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Declarative debugging is a semi-automatic technique that starts from an incorrect computa-

tion and locates a program fragment responsible for the error by building a tree representing

this computation and guiding the user through it to find the error. Membership equational

logic (MEL) is an equational logic that in addition to equations allows one to state member-

ship axioms characterizing the elements of a sort. Rewriting logic is a logic of change that

extends MEL by adding rewrite rules, which correspond to transitions between states and

can be nondeterministic. We propose here a calculus to infer reductions, sort inferences,

normal forms, and least sorts with the equational subset of rewriting logic, and rewrites and

sets of reachable terms through rules. We use an abbreviation of the proof trees computed

with this calculus to build appropriate debugging trees for both wrong (an incorrect result

obtained from an initial result) and missing answers (results that are erroneous because

they are incomplete), whose adequacy for debugging is proved. Using these trees we have

implemented Maude DDebugger, a declarative debugger for Maude, a high-performance

system based on rewriting logic. We illustrate its use with an example.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Declarative debugging [35], also known as declarative diagnosis or algorithmic debugging, is a debugging technique that

abstracts the execution details, which may be difficult to follow in declarative languages, to focus on the results. We can

distinguish between two different kinds of declarative debugging: debugging of wrong answers, appliedwhen awrong result

is obtained from an initial value, which has been widely employed in the logic [38,18], functional [26,28], multi-paradigm

[5,20], and object-oriented [6] programming languages; and debugging of missing answers [23,38,18,10,1], applied when a

result is incomplete, which has been less studied because the calculus involved is more complex than in the case of wrong

answers. Declarative debugging starts from an incorrect computation, the error symptom, and locates the code (or the

absence of code) responsible for the error. To find this error the debugger represents the computation as a debugging tree

[24], where each node stands for a computation step and must follow from the results of its child nodes by some logical

inference. This tree is traversed by asking questions to an external oracle (generally the user) until a buggy node—a node

containing anerroneous result, butwhose children are all correct—is found.Hence,wedistinguish twophases in this scheme:

the debugging tree generation and its navigation following some suitable strategy [36].

We present here Maude DDebugger, a declarative debugger for Maude specifications. Maude [12] is a high-level language

and high-performance system supporting both equational and rewriting logic computation. Maude modules correspond to

specifications in rewriting logic [21], a logic that allows the representation of many models of concurrent and distributed

systems. This logic is an extension of membership equational logic [2], an equational logic that, in addition to equations, allows
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one to statemembership axioms characterizing the elements of a sort. Rewriting logic extends membership equational logic

by adding rewrite rules, which represent transitions in a concurrent system and can be nondeterministic. TheMaude system

supports several approaches for debugging Maude programs: tracing, term coloring, and using an internal debugger [12,

Chapter 22]. The tracing facilities allow us to follow the execution of a specification, that is, the sequence of applications

of statements that take place. The same ideas have been applied to the functional paradigm by the tracer Hat [11], where a

graph constructed by graph rewriting is proposed as a suitable trace structure. Term coloring uses different colors to print

the operators used to build a term that does not fully reduce. Finally, the Maude internal debugger allows the definition

of break points in the execution by selecting some operators or statements. When a break point is found the debugger is

entered, where we can see the current term and execute the next rewrite with tracing turned on. However, these tools

have the disadvantage that, since they are based on the trace, show the statements applied in the order in which they are

executed, and thus the user can lose the general view of the proof of the incorrect computation that produced the wrong

result.

Declarative debugging of wrong answers of membership equational logic specifications was studied in [8,7], and was

later extended to debugging of wrong answers in rewriting logic specifications in [30], while descriptions of the imple-

mented system can be found in [34], where we present how to debug wrong results due to errors in the statements of the

specification. In [32] we investigated how to apply declarative debugging of missing answers, traditionally associated with

nondeterministic frameworks [10,23], to membership equational logic specifications. We achieve this by broadening the

concept ofmissing answers to dealwith erroneous normal forms and least sorts. Finally, we extended the calculus developed

thus far in [31] to debug missing answers in rewriting logic specifications, that is, expected results that the specification is

not able to compute. A description of the whole system is presented in [33].

One of the strong points of our approach is that, unlike other proposals like [10], it combines the treatment of wrong

and missing answers and thus it is able to detect missing answers due to both wrong and missing statements. The state of

the art can be found in [36], which contains a comparison among the algorithmic debuggers B.i.O. [3] (Believe in Oracles),

a debugger integrated in the Curry compiler KICS; Buddha [27,28], a debugger for Haskell 98; DDT [9], a debugger for TOY;

Freja [26], a debugger for Haskell; Hat-Delta [14], part of a set of tools to debug Haskell programs; Mercury’s Algorithmic

Debugger [20], a debugger integrated into the Mercury compiler; Münster Curry Debugger [19], a debugger integrated into

the Münster Curry compiler; and Nude [25], the NU-Prolog Debugging Environment. We extend this comparison by taking

into account the features in the latest updates of the debuggers and adding two new ones: DDJ [16], a debugger for Java

Table 1

A comparative of declarative debuggers I.

Maude B.i.O. Buddha DDJ DDT Freja

DDebugger

Implementation Maude Curry Haskell Java Toy (front-end) Haskell

language Java (back-end)

Target Maude Curry Haskell Java Toy Haskell

language subset

Strategies TD DQ TD TD TD DQ DRQ TD DQ TD

SS HF MRF HD

Database/Memoization? NO/YES NO/NO NO/YES YES/YES NO/YES NO/NO

Front-end Independent Independent Independent Independent Integrated Integrated

prog. trans. prog. trans. prog. trans. prog. trans. prog. trans. compiler

Interface APT Step count ET ET ET ET

on demand on demand (XML/TXT)

Debugging Main memory Main memory Main memory Database Main memory Main memory

tree on demand on demand on demand

Missing YES NO NO NO YES NO

answers?

Accepted yes no yes no yes no dk yes no yes no yes no

answers dk tr dk in tr dk tr dk tr my mn

Tracing NO NO NO NO NO NO

subexpressions?

ET YES YES YES YES YES YES

exploration?

Different YES NO NO YES NO NO

trees?

Tree NO NO NO NO NO NO

compression?

Undo? YES YES NO YES NO YES

Trusting MO/FU/FN MO/FU/AR MO/FU FU FU MO/FU

GUI? YES NO NO YES YES NO

Version 2.0 Kics 0.81893 1.2.1 2.4 1.2

(24/5/2010) (15/4/2009) (1/12/2006) (23/10/2010) (29/9/2005) (2000)
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Table 2

A comparative of declarative debuggers II.

Maude Mercury Münster

DDebugger Hat-Delta Debugger Curry Nude

Debugger

Implementation Maude Haskell Mercury Haskell (front-end) Prolog

language Curry (back-end)

Target Maude Haskell Mercury Curry Prolog

language

Strategies TD DQ HD TD DQ TD TD

SD MD

Database/Memoization? NO/YES NO/YES NO/YES NO/NO YES/YES

Front-end Independent Independent Independent Integrated Independent

prog. trans. prog. trans. compiler compiler compiler

Interface APT ART ET ET ET

(native) on demand on demand

Debugging Main memory File Main memory Main memory Main memory

tree on demand system on demand on demand

Missing YES NO NO NO NO

answers?

Accepted yes no yes no yes no dk yes no yes no

answers dk tr in tr

Tracing NO NO YES NO NO

subexpressions?

ET YES YES YES YES NO

exploration?

Different YES NO NO NO NO

trees?

Tree NO YES NO NO NO

compression?

Undo? YES NO YES NO NO

Trusting MO/FU/FN MO MO/FU MO/FU FU

GUI? YES NO NO YES NO

Version 2.0 2.05 Mercury 0.13.1 AquaCurry 1.0 NU-Prolog 1.7.2

(24/5/2010) (22/10/2006) (1/12/2006) (13/5/2006) (13/7/2004)

programs, and our own debugger, Maude DDebugger. This comparison is summarized in Tables 1 and 2, where each column

shows a declarative debugger and each row a feature. More specifically:

• The implementation language indicates the language used to implement the debugger. In some cases front- and

back-ends are shown: they refer, respectively, to the language used to obtain the information needed to compute the

debugging tree and the language used to interact with the user.
• The target language states the language debugged by the tool.
• The strategies row indicates the different navigation strategies implemented by the debuggers. TD stands for top-

down, that starts from the root and selects a wrong child to continue with the navigation until all the children are

correct; DQ for divide and query, that selects in each case a node rooting a subtree half the size of the whole tree; SS

for single stepping, that performs a post-order traversal of the execution tree; HF for heaviest first, a modification of

top-down that selects the child with the biggest subtree; MRF for more rules first, another variant of top-down that

selects the child with the biggest number of different statements in its subtree; DRQ for divide by rules and query, an

improvement of divide and query that selects the node whose subtree has half the number of associated statements

of the whole tree; MD for the divide and query strategy implemented by the Mercury Debugger; SD for subterm

dependency, a strategy that allows one to track specific subterms that the user has pointed out as erroneous; and HD

for the Hat-Delta heuristics.
• Database indicates whether the tool keeps a database of answers to be used in future debugging sessions, while

memoization indicates whether this database is available for the current session.
• The front-end indicates whether it is integrated into the compiler or it is standalone.
• Interface shows the interface between the front-end and the back-end. Here, APT stands for the Abbreviated Proof

Tree generated by Maude; ART for Augmented Redex Trail, the tree generated by Hat-Delta; ET is an abbreviation of

Execution Tree; and step count refers to a specific method of the B.i.O. debugger that keeps the information used thus

far into a text file.
• Debugging tree presents how the debugging trees are managed.
• The missing answers row indicates whether the tool can debug missing answers.
• Accepted answers: the different answers that can be introduced into the debugger. yes; no; dk (don’t know); tr

(trust); in (inadmissible), used to indicate that some arguments should not have been computed; and my and mn
(maybe yes andmaybe no), that behave as yes and no although the questions can be repeated if needed. More details

about these debugging techniques can be found in [36,37].
• Tracing subexpressions means that the user is able to point out a subterm as erroneous.
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• ET exploration indicates whether the debugging tree can be freely traversed.
• Whether the debugging tree can be built following different strategies depending on the specific situation is shown

in the Different trees? row.
• Tree compression indicates whether the tool implements tree compression [14], a technique to remove redundant

nodes from the execution tree.
• Undo states whether the tool provides an undo command.
• Trusting lists the trusting options provided by each debugger. MO stands for trusting modules; FU for functions

(statements); AR for arguments; and FN for final forms.
• GUI shows whether the tool provides a graphical user interface.
• Version displays the version of the tool used for the comparison.

The results shown in these tables can be interpreted as follows:

Navigation strategies: Several navigation strategies have been proposed for declarative debugging [36]. However, most

of the debuggers (including Maude DDebugger) only implement the basic top-down and divide and query techniques.

On the other hand, DDJ implements most of the known navigation techniques (some of them also developed by the

same researchers), including an adaptation of the navigation techniques developed for Hat-Delta. Among the basic

techniques, only DDJ, DDT, and Maude DDebugger provide the most efficient divide and query strategy, Hirunkitti’s

divide and query [36].

Available answers: The declarative debugging scheme relies on an external oracle answering the questions asked by the

tool, and thus the bigger the set of available answers the easier the interaction. The minimum set of answers accepted

by all the debuggers is composed of the answers yes and no; Hat-Delta, the Münster Curry Debugger, and Nude do

not accept any more answers, but the remaining debuggers allow some others. Other well-known answers are don’t

know and trust; the former, that can introduce incompleteness, allows the user to skip the current question and is

implemented by B.i.O., DDJ, DDT, Buddha, Mercury, and Maude DDebugger, while the latter prevents the debugger

from asking questions related to the current statement and is accepted by DDJ, DDT, Buddha, the Mercury debugger,

and Maude DDebugger. Buddha and the Mercury debugger have developed an answer inadmissible to indicate that

some arguments should not have been computed, redirecting the debugging process in this direction; our debugger

accepts a similar mechanism when debugging missing answers in system modules with the answer the term n is not a

solution/reachable, which indicates that a term in a set is not a solution/reachable, leading the process in this direction.

Finally, Freja accepts the answersmaybe yes andmaybe not, that the debugger uses as yes and not, although it will return

to these questions if the bug is not found.

Database: A common feature in declarative debugging is the use of a database to prevent the tool from asking the

same question twice, which is implemented by DDJ, DDT, Hat-Delta, Buddha, the Mercury debugger, Nude, and Maude

DDebugger. Nude has improved this technique by allowing this database to be used during the next sessions, which

has also been adopted by DDJ.

Memory: The debuggers allocate the debugging tree in different ways. The Hat-Delta tree is stored in the file system,

DDJ uses a database, and the rest of the debuggers (including ours) keep it in main memory. Most debuggers improve

memorymanagement by building the tree on demand, as B.i.O., Buddha, DDJ, the Mercury debugger, Nude, andMaude

DDebugger.

Tracing subexpressions: The Mercury debugger is the only one able to indicate that a specific subexpression, and not

the whole term, is wrong, improving both the answers no and inadmissible with precise information about the subex-

pression. With this technique the navigation strategy can focus on some nodes of the tree, enhancing the debugging

process.

Construction strategies: A novelty of our approach is the possibility of building different trees depending on the com-

plexity of the specification and the experience of the user: the trees for both wrong and missing answers can be built

following either a one-step or amany-step strategy (giving rise to four combinations).While with the one-step strategy

the tool asks more questions in general, these questions are easier to answer than the ones presented with the many-

steps strategy. An improvement of this technique has been applied in DDJ in [17], allowing the system to balance the

debugging trees by combining so called chains, that is, sequences of statements where the final data of each step is the

initial data of the following one.

Tree compression: The Hat-Delta debugger has developed a new technique to remove redundant nodes from the exe-

cution tree, called tree compression [14]. Roughly speaking, it consists in removing (in some cases) from the debugging

tree the children of nodes that are related to the same error as the father, in such a way that the father will provide

debugging information for both itself and these children. This technique is very similar to the balancing technique

implemented for DDJ in [17].

Tree exploration: Most of the debuggers allow the user to freely navigate the debugging tree, including ourswhen using

the graphical user interface. Only the Münster Curry Debugger and Nude do not implement this feature.

Trusting: Although all the debuggers provide some trusting mechanisms, they differ on the target: all the debuggers

except Hat-Delta have mechanisms to trust specific statements, and all the debuggers except DDJ, DDT, and Nude can

trust complete modules. An original approach is to allow the user to trust some arguments, which currently is only
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supported by B.i.O. In our case, and since we are able to debug missing answers, a novel trusting mechanism has been

developed: the user can identify some sorts and some operators as final, that is, they cannot be further reduced; with

this method all nodes referring to “finalness” of these terms are removed from the debugging tree. Finally, a method

similar to trusting consists in using a correct specification as an oracle to answer the questions; this approach is followed

by B.i.O. and Maude DDebugger.

Undo command: In a technique that relies on theuser as oracle, it is usual to commit an error and thus anundo command

can be very useful. However, not all the debuggers have this command, with B.i.O., DDJ, Freja, the Mercury debugger,

and Maude DDebugger being the only ones implementing this feature.

Graphical interface: Agraphical user interface eases the interactionbetween theuser and the tool, allowinghim to freely

navigate the debugging tree and showing all the features in a friendly way. In [36], only one declarative debugger—

DDT—implemented such an interface, while nowadays four tools—DDT, DDJ, Münster Curry Debugger, 1 and Maude

DDebugger—have this feature.

Errors detected: It is worth noticing that only DDT and Maude DDebugger can debug missing answers, while all the

other debuggers are devoted exclusively to wrong answers. However, DDT only debugs missing answers due to nonde-

terminism, while our approach uses this technique to debug erroneous normal forms and least sorts.

Other remarks: An important subject in declarative debugging is scalability. The development of DDJ has taken special

care of this subject by using a complex architecture thatmanages the availablememory and uses a database to store the

parts of the tree that do not fit in main memory. Moreover, the navigation strategies have been modified to work with

incomplete trees. Regarding reusability, the latest version of B.i.O. provides a generic interface that allows other tools

implementing it to use its debugging features. Finally, the DDT debugger has been improved to deal with constraints.

Exploiting the fact that rewriting logic is reflective [13], a key distinguishing feature ofMaude is its systematic and efficient

use of reflection through its predefined META-LEVEL module [12, Chapter 14], a feature that makes Maude remarkably

extensible and powerful, and that allows many advanced metaprogramming and metalanguage applications. This powerful

feature allows access to metalevel entities such as specifications or computations as usual data. Therefore, we are able to

generate and navigate the debugging tree of a Maude computation using operations in Maude itself. In addition, the Maude

system provides another module, LOOP-MODE [12, Chapter 17], which can be used to specify input/output interactions with

the user. However, instead of using this module directly, we extend Full Maude [12, Chapter 18], which includes features

for parsing, evaluating, and pretty-printing terms, improving the input/output interaction. Moreover, Full Maude allows the

specification of concurrent object-oriented systems, which can also be debugged. Thus, our declarative debugger, including

its user interactions, is implemented in Maude itself.

The rest of the paper is structured as follows. Section 2 presents the preliminaries of our debugging approach. Section

3 describes our calculus while the next section explains how to transform the proof trees built with this calculus into

appropriate debugging trees. Section 5 shows how to use the debugger, while Section 6 illustrates it with an example.

Section 7 describes the implementation of our tool and Section 8 concludes and presents some future work. We present in

Appendix A the detailed proofs of the results stated throughout the paper.

Additional examples, the source code of the tool, and other papers on the subject, including the user guide [29], where

the graphical user interface for the debugger is presented, are all available from the webpage http://maude.sip.ucm.es/

debugging.

2. Preliminaries

In the following sections we present both membership equational logic and rewriting logic, and how their specifications

are represented as Maude modules. Then, we state the assumptions made on those specifications.

2.1. Membership equational logic

A signature in membership equational logic is a triple (K, �, S) (just � in the following), with K a set of kinds,

� = {�k1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K a pairwise disjoint K-kinded family of sets

of sorts. The kind of a sort s is denoted by [s]. We write T�,k and T�,k(X) to denote, respectively, the set of ground �-terms

with kind k and of �-terms with kind k over variables in X , where X = {x1 : k1, . . . , xn : kn} is a set of K-kinded variables.

Intuitively, terms with a kind but without a sort represent undefined or error elements.

The atomic formulas of membership equational logic are equations t = t′, where t and t′ are �-terms of the same kind,

and membership axioms of the form t : s, where the term t has kind k and s ∈ Sk . Sentences are universally-quantified Horn

clauses of the form (∀X) A0 ⇐ A1 ∧ · · · ∧ An, where each Ai is either an equation or a membership axiom, and X is a set

of K-kinded variables containing all the variables in the Ai. A specification is a pair (�, E), where E is a set of sentences in

membership equational logic over the signature �.

Models of membership equational logic specifications are �-algebras A consisting of a set Ak for each kind k ∈ K , a

function Af : Ak1 × · · · × Akn −→ Ak for each operator f ∈ �k1...kn,k , and a subset As ⊆ Ak for each sort s ∈ Sk . Given

1 Only available for Mac OS X.

http://maude.sip.ucm.es/debugging
http://maude.sip.ucm.es/debugging
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a �-algebra A and a valuation σ : X −→ A mapping variables to values in the algebra, the meaning [[t]]σA of a term t is

inductively defined as usual. Then, an algebra A satisfies, under a valuation σ ,

• an equation t = t′, denoted A, σ |
 t = t′, if and only if both terms have the same meaning: [[t]]σA = [[t′]]σA; we also

say that the equation holds in the algebra under the valuation.
• a membership t : s, denoted A, σ |
 t : s, if and only if [[t]]σA ∈ As.

Satisfaction of Horn clauses is defined in the standard way. Finally, when terms are ground, valuations play no role and

thus can be omitted. A membership equational logic specification (�, E) has an initial model T�/E whose elements are

E-equivalence classes of ground terms [t]E , andwhere an equation ormembership is satisfied if and only if it can be deduced

from E by means of a sound and complete set of deduction rules [2,22].

Since the membership equational logic specifications that we consider are assumed to satisfy the executability require-

ments of confluence, termination, and sort-decreasingness [12], their equations t = t′ can be oriented from left to right,

t → t′. Such a statement holds in an algebra, denotedA, σ |
 t → t′, exactlywhenA, σ |
 t = t′, i.e., when [[t]]σA = [[t′]]σA.
Moreover, under those assumptions an equational condition u = v in a conditional equation can be checked by finding a

common term t such that u → t and v → t; the notation we will use in the inference rules and debugging trees studied

in Section 3 for this situation is u ↓ v. Also, the notation t =E t′ means that the equation t = t′ can be deduced from E,

equivalently, that [t]E = [t′]E .
2.2. Maude functional modules

Maude functional modules [12, Chapter 4], introducedwith syntax fmod ... endfm, are executablemembership equa-

tional logic specifications and their semantics is given by the corresponding initial algebra in the class of algebras satisfying

the specification.

In a functionalmodulewe candeclare sorts (bymeans of the keywordsorts); subsort relations between sorts (subsort);
operators (op) for building values of these sorts, giving the sorts of their arguments and result, andwhichmayhave attributes

such as being associative (assoc) or commutative (comm), for example; memberships (mb) asserting that a term has a sort;

and equations (eq) identifying terms. Both memberships and equations can be conditional (cmb and ceq). Conditions, in
addition to memberships and equations, can also be matching equations t := t′, whose mathematical meaning is the same

as that of an ordinary equation t = t′ but that operationally are solved bymatching the righthand side t′ against the pattern
t in the lefthand side, thus instantiating possibly new variables in t.

Maude does automatic kind inference from the sorts declared by the user and their subsort relations. Kinds are not

declared explicitly and correspond to the connected components of the subsort relation. The kind corresponding to a sort

s is denoted [s]. For example, if we have sorts Nat for natural numbers and NzNat for nonzero natural numbers with a

subsort NzNat < Nat, then [NzNat] = [Nat].
An operator declaration like

op _div_ : Nat NzNat -> Nat .

is logically understood as a declaration at the kind level
op _div_ : [Nat] [Nat] -> [Nat] .

together with the conditional membership axiom

cmb N div M : Nat if N : Nat and M : NzNat .

A subsort declaration NzNat < Nat is logically understood as the conditional membership axiom

cmb N : Nat if N : NzNat .

2.3. Rewriting logic

Rewriting logic extends equational logic by introducing the notion of rewrites corresponding to transitions between

states; that is, while equations are interpreted as equalities and therefore they are symmetric, rewrites denote changes

which can be irreversible.

A rewriting logic specification, or rewrite theory, has the formR = (�, E, R), where (�, E) is an equational specification

andR is a set of rules asdescribedbelow. Fromthisdefinition, onecan see that rewriting logic is built on topof equational logic,

so that rewriting logic is parameterized with respect to the version of the underlying equational logic; in our case, Maude

uses membership equational logic, as described in the previous sections. A rule q in R has the general conditional form2

q : (∀X) e ⇒ e′ ⇐
n∧

i=1

ui = u′
i ∧

m∧

j=1

vj : sj ∧
l∧

k=1

wk ⇒ w′
k

2 There is no need for the condition to list equations first, then memberships, and then rewrites; this is just a notational abbreviation, since they can be listed

in any order.
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where q is the rule label, the head is a rewrite and the conditions can be equations, memberships, and rewrites; both sides

of a rewrite must have the same kind. From these rewrite rules, one can deduce rewrites of the form t ⇒ t′ by means of

general deduction rules introduced in [21] (see also [4]).

Models of rewrite theories are called R-systems in [21]. Such systems are defined as categories that possess a (�, E)-
algebra structure, togetherwith a natural transformation for each rule in the set R. More intuitively, the idea is thatwe have a

(�, E)-algebra, as described in Section 2.1, with transitions between the elements in each set Ak;moreover, these transitions

must satisfy several additional requirements, including that there are identity transitions for each element, that transitions

can be sequentially composed, that the operations in the signature � are also appropriately defined for the transitions, and

that we have enough transitions corresponding to the rules in R. The rewriting logic deduction rules introduced in [21] are

sound and complete with respect to this notion of model. Moreover, they can be used to build initial models. Given a rewrite

theoryR = (�, E, R), the initial model T�/E,R forR has an underlying (�, E)-algebra T�/E whose elements are equivalence

classes [t]E of ground �-terms modulo E, and there is a transition from [t]E to [t′]E when there exist terms t1 and t2 such

that t =E t1 →∗
R t2 =E t′, where t1 →∗

R t2 means that the term t1 can be rewritten into t2 in zero or more rewrite steps

applying rules in R, also denoted [t]E →∗
R/E [t′]E when rewriting is considered on equivalence classes [21,15].

However, for our purposes in this paper, we are interested in a subclass of rewriting logic models [21] that we call term

models, where the syntactic structure of terms is kept and associated notions such as variables, substitutions, and term

rewriting make sense. These models will be used in the next section to represent the intended interpretation that the user

had in mind while writing a specification. Since we want to find the discrepancies between the intended model and the

initial model of the specification as written, we need to consider the relationship between a specification defined by a set of

equations E and a set of rules R, and a model defined by possibly different sets of equations E′ and of rules R′; in particular,

when E′ = E and R′ = R, the term model coincides with the initial model built in [21].

Given a rewrite theoryR = (�, E, R), with� a signature, E a set of equations, and R a set of rules, a�-termmodel has an

underlying (�, E′)-algebra whose elements are equivalence classes [t]E′ of ground �-terms modulo some set of equations

and memberships E′ (which may be different from E), and there is a transition from [t]E′ to [t′]E′ when [t]E′ →∗
R′/E′ [t′]E′ ,

where rewriting is considered on equivalence classes [21,15]. The set of rules R′ may also be different from R, that is, the term

model is T�/E′,R′ for some E′ and R′. In such termmodels, the notion of valuation coincideswith that of (ground) substitution.

A term model T�/E′,R′ satisfies, under a substitution θ ,

• an equation u = v, denoted T�/E′,R′ , θ |
 u = v, when θ(u) =E′ θ(v), or equivalently, when [θ(u)]E′ = [θ(v)]E′ ;
• a membership u : s, denoted T�/E′,R′ , θ |
 u : s, when the �-term θ(u) has sort s according to the information in

the signature � and the equations and memberships E′;
• a rewrite u ⇒ v, denoted T�/E′,R′ , θ |
 u ⇒ v, when there is a transition in T�/E′,R′ from [θ(u)]E′ to [θ(v)]E′ , that is,

when [θ(u)]E′ →∗
R′/E′ [θ(v)]E′ .

Satisfaction is extended to conditional sentences as usual. A �-termmodel T�/E′,R′ satisfies a rewrite theoryR = (�, E, R)
when T�/E′,R′ satisfies the equations and memberships in E and the rewrite rules in R in this sense. For example, this is

obviously the case when E ⊆ E′ and R ⊆ R′; as mentioned above, when E′ = E and R′ = R the term model coincides with

the initial model for R.

2.4. Maude system modules

Maude systemmodules [12, Chapter 6], introducedwith syntax mod ... endm, are executable rewrite theories and their

semantics is given by the initial system in the class of systems corresponding to the rewrite theory. A system module can

contain all the declarations of a functional module and, in addition, declarations for rules (rl) and conditional rules (crl),
whose conditions can be equations, matching equations, memberships, and rewrites.

The executability requirements for equations and memberships in a system module are the same as those of functional

modules, namely, confluence, termination, and sort-decreasingness. With respect to rules, the satisfaction of all the condi-

tions in a conditional rewrite rule is attempted sequentially from left to right, solving rewrite conditions bymeans of search;

for this reason,we can have newvariables in such conditions but theymust become instantiated along this process of solving

from left to right (see [12] for details). Furthermore, the strategy followed byMaude in rewritingwith rules is to compute the

normal formof a termwith respect to theequationsbefore applyinga rule. This strategy is guaranteednot tomiss any rewrites

when the rules are coherent with respect to the equations [39,12]. In a way quite analogous to confluence, this coherence

requirementmeans that, given a term t, for each rewrite of it using a rule in R to some term t′, if u is the normal form of twith

respect to the equations andmemberships in E, then there is a rewrite of uwith some rule in R to a term u′ such that u′ =E t′.
The following section describes an example of a Maude system module with both equations and rules.

2.5. An example of system module: a maze

Given a maze, we want to obtain all the possible paths to the exit. First, we define the sorts Pos, Pos?, List, and State,
that stand for positions in the labyrinth, incorrect positions (that we will use later to indicate that terms with this sort must
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be rewritten to become a correct position) lists of positions, and the path traversed so far, respectively:

(mod MAZE is
pr NAT .
sorts Pos Pos? List State .

Terms of sort Pos have the form [X,Y], where X and Y are natural numbers, and lists are built with nil and the

juxtaposition operator _ _:

subsorts Pos < Pos? List .
op [_,_] : Nat Nat -> Pos [ctor] .
op nil : -> List [ctor] .
op __ : List List -> List [ctor assoc id: nil] .

Terms of sort State are lists enclosed by curly brackets, that is, {_} is an “encapsulation operator” that ensures that the

whole state is used:

op {_} : List -> State [ctor] .

The predicate isSol checks whether a list is a solution in a 8 × 8 labyrinth:

vars X Y : Nat .
vars P Q : Pos .
var L : List .
op isSol : List -> Bool .
eq [is1] : isSol(L [8,8]) = true .
eq [is2] : isSol(L) = false [owise] .

The next position is computed with rule expand, that extends the solution with a new position by rewriting next(L)
to obtain a new position and then checking whether this list is correct with isOk. Note that the choice of the next position,

that could be initially wrong, produces an implicit backtracking:

crl [expand] : { L } => { L P } if next(L) => P /\ isOk(L P) .

The function next, that builds terms of the sort Pos?, is defined in a nondeterministic way with the rules:

op next : List -> Pos? .
rl [n1] : next(L [X,Y]) => [X, Y + 1] .
rl [n2] : next(L [X,Y]) => [sd(X, 1), Y] .
rl [n3] : next(L [X,Y]) => [X, sd(Y, 1)] .

where sd denotes symmetric difference on natural numbers.

isOk(L P) checks that the position P is within the limits of the labyrinth, not repeated in L, and not part of the wall by

using an auxiliary function contains:

op isOk : List -> Bool .
eq isOk(L [X,Y]) = X >= 1 and Y >= 1 and X <= 8 and Y <= 8

and not(contains(L, [X,Y])) and not(contains(wall, [X,Y])) .
op contains : List Pos -> Bool .
eq [c1] : contains(nil, P) = false .
eq [c2] : contains(Q L, P) = if P == Q then true else contains(L, P) fi .

Finally, we define the wall of the labyrinth as a list of positions:

op wall : -> List .
eq wall = [2,1] [4,1]

[2,2] [3,2] [6,2] [7,2]
[2,3] [4,3] [5,3] [6,3] [7,3]

[1,5] [2,5] [3,5] [4,5] [5,5] [6,5] [8,5]
[6,6] [8,6]
[6,7]
[6,8] [7,8] .

endm)

Now, we can use the module to search the labyrinth’s exit from the position [1,1] with the Maude command search,
but it cannot find any path to escape. We will see in Section 5 how to debug this specification.

Maude> (search {[1,1]} =>* {L:List} s.t. isSol(L:List) .)
No solution.
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2.6. Assumptions

SincewearedebuggingMaudemodules, they are expected to satisfy the appropriate executability requirements indicated

in the previous sections. Namely, the specifications in functional modules have to be terminating, confluent, sort decreasing

and, given an equation t1 = t2 if C1 ∧ · · · ∧ Cn, all the variables occurring in t2 and C1 . . . Cn must appear in t1 or become

instantiated by matching [12, Section 4.6]. While the equational part of system modules has to fulfill these requirements,

rewrite rules must be coherent with respect to the equations and, given a rule t1 ⇒ t2 if C1 ∧ · · · ∧ Cn, the variables

occurring in t2 and C1 . . . Cn must appear in t1 or become instantiated in matching or rewriting conditions [12, Section 6.3].

One interesting feature of our tool is that the user can trust some statements, bymeans of labels applied to the suspicious

statements. This means that the unlabeled statements are assumed to be correct, and only their conditions will generate

questions. In order to obtain a nonempty abbreviated proof tree, the user must have labeled some statements (all with

different labels); otherwise, everything is assumed to be correct. In particular, thewrong statementmust be labeled in order

to be found. Likewise, when debugging missing answers, constructed terms (terms built only with constructors, indicated

with the attribute ctor, and also known as data terms in other contexts) are considered to be in normal form, and some of

these constructed terms can be pointed out as “final” (they cannot be further rewritten). Thus, this information has to be

accurate in order to find the buggy node.

Although the user can introduce a module importing other modules, the debugging process takes place in the flattened

module. However, the debugger allows the user to trust a whole imported module.

Navigation of the debugging tree takes place by asking questions to an external oracle, which in our case is either the user

or another module introduced by the user. In both cases the answers are assumed to be correct. If either the module is not

really correct or the user provides an incorrect answer, the result is unpredictable. Notice that the information provided by

the correct module need not be complete, in the sense that some functions can be only partially defined. In the same way,

it is not required to use the same signature in the correct and the debugged modules. If the correct module cannot help in

answering a question, the user may have to answer it.

Finally, all the information in the signature (sorts, subsorts, operators, and equational attributes such as assoc, comm,

etc.) is supposed to be correct and will not be considered during the debugging process.

3. A calculus for debugging

Nowwewill describe debugging trees for bothwrong andmissing answers. First, Section 3.1 presents a calculus to deduce

reductions, memberships, and rewrites. Wewill extend this calculus in Section 3.2 to describe a calculus to compute normal

forms, least sorts, and sets of reachable terms. From now on, we assume a rewrite theory R = (�, E, R) satisfying the

assumptions stated in the previous section.

3.1. A calculus for wrong answers

We show here a calculus to deduce judgments for reductions e → e′, memberships e : s, and rewrites e ⇒ e′.
The inference rules for this calculus, shown in Fig. 1, are an adaptation of the rules presented in [2,22] for membership

equational logic and in [21,4] for rewriting logic. Remember that the notation θ(ui) ↓ θ(u′
i) is an abbreviation of∃ti.θ(ui) →

ti ∧ θ(u′
i) → ti. As usual, we represent deductions in the calculus as proof trees, where the premises are the child nodes of

the conclusion at each inference step. We assume that the inference labels Rep⇒, Rep→, and Mb decorating the inference

steps contain information about the particular rewrite rule, equation, and membership axiom, respectively, applied during

the inference. This information will be used by the debugger in order to present to the user the incorrect fragment of code

causing the error.

For example, we can try to build the proof tree for the following reduction:

Maude> (red isOk([1,1][1,2]) .)
result Bool : true

Figs. 2 and 3 depict the proof tree associated to this reduction, where c stands for contains, t for true, f for false,
rhs for 1 >= 1 and 2 >= 1 and 1 <= 8 and 2 <= 8 and not(c([1,1],[1,2])) and not(c(wall,[1,2])), t1
for if [1,1] == [1,2] then t else c(nil,[1,2]) fi, t2 for if f then t else c(nil,[1,2]) fi, and each

� abbreviates a computation not shown here. In order to obtain the result we use the transitivity inference rule, whose left

premise applies the replacement rule with the equation for isOk, obtaining the term rhs, that will be further reduced in

the right premise to obtain t by means of another transitivity step. The left child of this last node reduces all the subterms

in rhs to t, while the right one just applies the usual equations for conjunctions to obtain the final result. While the first

reductions in the premises of the node (•) correspond to arithmetic computations and will not been shown here, the last

two are more complex. Fig. 3 describes the tree ����1 , that proves how one of the subterms using equations defined by the

user is reduced to t, while the tree on its right is very similar and will not be studied in depth. The tree ����1 reduces in its left

child the inner subterm to f by traversing the list of positions (in this case the only element in the list is [1,1]), reducing
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Fig. 1. Semantic calculus for Maude modules.

Fig. 2. Tree for the reduction of isOk([1,1][1,2]).

Fig. 3. Tree ����1 for not(c([1,1],[1,2])).

the if_then_else_fi term in t1 and then applying the equation for the empty list nil. Then, the right child of the root

applies the predefined equation for not to obtain the final result.

In our debugging framework we assume the existence of an intended interpretation I of the given rewrite theory R =
(�, E, R). This intended interpretation is a �-term model corresponding to the model that the user had in mind while

writing the specificationR. Therefore the user expects that I |
 e ⇒ e′, I |
 e → e′, and I |
 e : s for each rewrite e ⇒ e′,
reduction e → e′, and membership e : s computed w.r.t. the specification R. As a term model, I must satisfy the following

proposition:
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Proposition 1. Let R = (�, E, R) be a rewrite theory and let T = T�/E′,R′ be any �-term model. If a statement e ⇒ e′
(respectively, e → e′, e : s) can be deduced using the semantic calculus rules reflexivity, transitivity, congruence, equivalence

class, or subject reduction using premises that hold in T , then T |
 e ⇒ e′ (respectively, T |
 e → e′, T |
 e : s).
Observe that this proposition cannot be extended to themembership and replacement inference rules, where the correct-

ness of the conclusion depends not only on the calculus but also on the associated specification statement, which could be

wrong.

3.2. A calculus for missing answers

The calculus in this section, that extends the one shown in the previous section, will be used to infer the normal form of

a term, the least sort of a term, and, given a term and some constraints, the complete set of reachable terms from this term

that fulfill the requirements. 3 The proof trees built with this calculus have nodes that justify the positive information (why

the normal form is reached, the least sort is obtained, and the terms are included in the corresponding sets) but also nodes

that justify the negative information (why the normal form is no further reduced, why no smaller sort can be obtained for

the term, and why there are no more terms in the sets). These latter nodes are then used in the debugging trees to localize

as much as possible the reasons responsible for missing answers. Throughout this paper we only consider a special kind of

conditions and substitutions that operate over them, called admissible, that we define as follows:

Definition 1. A condition C ≡ C1 ∧ · · · ∧ Cn is admissible if, for 1 ≤ i ≤ n,

• Ci is an equation ui = u′
i or a membership ui : s and

vars(Ci) ⊆
i−1⋃

j=1

vars(Cj), or

• Ci is a matching condition ui := u′
i , ui is a pattern and

vars(u′
i) ⊆

i−1⋃

j=1

vars(Cj), or

• Ci is a rewrite condition ui ⇒ u′
i , u

′
i is a pattern and

vars(ui) ⊆
i−1⋃

j=1

vars(Cj).

Definition 2. A condition C ≡ P := � ∧ C1 ∧ · · · ∧ Cn, where � denotes a special variable not occurring in the rest of the

condition, is admissible if P := t ∧ C1 ∧ · · · ∧ Cn is admissible for t any ground term.

Definition 3. A kind-substitution, denoted by κ , is a mapping from variables to terms of the form v1 �→ t1; . . . ; vn �→ tn
such that ∀1≤i≤n . kind(vi) = kind(ti), that is, each variable has the same kind as the associated term.

Definition 4. A substitution, denoted by θ , is a mapping from variables to terms of the form v1 �→ t1; . . . ; vn �→ tn such

that ∀1≤i≤n . sort(vi) ≥ ls(ti), that is, the sort of each variable is greater than or equal to the least sort of the associated term.

Note that a substitution is a special type of kind-substitution where each term has the sort appropriate to its variable.

Definition 5. Given an atomic condition C, we say that a substitution θ is admissible for C if

• C is an equation u = u′ or a membership u : s and vars(C) ⊆ dom(θ), or
• C is a matching condition u := u′ and vars(u′) ⊆ dom(θ), or
• C is a rewrite condition u ⇒ u′ and vars(u) ⊆ dom(θ).

The calculus presented in this section (in Figs. 4–7, and 12) will be used to deduce the following judgments, that we

introduce together with their meaning for a �-term model T ′ = T�/E′,R′ defined by equations and memberships E′ and by

rules R′:

• Given a term t and a kind-substitution κ , T ′ |
 adequateSorts(κ) � �when either� = {κ} and∀v ∈ dom(κ).T ′ |

κ[v] : sort(v), or � = ∅ and ∃v ∈ dom(κ).T ′ �|
 κ[v] : sort(v), where κ[v] denotes the term bound by v in κ . That
is, when all the terms bound in the kind-substitution κ have the appropriate sort, then κ is a substitution and it is

3 The requirements of this last inference mimic the ones used in the Maude’s breadth-first search, which is usually used to detect the existence of missing

answers.
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Fig. 4. Calculus for substitutions.

Fig. 5. Calculus for normal forms and least sorts.

returned; otherwise (at least one of the terms has an incorrect sort), the kind-substitution is not a substitution and

the empty set is returned. 4

• Given an admissible substitution θ for an atomic condition C, T ′ |
 [C, θ ] � � when

� = {θ ′ | T ′, θ ′ |
 C and θ ′ �dom(θ)= θ},
that is, � is the set of substitutions that fulfill the atomic condition C and extend θ by binding the new variables

appearing in C.
• Given a set of admissible substitutions � for an atomic condition C, T ′ |
 〈C, �〉 � �′ when

�′ = {θ ′ | T ′, θ ′ |
 C and θ ′ �dom(θ)= θ for some θ ∈ �},
that is, �′ is the set of substitutions that fulfill the condition C and extend any of the admissible substitutions in �.

4 Do not confuse, in the judgments inferring sets of substitutions, the empty set of substitutions ∅, which indicates that no substitutions fulfill the condition,

with the set containing the empty substitution {∅}, which indicates that the condition is fulfilled and the condition is ground.
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Fig. 6. Calculus for solutions.

Fig. 7. Calculus for missing answers.

• T ′ |
 disabled(a, t) when the equation or membership a cannot be applied to t at the top.

• T ′ |
 t →red t′ when either T ′ |
 t →1
E′ t′ or T ′ |
 ti →!

E′ t′i , with ti �= t′i , for some subterm ti of t such that

t′ = t[ti �→ t′i ], that is, the term t is either reduced one step at the top or reduced by substituting a subterm by its

normal form.
• T ′ |
 t →norm t′ when T ′ |
 t →!

E′ t′, that is, t′ is in normal form with respect to the equations E′.
• Given an admissible condition C ≡ P := � ∧ C1 ∧ · · · ∧ Cn, T ′ |
 fulfilled(C, t) when there exists a substitution θ

such that T ′, θ |
 P := t ∧ C1 ∧ · · · ∧ Cn, that is, C holds when � is substituted by t.
• Given an admissible condition C as before, T ′ |
 fails(C, t) when there exists no substitution θ such that T ′, θ |


P := t ∧ C1 ∧ · · · ∧ Cn, that is, C does not hold when � is substituted by t.
• T ′ |
 t :ls swhen T ′ |
 t : s and moreover s is the least sort with this property (with respect to the ordering on sorts

obtained from the signature � and the equations and memberships E′ defining the �-term model T ′).
• T ′ |
 t ⇒top S when S = {t′ | t →top

R′ t′}, that is, the set S is formed by all the reachable terms from t by exactly one

rewrite at the top with the rules R′ defining T ′. Moreover, equality in S is modulo E′, i.e., we are implicitly working

with equivalence classes of ground terms modulo E′.
• T ′ |
 t ⇒q S when S = {t′ | t →top

{q} t′}, that is, the set S is the complete set of reachable terms (modulo E′) obtained
from t with one application of the rule q ∈ R′ at the top.

• T ′ |
 t ⇒1 S when S = {t′ | t →1
R′ t′}, that is, the set S is constituted by all the reachable terms (modulo E′) from t

in exactly one step, where the rewrite step can take place anywhere in t.

• T ′ |
 t �C
n S when S = {t′ | t →≤n

R′ t′ and T ′ |
 fulfilled(C, t′)}, that is, S is the set of all the terms (modulo E′) that
satisfy the admissible condition C and are reachable from t in at most n steps.

• T ′ |
 t �+C
nS as before, but with reachability from t in at least one step and in at most n steps.

• T ′ |
 t �!CnS when S = {t′ | t →≤n

R′ t′ and T ′ |
 fulfilled(C, t′) and t′ �→R′ }, that is, now the terms (modulo E′) in S

are final, meaning that they cannot be further rewritten.
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We first introduce in Fig. 4 the inference rules defining the relations [C, θ ] � �, 〈C, �〉 � �′, and adequateSorts(κ) �
�. Intuitively, these judgments will provide positive information when they lead to nonempty sets (indicating that the

condition holds in the first two judgments or that the kind-substitution is a substitution in the third one) and negative

information when they lead to the empty set (indicating, respectively, that the condition fails or the kind-substitution is not

a substitution):

• Rule PatC computes all the possible substitutions that extend θ and satisfy the matching of the term t2 with the

pattern t1 by first computing the normal form t′ of t2, obtaining then all the possible kind-substitutions κ that make

t′ and θ(t1) equal modulo axioms (indicated by ≡A), and finally checking that the terms assigned to each variable

in the kind-substitutions have the appropriate sort with adequateSorts(κ). The union of the set of substitutions thus

obtained constitutes the set of substitutions that satisfy the matching.
• Rule AS1 checks whether the terms of the kind-substitution have the appropriate sort to match the variables. In this

case the kind-substitution is a substitution and it is returned.
• Rule AS2 indicates that, if any of the terms in the kind-substitution has a sort bigger than the required one, then it is

not a substitution and thus the empty set of substitutions is returned.
• Rule MbC1 returns the current substitution if a membership condition holds.
• Rule MbC2 is used when the membership condition is not satisfied. It checks that the least sort of the term is not

less than or equal to the required one, and thus the substitution does not satisfy the condition and the empty set is

returned.
• Rule EqC1 returns the current substitution when an equality condition holds, that is, when the two terms can be

joined.
• Rule EqC2 checks that an equality condition fails by obtaining the normal forms of both terms and then examining

that they are different.
• Rewrite conditions are handled by ruleRlC. This rule extends the set of substitutions (wherewe use the juxtaposition

of substitutions to express composition) by computing all the reachable terms that satisfy the pattern (using the

relation t �C
n S explained below) and then using these terms to obtain the new substitutions.

• Finally, rule SubsCond computes the extensions of a set of admissible substitutions for C {θ1, . . . , θn} by using the

rules above with each of them.

We use these judgments to define the inference rules of Fig. 5, that describe how the normal form and the least sort of a

term are computed:

• Rule Dsb indicates when an equation or membership a cannot be applied to a term t. It checks that there are no

substitutions that satisfy thematching of the termwith the lefthand side of the statement and that fulfill its condition.

Note thatwecheck theconditions fromleft to right, following thesameorderasMaudeandmakingall the substitutions

admissible.
• Rule Rdc1 reduces a term by applying one equation when it checks that the conditions can be satisfied, where the

matching conditions are included in theequality conditions.While in theprevious rulewemadeexplicit theevaluation

from left to right of the condition to show that finally the set of substitutions fulfilling it was empty, in this case we

only need one substitution to fulfill the condition and the order is unimportant.
• Rule Rdc2 reduces a term by reducing a subterm to normal form (checking in the side condition that it is not already

in normal form).
• RuleNorm states that the term is in normal form by checking that no equations can be applied at the top considering

the variables at the kind level (which is indicated by �top
K ) and that all its subterms are already in normal form.

• Rule NTr describes the transitivity for the reduction to normal form. It reduces the term with the relation →red and

the term thus obtained then is reduced to normal form by using again →norm.• Rule Ls computes the least sort of the term t. It computes a sort for its normal form (that has the least sort of the

terms in the equivalence class) and then checks that memberships deducing smaller sorts cannot be applied.

In these rules Dsb provides the negative information, proving why the statements (either equations or membership

axioms) cannot be applied, while the remaining rules provide the positive information indicating why the normal form and

the least sort are obtained.

Once these rules have been introduced, we can use them in the rules defining the relation t �C
n S. First, we present in

Fig. 6 the rules related to n = 0 steps:

• RuleRf1 indicates thatwhenonly zero steps canbeused and the current term fulfills the condition, the set of reachable

terms consists only of this term.
• Rule Rf2 complements Rf1 by defining the empty set as result when the condition does not hold.
• Rule Fulfill checks whether a term satisfies a condition. The premises of this rule check that all the atomic conditions

hold, taking into account that it starts with a matching condition with a hole that must be filled with the current
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term and thus proved with the premise θ(P) ↓ t (the rest of the matching conditions are included in the equality

conditions). Note that when the condition is satisfied we do not need to check all the substitutions, but only to verify

that there exists one substitution that makes the condition true.
• To check that a term does not satisfy a condition, it is not enough to check that there exists a substitution that

makes it fail; we must make sure that there is no substitution that makes it true. This is indicated by rule Fail, which

uses the rules shown in Fig. 4 to prove that the set of substitutions that satisfy the condition (where the first set

of substitutions is obtained from the first matching condition filling the hole with the current term) is empty. Note

that, while rule Fulfill provides the positive information indicating that a condition is fulfilled, this one provides the

negative information, proving that the condition does not hold.

Now we introduce in Fig. 7 the rules defining the relation t �C
n S when the bound n is greater than 0, which can be

understood as searches in zero or more steps:

• Rules Tr1 and Tr2 show the behavior of the calculus when at least one step can be used. First, we check whether the

condition holds (rule Tr1) or not (rule Tr2) for the current term, in order to introduce it in the result set. Then, we

obtain all the terms reachable in one step with the relation ⇒1, and finally we compute the reachable solutions from

these terms constrained by the same condition and the bound decreased by one step. The union of the sets obtained

in this way and the initial term, if needed, corresponds to the final result set.
• Rule Stp shows how the set for one step is computed. The result set is the union of the terms obtained by applying

each rule at the top (calculated with t ⇒top S) and the terms obtained by rewriting the arguments of the term one

step. This rule can be straightforwardly adapted to the more general case in which the operator f has some frozen

arguments (i.e., that cannot be rewritten); the implementation of the debugger makes use of this more general rule.
• How to obtain the terms by rewriting at the top is explained by rule Top, which specifies that the result set is the

union of the sets obtained with all the possible applications of each rule in the program. We have restricted these

rules to those whose lefthand side, with the variables considered at the kind level, matches the term, represented

with notation q �top
K t, where q is the label of the rule and t the current term.

• Rule Rl uses the rules in Fig. 4 to compute the set of terms obtained with the application of a single rule. First, the

set of substitutions obtained from matching with the lefthand side of the rule is computed, and then it is used to

find the set of substitutions that satisfy the condition. This final set is used to instantiate the righthand side of the

rule to obtain the set of reachable terms. The kind of information provided by this rule corresponds to the informa-

tion provided by the substitutions; if the empty set of substitutions is obtained (negative information) then the rule

computes the empty set of terms, which also corresponds with negative information proving that no terms can be

obtained with this rewrite rule; analogously when the set of substitutions is nonempty (positive information). This

information is propagated through the rest of the inference rules justifying why some terms are reachable while

others are not.
• Finally, rule Red1 reduces the reachable terms in order to obtain their normal forms. We use this rule to reproduce

Maude behavior, first the normal form of the term is computed and then the rules are applied.

This calculus is correct in the sense that the derived judgmentswith respect to the rewrite theoryR = (�, E, R) coincide
with the ones satisfied by the corresponding initial model T�/E,R, i.e., for any judgment ϕ, ϕ is derivable in the calculus if

and only if T�/E,R |
 ϕ. Detailed proofs of all the results are available in Appendix A.

Theorem 1. The calculus of Figs. 4, 5, 6, and 7 is correct.

Once these rules are defined, we can build the tree corresponding to the search result shown in Section 2.5 for the maze

example. We recall that we have defined a system to search a path out of a labyrinth but, given a concrete labyrinth with an

exit, the program is unable to find it:

Maude> (search {[1,1]} =>* {L:List} s.t. isSol(L:List) .)
search in MAZE :{[1,1]} =>* {L:List}.

No solution.

First of all, we have to use a concrete bound to build the tree. Itmust suffice to compute all the reachable terms, and in this

case the least of these values is 4. We have depicted the tree in Fig. 8, where we have abbreviated the equational condition

{L:List} := � ∧ isSol(L:List) = true by C and isSol(L:List) = true by isSol(L). The leftmost tree justifies

that the search condition does not hold for the initial term (this is the reason why Tr2 has been used instead of Tr1) and
thus it is not a solution. Note that first the substitutions from the matching with the pattern are obtained (L �→ [1,1] in

this case), and then these substitutions are used to instantiate the rest of the condition, that for this term does not hold,

which is proved by ����2 . The next tree shows the set of reachable terms in one step (the tree ����3 , explained below, computes

the terms obtained by rewrites at the top, while the tree on its right shows that the subterms cannot be further rewritten)
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Fig. 8. Tree for the maze example.

Fig. 9. Tree ����2 for the search condition.

Fig. 10. Tree ����3 for the applications at the top.

Fig. 11. Tree ����4 for the first condition of expand.

and finally the rightmost tree, that has a similar structure to this one and will not be studied in depth, continues the search

with the bound decreased in one step.

The tree ����2 shows why the current list is not a solution (i.e., the tree provides the negative information proving that this

fragment of the condition does not hold). The reason is that the function isSol is reduced to false, when we needed it to

be reduced to true.
The tree labeled with ����3 is sketched in Fig. 10. In this tree the applications of all the rules whose lefthand side matches

the current term ({[1,1]}) are tried. In this case only the rule expand (abbreviated by e) can be used, and it generates

a list with the new position [1,2]; the tree ����4 is used to justify that the first condition of expand holds and extends

the set of substitutions that fulfill the condition thus far to the set {θ1, θ2, θ3}, where θ1 ≡ L �→ [1,1]; P �→ [1,2],
θ2 ≡ L �→ [1,1]; P �→ [1,0], and θ3 ≡ L �→ [1,1]; P �→ [0,1]. The substitution θ1 also fulfills the next condition,

isOk(L P), which is provedwith the ruleEqC1 in (♣) (where ����5 is the proof tree shown in Fig. 2, proving that the condition

holds), while the substitutions θ2 and θ3 fail; the trees� proving it are analogous to the one shown in Fig. 9. This substitution

θ1 is thus the only one inferred in the root of the tree, where the node (♣) provides the positive information proving why

the substitution is obtained and its siblings (�) the negative information proving why the other substitutions are not in the

set.

The tree ����4 , shown in Fig. 11, is in charge of inferring the set of substitutions obtained when checking the first condition

of the rule expand, namely next(L) => P. The condition is instantiated with the substitution obtained frommatching the

term with the lefthand side of the rule (in this case L �→ [1,1]) and, since it is a rewrite condition, the set of reachable

terms is used to extend this substitution, obtaining a set with three different substitutions (that we previously abbreviated

as θ1, θ2, and θ3).
There are two additional kinds of search allowed in our framework: searches for final terms and searches in one or more

steps. Fig. 12 presents the inference rules for these cases:

• Rules Rf3 and Rf4 are applied when the set of reachable terms in one step is empty (that is, when the term is final).

They checkwhether the term, in addition to being final, fulfills the condition in order to insert it in the result set when

appropriate.
• Rule Rf5 specifies that, if the term is not final but no more steps are allowed, then the set of reachable final terms is

empty.
• Rule Tr3 shows the transitivity for this kind of search. Since the term is not final, it is not necessary to check whether

it fulfills the condition.
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Fig. 12. Calculus for final and one or more steps searches.

• Rule Red2 reduces the reachable final terms in order to obtain their normal forms.
• If only zero steps are available in searches where at least one is required, the empty set is obtained, which is indicated

in rule Rf6.• When at least one step can be used we apply rule Tr4, that indicates that one step is used, and then the relation for

zero or more steps is used with the results in order to obtain the final solutions.

The correctness of these inference rules with respect to the initial model T�/E,R is proved in the following theorem:

Theorem 2. The calculus of Fig. 12 is correct.

Following the approach shown in the previous section, we assume the existence of an intended interpretation I of the

given rewrite theory R = (�, E, R). As any �-term model, I must satisfy the following soundness propositions:

Proposition 2. Let R = (�, E, R) be a rewrite theory, C an atomic condition, θ an admissible substitution, and T�/E′,R′ any
�-termmodel. If adequateSorts(κ) � �, [C, θ ] � �, or 〈C, �〉 � �′ can be deduced using the rules from Fig. 4 using premises

that hold in T�/E′,R′ , then also T�/E′,R′ |
 adequateSorts(κ) � �, T�/E′,R′ |
 [C, θ ] � �, and T�/E′,R′ |
 〈C, �〉 � �′,
respectively.

Proposition 3. Let R = (�, E, R) be a rewrite theory and ϕ a judgment deduced with the inference rules Dsb, Rdc2, or NTr
from Fig. 5 from premises that hold in T�/E′,R′ . Then also T�/E′,R′ |
 ϕ.

Proposition 4. LetR = (�, E, R) be a rewrite theory, C an admissible condition, and T�/E′,R′ any �-termmodel. If t �C
0 S can

be deduced using rules Rf1 or Rf2 from Fig. 6 using premises that hold in T�/E′,R′ , then also T�/E′,R′ |
 t �C
0 S.

Proposition 5. LetR = (�, E, R) be a rewrite theory, C an admissible condition, n a natural number, and T�/E′,R′ any �-term

model. If t �C
n S or t ⇒1 S can be deduced by means of the rules in Fig. 7 using premises that hold in T�/E′,R′ , then also

T�/E′,R′ |
 t �C
n S or T�/E′,R′ |
 t ⇒1 S, respectively.

Proposition 6. Let R = (�, E, R) be a rewrite theory, C an admissible condition, n a natural number, and T�/E′,R′ any �-term

model. If a statement t �!Cn S or t �+C
n S can be deduced by means of the rules in Fig. 12 using premises that hold in T�/E′,R′ ,

then also T�/E′,R′ |
 t �!Cn S or T�/E′,R′ |
 t �+C
n S, respectively.
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Observe that these soundness propositions cannot be extended to the Ls, Fulfill, Fail,Top, andRl inference rules, where

the soundness of the conclusion depends not only on the calculus but also on the specification, which could be wrong.

4. Debugging trees

We describe in this section how to obtain appropriate debugging trees from the proof trees introduced in the previous

section. First, we describe the errors that can be foundwith these proof trees; then, we describe how they can be abbreviated

in such a way that soundness and completeness are kept while easing the debugging sessions.

4.1. Debugging with proof trees

As explained in the previous sections, we assume the existence of an intended interpretation I of the given rewrite theory

R = (�, E, R). This intended interpretation is a �-termmodel corresponding to the model that the user had in mind while

writing the specification R. We will say that a judgment is valid when it holds in the intended interpretation I , and invalid

otherwise. Our goal is to find a buggy node (an invalid node with all its children correct) in any proof tree T rooted by the

initial error symptom detected by the user. This could be done simply by asking the user questions about the validity of the

nodes in the tree according to the following top-down strategy:

Input: A tree T with an invalid root.

Output: A buggy node in T .

Description: Consider the root N of T . There are two possibilities:
• If all the children of N are valid, then finish pointing out N as buggy.
• Otherwise, select the subtree rooted by any invalid child and recursively use the same strategy to find the buggy

node.

Proving that this strategy is complete is straightforward by using induction on the height of T . As an easy consequence,

the following result holds:

Proposition 7. Let T be a proof tree with an invalid root. Then there exists a buggy node N ∈ T such that all the ancestors of N

are invalid.

By using the proof trees computed with the calculus of the previous section as debugging trees we are able to locate

wrong statements, missing statements, and wrong search conditions, which are defined as follows:

• Given a statement A ⇐ C1 ∧ · · · ∧ Cn (where A is either an equation l = r, a membership l : s, or a rule l ⇒ r) and

a substitution θ , the statement instance θ(A) ⇐ θ(C1) ∧ · · · ∧ θ(Cn) is wrong when all the atomic conditions θ(Ci)
are valid in I but θ(A) is not.

• Given a rule l ⇒ r ⇐ C1 ∧ · · · ∧ Cn and a term t, the rule has a wrong instance if the judgments [l := t, ∅] � �0,[C1, �0] � �1, . . ., [Cn, �n−1] � �n are valid in I but the application of �n to the righthand side does not provide

all the results expected for this rule.
• Given a condition l := � ∧ C1 ∧ · · · ∧ Cn and a term t, if [l := t, ∅] � �0, [C1, �0] � �1, . . ., [Cn, �n−1] � ∅

are valid in I (meaning that the condition does not hold for t) but the user expected the condition to hold, then we

have a wrong search condition instance.
• Given a condition l := � ∧ C1 ∧ · · · ∧ Cn and a term t, if there exists a substitution θ such that θ(l) ≡A t and all

the atomic conditions θ(Ci) are valid in I , but the condition is not expected to hold, then we also have awrong search

condition instance.
• A statement or condition is wrong when it admits a wrong instance.
• Given a term t, there is a missing equation for t if t is not expected to be in normal form and none of the equations in

the specification are expected to be applied to it.
• A specification has a missing equation if there exists a term t such that there is a missing equation for t.
• Given a term t, there is a missing membership for t if t is an expected normal form such that the computed least sort

of t is not the expected one and none of the membership axioms in the specification are expected to be applied to it.
• A specification has a missing membership if there exists a term t such that there is a missing membership for t.
• Given a term t, there is amissing rule for t if all the rules applied to t at the top lead to judgments t ⇒qi Sqi valid in I

but the union
⋃

Sqi does not contain all the reachable terms from t by using rewrites at the top.
• A specification has a missing rule if there exists a term t such that there is a missing rule for t.

We relate these definitions with our calculus in the following proposition:

Proposition 8. Let N be a buggy node in some proof tree in the calculus of Figs. 1, 4, 5, 6, 7, and 12w.r.t. an intended interpretation

I . Then:
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Table 3

Errors detected by the proof trees.

Rep→ Wrong equation

Rep⇒ Wrong rule

Mb Wrong membership

Rdc1 Wrong equation

Norm Missing equation

Ls Missing membership

Fulfill Wrong search condition

Fail Wrong search condition

Top Missing rule

Rl Wrong rule

1. N corresponds to the consequence of an inference rule in the first column of Table 3.

2. The error associated to N can be obtained from the inference rule as shown in the second column of Table 3.

We assume that the nodes inferred with these inference rules are decorated with some extra information to identify

the error when they are pointed out as buggy. More specifically, nodes related to wrong statements keep the label of the

statement, nodes related to missing statements keep the operator at the top that requires more statements to be defined,

and nodes related to wrong conditions keep the condition. With this information available, when a wrong statement is

found this specific statement is pointed out; when a missing statement is found, the debugger indicates the operator at the

top of the term in the lefthand side of the statement that is missing; and when a wrong condition is found, the specific

condition is shown. Actually, when a missing statement is found what the debugger reports is that a statement is missing or

the conditions in the remaining statements are not the intended ones (thus they are not appliedwhen expected and another

one would be needed), but the error is not located in the statements used in the conditions, since they are also checked

during the debugging process. Finally, it is important not to confuse missing answers with missing statements; the current

calculus detects missing answers due to both wrong and missing statements and wrong search conditions.

4.2. Abbreviated proof trees

Wewill not use theproof trees T computed in theprevious sections directly as debugging trees, but a suitable abbreviation

which we denote by APT(T) (from abbreviated proof tree), or simply APT if the proof tree T is clear from the context. The

reason for preferring the APT to the original proof tree is that it reduces and simplifies the questions that will be asked to

the user while keeping the soundness and completeness of the technique. This transformation relies on Proposition 8: only

potential buggy nodes are kept.

The rules for deriving an APT can be seen in Fig. 13. The abbreviation always starts by applying (APT1). This rule simply

duplicates the root of the tree and applies APT ′, which receives a proof tree and returns a forest (i.e., a set of trees). Hence

without this duplication the result of the abbreviation could be a forest instead of a single tree. The rest of the APT rules

correspond to the function APT ′ and are assumed to be applied top-down: if several APT rules can be applied at the root of a

proof tree, we must choose the first one, that is, the rule with the lowest index. The following advantages are obtained with

this transformation:

• Questions associated to nodes with reductions are improved (rules (APT2), (APT3), (APT5), (APT6), and (APT7))
by asking about normal forms instead of asking about intermediate states. For example, in rule (APT2) the error

associated to t1 → t2 is the one associated to t1 → t′, which is not included in the APT . We have chosen to introduce

t1 → t2 instead of simply t1 → t′ in the APT as a pragmatic way of simplifying the structure of the APTs, since t2 is

obtained from t′ and hence likely simpler.
• The rule (APT4) deletes questions about rewrites at the top of a given term (that may be difficult to answer due to

matching modulo) and associates the information of those nodes to questions related to the set of reachable terms in

one step with rewrites in any position, that are in general easier to answer.
• It creates, with the variants of the rules (APT8) and (APT9), two different kinds of tree, one that contains judgments of

rewrites with several steps and another that only contains rewrites in one step. The one-step debugging tree strictly

follows the idea of keeping only nodes corresponding to relevant information. However, the many-steps debugging

tree also keeps nodes corresponding to the transitivity inference rules. The user will choose which debugging tree

(one-step or many-steps) will be used for the debugging session, taking into account that the many-steps debugging

treeusually leads to shorterdebugging sessions (in termsof thenumberofquestions) butwith likelymore complicated

questions. The number of questions is usually reduced because keeping the transitivity nodes for rewrites gives some

parts of the debugging tree the shape of a balanced binary tree (each transitivity inference has two premises, i.e.,

two child subtrees), and this allows the debugger to efficiently use the divide and query navigation strategy. On the

contrary, removing the transitivity inferences for rewrites (as rules (APTo8) and (APTo9) do) produces flattened trees

where this strategy is no longer so efficient. On the other hand, in rewrites t ⇒ t′ and searches t �C
n S appearing

as the conclusion of a transitivity inference rule, the judgment can be more complicated because it combines several
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Fig. 13. Transforming rules for obtaining abbreviated proof trees.

inferences. The user must balance the pros and cons of each option, and choose the best one for each debugging

session.
• The rule (APT11) removes from the tree all the nodes which are not associated with relevant information, since the

rule (APT10) keeps the relevant information and the rules are applied in order.We remove, for example, nodes related

to judgments about sets of substitutions, disabled statements, and rewriteswith a concrete rule. Moreover, it removes

trivial judgments, like the ones related to reflexivity or congruence, from the tree.
• Since the APT is built without computing the associated proof tree, it reduces the time and space needed to build the

tree.

We can state the correctness and completeness of the debugging technique based on APTs:

Theorem 3. Let T be a finite proof tree representing an inference in the calculus of Figs. 1, 4, 5, 6, 7, and 12 w.r.t. some rewrite

theoryR. Let I be an intended interpretation ofR such that the root of T is invalid in I . Then:

• APT(T) contains at least one buggy node (completeness).
• Any buggy node in APT(T) has an associated wrong statement, missing statement, or wrong condition in R according to

Table 3 (correctness).

The theorem states thatwe can safely employ the abbreviated proof tree as a basis for the declarative debugging ofMaude

system and functional modules: the technique will find a buggy node starting from any initial symptom detected by the

user. Of course, these results assume that the user correctly answers all the questions about the validity of the APT nodes

asked by the debugger (see Section 2.6).

The trees in Figs. 14–17depict the (one-step) abbreviatedproof tree for themazeexample,whereC stands for{L:List}:=
� ∧ isSol(L:List), P1 for [1,1], L1 for [1,1][1,2], L2 for [1,1][1,0], L3 for [1,1][0,1], t for true, f for false,
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Fig. 14. Abbreviated proof tree for the maze example.

Fig. 15. Abbreviated tree ����6 .

Fig. 16. Abbreviated tree ����7 .

Fig. 17. Abbreviated proof tree ����8 .

n for next, e for expand, and L for [1,1][1,2][1,3][1,4]. We have also extended the information in the labels with

the operator or statement associated to the inference. More concretely, the tree in Fig. 14 abbreviates the tree in Fig. 8; the

first two premises in the abbreviated tree stand for the first premise in the proof tree (which includes the tree in Fig. 9),

keeping only the nodes associatedwith relevant information according to Proposition 8:Norm, with the operator associated

to the reduction, and Rdc1, with the label of the associated equation. The tree ����6 , shown in Fig. 15, abbreviates the second

premise of the tree in Fig. 8 as well as the trees in Figs. 10 and 11; it only keeps the nodes referring to normal forms, searches

in one step, that are now associated to the rule Top, each of them referring to a different operator (the operator s_ is the

successor constructor for natural numbers), and the applications of rules (Rl) and equations (Rep→). Note that the equation

describing the behavior of isOk has not got any label, which is indicated with the symbol ⊥; we will show below how the

debugger deals with these nodes. The tree ����7 , presented in Fig. 16, shares these characteristics and only keeps nodes related

to one-step searches and application of rules. The tree ����8 abbreviates the proof tree for the reduction shown in Fig. 2, where

the important result of the abbreviation is that all replacement inferences are related now to reductions to normal form,

thus easing the questions that will be asked to the user.

These abbreviation rules are combined with trusting mechanisms that further reduce the proof tree:

• Statements can be trusted in severalways: non labeled statements,which include the predefined functions, are always

trusted (i.e., the nodesmarkedwith (♦) in Figs. 15 and 17will be discarded by the debugger); statements andmodules

can be trusted before starting the debugging process; and statements can also be trusted on the fly.
• A correct module can be given before starting a debugging session. By checking the correctness of the judgments

against this module, correct nodes can be deleted from the tree.
• Constructed terms (that is, terms built only with constructors, defined by means of the ctor attribute) of certain

sorts or built with some operators can be considered final, which indicates that they cannot be further rewritten. For

example, we could consider terms of sorts Nat and List (and hence its subsort Pos) to be final and thus the nodes

marked with (♥) in Fig. 15 would be removed from the tree.
• Moreover, we consider that constructed terms are in normal form and thus they are automatically removed from the

tree. For example, the nodes marked with (♠) in Figs. 14 and 15 will be removed from the debugging tree.
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Table 4

Available commands I.

Command Effect When

Trusting

(set debug select on .) Activates trusting Before starting the debugging

(set debug select off .) Deactivates trusting Before starting the debugging

(debug select LABELS .) Suspects of LABELS Before starting the debugging

(debug deselect LABELS .) Trusts LABELS Before starting the debugging

(debug include MODULES .) Suspects of MODULES Before starting the debugging

(debug exclude MODULES .) Trusts MODULES Before starting the debugging

(debug include eqs MODULES .) Suspects of the equations in MODULES Before starting the debugging

(debug exclude eqs MODULES .) Trusts the equations in MODULES Before starting the debugging

(debug include mbs MODULES .) Suspects of the memberships in MODULES Before starting the debugging

(debug exclude mbs MODULES .) Trusts the memberships in MODULES Before starting the debugging

(debug include rls MODULES .) Suspects of the rules in MODULES Before starting the debugging

(debug exclude rls MODULES .) Trusts the rules in MODULES Before starting the debugging

(correct module MODULE-NAME .) Sets the correct module Before starting the debugging

(set bound BOUND .) Sets the bound for the correct module Before starting the debugging

(delete correct module .) Deletes the correct module Before starting the debugging

(set final select on .) Activates “final” trusting Before starting the debugging

(set final select off .) Deactivates “final” trusting Before starting the debugging

(final select SORTS .) Sorts SORTS are final Before starting the debugging

(final deselect SORTS .) Sorts SORTS are not final Before starting the debugging

Tree options

(one-step tree .) Selects the one-step tree for wrong rewrites Before starting the debugging

(many-steps tree .) Selects the many-steps tree for wrong rewrites Before starting the debugging

(one-step missing tree .) Selects the one-step tree for missing rewrites Before starting the debugging

(many-steps missing tree .) Selects the many-steps tree for missing rewrites Before starting the debugging

(solutions prioritized on .) Prioritizes questions about solutions Before starting the debugging

(solutions prioritized off .) Does not prioritize questions about solutions Before starting the debugging

Strategies

(top-down strategy .) Switches to the top-down strategy At any time

(divide-query strategy .) Switches to the divide and query strategy At any time

5. Using the debugger

We introduce in this section how to create and navigate the debugging tree.

5.1. Creating the debugging tree

We describe in this section how to start the debugging process, describing the commands that must be used before

creating the debugging tree and the different commands to create it.

The debugger is initiated in Maude by loading the file dd.maude (available from http://maude.sip.ucm.es/debugging),

which starts an input/output loop that allows the user to interact with the tool. Then, the user can enter Full Maudemodules

and commands, aswell as commands for the debugger. Tables 4 and 5 present a summary of the commands explained below.

The user can choose between using all the labeled statements in the debugging process (by default) or selecting some of

them by means of the command

(set debug select on .)

Once this mode is activated, the user can select and deselect statements by using5

(debug select LABELS .)
(debug deselect LABELS .)

where LABELS is a list of statement labels separated by spaces.

Moreover, all the labels in statements of a flattened module can be selected or deselected with the commands

(debug include MODULES .)
(debug exclude MODULES .)

where MODULES is a list of module names separated by spaces.

The selection mode can be switched off by using the command

(set debug select off .)

5 Although these labels, as well as the set of labels from a module and the final sorts below, can be selected and deselected with the corresponding modes

switched off, they will have effect only when the corresponding modes are activated.

http://maude.sip.ucm.es/debugging
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Table 5

Available commands II.

Command Effect When

Debugging

(debug [in M :] INIT-T -> WRNG-T .) Starts the debugging for wrong reductions At any time

(debug [in M :] INIT-T : WRNG-S .) Starts the debugging for wrong sort inferences At any time

(debug [in M :] INIT-T =>* WRNG-T .) Starts the debugging for wrong rewrites At any time

(missing [in M :] INIT-T -> ERR-NF .) Starts the debugging for incomplete normal forms At any time

(missing [in M :] INIT-T : ERR-LST-S .) Starts the debugging for bigger than expected least sorts At any time

(missing [[dpt]] [in M :] T =>* P [s.t. C] .) Starts the debugging for incomplete sets in zero or more steps At any time

(missing [[dpt]] [in M :] T =>+ P [s.t. C] .) Starts the debugging for incomplete sets in one or more steps At any time

(missing [[dpt]] [in M :] T =>! P [s.t. C] .) Starts the debugging for incomplete sets of final terms At any time

Answers

(yes .) The judgment is correct D&Q strategy

(N : yes .) The Nth judgment is correct TD strategy

(all : yes .) All the judgments are correct TD strategy

(no .) The judgment is incorrect D&Q strategy

(N : no .) The Nth judgment is incorrect TD strategy

(trust .) Trusts the statement associated with the current judgment D&Q strategy

(N : trust .) Trusts the statement associated with the Nth judgment TD strategy

(I is wrong .) The Ith element is not reachable D&Q strategy

(N : I is wrong .) The Ith element of the Nth judgment is not reachable TD strategy

(I is not a solution .) The Ith element is not a solution D&Q strategy

(N : I is not a solution .) The Ith element of the Nth judgment is not a solution D&Q strategy

(its sort is final .) The sort of the current term is final D&Q strategy

(N : its sort is final) The sort of the term in the Nth judgment is final TD strategy

(don’t know .) Skips the current judgment D&Q strategy

(undo .) Returns to the previous state At any time

In a similar way, it is also possible to indicate that some terms are final, that is, that they cannot be further rewritten:

• By using the value final in the attribute metadata of an operator declaration, that indicates that the terms built

with this operator at the top are final.
• By selecting a set of final sorts. In this case, constructed terms having one of these sorts (or having a subsort of these

sorts) are considered final.
• On the fly, as will be explained below.

In the first two cases, the user must activate the final sorts mode with the command

(set final select on .)

While theattributemetadatamustbewritten in theMaudefile, final sorts canbeselected/deselectedwith thecommands

(final select SORTS .)
(final deselect SORTS .)

where SORTS is a list of sort identifiers separated by spaces.

This option can be switched off with the command

(set final select off .)

A module with only correct definitions can be used to reduce the number of questions. In this case, it must be indicated

before starting the debugging process with the command

(correct module MODULE-NAME .)

and can be deselected with the command

(delete correct module .)

Since rewriting is not assumed to terminate, a bound,which is 42 by default, is usedwhen searching in the correctmodule

and can be set with the command

(set bound BOUND .)

where BOUND is either a natural number or the constant unbounded. Note that if it is 0 the correct module will not be used

for rewrites, while if it is unbounded the correct module is assumed to be terminating.
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When debugging wrong rewrites, two different trees can be built: one whose questions are related to one-step rewrites

and another whose questions are related to several steps. The user can switch between these trees, before starting the

debugging process, with the commands

(one-step tree .)
(many-steps tree .)

the first of which is the default one.

In the sameway,when debuggingmissing answerswe distinguish between treeswhose nodes are related to sets of terms

obtained with one (the default case) or many steps. The user can select them with the commands

(one-step missing tree .)
(many-steps missing tree .)

When debugging missing answers, the user can prioritize questions related to the fulfillment of the search condition

from questions involving the statements defining it. This option, switched off by default, can be activatedwith the command

(solutions prioritized on .)

and can be switched off again with

(solutions prioritized off .)

The debugging process for wrong answers is started with the commands

(debug [in MODULE-NAME :] INITIAL-TERM -> WRONG-TERM .)
(debug [in MODULE-NAME :] INITIAL-TERM : WRONG-SORT .)
(debug [in MODULE-NAME :] INITIAL-TERM =>* WRONG-TERM .)

for wrong reductions, memberships, and rewrites, respectively. MODULE-NAME is the module where the computation took

place; if nomodule name is given, the currentmodule is used by default. Similarly,we start the debugging ofmissing answers

with the commands

(missing [in MODULE-NAME :] INITIAL-TERM -> ERR-NORMAL-FORM .)
(missing [in MODULE-NAME :] INITIAL-TERM : ERR-LEAST-SORT .)
(missing [[depth]] [in MODULE-NAME :] INITIAL-TERM =>* PATTERN [s.t. CONDITION] .)
(missing [[depth]] [in MODULE-NAME :] INITIAL-TERM =>+ PATTERN [s.t. CONDITION] .)
(missing [[depth]] [in MODULE-NAME :] INITIAL-TERM =>! PATTERN [s.t. CONDITION] .)

where the first command debugs erroneous normal forms, the second one erroneous least sorts, and the remaining ones

refer to incomplete sets found when using search. More specifically, the third command specifies a search in zero or more

steps, the fourth command in one or more steps, and the last one only checks final terms. The depth argument indicates the

bound in the number of steps allowed in the search, and it is considered unbounded when omitted, while MODULE-NAME
has the same behavior as in the commands above.

5.2. Navigating the debugging tree

We describe in this section how the debugging tree created with the commands described in the previous section is

traversed. The debugging tree can be navigated by using two different strategies, namely, top-down and divide and query, the

latter being the default one. The user can switch between them at any moment by using the commands

(top-down strategy .)
(divide-query strategy .)

In the divide and query strategy, each question refers to one judgment that can be either correct or wrong. The different

answers are transmitted to the debugger with the answers

(yes .)
(no .)

If the question asked is too difficult, the user can avoid answering with6

(don’t know .)

To know the appropriate answer, we briefly describe the different kinds of questions asked by the debugger, defining for

each of themwhen they are considered correct and describing the additional answers that can be used in each specific case.

The possible questions are related to:

6 Notice that in the current version of the debugger the question will not be asked again, thus this answer can lead to incompleteness.
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Reductions: When a term t has been reduced by using equations to another term t′, the debugger asks questions of the

form “Is this reduction correct? t → t′.” These judgments are correct if the user expected t to be fully reduced to t′ by
using the equational part (equations and memberships) of the module.

In addition to the general answers, when the question corresponds to the application of a specific statement (either a

equation, like in this case, a membership, or a rule), instead of just answering yes, we can also trust the statement on the

fly if we decide the bug is not there. To trust the current statement we answer (trust .).

Normal forms: When a term cannot be further reduced and it is not a constructed term, the debugger asks “Is t in normal

form?,” which is correct if the user expected t to be a normal form.

Memberships: When a sort s is inferred for a term t, the debugger prompts questions of the form “Is this membership

correct? t : s.” These judgments are correct if the expected least sort of t is a subsort of s or s itself.

Least sorts: When the judgment refers to the least sort ls of a term t, the tool makes questions of the form “Did you expect

t to have least sort ls?.” In this case, the judgment is correct if the intended least sort of t is exactly ls.

Rewrites in one step: When a term t is rewritten into another term t′ in only one step, the debugger asks questions of the

form “Is this rewrite correct? t ⇒1 t′,” where t′ has already been fully reduced by using equations. This judgment is

correct if the user expected to obtain t′ from t modulo equations with only one rewrite.

Rewrites in several steps: When a term t is rewritten into another one t′ after several rewrite steps, the debugger shows

the question “Is this rewrite correct? t ⇒+ t′,” where t′ is fully reduced. This question is only prompted if the user selects

the many-steps tree for wrong answers. This judgment is correct if t′ is expected to be reachable from t.

Final terms: When a term t cannot be further rewritten, the debugger asks “Did you expect t to be final?.” This judgment

is correct if the user expected that no rules can be applied to t.

Additional information for thisquestioncanbegivenbyanswering(its sort is final .), that indicates to thedebugger
that all the constructed terms with the same sort as this term are final.

Solutions: When a term t fulfills the search condition, the debugger shows questions of the form “Did you expect t to be

a solution?.” This judgment is correct if t is one of the intended solutions. In the same way, if a term does not fulfill the

search condition the debugger asks “Did you expect t not to be a solution?,” that is correct if t is not one of the expected

solutions.

Reachable terms in one step: When all the possible applications of each rule in the current specification to a term t lead

to a set of terms {t1, . . . , tn}, with n > 0, the debugger prompts the question “Are the following terms all the reachable

terms from t in one step? t1, . . . , tn.” This judgment is correct if all the expected terms from t in one step constitute the

set {t1, . . . , tn}.
In this case, if one of the terms is not reachable, the user can point it out with the answer (I is wrong .)where I is the

index of the wrong term in the set. With this answer the debugger focuses on debugging this wrong judgment. This answer

can also be used for reachable terms with one rule and in several steps.

Reachable terms with one rule: Given a term t and a rule r, when all the possible applications of r to t produce a set of

terms {t1, . . . , tn}, the debugger presents questions of the form “Are the following terms all the reachable terms from t

with one application of the rule r? t1, . . . , tn.” This judgment is correct if all the expected reachable terms from t with one

application of r form the set {t1, . . . , tn}. When n = 0 the debugger prompts questions of the form “Did you expect that

no terms can be obtained from t by applying the rule r?,” that is correct if the rule r is not expected to be applied to t.

Reachable terms in several steps: Given an initial term t, a condition c, and a bound in the number of steps n, when all

the terms reachable in at most n steps from t that fulfill c are t1, . . . , tm, with m > 0, the debugger makes the following

distinction:

• If the condition c defines the initial condition of the search, the tool asks questions of the form “Are the following

terms all the possible solutions from t in n steps? t1, . . . , tm,” where the bound is omitted if it is unbounded. This

judgment is correct if all the solutions that the user expected to obtain from t in at most n steps constitute the set

{t1, . . . , tm}. Ifm = 0 the debugger asks questions of the form “Did you expect that no solutions are reachable from

t in n steps?,” where the bound is again omitted if it is unbounded. In this case, the judgment is correct if no solutions

were expected from t in at most n steps.

In this case, if one of the solutions is reachable but it should not fulfill the search condition, the user can indicate it with

(I is not a solution .), where I is the index of the term that should not be in the set. With this answer the user

indicates that the definition of the search condition is erroneous and the debugger centers on it to continue the process.

• If the condition c has been obtained from a rewrite condition t′ ⇒ p, then c is just amatching conditionwith the pattern

p, and n is unbounded. In this case, the questions have the form “Are the following terms all the reachable terms from t
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that match the pattern p? t1, . . . , tm.” This judgment is correct if all the terms that should be obtained from t andmatch

the pattern p constitute the set {t1, . . . , tm}. When m = 0 the questions have the form “Did you expect that no terms

matching the pattern p can be obtained from t?,” that is correct if t is expected to be final or all the terms reachable from

t are not expected to match p.

These questions are only asked if the many-steps tree for missing answers is used.

In case the top-down strategy is selected, several questions will be displayed in each step. The user can then introduce

answers of the form (N : answer .), where N is the index of the question and answer is the same answer that would be

used in the divide and query strategy for this question. Moreover, as a shortcut to answer (yes .) to all the questions, the

debugger provides the answer

(all : yes .)

Finally, we can return to the previous state in both strategies by using the command

(undo .)

5.3. Recommendations

We recommend following some tips to ease the questions asked during the debugging process:

• It is usually more complicated to answer questions related to many steps (both in wrong and missing answers) than

questions related to one step. Thus, if a specification is complex it is better to debug it with a one-step tree.
• There are some sorts that are usually final, such as Bool and Nat, so identifying them as final can avoid several tedious

questions.
• If an error is found using a complex initial term, this error can probably be reproduced with a simpler one. Using this

simpler term leads to easier debugging sessions.
• When facing a problem with both wrong and missing answers, it is usually better to debug the wrong answers first,

because questions related to them are usually easier to answer and fixing them can also solve the missing answers

problem.
• When a question is related to a set of reachable terms that contains some wrong terms, it is recommended to point

out one of these terms as erroneous instead of indicating the whole set as wrong.
• When using the top-down navigation strategy, several questions are prompted. To point out one as erroneous or all

of them as valid will shorten the debugging process, while pointing out one question as correct usually only eases the

current set of questions. Thus, to indicate that a question is valid is only recommended for extremely complicated or

large sets of questions.

If the user follows these tips and uses the trusting mechanisms it is possible to debug very large specifications, because:

• Specifications are assumed to be structured, and usually the module being debugged imports several other auxiliary

modules. These modules should have been debugged before testing the current one, and thus they can be trusted

(maybe some complex functions from these auxiliary modules can be suspicious).
• Specific reductions/sort inferences/rewrites usually do not apply every statement in the specification, but a small

subset of them. From this point of view, debugging a large specification should not be harder than debugging a

smaller one.
• The debugger assists the user through the computation, making the debugging process easier than checking by hand

thousands of statements and than traversing the trace without any guide.

6. A debugging session

We describe in this section how to debug the maze example shown in Section 2.5. We recall that we have specified a

module to search a path out of a labyrinth but, given a concrete labyrinth with an exit, the program is unable to find it. We

start the debugging process with the command:

Maude> (missing {[1,1]} =>* {L:List} s.t. isSol(L:List) .)

With this command the debugger builds a debugging tree for missing answers in zero or more steps with the questions

about solutions not prioritized, and navigated with the default divide and query strategy. The first question is:

Did you expect {[1,1][1,2][1,3][1,4]} to be final?
Maude> (no .)
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Since we expected to reach the position [2,4] from [1,4], this state should be rewritten and thus it is not final. The

next question is:

Is this reduction (associated with the equation c2) correct?

contains([2,1][4,1][2,2][3,2][6,2][7,2][2,3][4,3][5,3][6,3][7,3][1,5][2,5][3,5][4,5][5,5]
[6,5][8,5][6,6][8,6][6,7][6,8][7,8],[1,3]) -> false

Maude> (yes .)

That is, the debugger asks whether it is correct that the position [1,3] is not included in the wall. We answer that it is

correct and the next question is:

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4]) in one step?

1 [1,5]
2 [1,3]
3 [0,4]

Maude> (no .)

The answer is no because the set of terms is incomplete:we expected to find themovement to the right too. The debugger

now asks:

Did you expect [1,4] to be final?

Maude> (yes .)

The answer is yes because we have not defined rules for positions, thus they cannot evolve. The following series of

questions are:

Did you expect [1,3] to be final?

Maude> (yes .)

Did you expect [1,2] to be final?

Maude> (yes .)

Did you expect [1,1][1,2][1,3][1,4] to be final?

Maude> (yes .)

We use the same reasoning about final terms to answer these questions. The next questions are:

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4])
with one application of the rule n2 ?

1 [0,4]

Maude> (yes .)

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4])
with one application of the rule n3 ?

1 [1,3]

Maude> (yes .)

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4])
with one application of the rule n1 ?

1 [1,5]

Maude> (yes .)
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All these questions are related to the appropriate application of certain rules; these rulesmove the last position of the list

to the left, up, and down, and thus they are correct. With this information, the debugger is able to find the bug, prompting:

The buggy node is:
next([1,1][1,2][1,3][1,4]) =>1 {[1,5], [1,3], [0,4]}

Either the operator next needs more rules or the conditions of the current rules are not written
in the intended way.

In fact, if we check the code we realize that we forgot to define the rule that specifies movements to the right. We must

add the rule:

rl [next4] : next(L [X,Y]) => [X + 1, Y] .

However, we noticed that this session required us to answer a lot of similar questions.We can enhance the behavior of the

debugger by using features such as selection of final terms on the fly. For example, when the fourth question is prompted:

Did you expect [1,4] to be final?

Maude> (its sort is final .)

Terms of sort Pos are final.

we can indicate that not only this term, but all the terms with its sort (not necessarily as least one, that is, subsorts are also

checked) are final. With this answer the debugging tree is pruned, and the next question is:

Did you expect [1,1][1,2][1,3][1,4] to be final?

Maude> (its sort is final .)

Terms of sort List are final.

We use this answer again, although in this case it does not reduce the number of questions. As before, the debugger

finishes with the same three questions as above.

Although the number of questions has been reduced, we still face some questions that we would like to avoid about final

terms. To do this, we can activate the final selection mode before starting the debugging:

Maude> (set final select on .)
Final select is on.

Once this mode is active, we can point out the sorts of the terms that will not be rewritten. Note that terms whose least

sort is a subsort of the sorts selected will also be considered as final. For example, we consider in our specification the sorts

Nat and List as final, which implicitly indicates that the sort Pos, subsort of List, is also final:

Maude> (final select Nat List .)

Sorts List Nat are now final.

Moreover, since we know that the rules next1, next2, and next3 are correct, we can avoid questions about them by

pointing out that the rest of the statements are suspicious with the commands:

Maude> (set debug select on .)

Debug select is on.

Maude> (debug select is1 is2 c1 c2 expand .)

Labels c1 c2 expand is1 is2 are now suspicious.

Once these options are introduced, we can start the debugging process with the same command as before:

Maude> (missing {[1,1]} =>* {L:List} s.t. isSol(L:List) .)

Are the following terms all the reachable terms from {[1,1][1,2][1,3]} in one step?

1 {[1,1][1,2][1,3][1,4]}

Maude> (yes .)
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Are the following terms all the reachable terms from {[1,1][1,2]} in one step?

1 {[1,1][1,2][1,3]}

Maude> (yes .)

Given the labyrinth’s limits and wall, we must go down in both cases to find the exit. The next question selected by the

debugger is:

Did you expect that no terms can be obtained from {[1,1][1,2][1,3][1,4]}
by applying the rule expand ?

Maude> (no .)

As we know, the list of positions should evolve to find the exit. The debugger asks now:

Is this reduction (associated with the equation c2) correct?

contains([2,1][4,1][2,2][3,2][6,2][7,2][2,3][4,3][5,3][6,3][7,3][1,5][2,5]
[3,5][4,5][5,5][6,5][8,5][6,6][8,6][6,7][6,8][7,8],[1,3]) -> false

Maude> (trust .)

We realize now that the equation c2 is simple enough to be trusted, although we pointed it out as suspicious at the

beginning of the session. We use the command trust and the following question is prompted:

Is this reduction (associated with the equation c1) correct?

contains(nil,[1,5]) -> false

Maude> (trust .)

We consider that this equation can also be trusted. Finally, the debugger detects the problem with the next answer:

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4]) in one step?

1 [1,5]
2 [1,3]
3 [0,4]

Maude> (no .)

The buggy node is:
next([1,1][1,2][1,3]) =>1 {[1,4], [1,2], [0,3]}

Either the operator next needs more rules or the conditions of the current rules are not written
in the intended way.

Although in this example we have used the default divide and query navigation strategy, it is also possible to use the

top-down one by using:

Maude> (top-down strategy .)
Top-down strategy selected.

In this casewe reduce thenumber of questions by considering that the sortsNat andList arefinal and that the suspicious

statements are the equations defining the solution, is1 and is2:

Maude> (set final select on .)

Final select is on.

Maude> (final select Nat List .)

Sorts List Nat are now final.

Maude> (set debug select on .)

Debug select is on.

Maude> (debug select is1 is2 .)
Labels is1 is2 are now suspicious.
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Wecan followhow this strategy proceedswith the trees in Figures 14 and16. Oncewe introduce the debugging command,

the first series of questions,which refers to the premises of the root in Figure 14 (althoughwithout somenodes, as the second

one, deleted by the trusting mechanisms), is prompted:

Maude> (missing { [1,1] } =>* { L:List } s.t. isSol(L:List) .)

Question 1 :
Did you expect {[1,1]} not to be a solution?

Question 2 :
Are the following terms all the reachable terms from {[1,1]} in one step?

1 {[1,1][1,2]}

Question 3 :
Did you expect {[1,1][1,2]} not to be a solution?

Question 4 :
Are the following terms all the reachable terms from {[1,1][1,2]} in one step?

1 {[1,1][1,2][1,3]}

Question 5 :
Did you expect {[1,1][1,2][1,3]} not to be a solution?

Question 6 :
Are the following terms all the reachable terms from {[1,1][1,2][1,3]} in one step?

1 {[1,1][1,2][1,3][1,4]}

Question 7 :
Did you expect {[1,1][1,2][1,3][1,4]} not to be a solution?

Question 8 :
Did you expect {[1,1][1,2][1,3][1,4]} to be final?

Maude> (8 : no .)

The eighth question (corresponding to the root of the tree in Figure 16, marked with (†)) is erroneous because position

[2,4] is reachable from [1,4] and it is free of wall, so we do not expect this term to be final. The following questions

are: 7

Question 1 :
Is next([1,1][1,2][1,3][1,4]) in normal form?

Question 2 :
Is Pos? the least sort of next([1,1][1,2][1,3][1,4]) ?

Question 3 :
Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4]) in one step?

1 [1,5]
2 [1,3]
3 [0,4]

Maude> (3 : no .)

With this answer we have pointed out the node marked (‡) in Figure 16 as wrong. Since all its children correspond to

applications of equations that were trusted (n1, n2, and n3, while the only suspicious statements were is1 and is2), this
node is now a leaf and thus it corresponds to a buggy node:

The buggy node is:
next([1,1][1,2][1,3][1,4]) =>1 {[1,5], [1,3], [0,4]}

7 Note that the child of this node, marked with (�), is skipped because the corresponding equation has been trusted.
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Either the operator next needs more rules or the conditions of the current rules are not written
in the intended way.

Many more examples are available at http://maude.sip.ucm.es/debugging/.

7. Implementation

We show here how the ideas described in the previous sections are implemented. This implementation is done inMaude

itself bymeans of its reflective capabilities, which allowus to useMaude terms andmodules as data [12, Chapter 14]. Sections

7.1 and 7.2 describe the tree construction stage, where the abbreviated proof trees are constructed. The interaction with the

user is explained in Section 7.3.

The complete code of the tool is contained in the file dd.maude, available at http://maude.sip.ucm.es/debugging/.

7.1. Debugging trees definition

In this section we show how to represent the debugging trees in Maude. First, we implement parametric general trees

with generic data in each node. Then, we instantiate them by defining the concrete data for building our debugging trees.

The parameterized module that describes the behavior of the tree receives the theory TRIV (that simply requires a sort

Elt) as parameter. We use lists of natural numbers to identify (the position of) each node. General trees are defined by

means of the constructor tree, composed of some contents (received from the theory), the size of the tree, and a Forest,
which in turn is a list of trees:

fmod TREE{X :: TRIV} is
pr NAT-LIST .

sorts Tree Forest .
subsort Tree < Forest .

op tree(_,_,_) : X$Elt Nat Forest -> Tree [ctor format (ngi o d d d d ++i n--i d)] .

op mtForest : -> Forest [ctor format (ni d)] .
op __ : Forest Forest -> Forest [ctor assoc id: mtForest] .
...
endfm

We use the sort Judgment to define the values kept in the debugging trees. When keeping reductions and member-

ships, we want to know the name of the statement associated with the node and the lefthand and righthand sides of the

computation, or the term and sort of a membership, respectively.

fmod DEBUGGING-TREE-NODE is
pr META-LEVEL .
sort Judgment .

op _:_->_ : Qid Term Term -> Judgment [ctor format (b o d b o d)] .
op _:_:_ : Qid Term Type -> Judgment [ctor format (b o d b o d)] .

If the inferred type is the least sort, we use the special notation below:

op _:ls_ : Term Type -> Judgment [ctor format (d b o d)] .

In the case of rewrites, we distinguish between nodes in the one-step tree and nodes in the many-steps tree:

op _:_=>1_ : Qid Term Term -> Judgment [ctor format (b o d b o d)] .
op _=>+_ : Term Term -> Judgment [ctor format (d b o d)] .

Since the many-steps tree is computed on demand, its leaves corresponding to one-step rewrites are kept as “frozen,”

and will be evaluated only if needed:

op _=>f_ : Term Term -> Judgment [ctor format (d b o d)] .

The nodes for debugging missing answers in system modules keep the initial term and the list of possible results. We

distinguish between:

• The set of reachable terms in one step:

op _=>1{_} : Term TermList -> Judgment [ctor format (d b o d d d)] .

http://maude.sip.ucm.es/debugging/
http://maude.sip.ucm.es/debugging/
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• The set of reachable terms by applying one rule:

op _=>q[_]{_} : Term Qid TermList -> Judgment [ctor format (d b o d d d d d d)] .

• The set of reachable terms when many rewrite steps are used. In this case we also keep the bound, the pattern, the

condition and a Boolean value indicating whether this search corresponds to the initial one, and thus these terms are

the reachable solutions from the initial one, or corresponds to a search due to a rewrite condition:

op _˜>[_]{_}s.t._&_[_] : Term Bound TermList Term Condition Bool
-> Judgment [ctor format (d b o d d d d d d d d d d d d d)] .

We use the operator sol to indicate (the Boolean value in the fourth argument) whether a term (the first argument)

matches the pattern given as second argument and fulfills the condition given as third argument. When the questions about

solutions are prioritized these nodes are frozen and are expanded on demand, so it has a Boolean value (the fifth argument)

indicating whether the node has been already expanded. Finally, the last Boolean value indicates whether this term is a

solution of the initial search condition or it is a solution of a rewrite condition:

op sol : Term Term Condition Bool Bool Bool -> Judgment [ctor format (b o)] .

The operator normal indicates that a term is in normal form with respect to the equational theory:

op normal : Term -> Judgment [ctor format (r o)] .

Finally, we define a constant unknown, that will be used when the user answers don’t know to any question:

op unknown : -> Judgment [ctor] .
endfm

Weuse thismodule to create a view from the TRIV theory andwe obtain our debugging trees by instantiating themodule

TREE above with this view:

view DebuggingTreeNode from TRIV to DEBUGGING-TREE-NODE is
sort Elt to Judgment .
endv

fmod PROOF-TREE is
pr TREE{DebuggingTreeNode} .
...
endfm

7.2. Debugging trees construction

In this section we describe how the different debugging trees are built. First, we describe the construction of debugging

trees for wrong reductions, memberships, and rewrites and then we use them in the construction of the trees for erroneous

normal forms, least sorts, and sets of reachable terms. Instead of creating the complete proof trees and then abbreviating

them, we build the abbreviated proof trees directly.

7.2.1. Debugging trees for wrong reductions and memberships

The function createTree builds debugging trees for wrong reductions and memberships. It exploits the fact that the

equations andmembership axioms are both terminating and confluent. It receives themodule where a wrong inference took

place, a correct module (or the constant undefMod when no such module is provided) to prune the tree, the initial term,

the (erroneous) result obtained, and the set of suspicious statement labels. It keeps the initial reduction as the root of the

tree and uses an auxiliary function createForest that, in addition to the arguments received by createTree, receives the
module “cleaned” of suspicious statements (by using deleteSuspicious), and generates the forest of abbreviated trees

corresponding to the reduction between the two terms given as arguments. The transformedmodule is used to improve the

efficiency of the tree construction, because we can use it to checkwhether a term reaches its final form by using only trusted

statements, preventing the debugger from building a tree that will be finally empty.

op createTree : Module Maybe{Module} Term Term QidSet -> Tree .
ceq createTree(M, CM, T, T’, QS) =

contract(tree(’root@#$% : T -> T’, getOffspring*(F) + 1, F))
if ST? := strat?(M) /\

M’ := deleteSuspicious(M, QS) /\
F := createForest(M, M’, CM, T, T’, QS) .
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We use the function createForest to create a forest of abbreviated trees. It receives as parameters the module where

the computation took place, the transformed module (that only contains trusted statements), a correct module (possibly

undefMod) to check the inferences, two terms representing the inference whose proof tree wewant to generate, and a set of

labels of suspicious equations andmemberships. First, the function checks if the terms are equal, the result can be reached by

using only trusted statements, or the correct module can calculate this inference; in such cases, there is no need to calculate

the tree, so the empty forest is returned. Otherwise, it applies the function createForest2:

op createForest : Module Module Maybe{Module} Term Term QidSet ˜> Forest .
eq createForest(OM, TM, CM, T, T’, QS) =
if T == T’ or-else reduce(TM, T) == T’ or-else reduce(CM, T) == T’ then mtForest
else createForest2(OM, TM, CM, T, T’, QS)
fi .

The function createForest2 checks first whether the current term is of the form if T1 then T2 else T3 fi. In
this case, the debugger evaluates T1 and then, depending on the result, it evaluates either T2 or T3 following the same

evaluation strategy as Maude: 8

op createForest2 : Module Module Maybe{Module} Term Term QidSet ˜> Forest .
eq createForest2(OM, TM, CM, ’if_then_else_fi[T1, T2, T3], T’, QS) =

createForest(OM, TM, CM, T1, reduce(OM, T1), QS)
if reduce(OM, T1) == ’true.Bool then

createForest(OM, TM, CM, T2, T’, QS)
else

if reduce(OM, T1) == ’false.Bool then
createForest(OM, TM, CM, T3, T’, QS)

else
createForest(OM, TM, CM, T2, reduce(OM, T2), QS)
createForest(OM, TM, CM, T3, reduce(OM, T3), QS)

fi
fi .

Otherwise, the debugger follows the Maude innermost strategy: it first tries to fully reduce the subterms (by means of

the function reduceSubterms), and once all the subterms have been reduced, if the result is not the final one, it tries to

reduce at the top (by using the function applyEq), to reach the final result by transitivity:

ceq createForest2(OM, TM, CM, T, T’, QS) =
if T’’ == T’ then F
else F applyEq(OM, TM, CM, T’’, T’, QS)
fi

if < T’’, F > := reduceSubterms(OM, TM, CM, T, QS) [owise] .

The function applyEq tries to apply (at the top) one equation, 9 by using the replacement rule from Fig. 1, with the

constraint that we cannot apply equations with the otherwise attribute if other equations can be applied. To apply an

equation we check whether the term we are trying to reduce matches the lefthand side of the equation and its conditions

are fulfilled. If this happens, we obtain a substitution (from both the matching with the lefthand side and the conditions)

that we can apply to the righthand side of the equation. Note that, if we can obtain the transition in the correct module, the

forest is not computed:

op applyEq : Module Module Maybe{Module} Term Term QidSet -> Maybe{Forest} .
op applyEq : Module Module Maybe{Module} Term Term QidSet EquationSet -> Maybe{Forest} .

eq applyEq(OM, TM, CM, T, T’, QS) =
if reduce(TM, T) == T’ or-else reduce(CM, T) == T’ then mtForest
else applyEq(OM, TM, CM, T, T’, QS, getEqs(OM))
fi .

For example, the equations without the otherwise attribute as applied as follows:

ceq applyEq(OM, TM, CM, T, T’, QS, Eq EqS) =
if in?(AtS, QS) then
tree(label(AtS) : T -> T’, getOffspring*(F) + 1, F)
else F
fi

if ceq L = R if C [AtS] . := generalEq(Eq) /\

8 Note that it is possible to obtain neither true nor false when evaluating the condition. In this case, both branches will be evaluated and the term thus

obtained (which is not fully evaluated) used in the rest of the computation, possibly leading to a missing answer.
9 Since the module is assumed to be confluent, we can choose any equation and the final result should be the same.
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not owise?(AtS) /\
sameKind(OM, type(OM, L), type(OM, T)) /\
SB := metaMatch(OM, L, T, C, 0) /\
R’ := substitute(OM, R, SB) /\
F := conditionForest(substitute(OM, C, SB), OM, TM, CM, QS)

createForest(OM, TM, CM, R’, T’, QS) .

where we distinguish with the function in?(AtS,QS)whether the equation is trusted (the attribute set does not contain a

label or the label is contained in the set QS of trusted labels) to generate the node.

7.2.2. Debugging trees for wrong rewrites

We use a different methodology in the construction of the debugging tree for incorrect rewrites. Since thesemodules are

not assumed to be confluent or terminating, we use the predefined breadth-first search function metaSearchPath to, from

the initial term, find the wrong term introduced by the user, and then we use the returned trace to build the debugging tree.

The trace returned by Maude when searching from T to T’ is a list of steps of the form:

{T1, Ty1, R1} ... {Tn, Tyn, Rn}

where Tyi is the type of Ti, T1 is the normal form of T, Ri is the rule applied to (possibly a subterm of) Ti to obtain Ti+1
(which is already in normal form), and T’ is the result of applying Rn to Tn.

The functioncreateRewTree, given themodulewhere the rewrite tookplace, amodulewith correct statements (possibly

undefMod), the rewritten term, the result term, the set of suspicious labels, the type of tree selected (many-steps or one-step,

identified by constants ms and os in the module TREE-TYPE), and the bound of the search in the correct module, creates

the corresponding debugging tree:

op createRewTree : Module Maybe{Module} Term Term QidSet TreeType Bound -> Maybe{Tree} .
eq createRewTree(OM, CM, T, T’, QS, os, B) = oneStepTree(OM, CM, T, T’, QS, B) .
eq createRewTree(OM, CM, T, T’, QS, ms, B) = manyStepsTree(OM, CM, T, T’, QS, B) .

The function oneStepTree creates a complete debugging tree with only one-step rewrites in its nodes. It puts the

complete judgment as the root of the tree, computes the tree for the reduction from the initial term to normal form with

the function createForest from Section 7.2.1, and then computes the rest of the tree with the function oneStepForest.
This corresponds to a concrete application of the equivalence class inference rule from Fig. 1:

op oneStepTree : Module Maybe{Module} Term Term QidSet Bound -> Maybe{Tree} .
ceq oneStepTree(OM, CM, T, T’, QS, B) =

contract(tree(T =>+ T’, getOffspring*(F) + 1, F))
if TM := deleteSuspicious(OM, QS) /\

T1 := reduce(OM, T) /\
F := createForest(OM, TM, CM, T, T1, QS, strat?(OM))

oneStepForest(OM, TM, CM, T1, T’, QS, B) .
eq oneStepTree(OM, CM, T, T’, QS, B) = error [owise] .

oneStepForest computes the trace of a rewrite with the predefined function metaSearchPath and uses it to generate

a debugging tree by using trace2forest, which generates a forest of one-step rewrites by extracting each step of the trace

and creating its corresponding tree:

op oneStepForest : Module Module Maybe{Module} Term Term QidSet Bound -> Maybe{Forest} .
ceq oneStepForest(OM, TM, CM, T, T’, QS, B) = F
if TR := metaSearchPath(OM, T, T’, nil, ’*, unbounded, 0) /\

F := trace2forest(OM, TM, CM, TR, T’, QS, B) .

eq oneStepForest(OM, TM, CM, T, T’, QS, B) = noProof [owise] .

The many-steps debugging tree is built with the function manyStepsTree. This tree is computed on demand, so that the

debugging subtrees corresponding to one-step rewrites are only generated when they are pointed out as wrong. It uses an

auxiliary function manyStepsTree2, which also receives as a parameter the module cleaned of suspicious statements with

deleteSuspicious:

op manyStepsTree : Module Maybe{Module} Term Term QidSet Bound -> Maybe{Tree} .
ceq manyStepsTree(OM, CM, T, T’, QS, B) =

contract(tree(T =>+ T’, getOffspring*(F) + 1, F))
if F := manyStepsTree2(OM, deleteSuspicious(OM, QS), CM, T, T’, QS, B) .

eq manyStepsTree(OM, CM, T, T’, QS, B) = error [owise] .

This auxiliary function uses the function metaSearchPath to compute the trace. If it is not empty, the forest for the

reduction of the initial term to normal form is built with the function createForest and the tree for the rewrites is

appended to this forest. If the trace consists of only one step, it is expanded with the function stepForest. Otherwise, the
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many-steps tree from the trace is built with the function trace2tree, that traverses the trace and creates a balanced tree

from the forest of leaves obtained from it:

op manyStepsTree2 : Module Module Maybe{Module} Term Term QidSet Bound ˜> Maybe{Forest} .
ceq manyStepsTree2(OM, TM, CM, T, T’, QS, B) = F
if {T’’, Ty, R} TR := metaSearchPath(OM, T, T’, nil, ’*, unbounded, 0) /\

F := createForest(OM, TM, CM, T, T’’, QS, strat?(OM))
if TR =/= nil
then trace2tree(OM, TM, CM, {T’’, Ty, R} TR, T’, QS, B, mtForest, 0)
else stepForest(OM, TM, CM, T’’, T’, R, QS, B, ms)
fi .

If the trace is empty, only the tree for the reduction is computed:

ceq manyStepsTree2(OM, TM, CM, T, T’, QS, B) = createForest(OM, TM, CM, T, T’, QS, strat?(OM))
if nil == metaSearchPath(OM, T, T’, nil, ’*, unbounded, 0) .

Finally, if the final term is not reachable from the initial term, an error is returned. Note that errors due to non-termination

cannot be detected:

eq manyStepsTree2(OM, TM, CM, T, T’, QS, B) = noProof [owise] .

7.2.3. Debugging trees for missing answers

The debugging tree for normal forms is built with the function createMissingTree. It receives the module where the

reduction took place, a correct module, the initial term, the reached normal form, and a set of suspicious labels:

op createMissingTree : Module Maybe{Module} Term Term QidSet -> Tree .
ceq createMissingTree(M, CM, T, T’, QS) = tree(’root : T -> T’’, getOffspring*(F) + 1, F)
if TM := deleteSuspicious(M, QS) /\

T’’ := reduce(M, T’) /\
F := cleanTree*(M, false, none, createMissingForest(M, TM, CM, T, T’’, QS)) .

The function createMissingForest checks whether the result can be obtained in the trusted or correct modules.

When this happens, it only generates a forest proving the term is in normal formwith proveNormal; otherwise, it uses the

auxiliary function createMissingForest2:

op createMissingForest : Module Module Maybe{Module} Term Term QidSet -> Forest .
ceq createMissingForest(OM, TM, CM, T, T’, QS) = F
if T == T’ or-else reduce(TM, T) == T’ or-else reduce(CM, T) == T’ /\

F := proveNormal(OM, TM, CM, T’, QS) .
eq createMissingForest(OM, TM, CM, T, T’, QS) =

createMissingForest2(OM, TM, CM, T, T’, QS) [owise] .

createMissingForest2 generates the forest for the subtermswith reduceSubtermsMissing and then distinguishes

whether the final result has been reached, proving in that case whether the term is in normal form with proveNormal, or
not, then applying the next equation with applyEqMissing:

ceq createMissingForest2(OM, TM, CM, T, T’, QS) =
if T’’ == T’ then F proveNormal(OM, TM, CM, T’, QS)
else F applyEqMissing(OM, TM, CM, T’’, T’, QS)
fi

if < T’’, F > := reduceSubtermsMissing(OM, TM, CM, T, QS) [owise] .

The debugging tree for incomplete sets of reachable terms is built with the function createMissingTree, that receives:

• the module where the terms should be found,
• a correct module (possibly undefMod),
• the initial term, the pattern,
• the condition to be fulfilled,
• the bound in the number of rewrites for wrong rewrites,
• the number of steps that can be given in the search,
• the search type,
• the type of tree to be built (one-step or many-steps) for both wrong and missing answers,
• the set of suspicious labels,
• the set of final sorts,
• a Boolean value indicating whether the search introduced by the user was unbounded, and
• a Boolean value pointing out whether the questions about solutions are prioritized.
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The forest is generated with an auxiliary function createMissingForest that receives, in addition to the values above, a

Boolean value indicating whether the forest currently built corresponds to the initial search or to a search due to a rewrite

condition, which is true in the first case. Once the tree has been built, the questions associated with terms that the user has

declared as final are pruned with cleanTree*:

op createMissingTree : Module Maybe{Module} Term Term Condition Bound Bound SearchType
TreeType TreeType QidSet Bool QidSet Bool Bool -> Tree .

ceq createMissingTree(M, CM, T, PAT, C, BW, BM, ST, TTW, TTM, QS, BFS, FS, UB?, SP) =
contract(tree(T ˜>[B’] {clean(extractTerms(F))} s.t. PAT & C [true],

1 + getOffspring*(F), F))
if TM := deleteSuspicious(M, QS) /\

T’ := getTerm(metaReduce(M, T)) /\
F := cleanTree*(M, BFS, FS, createForest(M, TM, CM, T, T’, QS, strat?(M))

createMissingForest(labeling(M), TM, CM, T’, PAT,
C, BW, BM, ST, TTW, TTM, QS, FS, UB?, SP, true)) /\

B’ := if UB? then unbounded else BM fi .

If the tree to be built cannot evolve (the bound is 0) and zero or more steps can be used, then we use the function

solutionTree to create a tree that proves whether the condition is satisfied or not:

op createMissingForest : Module Module Maybe{Module} Term Term Condition Bound Bound SearchType
TreeType TreeType QidSet QidSet Bool Bool Bool -> Forest .

eq createMissingForest(OM, TM, CM, T, PAT, C, BW, 0, zeroOrMore, TTW, TTM, QS,
FS, UB?, SP, FST) =

solutionTree(OM, TM, CM, T, PAT, C, BW, zeroOrMore, TTW, TTM, QS, FS, SP, FST) .

When the terms can still evolve (the bound is greater than 0), we compute all the possible reachable terms in exactly

one step with the function oneStepMissingTree and evolve each of them with createMissingForest*. The solutions

obtained are gathered with extractTerms, while we check whether the current term is a valid solution with the function

solveCondition. Finally, if the tree selected by the user is for many-steps transitions we create a root for the generated

forest specifying the number of steps, while if we want one-step transitions only the forest is returned:

ceq createMissingForest(OM, TM, CM, T, PAT, C, BW, s(N’), zeroOrMore, TTW, TTM,
QS, FS, UB?, SP, FST) =

if TTM == os then RF
else tree(T ˜>[B’] {TL’’} s.t. PAT & C [FST], 1 + getOffspring*(RF), RF)
fi

if tree(T =>1 {TL}, N, F) := oneStepMissingTree(OM, TM, CM, T, QS, FS, BW, zeroOrMore,
TTW, TTM, SP) /\

F’ := createMissingForest*(OM, TM, CM, TL, PAT, C, BW, N’, zeroOrMore,
TTW, TTM, QS, FS, UB?, SP, FST) /\

TL’ := if solveCondition(OM, T, PAT, C) then T
else empty fi /\

TL’’ := clean((extractTerms(F’), TL’)) /\
CF := solutionTree(OM, TM, CM, T, PAT, C, BW, zeroOrMore, TTW, TTM, QS, FS, SP, FST) /\
RF := CF tree(T =>1 {TL}, N, F) F’ /\
B’ := if UB? then unbounded else s(N’) fi .

7.3. The debugger environment

We implement our system on top of Full Maude, a language that extendsMaudewith support for object-oriented specifi-

cation and advancedmodule operations [12, Part II]. The implementation of Full Maude includes code for parsing user input

and pretty-printing; storing modules, theories, and views; and transforming object-oriented modules into systemmodules.

To parse some input using the built-in function metaParse, Full Maude needs the meta-representation of the signature

in which the input has to be parsed. Thus, we define the signature of the debugger in a module that extends the Full Maude

signature:

fmod DD-SIGNATURE is
including FULL-MAUDE-SIGN .
op debug_. : @Bubble@ -> @Command@ .
op missing_. : @Bubble@ -> @Command@ .
...
endfm

This signature is included in themeta-module GRAMMAR to obtain the grammar DD-GRAMMAR, that allows us to parse both

Full Maude modules and commands together with the debugger commands:
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fmod META-DD-SIGN is
inc META-FULL-MAUDE-SIGN .
inc UNIT .
op DD-GRAMMAR : -> FModule [memo] .
eq DD-GRAMMAR = addImports((including ’DD-SIGNATURE .), GRAMMAR) .
...
endfm

The module DD-COMMAND-PROCESSING is in charge of processing the commands dealing with suspicious statements,

final sorts, and the debugging commands:

fmod DD-COMMAND-PROCESSING is
pr COMMAND-PROCESSING .
pr META-DD-SIGN .
pr MISSING-ANSWERS-TREE .
pr SEARCH-TYPE .
pr PRINT .

For example, the parsing of the debugging command for wrong answers returns a tuple containing the generated tree,

the module where the computation took place, the set of suspicious statements, and a list of quoted identifiers indicating

the errors that occurred during the parsing:

sort DebugTuple .
op <_,_,_,_> : Forest Maybe{Module} QidSet QidList -> DebugTuple .

The parsing of the command is done in the GRAMMAR-DEBmodule, where the first bubble can contain either a module or

just the initial term:

op GRAMMAR-DEB : -> FModule [memo] .
eq GRAMMAR-DEB = addOps(op ’_->_. : ’@Bubble@ ’@Bubble@ -> ’@Judgment@ [none] .

op ’_:_. : ’@Bubble@ ’@Bubble@ -> ’@Judgment@ [none] .
op ’_=>*_. : ’@Bubble@ ’@Bubble@ -> ’@Judgment@ [none] .,
addSorts(’@Judgment@, GRAMMAR-RED)) .

The function procDebug processes a bubble and returns either a tree for the corresponding debug command or an error

message. It receives the term to be parsed, a correctmodule (possibly undefMod), a Boolean indicatingwhether debug-select

is on or off, the set of suspicious labels, the selected type of tree, the bound of the search in the correct module, the default

module, and Full Maude’s database of modules.

After finding out the kind of the debugging command (reduction, membership, or rewrite) and if a module name has

been selected by the command, the function procDebug builds the appropriate tree by using the functions createTree
and createRewTree explained in Section 7.2:

op procDebug : Term Maybe{Module} Bool QidSet TreeType Bound ModuleExpression
Database -> DebugTuple .

...
endfm

The persistent state of Full Maude’s system is given by a single object of class DatabaseClass, which maintains the

database of the system. We extend the Full Maude system by defining a subclass of DatabaseClass inheriting its behavior

and adding new attributes to it:

mod DD-DATABASE-HANDLING is
inc DATABASE-HANDLING .
pr DD-COMMAND-PROCESSING .
pr TREE-PRUNING .
pr DIVIDE-QUERY-STRATEGY .
pr LIST{DDState} .
pr LIST{Answer} .
sort DDDatabaseClass .
subsort DDDatabaseClass < DatabaseClass .
op DDDatabase : -> DDDatabaseClass [ctor] .

The new attributes include, for example:

• the debugging tree, which initially is empty, and that will be traversed during the debugging process:

op tree :_ : Forest -> Attribute [ctor] .

• the strategy to traverse the tree. The top-down strategy is represented by the constant td, whereas divide and query

is represented by dq:
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op strategy :_ : Strat -> Attribute [ctor] .

• the set of labels considered suspicious:

op suspicious :_ : QidSet -> Attribute [ctor gather(&)] .

• the set of final sorts:

op finalSorts :_ : QidSet -> Attribute [ctor gather(&)] .

The behavior of the debugger commands is described by means of rewrite rules that change the state of these attributes.

Below we show some of the most interesting rules.

The ruledebug starts the debugging process forwrong answers. It receives a term thatwill be processedwith the function

procDebug explained above. If there is no error (that is, the returned list of quoted identifiers is nil), the tree, the module,

and the set of suspicious labels are updatedwith the appropriate information, while the answers given by the user so far and

the previous states are reset. However, if the command was incorrect, the error is shown and the state is set to finished:

crl [debug] :
< O : DDDC | db : DB, input : (’debug_.[T]), output : nil,

default : ME, tree : F, module : MM, correction : MM’,
previousStates : LS, answers : LA, state : TS,
treeType : TT, currentTTW : CTTW, bound : BND, select : B,
suspicious : QS, currentSuspicious : QS’, AtS >

=> if QIL == nil then
< O : DDDC | db : DB, input : nilTermList, output : nil, default : ME,

tree : F’, module : MM’’, correction : MM’,
previousStates : nil, answers : nil, state : computing,
treeType : TT, currentTTW : TT, bound : BND, select : B,
suspicious : QS, currentSuspicious : QS’’, AtS >

else
< O : DDDC | db : DB, input : nilTermList, output : QIL, default : ME,

tree : mtForest, module : MM, correction : MM’,
previousStates : nil, answers : nil, state : finished,
treeType : TT, currentTTW : CTTW, bound : BND, select : B,
suspicious : QS, currentSuspicious : QS’, AtS >

fi
if < F’, MM’’, QS’’, QIL > := procDebug(T, MM’, B, QS, TT, BND, ME, DB) .

When a correct module expression is introduced, correct-module keeps the associated module if it exists, and shows

an error message otherwise:

crl [correct-module] :
< O : DDDC | db : DB, input : (’correct‘module_.[T]), output : nil, correction : MM, AtS >

=> if M? :: Module
then < O : DDDC | db : DB, input : nilTermList, output : (’\n add-spaceR(printME(ME)) ’\b

’selected ’as ’correct ’module. ’\o ’\n),
correction : M?, AtS >

else < O : DDDC | db : DB, input : nilTermList, output : (’\n ’\r ’Error: ’\o getMsg(M?)),
correction : MM, AtS >

fi
if ME := parseModExp(T) /\

M? := if compiledModule(ME, DB)
then getFlatModule(ME, DB)
else getFlatModule(modExp(evalModExp(ME, DB)), database(evalModExp(ME, DB)))
fi .

The rule top-down-strategy fixes the value of the navigation strategy to td, and changes the state to computing if

the debugging has not finished to show the appropriate question:

rl [top-down-strategy] :
< O : DDDC | input : (’top-down‘strategy‘..@Command@), output : nil,

strategy : STRAT, state : TS, AtS >
=> < O : DDDC | input : nilTermList, output : (’\n ’\b ’Top-down ’strategy

’selected. ’\o ’\n),
strategy : td, state : if TS == finished then TS

else computing fi, AtS > .
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In the top-down strategy, when the user introduces the identifier of a wrong question, the debugger updates the list of

answers and the previous states, and changes the current tree by the appropriate child of the root:

crl [top-down-traversal-no] :
< O : DDDC | input : (’_:‘no‘.[’token[T]]), strategy : td, tree : PT,

previousStates : LS, answers : LA, state : waiting, AtS >
=> < O : DDDC | input : nilTermList, strategy : td, tree : PT’,

previousStates : LS < nil, PT, td >,
answers : LA getAnswer(PT’, wrong), state : computing, AtS >

if UPT := removeUnknownChildren(PT) /\
N := downNat*(T) /\
N > 0 /\
N <= size(getForest(UPT, nil)) /\
PT’ := getSubTree(UPT, sd(N, 1)) .

where the function getAnswer constructs an answer given the current node and the answer given by the user.

The rule missing-wrong is used when, while debugging missing answers with the divide and query strategy, the user

points out that a certain term is not reachable. The rule checks that the current question is related to an inference of a set

of terms with setInference? and that the selected question points to one of these terms, and then creates the debugging

tree for wrong answers with createRewTree:

crl [missing-wrong] :
< O : DDDC | input : (’_is‘wrong‘.[’token[T]]), strategy : dq, tree : PT,

current : NL, previousStates : LS, answers : LA, state : waiting,
currentSuspicious : QS, bound : BND, module : M, correction : MM,
currentTTW : TT, AtS >

=> < O : DDDC | input : nilTermList, strategy : dq, tree : PT’,
current : NL, previousStates : LS < NL, PT, dq >,
answers : LA getAnswer(getSubTree(PT, NL), wrong),
state : computing, currentSuspicious : QS, bound : BND,
module : M, correction : MM, currentTTW : TT, AtS >

if N := downNat*(T) /\
setInference?(getContents(PT, NL)) /\
N > 0 /\
N <= numTermsInRootSet(getSubTree(PT, NL)) /\
T1 := getFirstTerm(getSubTree(PT, NL)) /\
T2 := getWrongTerm(getSubTree(PT, NL), N) /\
PT’ := createRewTree(labeling(M), MM, T1, T2, QS, TT, BND) .

When the divide and query strategy is selected and the user decides to trust a statement, the current subtree is deleted

and the resulting tree is pruned in order to delete the nodes associated with the trusted statement:

crl [divide-query-traversal] :
< O : DDDC | input : (’trust‘..@Command@), strategy : dq, tree : PT,

current : NL, previousStates : LS, answers : LA,
state : waiting, AtS >

=> < O : DDDC | input : nilTermList, strategy : dq, tree : PT’, current : NL,
previousStates : LS < NL, PT, dq >,
answers : LA getAnswer(getSubTree(PT, NL), right),
state : computing, AtS >

if Q := getLabel(PT, NL) /\
PT’ := prune(deleteSubTree(PT, NL), Q) .

In the divide and query strategy, when the user indicates that the sort of a certain term is final on the fly the rule

sort-final is applied. It checks that the question is related to final terms with the function finalQuestion? and then

prunes all the tree with the function pruneFinalSort:

crl [sort-final] :
< O : DDDC | input : (’its‘sort‘is‘final‘..@Command@), output : nil,

tree : PT, current : NL, module : M, state : waiting, AtS >
=> < O : DDDC | input : nilTermList, output : (’\n ’\b ’Terms ’of ’sort ’\o Ty

’\b ’are ’final. ’\o ’\n),
tree : PT’, current : NL, module : M, state : computing, AtS >

if finalQuestion?(getContents(PT, NL)) /\
T := getFirstTerm(getSubTree(PT, NL)) /\
Ty := getType(metaReduce(M, T)) /\
PT’ := pruneFinalSort(M, Ty, PT) .
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When the user decides to switch the select mode on to use a subset of the labeled statements as suspicious, the select
attribute is set to true:

rl [select] :
< O : DDDC | input : (’set‘debug‘select‘on‘..@Command@), select : B,

output : nil, AtS >
=> < O : DDDC | input : nilTermList, select : true,

output : (’\n ’\b ’Debug ’select ’is ’on. ’\o ’\n), AtS > .

The module DDmanages the introduction of data by the user and the output of the debugger’s answers. Full Maude uses

the input/output facility provided by the LOOP-MODEmodule [12, Chapter 17], which consists of an operator [_,_,_]with

an input stream (the first argument), an output stream (the third argument), and a state (given by its second argument):

mod DD is
inc DD-DATABASE-HANDLING .
inc LOOP-MODE .
inc META-DD-SIGN .
op o : -> Oid .
--- State for LOOP mode:
subsort Object < State .
op init-debug : -> System .

rl [init] :
init-debug

=> [nil, < o : DDDatabase | input : nilTermList, output : nil, init-state >, dd-banner] .

The rule in below parses the data introduced by the user, which appears in the first argument of the loop, in the module

DD-GRAMMAR and introduces it in the input attribute if it is correctly built:

crl [in] :
[QIL, < O : X@Database | input : nilTermList, Atts >, QIL’]

=> [nil,
< O : X@Database | input : getTerm(metaParse(DD-GRAMMAR, QIL, ’@Input@)), Atts >,
QIL’]

if QIL =/= nil /\
metaParse(DD-GRAMMAR, QIL, ’@Input@) : ResultPair .

The rule out is in charge of printing the messages from the debugger by moving the data in the output attribute to the

third component of the loop:

rl [out] :
[QIL, < O : X@Database | output : (QI QIL’), Atts >, QIL’’]

=> [QIL, < O : X@Database | output : nil, Atts >, (QIL’’ QI QIL’)] .
endm

8. Conclusions and future work

We have presented in this paper a declarative debugger for Maude specifications. The debugging trees used in the

debugging process are obtained from an abbreviation of a proper calculus whose adequacy for debugging has been proved.

This work comprises our previous work on wrong [30,8,34] and missing answers [32,31], and provides a powerful and

complete debugger for Maude specifications. Moreover, we also provide a graphical user interface that eases the interaction

with the debugger and allows one to traverse the debugging tree with more freedom [29,33]. The tree construction, its

navigation, and the user interaction (excluding the GUI) have all been implemented in Maude itself. For more information,

see http://maude.sip.ucm.es/debugging.

We plan to add new navigation strategies like the ones shown in [36] that take into account the number of different

potential errors in the subtrees, instead of their size. Moreover, the current version of the tool allows the user to introduce

a correct but maybe incomplete module in order to shorten the debugging session. We intend to add a new command to

introduce completemodules, which would greatly reduce the number of questions asked to the user. Finally, we also plan to

create a test generator to test Maude specifications and debug the erroneous tests with the debugger.

Appendix A. Proofs

Proposition 1. Let R = (�, E, R) be a rewrite theory and let T = T�/E′,R′ be any �-term model. If a statement e ⇒ e′
(respectively, e → e′, e : s) can be deduced using the semantic calculus rules reflexivity, transitivity, congruence, equivalence

class, or subject reduction using premises that hold in T , then T |
 e ⇒ e′ (respectively, T |
 e → e′, T |
 e : s).

http://maude.sip.ucm.es/debugging
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Proof. The result is a direct consequence of the definition of satisfaction of rewrite theories. For instancewe check the result

for the transitivity rules Tr⇒ and Tr→, and for the subject reduction rule SRed:

• Tr⇒. Suppose that T |
 e1 ⇒ e′ and T |
 e′ ⇒ e2. Then [[e1]]A →∗
R′/E′ [[e′]]A, [[e′]]A →∗

R′/E′ [[e2]]A. Since →∗
R′/E′ is

compositional, [[e1]]A →∗
R′/E′ [[e2]]A, i.e., T |
 e1 ⇒ e2.

• Tr→. If T |
 e1 → e′ and T |
 e′ → e2 then [[e1]]A = [[e′]]A and [[e′]]A = [[e2]]A. Therefore [[e1]]A = [[e2]]A and

T |
 e1 → e2.• SRed. If T |
 e → e′ and T |
 e′ : s, then [[e]]A = [[e′]]A and [[e′]]A ∈ As, and hence [[e]]A ∈ As.

The reflexivity, congruence, and equivalence class rules are checked analogously. ��
Theorem 1. The calculus of Figs. 4, 5, 6, and 7 is correct.

Proof. By induction over proof trees; we distinguish cases over the different kinds of judgments:

• adequateSorts(κ) � � is correct. Given a kind-substitution κ , when it has the variables of the appropriate sorts only

the rule SubsCond can be applied and the set containing κ is returned. If the matching fails, AS2 has to be applied

and the empty substitution set is returned, being the judgment correct.
• [C, θ ] � � is correct. We distinguish subcases over the different kinds of conditions:

– C ≡ t1 = t2. Since we work with admissible conditions, we know that θ(t1) and θ(t2) are ground, and thus the

only possible substitution that can be included in� is θ . If the condition is fulfilled only ruleEqC1 can be used, and

{θ} is returned, which is correct. Otherwise, only EqC2 can be used, returning now the empty set which is again

correct.

– C ≡ t1 := t2. We assume that θ(t2) →norm t′ so, given the complete set of kind-substitutions, we restrict them to

those that are substitutions, thus returning the correct set.

– C ≡ t : s. Like in equational conditions, θ(t) is ground and the resulting set can only contain θ . If the condition is

fulfilled onlyMbC1 can be applied and the set obtained is correct. Analogously, if the condition does not hold, only

MbC2 can be used and the correct result is the empty set.

– C ≡ t1 ⇒ t2. We assume that the set of reachable terms from θ(t1) that match θ(t2) is correct, and thus by

definition the set computed by rule RlC, the only one applicable here, is correct.
• 〈C, �〉 � �′ is correct. The only rule that deals with this judgment is SubsCond. Assuming the premises correct,

the conclusion is also correct.
• disabled(e, t) is correct. The only rule that deals with this judgment is Dsb. Assuming the premises correct there are

no substitutions satisfying the conditions and making the lefthand side of the equation or membership match the

term, so it cannot be applied and the judgment is correct.
• t →red t′ is correct. In this case two rules can be used: Rdc1 and Rdc2. The first one covers reductions at the top,

while the second one covers reductions on the subterms, thus dealing with all possibilities. Assuming the premises

correct, in the first casewe verify that one step is used because it corresponds to the application of one equation,while

in the second one we check with the side condition that at least one step is used and thus the judgment is correct.
• t →norm t′ is correct. The rules that deal with this case are Norm and NTr, that distinguish whether the term is

already in normal form or can be further reduced. In the first case if we assume the premises correct then the term is

in normal form and then the same term has to be returned. In the second case, assuming the premises correct and a

confluent specification, the conclusion is correct.
• fulfilled(C, t). This judgment is correct when there exists a substitution that makes C with the hole � filled by t hold.

Rule Fulfill, the only one that can be used to prove this predicate, states this fact and thus the judgment is correct.
• fails(C, t). This judgment is correct when C with t filling its hole � cannot be satisfied. Since the only rule that can be

used for this predicate is Fail and the premise indicates that the set of substitutions that fulfill the condition is empty,

the judgment is correct.
• t ⇒q S. This judgment is only computed with rule Rl. By hypothesis, all the substitutions that fulfill the conditions

and make t match the lefthand side of the rule are in �k , thus by definition the union of the application of all the

substitutions in �k to the lefthand side of the rule generate the set we are looking for and the judgment is correct.
• t ⇒top S. This judgment is only computed with rule Top. First, we notice that the rules in {q1, . . . , ql} are the only

ones that can be applied to t (it does not match the lefthand side of the rest of the rules) and thus the correctness is

not affected by this selection. We know by hypothesis that each Si, the set of reachable terms obtained from t with

the rule qi, is correct and hence the union of all these sets is by definition the set of reachable terms by rewriting at

the top and the judgment is correct.
• t ⇒1 S. This judgment is only computed with rule Stp. By hypothesis, we know that St contains the set of reachable

terms obtained by rewriting t at the top, while Si contains the reachable terms in one step from ti. Since the set of

reachable terms in one step from t is the union of the terms obtained by one rewriting at the top and the set created

by substituting each subterm by all the reachable terms in one step from it, the judgment is correct.
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• t �C
n S. For this judgment, ruleRed1 can always be applied. Sinceweworkwith a coherent theory, the set of reachable

terms from both t and t1 are the same, while t2 and t′ are in the same equivalence class and thus are equal modulo E.

When n = 0, rules Rf1 or Rf2 are used and the result is straightforward.
If n > 0 and the term fulfills the condition, rule Tr1 is applied. Since the condition holds, the result set must contain
t, that is added in the conclusion of the rule. Moreover, the terms t1, . . . , tk are the reachable terms from t in exactly
one step, while Si is the set of reachable terms from ti in zero or more steps, that is, the union of the Si is the set of
reachable terms in at least one step and at most n, and thus the union of this set with the singleton set {t} creates a
correct set for this judgment. Analogously, when n > 0 and the condition does not hold, rule Tr2 is applied. ��

Theorem 2. The calculus of Fig. 12 is correct.

Proof. • t �!Cn S. For this judgment, rule Red2 can always be applied. Since we work with a coherent theory, the set of

reachable terms from both t and t1 are the same, while t2 and t′ are equal modulo E.

When n = 0, rules Rf3, Rf4, and Rf5 can be used. If t is not final only Rf5 can be used and, since no more steps are

allowed, the empty set of results is returned, which is correct by definition. If t is final we have to check whether the

term fulfills the condition; if the condition holds only Rf3 can be used and hence the singleton set consisting of the

term is returned, while if the condition fails Rf4 is applied and the empty set is returned. In both cases the result is

correct by definition.

When n > 0 rules Rf3, Rf4, and Tr3 can be used. If the term is final, Rf3 and Rf4 are applied and the result holds as

in the previous case. If the term is not final, then Tr3 is applied; the terms t1, . . . , tk are the reachable terms from t

in exactly one step, while Si is the set of reachable terms from ti in zero or more steps, that is, the union of the Si is

the set of reachable terms in at least one step and at most n and, since the current term cannot be a solution because

it is not final, the judgment is correct.
• t �+C

n S. We distinguish cases over n:

When n = 0, only rule Rf6 can be applied; since the judgment requires at least one step, the set of reachable terms

is empty by definition.
When n > 0, rule Tr4 is applied. Since t → t′ and the specification is coherent, we know that the set of reachable
terms from both t and t′ is the same; the terms t1, . . . , tk are the reachable terms from t in exactly one step, while Si
is the set of reachable terms from ti in zero or more steps (note that the judgments in the premises are different from
the one in the conclusion), that is, the union of the Si is the set of reachable terms in at least one step and at most n
and hence the judgment is correct. ��

Proposition 2. Let R = (�, E, R) be a rewrite theory, C an atomic condition, θ an admissible substitution, and T�/E′,R′ any
�-termmodel. If adequateSorts(κ) � �, [C, θ ] � �, or 〈C, �〉 � �′ can be deduced using the rules from Fig. 4 using premises

that hold in T�/E′,R′ , then also T�/E′,R′ |
 adequateSorts(κ) � �, T�/E′,R′ |
 [C, θ ] � �, and T�/E′,R′ |
 〈C, �〉 � �′,
respectively.

Proof. We apply the definition of satisfaction for each rule:

EqC1 From the premises we deduce that [θ(t1)]E′ = [θ(t2)]E′ , that is, the condition is satisfied with the current substi-

tution θ . Since θ already binds all the variables in the condition, it cannot be extended and θ itself is the result.

EqC2 From the premises we deduce that [θ(t1)]E′ �= [θ(t2)]E′ , thus the condition fails and there is no substitution that

could satisfy it.

PatC We know that [θ(t2)]E′ = [t′]E′ and that matching conditions can have variables in its lefthand side that are not

bound in θ . Thus, the substitution is extended with all the substitutions θ ′ that match t′ and, since t′ is equal

(modulo E′) to θ(t2) by hypothesis, these are all the substitutions that satisfy the condition.

AS1 We know that the terms in the kind-substitution have the adequate sort, so it is a substitution.

AS2 When one term in the kind-substitution has an incorrect sort the match fails.

MbC1 We know that the condition is fulfilled and θ binds all the variables, therefore it cannot be extended and the single

substitution that verifies the condition is θ itself.

MbC2 Similarly to EqC2, we know by hypothesis that the condition does not hold, thus there is no substitution able to

satisfy it and the empty set of substitutions is computed.

RlC In this case θ can be extended because rewrite conditions can contain new variables in their righthand side. We

assume that S contains all the terms reachable from θ(t1) that match the pattern t2, and then use it to extend θ
with all the substitutions θ ′ that bind the new variables in t2 to match the terms in S, obtaining by definition all

the substitutions that verify the condition.
SubsCond We assume that, for each θi, 1 ≤ i ≤ n, we obtain the set of substitutions Si that extend [C, θi]. By definition,

〈C, {θ1, . . . , θn}〉 computes the set of substitutions that extend any [C, θi], i.e., the unionof the Si, thus the inference
is sound. ��

Proposition 3. Let R = (�, E, R) be a rewrite theory and ϕ a judgment deduced with the inference rules Dsb, Rdc2, or NTr
from Fig. 5 from premises that hold in T�/E′,R′ . Then also T�/E′,R′ |
 ϕ.
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Proof. We apply the definition of satisfaction for each rule:

Dsb If the matching with the lefthand side and the conditions cannot be satisfied, then it is straightforward to see that the

statement cannot be applied.

Rdc2 The substitution of a subterm by its normal form is correct if the normal form is correct.
NTr Since the specification is confluent, we can use any equations to evolve a term and then compute the normal form

from this new term. ��
Proposition 4. LetR = (�, E, R) be a rewrite theory, C an admissible condition, and T�/E′,R′ any �-term model. If t �C

0 S can

be deduced using rules Rf1 or Rf2 from Fig. 6 using premises that hold in T�/E′,R′ , then also T�/E′,R′ |
 t �C
0 S.

Proof. We apply the definition of satisfaction for each rule:

Rf1 We know by hypothesis that the term t fulfills the condition thus, by definition, the set of reachable terms in zero

steps is the singleton set with t as single element.
Rf2 In a similar way to the case above, if the condition does not hold with the term t, then the set of reachable terms is

empty. ��
Proposition 5. Let R = (�, E, R) be a rewrite theory, C an admissible condition, n a natural number, and T�/E′,R′ any �-term

model. If t �C
n S or t ⇒1 S can be deduced by means of the rules in Fig. 7 using premises that hold in T�/E′,R′ , then also

T�/E′,R′ |
 t �C
n S or T�/E′,R′ |
 t ⇒1 S, respectively.

Proof. We apply the definition of satisfaction for each rule:

Tr1 We know that the condition is fulfilled by t, that t in exactly one step is rewritten to the set {t1, . . . , tk}, and that

each of these terms is rewritten in at most n steps to S1, . . . , Sk . Since {t1, . . . , tk} have been obtained in one step,

the terms in S1, . . . , Sk have been computed in at most n + 1 steps and in at least 1 step. Since we are looking for

the solutions in zero or more steps, we have to compute the union of these sets with the set of reachable terms in

zero steps, that in this case is the singleton set containing the term t itself, because we are assuming it fulfills the

condition. Thus, the inference is sound.

Tr2 Analogous to the case above.

Stp We assume that all the possible rewrites in exactly one step at the top of f (ti), 0 ≤ i ≤ m, lead to the set St and that

all the reachable terms in exactly one step of each subterm ti form the set Si. By definition, all the reachable terms in

exactly one step is the union of the set of all the terms obtained by rewrites at the top and the sets built by substituting

each subterm by each reachable term from it (only one subterm is substituted at the same time), so the inference is

sound.
Red1 Since we know that t → t1, by coherence the same reachable terms are obtained from t and t1. Moreover, since

t2 =E′ t′ we can substitute t2 by t′ and the set remains unchanged. ��
Proposition 6. Let R = (�, E, R) be a rewrite theory, C an admissible condition, n a natural number, and T�/E′,R′ any �-term

model. If a statement t �!Cn S or t �+C
n S can be deduced by means of the rules in Fig. 12 using premises that hold in T�/E′,R′ ,

then also T�/E′,R′ |
 t �!Cn S or T�/E′,R′ |
 t �+C
n S, respectively.

Proof.

Rf3 In this case we know that the term fulfills the condition and that it is final, so by definition the set of final reachable

terms consists exactly of the term itself.

Rf4 If the term is final but it does not satisfy the condition, then the set of reachable states is empty by definition.

Rf5 If no more steps can be used and the term is not final, the set of reachable terms is empty by definition.

Tr3 We know that the term is not final, so we can split the search into two different searches, one in one step that leads

to {t1, . . . , tk}, and another in n steps from these terms, that we know generate the sets S1, . . . , Sk . Thus, the result

is the union of these sets.

Red2 Analogous to Red1 in Proposition 5.

Rf6 By definition the relation requires at least one step, thus if only zero steps are available the result is the empty set.
Tr4 First, we know that t → t′, hence, by coherence, the same reachable terms are obtained from t and t′. Again, we

distinguish the first step of the search, that leads to {t1, . . . , tk}, and the next n steps. Since the terms in this second
phase of the search have already evolved one step, the single requirement is to fulfill the condition, and thus the union
of the sets obtained with the relation for zero or more steps has to be the result. ��
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Proposition 8. Let N be a buggy node in some proof tree in the calculus of Figs. 1, 4, 5, 6, 7, and 12w.r.t. an intended interpretation

I . Then:

1. N corresponds to the consequence of an inference rule in the first column of Table 3.

2. The error associated to N can be obtained from the inference rule as shown in the second column of Table 3.

Proof. The first item is a straightforward consequence of Propositions 1, 2, 3, 4, 5, and 6: N buggy means N invalid with all

its children valid, and these are the only possible inference rules at N.

For the second property we study each inference rule separately:

Rep→ In this case the associated equation is wrong as a direct consequence of having a wrong statement instance: N is

invalid in I , while the previous conditions, which state the validity of the statements in the equation condition

instance, correspond to the premises of theRep→ inference rule (see Fig. 1), which are valid in I becauseN is buggy.

Rep⇒ and Mb Analogous to the case above.

Rdc1 In this case it is possible to have an erroneous result when the conditions hold. The reason is that the equation can

be wrong, and thus we would have a wrong equation instance.

Norm If the conclusion of this rule is erroneous but its premises hold this means that the specification does not have all

the required equations, that is, an error in this node is associated with a missing equation.

Ls Similarly to the case above, if the conclusion of this rule is wrong while its premises hold this means that the

specification lacks some membership, that is, an error in this node is associated with a missing membership.

Fulfill If this node is buggy then there exists a substitution that satisfies the condition but the condition should not hold,

thus we have a wrong condition. In this case the condition in the buggy node is pointed out as the error in the

specification.

Fail In this case the set of substitutions that fulfill the condition is empty but the condition should hold, so the node is

associated with a wrong condition. As in the case above, the error in the specification is related to the condition in

the buggy node.

Top When this node is buggy all the possible rules have been applied at the top and their results are correct, but the

union of these terms does not lead to all the intended reachable terms by rewriting the term at the top, so this node

is related to a missing rule. In this case, we will point to the operator at the top of the term in the lefthand side of

the buggy node as incompletely defined.
Rl The nodes computing the set of substitutions that fulfill the condition of the rule are correct, but once the righthand

side of the rule is instantiatedwith these substitutions there are reachable terms in the intended interpretation that
are not in this set. Thus, in this case the buggy node is associated with a wrong rule and the rule applied in the node
is pointed out as buggy. ��

Lemma 1. Let T be a finite proof tree representing an inference in the calculus of Figs. 1, 4, 5, 6, 7, and 12 w.r.t. some rewrite

theoryR. Let I be an intended interpretation ofR such that the root N of T is invalid in I . Then:

(a) If T contains only one node, then APT ′(T) = {T}.
(b) There is a T ′ ∈ APT ′(T) such that T ′ has an invalid root.

Proof. If T contains only one node N then N is an invalid node without children and therefore buggy. By Proposition 8 the

inference step proving this node must be Rep→, Mb, Rep⇒, Rdc1, Norm, Fulfill, Fail, Ls, Rl, or Top. In all these cases the

rule (APT10) of Fig. 13 must be applied and the result holds, since it returns a singleton set with the same root.

The second item can be proved by induction on the number of nodes of T , which we denote as n(T). If n(T) = 1 the

property is straightforward from the part (a) above because T ∈ APT ′(T). If n(T) > 1 we distinguish cases depending on

the rule for APT ′ that can be applied at the root of T:

• If it is either (APT2), (APT3), (APT4), (APT5), (APT6), (APT7), (APT
m
8 ), (APTm9 ), or (APT10) the result holds directly

because the result is a singleton set with the same invalid root (in the case of (APT7) an equivalent root).• If it is (APTo8), (APT
o
9), or (APT11) by Proposition 8 N has some invalid child, which corresponds to the root of some

premise Ti. By the induction hypothesis, there is some T ′ ∈ APT ′(Ti) with invalid root. And by observing the rules of
Fig. 13 it can be checked that every subtree Ti of the root of T verifies APT ′(Ti) ⊆ APT ′(T). Then T ′ ∈ APT ′(T). ��

Theorem 3. Let T be a finite proof tree representing an inference in the calculus of Figs. 1, 4, 5, 6, 7, and 12 w.r.t. some rewrite

theoryR. Let I be an intended interpretation ofR such that the root of T is invalid in I . Then:

• APT(T) contains at least one buggy node (completeness).
• Any buggy node in APT(T) has an associated wrong statement, missing statement, or wrong condition in R according to

Table 3 (correctness).
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Proof. We prove each item separately:

• APT(T) contains at least one invalid node, since its root is the root of T , and any debugging tree containing an invalid

node contains a buggy node by Proposition 7.
• First we observe that the root of APT(T) cannot be buggy, because if it is invalid then it has an invalid child (Lemma

1(b)). Therefore any buggy node must be part of APT ′(T) (the premise in (APT1)).
Let N be a buggy node occurring in APT ′(T). Then N is the root of some tree TN , subtree of some T ′ ∈ APT ′(T). By the

structure of the APT ′ rules this means that there is a subtree T ′ of T such that TN ∈ APT ′(T ′). We prove that N has an

associated wrong statement in S by induction on the number of nodes of T ′, n(T ′).
If n(T ′) = 1 then T ′ contains only one node and APT ′(T ′) = {T ′} by Lemma 1(a). Then the only possible buggy node

is N, which means that N is also buggy in T and that the associated fragment of code is wrong by Proposition 8.

If n(T ′) > 1 we examine the APT rule applied at the root of T ′:
(APT2) Then T ′ is of the form

T1 . . . Tn

e1 → e′
Rep→

T ′′

e1 → e2

Tr→

Hence N ≡ (e1 → e2) and TN is

APT ′(T1) . . . APT ′(Tn) APT ′(T ′′)
e1 → e2

Rep→

Since N is buggy in TN it is invalid w.r.t. I . By Proposition 8, e1 → e2 cannot be buggy in T ′, i.e., either T ′′ has
an invalid root or e1 → e′ is invalid. But T ′′ cannot be invalid because APT ′(T ′′) is a child subtree of N and by

Lemma 1(b) it would contain a tree T ′′′ with invalid root, which is not possible because T ′′′ is a child of the buggy

node N in TN . Therefore e1 → e′ is invalid. Moreover, the roots of T1, …, Tn are also valid by the same reason:

APT ′(T1), . . . , APT ′(Tn) are child subtrees of N in TN and cannot have an invalid root. Therefore e1 → e′ is buggy
in T ′, i.e., is buggy in T and by Proposition 8 the equation associated to label Rep→ is wrong. And this label is the

same that can be found associated to N in the APT ′ TN . Therefore the buggy node N of the APT ′ has an associated

wrong equation.

(APT3) In this case T ′ has the form

T1 . . . Tn

t →red t′′
Rdc1

T

t →norm t′
NTr

Thus t →norm t′ and TN is

APT ′(T1) . . . APT ′(Tn) APT ′(T)
t →norm t′

Rdc1

By Proposition 8 we know that N cannot be buggy in T ′, thus either t →red t′′ or the root of T is invalid. However, if

the root of T were invalid we know by Lemma 1 that the set obtained with APT ′ would contain a tree with an invalid

root and then N cannot be buggy. Therefore, t →red t′′ is invalid but, for the same reason as before, T1 . . . Tn cannot

be invalid, so it is also buggy in T ′ and by Proposition 8 the rule label Rdc1 has associated a wrong equation. Since

this same label has been now assigned to N, the buggy node in the abbreviated proof tree has an associated wrong

equation.

(APT4) In this case T ′ has the form

T1 . . . Tn

t ⇒top S′ Top
T ′
1 . . . T ′

n

t ⇒1 S
Stp

Thus N ≡ t ⇒1 S and TN is

APT ′(T1) . . . APT ′(Tn) APT ′(T ′
1) . . . APT ′(T ′

n)

t ⇒1 S
Top

By Proposition 5 we know that N cannot be buggy in T ′, thus either of t ⇒top S′ or the root of one of T ′
1 . . . T ′

n is

invalid. However, if the root of one of the trees T ′
1 . . . T ′

n were invalid we know by Lemma 1 that the set obtained

with APT ′ would contain a tree with an invalid root and then N cannot be buggy. Therefore, t ⇒top S′ is invalid

but, for the same reason as before, T1 . . . Tn cannot be invalid, so it is also buggy in T ′ and by Proposition 8 the rule
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label Top has associated a missing rule. Since this same label has been now assigned to N, the buggy node in the

abbreviated proof tree has an associated missing rule.

(APT5) and (APT6) Analogous to the previous cases.

(APT7) T ′ has the form

Tt→normt′ T1 . . . Tn

t :ls s
Ls

Then N ≡ t :ls s and TN is

APT ′(Tt→normt′) APT ′(T1) . . . APT ′(Tn)
t′ :ls s

Ls

Since N is buggy in TN all the trees in APT ′(Tt→normt′) APT ′(T1) . . . APT ′(Tn) are valid and by Lemma 1 the roots of

Tt→normt′ T1 . . . Tn are also valid and N is buggy in T ′. By Proposition 8 it is associated with a missing membership

in T ′ and, since we have the same label in TN , the result holds.

(APTo8), (APT
o
9), (APT11) Then TN ∈ APT ′(Ti) for some child subtree Ti of the root of T ′ and the result holds by the

induction hypothesis.

(APTm8 ) We check that actually this rule cannot be applied to produce a buggy node and therefore must not be

considered here. If (APTm8 ) is applied then T ′ must be of the form

T1 T2

e1 ⇒ e2
Tr⇒

N is e1 ⇒ e2 and TN is

APT ′(T1) APT ′(T2)
e1 ⇒ e2

Tr⇒

AndN can be invalid but not buggy in T ′ (andhence in T) by Proposition 8, because it is the conclusion of a transitivity

inference, and thus either T1 or T2 has an invalid root. Then by Lemma 1(b), either APT ′(T1) or APT ′(T2) have an

invalid root and N is not buggy in TN .

(APTm9 ) Analogous to the previous case.

(APT10) We present the proof for the inference rule Fulfill, with the other cases being analogous. T ′ has the form

T1 . . . Tn

fulfilled(C, t)
Fulfill

Then N ≡ fulfilled(C, t) and TN is

APT ′(T1) . . . APT ′(Tn)
fulfilled(C, t)

Fulfill

Since N is buggy in TN all the trees in APT ′(T1) . . . APT ′(Tn) are valid and by Lemma 1 the roots of T1 . . . Tn are
also valid and N is buggy in T ′. By Proposition 8 it is associated with a wrong statement in T ′ and, since we have the
same label in TN , the result holds. ��
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