
integrating some of the methods that we have proposed in this paper and others in order to
develop a general method to achieve modularity of semantic definitions of programming
languages specified as rewrites theories [7].

As we have already mentioned at the beginning of this paper, there is a rich tradition of
using rewriting logic to give semantic definitions for languages using a variety of styles,
including the lambda calculus [49,63], Prolog and languages based on narrowing like
BABEL [78], the UNITY language [52], the π-calculus [77,63,68], the concurrent logic
programming language GAEA [44], the programming language for active networks PLAN
[79,65], a UML metamodel [69,31,32], the specification language for cryptographic proto-
cols CAPSL [23], the mobile agents system DaAgent [1], the Maude extension for mobile
computations Mobile Maude [26], and the Resource Description Framework (RDF) for
the semantic web [4]. For a more exhaustive bibliography about this subject we refer to the
paper [50]. With the exception of the more recent paper [68], that applies to the π-calculus
the techniques that we have applied to CCS in Section 6, none of the other papers use
rewrite rules with rewrites in the conditions, because those rules could not be executed in
previous versions of Maude.

Perhaps one of the first attempts to get direct implementations for operational semantics
was Typol [25], a formal language for representing inference rules and operational se-
mantics. Typol programs were compiled to Prolog to build executable type ckeckers and
interpreters from their specifications [24]. Although some of our implementations follow
in some respects the logic programming style, a great advantage of using Maude consists in
the possibility of working, on the one hand, with data types defined by the user, and on the
other hand, with algebraic specifications modulo equational axioms. Moreover, we could
use other strategies different from depth-first search, even keeping the same underlying
specification.

Some disadvantages of Typol are its inefficiency and the fact that the implementation of
specifications of structural operational semantics in Prolog is not attractive, due to the lack
of an appropriate type system in Prolog (some authors have used the higher order language
λProlog [29] to avoid this problem). For all these reasons, the language RML (Relational

288 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

Meta-Language) [59,60] was designed, a language for the executable specification of nat-
ural semantics. In this study, properties of natural semantics specifications were identified
as determinable in a static way, allowing some optimizations in the implementation. RML
has a strong type system in the style of Standard ML, and it supports inference rules like
those in natural semantics, and data type definitions by means of structural induction.
Specifications in RML are translated into an intermediate representation, which can then be
easily optimized and implemented, following the style CPS (Continuation-Passing Style).
This intermediate representation is finally compiled into efficient C code.

Theorem provers like Isabelle/HOL [58] or Coq [43] have also been used to build
models of languages from their operational semantics. Isabelle/HOL has been used by Nip-
kow [57] to formalize operational and denotational semantics of programming languages.
Other logical frameworks and theorem provers have also been used to represent inference
systems. The interactive proof development environment Coq [43], based on the Calculus
of Constructions extended with inductive types, has been used to represent the π-calculus
[42,40] and the µ-calculus [62] applied to CCS. Coq is used to encode natural semantics
in [67]. In these works the approach is different from ours, since instead of obtaining
executable representations, they focus on getting models with which metaproperties can
be verified.

10. Conclusions and future work

In this paper we have shown how the transitions as rewrites approach can be used
to implement a wide variety of structural operational semantics in Maude, an executable
semantic framework.

Sometimes we have needed to make precise some details in the mathematical definition
of a semantics, as when an ellipsis “. . . ” appears in the premises of a semantic rule. The
Maude facilities for defining syntactic operators, including the associativity and identity
attributes, and pattern matching modulo these properties, have allowed us to make precise
those details in a clear and easy way, resolving, for example, the non-deterministic choice
of one of the arguments of a function call to be reduced. We have also been able to define,
at the same level of the semantics, the syntactic substitution operation, used in several of
the semantics definitions, including the generation of new variables (not ocurring in the
expression being evaluated) in order to avoid free variable capture.

In the Mini-ML example, we have found a semantic rule (corresponding to the letrec
operator) that cannot be implemented directly. The problem is that the original semantics
is not so operational as it might seem, since in some moment we need to guess the value
we want to calculate in order to infer it. Certainly, this kind of semantic rule is not usual,
because its meaning is not intuitive. The solution consists in finding an alternative semantic
rule, an implementable one.

After successfully representing a semantics, we have shown how the Maude commands
can be used to obtain several kinds of information. When a higher control of the possible
transitions is needed, as in the implementation of the Hennessy–Milner modal logic for
CCS, reflection and the META-LEVEL predefined module provide a valuable tool. Moreover,
we can implement complete tools that execute the user language and hide the concrete
representation of the semantics, as we have done for Full LOTOS.

We want to study now how to analyze and prove properties about the obtained semantics
representations, such as confluence or termination. These properties do not refer to concrete

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 289

programs written in the language whose semantics is represented; they are instead meta-
properties applicable to every program in general. Most of them are proved by structural
induction on the rules that define the semantics [36]. In this respect, we intend to study
extensions of the ITP theorem prover [15].

Based on the symbolic semantics for LOTOS used in Section 7, a symbolic bisimulation
[12] and a modal logic FULL [11] have been defined. We plan to extend our tool so that
we can check if two processes are bisimilar, or if a process satisfies a given modal logic
formula. We have already implemented a subset of FULL without data values (following
the same techniques we use to implement the Hennessy–Milner modal logic for CCS
processes in Section 6.4), and we have integrated it with our tool. The part of the logic
with data values deserves more study, and we think that some kind of theorem proving will
be needed. Rewriting logic and Maude have been proved highly valuable also for these
subjects [14].

In joint work with José Meseguer, we are designing a strategy language that allows
specifying which strategy has to be used in order to rewrite a term. Basic strategy expre-
sions will be rule labels, meaning that a particular rule has to be applied. When the rule is
conditional, with rewrites in the conditions, the strategy expression may describe how each
of the conditions has to be resolved. If we have a rewrite condition t => t’ the strategy
would say how t has to be rewritten in order to find a term that matches t’; in particular,
it will say which rewrite rules can be applied in the rewriting process. Basic strategies are
combined to build greater strategies by union, concatenation, disjunction (by means of a
generalized if-then-else), iteration, etc. [51].

With this language we will be able to solve (in a different, perhaps more elegant way)
the problems we found in Section 3.3 (when defining the reflexive, transitive closure of the
computation semantics relation for Fpl) and in Section 6.2 (when defining the reflexive,
transitive closure of the CCS transition relation). We foresee that this strategy language
will be quite useful in the implementation and execution of the parallel functional language
Eden [8,39], where we intend to study how different execution strategies influence the
semantics properties.

This strategy language will be applicable not only to operational semantics representa-
tions, but to executable specifications in general.

Acknowledgments

We warmly thank Christiano Braga, Roberto Bruni, Francisco Durán, Steven Eker,
David de Frutos, José Meseguer, Fernando Orejas, Yolanda Ortega, Miguel Palomino, and
Carron Shankland for all their very helpful comments on previous presentations of this
work, and José Meseguer for encouraging and supporting all our research on executable
semantic frameworks. The anonymous referees deserve our special thanks for their detailed
and careful reviews that have contributed to improve the presentation.

References

[1] J.V. Baalen, J.L. Caldwell, S. Mishra, Specifying and checking fault-tolerant agent-based protocols using
Maude, in: J. Rash, C. Rouff, W. Truszkowski, D. Gordon, M. Hinchey (Eds.), First International Workshop,

290 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

FAABS 2000, Greenbelt, MD, USA, April 2000. Revised Papers, Lecture Notes in Artificial Intelligence,
vol. 1871, Springer, Berlin, 2000, pp. 180–193.

[2] T. Bolognesi, E. Brinksma, Introduction to the ISO specification language LOTOS, Computer Networks
and ISDN Systems 14 (1987).

[3] A. Bouhoula, J.-P. Jouannaud, J. Meseguer, Specification and proof in membership equational logic,
Theoretical Computer Science 236 (2000) 35–132.

[4] M. Bradley, L. Llana, N. Martı́-Oliet, T. Robles, J. Salvachua, A. Verdejo, Transforming information in RDF
to rewriting logic, in: R. Peña, A. Herranz, J.J. Moreno (Eds.), Segundas Jornadas sobre Programación y
Lenguajes (PROLE 2002), El Escorial, Madrid, Spain, 2002, pp. 167–182.

[5] C. Braga, Rewriting logic as a semantic framework for modular structural operational semantics, PhD thesis,
Departamento de Informática, Pontifı́cia Universidade Católica do Rio de Janeiro, Brazil, 2001.

[6] C. Braga, E. Hermann Haeusler, J. Meseguer, P.D. Mosses, Maude action tool: using reflection to map
action semantics to rewriting logic, in: T. Rus (Ed.), Algebraic Methodology and Software Technology: 8th
International Conference, AMAST 2000, Iowa City, IA, USA, May 2000, Proceedings, Lecture Notes in
Computer Science, vol. 1816, Springer, Berlin, 2000, pp. 407–421.

[7] C. Braga, J. Meseguer, Modular rewriting semantics of programming languages, Algebraic Methodology
and Software Technology: 10th International Conference, AMAST 2004, Stirling, Scotland, UK, July 2004,
Proceedings, Springer, Berlin, 2004.

[8] S. Breitinger, R. Loogen, Y. Ortega-Mallén, R. Peña-Marı́, Eden—The paradise of functional concurrent
programming, in: L. Bouge, P. Fraigniaud, A. Mignotte, Y. Robert (Eds.), Euro-Par ’96 Parallel Processing:
Second International Euro-Par Conference, Lyon, France, August 26–29, 1996, Proceedings, Lecture Notes
in Computer Science, vol. 1123, Springer, Berlin, 1996, pp. 710–713.

[9] R. Bruni, J. Meseguer, Generalized rewrite theories, in: J.C.M. Baeten, J.K. Lenstra, J. Parrow, G.J.
Woeginger (Eds.), Automata, Languages and Programming. 30th International Colloquium, ICALP 2003,
Eindhoven, The Netherlands, June 30–July 4, 2003, Proceedings, Lecture Notes in Computer Science, vol.
2719, Springer-Verlag, Berlin, 2003, pp. 252–266.

[10] J. Bryans, C. Shankland, Implementing a modal logic over data and processes using XTL, in: Kim et al.
[47], pp. 201–218.

[11] M. Calder, S. Maharaj, C. Shankland, A modal logic for Full LOTOS based on symbolic transition systems,
The Computer Journal 45 (1) (2002) 55–61.

[12] M. Calder, C. Shankland, A symbolic semantics and bisimulation for Full LOTOS, in: Kim et al. [47], pp.
184–200.

[13] G. Carabetta, P. Degano, F. Gadducci, CCS semantics via proved transition systems and rewriting logic, in:
Kirchner and Kirchner [48], pp. 253–272.

[14] M. Clavel, Reflection in Rewriting Logic: Metalogical Foundations and MetaprogramCSLI Publications,
CSLI Publications, 2000.

[15] M. Clavel, The ITP tool, in: A. Nepomuceno, J.F. Quesada, J. Salguero (Eds.), Logic, Language and
Information. Proceedings of the First Workshop on Logic and Language, Kronos, 2001, pp. 55–62.

[16] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, J. Quesada, Maude as a metalanguage,
in: Kirchner and Kirchner [48].

[17] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, J. Quesada, Maude: specification and
programming in rewriting logic, Theoretical Computer Science 285 (2) (2002) 187–243.

[18] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, C. Talcott, The Maude 2.0 system, in:
R. Nieuwenhuis (Ed.), Rewriting Techniques and Applications, 14th International Conference, RTA 2003,
Valencia, Spain, June 2003, Proceedings, Lecture Notes in Computer Science, vol. 2706, Springer, Berlin,
2003, pp. 76–87.

[19] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, C. Talcott, Maude Manual (Version
2.1), March 2004. Available from: <http://maude.cs.uiuc.edu/manual>.

[20] M. Clavel, J. Meseguer, M. Palomino, Reflection in membership equational logic, many-sorted equational
logic, Horn logic with equality, and rewriting logic, in: Gadducci and Montanari [33], pp. 63–78.

[21] R. Cleaveland, S.T. Sims, Generic tools for verifying concurrent systems, Science of Computer Program-
ming 42 (1) (2002) 39–47.

[22] P. Degano, F. Gadducci, C. Priami, A causal semantics for CCS via rewriting logic, Theoretical Computer
Science 275 (1–2) (2002) 259–282.

[23] G. Denker, J. Millen, CAPSL integrated protocol environment, in: D. Maughan, G. Koob, S. Saydjari (Eds.),
Proceedings DARPA Information Survivability Conference and Exposition, DISCEX 2000, Hilton Head

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 291

Island, South Carolina, January 25–27, 2000, IEEE Computer Society Press, 2000, pp. 207–222., Available
from: <http://schafercorp-ballston.com/discex/>.

[24] T. Despeyroux, Executable specification of static semantics, in: G. Kahn, D.B. MacQueen, G.D. Plotkin
(Eds.), Semantics of Data Types, Lecture Notes in Computer Science, vol. 173, Springer, Berlin, 1984, pp.
215–233.

[25] T. Despeyroux, TYPOL: A formalism to implement natural semantics, Research Report 94, INRIA, 1988.
[26] F. Durán, S. Eker, P. Lincoln, J. Meseguer, Principles of Mobile Maude, in: D. Kotz, F. Mattern (Eds.),

Agent Systems, Mobile Agents, and Applications, Second International Symposium on Agent Systems and
Applications and Fourth International Symposium on Mobile Agents, ASA/MA 2000, Zurich, Switzerland,
September 13–15, 2000, Proceedings, Lecture Notes in Computer Science, vol. 1882, Springer, Berlin,
2000.

[27] H. Eertink, Executing LOTOS specifications: the SMILE tool, in: T. Bolognesi, J. Lagemaat, C. Vissers
(Eds.), LotoSphere: Software Development with LOTOS, Kluwer Academic Publishers, Dordrecht, 1995.

[28] H. Ehrig, B. Mahr, in: Fundamentals of Algebraic Specification 1: Equations and Initial Semantics, EATCS
Monographs on Theoretical Computer Science, Springer, Berlin, 1985.

[29] A. Felty, E. Gunter, J. Hannan, D. Miller, G. Nadathur, A. Scedrov, Lambda Prolog: An extended logic
programming language, in: E. Lusk, R. Overbeek (Eds.), 9th International Conference on Automated De-
duction, Argonne, IL, USA, May 23–26, 1988, Proceedings, Lecture Notes in Computer Science, vol. 310,
Springer, Berlin, 1988, pp. 754–755.

[30] J.C. Fernández, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, M. Sighireanu, CADP: a protocol
validation and verification toolbox, in: R. Alur, T.A. Henzinger (Eds.), Computer Aided Verification, 8th
International Conference, CAV ’96, New Brunswick, NJ, USA, July 31–August 3, 1996, Proceedings,
Lecture Notes in Computer Science, vol. 1102, Springer, Berlin, 1996, pp. 437–440.

[31] J.L. Fernández, A. Toval, Can intuition become rigorous? Foundations for UML model verification tools,
in: F.M. Titsworth (Ed.), International Symposium on Software Reliability Engineering, IEEE Press, San
José, CA, 2000, pp. 344–355.

[32] J.L. Fernández, A. Toval, Seamless formalizing the UML semantics through metamodels, in: K. Siau, T.
Halpin (Eds.), Unified Modeling Language: Systems Analysis, Design, and Development Issues, Idea Group
Publishing, 2001, pp. 224–248.

[33] F. Gadducci, U. Montanari (Eds.), Proceedings Fourth International Workshop on Rewriting Logic and
its Applications, WRLA 2002, Pisa, Italy, September 19–21, 2002, Electronic Notes in Theoretical Com-
puter Science, vol. 71, Elsevier, Amsterdam, 2002, Available from: <http://www.sciencedirect.com/
science/journal/15710661>.

[34] B. Ghribi, L. Logrippo, A validation environment for LOTOS, in: A. Danthine, G. Leduc, P. Wolper (Eds.),
Protocol Specification, Testing and Verification XIII, Proceedings of the IFIP TC6/WG6.1 Thirteenth Inter-
national Symposium on Protocol Specification, Testing and Verification, Liège, Belgium, May 25–28, 1993,
North-Holland, Amsterdam, 1993, pp. 93–108.

[35] R. Guillemot, M. Haj-Hussein, L. Logrippo, Executing large LOTOS specifications, in: S. Aggarwal, K.
Sabnani (Eds.), Protocol Specification, Testing, and Verification VIII, Proceedings of the IFIP TC6/WG6.1
Eighth International Symposium on Protocol Specification, Testing and Verification, Atlantic City, USA,
North-Holland, Amsterdam, 1988, pp. 399–410.

[36] M. Hennessy, The Semantics of Programming Languages: An Elementary Introduction Using Structural
Semantics, John Wiley and Sons, New York, 1990.

[37] M. Hennessy, H. Lin, Symbolic bisimulations, Theoretical Computer Science 138 (1995) 353–389.
[38] M. Hennessy, R. Milner, Algebraic laws for nondeterminism and concurrency, Journal of the ACM 32 (1)

(1985) 137–161.
[39] M. Hidalgo-Herrero, Y. Ortega-Mallén, An operational semantics for the parallel language Eden, Parallel

Processing Letters 12 (2) (2002) 211–228.
[40] D. Hirschkoff, A full formalisation of π-calculus theory in the calculus of constructions, Theorem Proving

in Higher Order Logics, 10th International Conference, TPHOLs’97, Murray Hill, NJ, USA, August 19–22,
1997, Proceedings, Lecture Notes in Computer Science, vol. 1275, Springer, Berlin, 1997, pp. 153–169.

[41] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs, NJ, 1985.
[42] F. Honsell, M. Miculan, I. Scagnetto, π-Calculus in (co)inductive-type theory, Theoretical Computer

Science 253 (2) (2001) 239–285.
[43] G. Huet, G. Kahn, C. Paulin-Mohring, The Coq proof assistant: a tutorial: version 7.2. Technical Report

256, INRIA, 2002.

292 A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293

[44] H. Ishikawa, J. Meseguer, T. Watanabe, K. Futatsugi, H. Nakashima, On the semantics of GAEA—An
object-oriented specification of a concurrent reflective language in rewriting logic, Proceedings IMSA’97,
Information-Technology Promotion Agency, Japan, 1997, pp. 70–109.

[45] ISO/IEC, LOTOS—A formal description technique based on the temporal ordering of observational beha-
viour, International Standard 8807, International Organization for standardization—Information Processing
Systems—Open Systems Interconnection, Geneva, 1989.

[46] G. Kahn, Natural semantics, in: F.-J. Brandenburg, G. Vidal-Naquet, M. Wirsing (Eds.), STACS 87, 4th
Annual Symposium on Theoretical Aspects of Computer Science, Passau, Germany, February 19–21, 1987,
Proceedings, Lecture Notes in Computer Science, vol. 247, Springer, Berlin, 1987, pp. 22–39.

[47] M. Kim, B. Chin, S. Kang, D. Lee (Eds.), Formal Techniques for Networked and Distributed Systems,
FORTE 2001, IFIP TC6/WG6.1—21st International Conference on Formal Techniques for Networked and
Distributed Systems, August 28–31, 2001, Cheju Island, Korea, IFIP Conference Proceedings, vol. 197,
Kluwer Academic Publishers, Dordrecht, 2001.

[48] C. Kirchner, H. Kirchner (Eds.), Proceedings Second International Workshop on Rewriting Logic
and its Applications, WRLA’98, Pont-à-Mousson, France, September 1–4, 1998, Electronic Notes in
Theoretical Computer Science, vol. 15, Elsevier, Amsterdam, 1998, Available from: <http://www.
sciencedirect.com/science/journal/15710661>.

[49] N. Martı́-Oliet, J. Meseguer, Rewriting logic as a logical and semantic framework, in: D.M. Gabbay, F.
Guenthner (Eds.), Handbook of Philosophical Logic, vol. 9, Kluwer Academic Publishers, Dordrecht, 2002,
pp. 1–87.

[50] N. Martı́-Oliet, J. Meseguer, Rewriting logic: roadmap and bibliography, Theoretical Computer Science
285 (2) (2002) 121–154.

[51] N. Martı́-Oliet, J. Meseguer, A. Verdejo, Towards a strategy language for Maude, in: N. Martı́-Oliet
(Ed.), Proceedings Fifth International Workshop on Rewriting Logic and its Applications, WRLA 2004,
Barcelona, Spain, March 27–April 4, 2004, Electronic Notes in Theoretical Computer Science, Elsevier,
Amsterdam, 2004, pp. 391–414.

[52] J. Meseguer, Conditional rewriting logic as a unified model of concurrency, Theoretical Computer Science
96 (1) (1992) 73–155.

[53] J. Meseguer, Membership algebra as a logical framework for equational specification, in: F. Parisi-Presicce
(Ed.), Recent Trends in Algebraic Development Techniques, 12th International Workshop, WADT’97, Tar-
quinia, Italy, June 3–7, 1997, Selected Papers, Lecture Notes in Computer Science, vol. 1376, Springer,
Berlin, 1998, pp. 18–61.

[54] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[55] R. Milner, M. Tofte, R. Harper, D. MacQueen, The Definition of Standard ML—Revised, The MIT Press,

Cambridge, MA, 1997.
[56] P.D. Mosses, Foundations of modular SOS, in: M. Kutylowski, L. Pacholksi, T. Wierzbicki (Eds.), Mathem-

atical Foundations of Computer Science 1999, 24th International Symposium, MFCS’99, Szklarska Poreba,
Poland, September 6–10, 1999, Proceedings, Lecture Notes in Computer Science, vol. 1672, Springer,
Berlin, 1999, pp. 70–80. The full version appears as Technical Report RS-99-54, BRICS, Dept. of Computer
Science, University of Aarhus.

[57] T. Nipkow, Winskel is (almost) right: towards a mechanized semantics textbook, Formal Aspects of
Computing 10 (2) (1998) 171–186.

[58] T. Nipkow, L.C. Paulson, M. Wenzel, in: Isabelle/HOL: A Proof Assistant for Higher-Order Logic, Lecture
Notes in Computer Science, vol. 2283, Springer, Berlin, 2002.

[59] M. Pettersson, RML—A new language and implementation for natural semantics, in: M. Hermenegildo,
J. Penjam (Eds.), Programming Language Implementation and Logic Programming, 6th International
Symposium, PLILP’94, Madrid, Spain, September 14-16, 1994, Proceedings, Lecture Notes in Computer
Science, vol. 844, Springer, Berlin, 1994, pp. 117–131.

[60] M. Pettersson, in: Compiling Natural Semantics, Lecture Notes in Computer Science, vol. 1549, Springer,
Berlin, 1999.

[61] J.C. Reynolds, Theories of Programming Languages, Cambridge University Press, Cambridge , 1998.
[62] C. Sprenger, A verified model checker for the modal µ-calculus in Coq, in: B. Steffen (Ed.), Ools and

Algorithms for Construction and Analysis of Systems, 4th International Conference, TACAS ’98, Held
as Part of the European Joint Conferences on the Theory and Practice of Software, ETAPS’98, Lisbon,
Portugal, March 28–April 4, 1998, Proceedings, Lecture Notes in Computer Science, vol. 1384, Springer,
Berlin, 1998, pp. 167–183.

A. Verdejo, N. Martı́-Oliet / Journal of Logic and Algebraic Programming 67 (2006) 226–293 293

[63] M.-O. Stehr, CINNI—A generic calculus of explicit substitutions and its application to λ-, ς-
and π-calculi, in: K. Futatsugi (Ed.), Proceedings Third International Workshop on Rewriting
Logic and its Applications, WRLA 2000, Kanazawa, Japan, September 18–20, 2000, Electronic Notes
in Theoretical Computer Science, vol. 36, Elsevier, Amsterdam, 2000, pp. 71–92., Available from:
<http://www.sciencedirect.com/science/journal/15710661>.

[64] M.-O. Stehr, J. Meseguer, Pure type systems in rewriting logic, in: Proceedings of LFM’99: Workshop on
Logical Frameworks and Meta-Languages, Paris, France, 1999.

[65] M.-O. Stehr, C.L. Talcott, PLAN in Maude: Specifying an active network programming language, in:
Gadducci and Montanari [33], pp. 195–215.

[66] C. Stirling, Modal and temporal logics for processes, in: F. Moller, G. Birtwistle (Eds.), Logics for Con-
currency—Structure versus Automata, 8th Banff Higher Order Workshop, August 27–September 3, 1995,
Proceedings, Lecture Notes in Computer Science, vol. 1043, Springer, Berlin, 1996, pp. 149–237.

[67] D. Terrasse, Encoding natural semantics in Coq, in: V.S. Alagar (Ed.), Lgebraic Methodology and Software
Technology, 4th International Conference, AMAST ’95, Montreal, Canada, July 3–7, 1995, Proceedings,
Lecture Notes in Computer Science, vol. 936, Springer, Berlin, 1995, pp. 230–244.

[68] P. Thati, K. Sen, N. Martı́-Oliet, An executable specification of asynchronous pi-calculus semantics and may
testing in Maude 2.0, in: Gadducci and Montanari [33], pp. 217–237.

[69] A. Toval, J.L. Fernández, Formally modeling UML and its evolution: a holistic approach, in: S.F. Smith,
C.L. Talcott (Eds.), Proceedings IFIP Conference on Formal Methods for Open Object-Based Distributed
Systems IV, FMOODS 2000, September 6–8, 2000, Stanford, CA, USA, Kluwer Academic Publishers,
Dordrecht, 2000, pp. 183–206.

[70] K. Turner, Using Formal Description Techniques—An Introduction to Estelle, LOTOS and SDL, John Wiley
and Sons Ltd., New York, 1992.

[71] A. Verdejo, Building tools for LOTOS symbolic semantics in Maude, in: D. Peled, M. Vardi (Eds.), Formal
Techniques for Networked and Distributed Systems—FORTE 2002, 22nd IFIP WG 6.1 International Con-
ference Houston, TX, USA, November 2002, Proceedings, Lecture Notes in Computer Science, vol. 2529,
Springer, Berlin, 2002, pp. 292–307.

[72] A. Verdejo, A tool for Full LOTOS in Maude, Technical Report 123-02, Dpto. Sistemas Informáticos y Pro-
gramación, Universidad Complutense de Madrid, 2002. Available from: <http://www.ucm.es/sip/alberto>.

[73] A. Verdejo, Maude como marco semántico ejecutable, PhD thesis, Facultad de Informática, Universidad
Complutense de Madrid, 2003.

[74] A. Verdejo, N. Martı́-Oliet, Implementing CCS in Maude, in: T. Bolognesi, D. Latella (Eds.), Formal
Methods For Distributed System Development, FORTE/PSTV 2000 IFIP TC6 WG6.1 Joint International
Conference on Formal Description Techniques for Distributed Systems and Communications Protocols
(FORTE XIII) and Protocol Specification, Testing and Verification (PSTV XX) October 10–13, 2000, Pisa,
Italy, Kluwer Academic Publishers, Dordrecht, 2000, pp. 351–366.

[75] A. Verdejo, N. Martı́-Oliet, Implementing CCS in Maude 2, in: Gadducci and Montanari [33], pp. 239–257.
[76] A. Verdejo, N. Martı́-Oliet, Executable structural operational semantics in Maude, Technical Report 134-03,

Dpto. Sistemas Informáticos y Programación, Universidad Complutense de Madrid, 2003.
[77] P. Viry, Input/output for ELAN, in: J. Meseguer (Ed.), Proceedings First International Workshop on Re-

writing Logic and its Applications, WRLA’96, Asilomar, CA, September 3–6, 1996, Electronic Notes
in Theoretical Computer Science, vol. 4, Elsevier, Amsterdam, 1996., pp. 51–64., Available from:
<http://www.sciencedirect.com/science/journal/15710661>.

[78] M. Vittek, ELAN: Un Cadre Logique pour le Prototypage de Langages de Programmation avec Contraintes.
PhD thesis, Université Henri Poincaré—Nancy I, 1994.

[79] B.-Y. Wang, J. Meseguer, C.A. Gunter, Specification and formal analysis of a PLAN algorithm in Maude,
in: P.-A. Hsiung (Ed.), International Workshop on Distributed System Validation and Verification, 2000,
pp. 49–56.

	Executable structural operational semantics in Maude
	Introduction
	Rewriting logic and Maude
	The functional language Fpl
	Functional syntax definition
	Evaluation semantics
	Computation semantics

	The imperative language WhileL
	Imperative syntax definition
	Evaluation semantics
	Computation semantics

	Mini-ML
	CCS
	CCS syntax
	Implementation of CCS operational semantics
	Extension to weak transition semantics
	Hennessy--Milner modal logic

	Full LOTOS
	LOTOS symbolic semantics
	LOTOS symbolic semantics in Maude
	ACT ONE modules translation
	Building the LOTOS user interface
	An execution example
	Comparison with other LOTOS tools

	Transitions as judgements
	Comparison with the transitions as rewrites approach

	Related work
	Conclusions and future work
	References

