
E-LOTOS:

Tutorial and Semantics

Alberto Verdejo

Departamento de Sistemas Informáticos y Programación

Escuela Superior de Informática

Universidad Complutense de Madrid

29th May 2004

Supervised by: Luis Fernando Llana-Daz

Narciso Mart-Oliet

Contents

I Tutorial 9

1 Introduction 13

1.1 An example: two positions register . 14

1.2 Variables . 15

1.3 Time in E-LOTOS . 16

2 Base Language for processes 19

2.1 Actions . 19

2.2 Sequential composition . 21

2.3 Selection operator . 22

2.4 Internal action . 24

2.5 Successful termination . 26

2.6 Inaction and time block . 26

2.7 Parallel composition operator . 27

2.8 Interleaving operator . 28

2.9 Synchronization operator . 29

2.10 General parallel operator . 30

2.11 Parallel over values operator . 31

2.12 Disabling operator . 32

2.13 Suspend/Resume operator . 32

2.14 Hiding operator . 33

2.15 Exceptions and their handling . 34

2.16 Delay instruction . 36

2.17 Renaming operator . 38

2.18 Conditional operator . 40

2.19 Imperative features . 41

2.20 Process declaration and instantiation . 43

3 Base Language for data types 45

3.1 Data types . 45

3.2 Type expressions . 48

3.3 Subtyping . 49

4 CONTENTS

3.4 Expressions . 50

3.5 Function declaration and instantiation . 52

3.6 Patterns and pattern matching . 53

4 Module Language 55

4.1 Interfaces . 55

4.2 Modules . 57

4.3 Generic Modules . 58

4.4 Specification . 59

5 Examples 61

5.1 Global clock . 61

5.2 FIFO queue . 61

5.3 Random semaphore . 62

5.4 FIFO semaphore . 65

5.5 Dining philosophers . 67

5.6 Readers and writers . 69

5.7 Specifying digital logic . 72

II Semantics 77

6 Translation to Abstract Syntax 81

6.1 Introduction . 81

6.2 Actions . 83

6.3 Successful termination without values . 83

6.4 Successful termination with values . 83

6.5 Interleaving operator . 83

6.6 Exception raising . 83

6.7 Conditional operator . 84

6.8 Imperative features . 84

6.9 Process declaration . 85

6.10 Process instantiation . 87

6.11 Case operator . 88

6.12 Function declaration . 88

6.13 Type expressions . 88

6.14 Expressions . 89

7 Static Semantics of Base Language 91

7.1 Introduction . 91

7.2 Actions . 97

7.3 Sequential composition . 100

7.4 Selection operator . 101

7.5 Internal action . 103

CONTENTS 5

7.6 Successful termination with values . 104

7.7 Inaction . 104

7.8 Time block . 104

7.9 Parallel operator . 105

7.10 Synchronization operator . 106

7.11 General parallel operator . 106

7.12 Parallel over values . 108

7.13 Disabling operator . 109

7.14 Suspend/Resume operator . 110

7.15 Hiding operator . 111

7.16 Exception handling . 112

7.17 Exception signaling . 114

7.18 Delay instruction . 115

7.19 Renaming operator . 115

7.20 Assignment . 118

7.21 Nondeterministic assignment . 119

7.22 Variable declaration . 119

7.23 Case operator . 120

7.24 Behaviour pattern-matching . 122

7.24.1 Single match . 122

7.24.2 Multiple match . 123

7.25 Iteration loop . 123

7.26 Process instantiation . 123

7.27 Type expressions . 125

7.27.1 Type identifier . 125

7.27.2 Empty type . 125

7.27.3 Universal type . 126

7.27.4 Record type . 126

7.28 Record type expressions . 126

7.28.1 Empty record . 126

7.28.2 Singleton record . 126

7.28.3 Record disjoint union . 127

7.28.4 Universal record . 127

7.29 Value Expressions . 127

7.29.1 Primitive constants . 127

7.29.2 Variables . 128

7.29.3 Constructor application . 128

7.29.4 Record values . 128

7.30 Record value expressions . 128

7.30.1 Empty record . 129

7.30.2 Singleton record . 129

7.30.3 Record disjoint union . 129

6 CONTENTS

7.31 Patterns . 129

7.31.1 Variable pattern . 129

7.31.2 Expression pattern . 130

7.31.3 Wildcard pattern . 130

7.31.4 Record pattern . 131

7.31.5 Constructor pattern . 132

7.31.6 Explicit typing pattern . 132

7.32 Record of patterns . 133

7.32.1 Empty record pattern . 133

7.32.2 Singleton record pattern . 133

7.32.3 Record disjoint union . 133

7.32.4 Wildcard record pattern . 133

8 Dynamic Semantics of Base Language 135

8.1 Introduction . 135

8.2 Actions . 139

8.3 Sequential composition . 141

8.4 Selection operator . 142

8.5 Internal action . 144

8.6 Successful termination with values . 145

8.7 Inaction . 146

8.8 Time block . 146

8.9 Parallel operator . 146

8.10 Synchronization operator . 148

8.11 General parallel operator . 149

8.12 Parallel over values . 151

8.13 Disabling operator . 153

8.14 Suspend/Resume operator . 154

8.15 Hiding operator . 154

8.16 Exception handling . 156

8.17 Exception signaling . 158

8.18 Delay instruction . 158

8.19 Renaming operator . 159

8.20 Assignment . 161

8.21 Nondeterministic assignment . 161

8.22 Variable declaration . 162

8.23 Case operator . 162

8.24 Behaviour pattern-matching . 164

8.24.1 Single match . 164

8.24.2 Multiple match . 165

8.25 Iteration loop . 166

8.26 Process instantiation . 166

CONTENTS 7

8.27 Type expressions . 167

8.27.1 Type identifier . 167

8.27.2 Empty type . 167

8.27.3 Universal type . 167

8.27.4 Record type . 167

8.28 Record type expressions . 168

8.28.1 Singleton record . 168

8.28.2 Record disjoint union . 168

8.28.3 Universal record . 168

8.29 Value Expressions . 168

8.29.1 Primitive constants . 169

8.29.2 Variables . 169

8.29.3 Constructor application . 169

8.29.4 Record values . 169

8.30 Record value expressions . 169

8.30.1 Empty record . 169

8.30.2 Singleton record . 169

8.30.3 Record disjoint union . 169

8.31 Patterns . 170

8.31.1 Variable pattern . 170

8.31.2 Expression pattern . 170

8.31.3 Wildcard pattern . 171

8.31.4 Record pattern . 171

8.31.5 Constructor pattern . 172

8.31.6 Explicit typing pattern . 172

8.32 Record of patterns . 173

8.32.1 Empty record pattern . 173

8.32.2 Singleton record pattern . 173

8.32.3 Record disjoint union . 173

8.32.4 Wildcard record pattern . 174

9 Semantics of Module Language 175

9.1 Static Semantics . 175

9.1.1 Synonymous type . 176

9.1.2 Named record type . 176

9.1.3 New data type . 176

9.1.4 Process declaration . 176

9.1.5 Sequential declarations . 178

9.2 Dynamic Semantics . 178

9.2.1 Synonymous type . 179

9.2.2 Named record type . 179

9.2.3 New data type . 179

8 CONTENTS

9.2.4 Process declaration . 179

9.2.5 Sequential declarations . 180

Part I

Tutorial

11

This tutorial introduces E-LOTOS by describing all the features of the language, and by
showing its expressive power. We show how E-LOTOS can be used to specify systems, their
behaviour, and the values they manipulate, as well as how the specifier can modularize sys-
tems. The tutorial includes some small examples that show how E-LOTOS features are used
to specify common problems, usual generic data types, well-known concurrent programming
problems, as well as to describe hardware components.

E-LOTOS is still a draft, under revision. So this is still an unfinished document, it has to be
completed when the ISO standard will be definitively approved.

12

1 Introduction

If cars had improved at the rate of computers in the same time period,
a Rolls Royce would now cost 10 dollars and get a billion miles per
gallon. (Unfortunately, it would probably also have a 200-page manual
telling how to open the door.)

– Andrew S. Tanenbaum

LOTOS (Language Of Temporal Ordering Specification) [ISO88] is a Formal Description Technique1

developed within ISO for the formal specification of open distributed systems. It is based on the intuitive
and well known black box analogy [Mil89] where systems are described as black boxes with buttons, that
represent their entire capability of communication. The basic idea is that systems can be specified by
defining the temporal relation among the interactions that constitute the externally observable behaviour
of a system. As stated in [Mil89] “the behaviour of a system is exactly what is observable, and to observe
a system is exactly to communicate with it.”

LOTOS is composed of a process algebra part (based on CCS [Mil89] and CSP [Hoa85]) to describe
systems, and an algebraic language (ACT ONE [EM85]) to describe the abstract data types. LOTOS
has proven very successful in specifying protocols and services (examples can be found in [vEVD89,
Gam90, Mun91, Pec92, BL93, GH93]). However, LOTOS has several limitations related to its expressive
power and structuring capabilities, besides user-friendliness. For these reasons, LOTOS is currently under
revision in ISO [Que98], in the Work Item “Enhancements to LOTOS,” giving rise to a revised language
called E-LOTOS (Enhanced LOTOS). E-LOTOS has the same structure as LOTOS. It is formed of a
behavioural process algebra part, which inherits some operators from LOTOS, generalizes others, and
adds new operators; and of a functional data definition part which allows constructive definitions of data
types and functions for manipulating them, and is thought to be more user friendly.

Among the enhancements introduced in E-LOTOS, the most important ones are:

• the notion of quantitative time: in E-LOTOS we can define the exact time at which events (by adding
annotations to actions, see Section 2.1) or behaviours (by using wait statements, see Section 2.16)
may occur,

• the data part, both the definition of new data types and the construction of values of predefined
types, and

• modularity, which allows the definition of types, functions, and processes in separate modules, by
controlling their visibility by means of module interfaces, and the definition of generic modules, useful
for code reuse. One module can use another one by means of importation clauses.

Although in this tutorial we describe all the operators of E-LOTOS, the inherited operators and the
new ones, now we concentrate on the latter. Among the new operators, we have:

1“Formal Description Techniques (FDTs) are methods of defining the behaviour of an (information processing) system
in a language with formal syntax and semantics, instead of a natural language as English.” [ISO88]

14 1. Introduction

• the sequential composition operator that allows to concatenate two processes. This operator unifies
both the action prefix operator and the enabling operator of LOTOS.

• the general parallel operator that allows the synchronization of n among m processes.

• the suspend/resume operator, which generalizes the disabling operator of LOTOS by allowing a
disabled process to be resumed by the disabling process.

• operators to raise exceptions and to handle them.

• the renaming operator which allows to rename actions and exceptions, and to modify their parame-
ters.

E-LOTOS has several imperative features, which have been introduced in order to make the job of
specifying systems easier to the user of this programming paradigm. Assignment, declaration of local
variables, and several iterative operators, are some of these features. We describe them in Section 2.19.

In the following two chapters we describe the Base Language, that is, the part of E-LOTOS used to
write the behaviour of processes, Chapter 2, and the data types, Chapter 3. In Chapter 4 we describe
the Module Language, that is, the language used to modularize the specifications. Chapter 5 includes
several examples that show how E-LOTOS can be applied to specify different kinds of systems.

1.1 An example: two positions register

In order to show the basic ideas of E-LOTOS specification, let us begin with as simple example. Coming
back to the idea of the black boxes, let us imagine that we want to specify a two positions register,
graphically described by

in2

in1

out2

out1

At this level, we only know that the register has four gates (buttons of the black box) in1, in2, out1,
and out2. A specification of the behaviour of this register would be a description of when the buttons
(or gates) are available to be pressed. Generally, some gates are input gates (in1 and in2) and values
can go through them, and other gates are output gates (out1 and out2). If the register has the following
restrictions:

• the register is initially empty,

• both data have to get in before any one of them gets out,

• data through gate in1 have to get in before data through gate in2, and

• data have to get out in the same order as they get in,

we would describe it as

process Register [in1:data,in2:data,out1:data,out2:data] is

var x1:data,x2:data in

in1(?x1); in2(?x2); out1(!x1); out2(!x2)
endvar

endproc

1.2. Variables 15

This example will be used during the tutorial and, then, all the details will be given (see Section 2.3).
Note how the order of the communications through gates are expressed (using the sequential composition
operator ;) and how the values communicated are represented with variables.

If we imagine other two black boxes representing a producer, that produces two values and saves
them in the register, and a consumer that takes the values from the register, we can put them together,
communicating:

System

Producer Consumer

pr2

pr1

rc2

rc1

The complete system is described in E-LOTOS as follows:

process System is

hide pr1:data,pr2:data,rc1:data,rc2:data in

conc

Producer [pr1,pr2]()

|[pr1,pr2]|

Register [pr1,pr2,rc1,rc2]()

|[rc1,rc2]|

Consumer [rc1,rc2]()

endconc

endhide

endproc

where Producer and Consumer are processes specifying the behaviour of the producer and the consumer
(see Section 2.7). They are put together with the Register, running in parallel, and communicating
through gates. The whole system has no gate offered to the environment, because it represents a complete,
closed system. All its behaviour is described and occurs internally.

1.2 Variables

Regarding the construction of values and the use of variables, E-LOTOS was thought as a functional
language, in the sense that there is no idea of state and variables are given a value only once. When a
variable is given a value, this value is substituted for the variable in the successive behaviour. However,
this idea changed during the design of the language and, although values are still built with constructors
as in functional language, E-LOTOS has write-many variables, that is, variables that can be assigned
several times. Variables are declared with the var operator (Section 2.19). When a variable is declared, it
is given a type and there is the possibility to give it an initial value. We have seen a variable declaration
in the Register process:

var x1:data,x2 : data in

in1(?x1); in2(?x2); out1(!x1); out2(!x2)
endvar

A variable can have a value of its declared type or a value of a subtype of its declared type, and this
value can be changed during the execution of a specification.

16 1. Introduction

The introduction of this kind of variables has affected the use of several operators. Thus, we will
describe how variables can be used when several processes are composed by using any of these operators.

1.3 Time in E-LOTOS

Time is a very important aspect in concurrent, distributed systems. Although it is not present in classical
process algebras, there have been many proposals to introduce time in process algebras [RR86, NS91,
Yi91, BB93, Sch95]. The introduction of time in LOTOS has been dealt in [LL94, dFLL+95].

The introduction of time is one of the most important enhancements of E-LOTOS. The specific
features that E-LOTOS provides to manage time are three. The first one is that the specification writer
can describe when the actions a process performs may occur, and this can be described with great
flexibility, as we show in Section 2.1.

The second feature that E-LOTOS provides is the wait instruction, that, given a duration time d,
represents that the process idles the time d.

The type time is the third feature introduced in E-LOTOS with respect to control of time. In
E-LOTOS ([Que98]), no data type time is defined, but only the properties that it has to fulfill are
enumerated. So, each implementation of the language can define a different time, provided that these
requirements are fulfilled. The properties are:

• the time domain is a commutative, cancellative monoid with addition + and unit 0. Thus, it satisfies
the properties:

• d1 + d2 = d2 + d1

• if d1 + d = d2 + d then d1 = d2

• d1 + (d2 + d3) = (d1 + d2) + d3

• d + 0 = 0 + d = d

where d1, d2, and d are variables over the time domain.

• the order given by d1 ≤ d2 if and only if ∃d . d1 + d = d2 is a total order.

For a description of the different time domains used in the literature see, for example, [NS91]. At first
glance, it seems that it is better to have a continuous time domain. But, as shown in [LDV99], it has
several problems, for example, we can define processes that freezes time. It is enough to have a discrete
time domain and define the unit of time as small as we want. This is not a restriction decision since all
computers are ruled by an internal discrete clock. In this tutorial we assume that the type time has been
declared as a synonym of the type nat of natural numbers.

Although time is foreign to a process in the sense that the process cannot control time and has to
coexist with it, the introduction of time has affected the meaning of the different operators of E-LOTOS.
We will describe in the following sections how these operators behave in relation to time. When we say
that a process lets time pass, we mean that the process can be idle (doing nothing but waiting) a concrete
period of time. Thus, when we say that a process does not let time pass, we mean that the process
must do something immediately. This is related to the notion of urgency. When an action is urgent it
must be performed as soon as possible. This means that when an urgent action is enabled, it must be
performed unless other action was performed without consuming time. Urgency is used to guarantee
the progress of a system: if there were no urgent actions the systems could idle forever. For example,
the special internal action i (Section 2.4) is urgent. We can specify which actions are urgent at certain
level in order to ensure the evolution of the system. This is very useful when different components of a
system are communicating, as we will see in Section 2.14, where the hiding operator is described. Not

1.3. Time in E-LOTOS 17

only actions may be urgent, there are other constructions in E-LOTOS, for example assignments, that
are also urgent. Due to urgency, one could write specifications that blocks time. This is an undesirable
and counterintuitive feature. The idea of time blocking is that a behaviour is performing internal actions
urgently, thus time is not allowed to pass (see Section 2.6).

In E-LOTOS time is deterministic. As stated in [NS91], it is usually admitted that when a process
P is idle (does not perform any action) for some duration d, then the resulting behaviour is completely
determined from P and d. The avoidance of time nondeterminism has also affected several operators.
We will describe how these operators have been affected.

We write the symbol in the margin when we speak about time in relation with the operator which
is being described.

18 1. Introduction

2 Base Language for processes

In this chapter we are going to show the constructions of E-LOTOS used to describe the behaviour of
systems. In Chapter 3 we will explain those constructions used to describe the values and types of data
that these systems can manage.

We try to give this description from the simple operators to the more complex ones; however, in order
to show examples, sometimes we have to include operators that are explained later.

All the constructions are illustrated with small examples that show a concrete use of each one. In
Chapter 5 we will introduce more complex examples.

2.1 Actions

In E-LOTOS a concurrent system is specified as a process that is composed of other processes interacting
with each other. This interaction between processes is carried out by means of actions, which represent
synchronization or communication between processes through gates.

The E-LOTOS syntax to indicate that a process is carrying out an action is as follows:

G [(P1)] [@P2] [[E]]

where the components between [] are optional, G is the name of a gate, P1 and P2 are patterns (see
Section 3.6) and E is a boolean expression.

The simplest action is a synchronization in which only the name of the gate, G, is indicated.

Value passing

If the action stands for a communication in which there is an information exchange among the different
processes that are communicating, that information is indicated by the first pattern, P1. Although the
different patterns of E-LOTOS are shown later on in Section 3.6, now we will introduce some of them by
means of examples. For example, if a process has a gate called outP and it wants to communicate on it
the value 3, in E-LOTOS we should indicate it by using the behaviour1

outP(!3)

Although perhaps the first interesting example of this tutorial should be

outP(! "Hello, world!")2

1We use the word “process” to refer to both an abstract entity which can communicate with other processes and
the declaration (implementation) of this entity in E-LOTOS, and the word “behaviour” to refer to terms constructed by
combining the different operators of the language in order to describe the behaviour of processes.

2"Hello, world!" is a constant of the predefined type string, Section 3.1.

20 2. Base Language for processes

If we want to communicate several values at a time we have to build what is called in E-LOTOS
terminology a record of values, a list of transmitted values enclosed between parentheses. For example,
if the process wants to communicate both values 3 and "Hello, world!", we write

outP(!(3,"Hello, world!"))

When we write the record of values that a gate communicates, we can give a name to each value (that
is, to each field of the record)3. Thus we can write

outP(!(value => 3,greeting => "Hello, world!"))

If the process has another gate, called inP, on which data is received and is saved in the variable x,
then we write

inP(?x)

If the process receives a record of values through gate inP, we can save the whole record value in the
variable x as above, or we can use different variables to save the different fields of the record,

inP((value => ?v,greeting => ?g))

In order to prevent errors, in E-LOTOS there is the possibility (but not the obligation) of typing the
different components which appear in a process specification. In particular, we can type the gates of a
process, so a gate can only communicate values of that type.

In the previous example, if the process receives only integers on the gate inP, we can write

inP(?x:int)

A process that takes a record with an integer and a string looks like

inP ((?x:int, ?y:string))

We can also specify a selection predicate in an action, which specifies the conditions that the transferred
values have to fulfill. For example, if a process only should receive integers smaller than 10, we would
write

inP(?x:int) [x<10]

Timed constraints

It is assumed that the execution of an action takes no time, that is, actions are atomic and duration-

less. However, communications can be made sensitive to time by adding the @ P2 annotation, which
pattern-matches the pattern P2 to the time when the action happens, measured from the time when the
communication was enabled. We can use this, joined with the use of selection predicates, to control the
time when actions may be performed.

The behaviour
inP(?x:int) @?t [t<5]

specifies an action that receives an integer that is bound to the variable x provided that less than 5 units
of time have passed, whereas the action

inP(?x:int) @!5

3In this case, the gate has to be declared as having the corresponding record type, see Section 3.2.

2.2. Sequential composition 21

can only occur 5 units of time after the action inP had been enabled. Let us explain how the different
patterns of E-LOTOS can be used to represent different timed constraints. If we use the pattern ?t, then
variable t will be bound to the time at which the action happens, and the selection predicate is which
imposes the restriction (t<5); but if we use the pattern !5, then the value 5 is compared with the time at
which the action happens, and the action will be possible only if this time is also 5.

Anyone of the three parameters that come with a gate in an action is optional. When any of them is
not present, a default value is used. So, the pattern P1 is (), an empty record, by default; the pattern
P2 is any:time, that means any value of type time; and the expression E is true, i.e., no conditions are
required.

There is a special action, the internal action i, which will be studied in Section 2.4. Intuitively, it
represents an action made by the process without the knowledge of its observer.

2.2 Sequential composition

We can compose two behaviours in sequence with the sequential composition operator “;”. B1;B2

behaves first as B1. When B1 has finished then it continues as B2. A sequential composition B1;B2

finishes when B2 does.

With this new operator we can specify a behaviour with two gates, inP and outP, which receives an
integer on gate inP, saves it in the integer variable x, and then sends this integer through gate outP:

inP(?x); outP(!x)

The sequential composition operator has greater precedence than any other binary operator. Thus,
when we write B1;B2[]B3 (where [] is the selection operator, see next section) we mean (B1;B2)[]B3.
Anyway, we can use parentheses in order to clarify behaviours or to force precedence. Binary operators
are right associative, so B1;B2;B3 means B1;(B2;B3).

Although the complete syntax of process declarations will be fully covered in Section 2.20, we are
going to use it in examples to make them easier to understand. For the time being, it is enough to say
that in a process declaration the formal gates which the process can communicate through are declared
(like formal parameters are in a procedure declaration in Pascal), and also its behaviour (as a procedure
body). In the process instantiation the actual gates are given.

Let us declare a process whose behaviour is as in our last example:

process Buffer1 [inP:int,outP:int] is

var x:int in

inP(?x); outP(!x)
endvar

endproc

Note that in gate declarations, each gate is typed with the type of values the gate can communicate.

Processes may be recursive. In this way, a process that is continuously receiving integers through a
gate and sending them through another, may be specified as

process Buffer2 [inP:int,outP:int] is

var x:int in

inP(?x:int); outP(!x); Buffer2[inP,outP]()

endvar

endproc

22 2. Base Language for processes

In a process instantiation, the lists of actual gates and actual parameters (a process can also have a
list of parameters) have to be given, although any of them may be empty. Thus, we have to write here
Buffer2[inP,outP]() instead of only Buffer2[inP,outP].

The behaviour B1;B2 lets time pass if B1 does, or if B1 has finished and B2 lets time pass.

For LOTOS users, we have to note that LOTOS has two sequential composition operators: the action
prefix operator (“;”) and the enabling operator (“>>”). E-LOTOS has unified both of them in the
sequential composition operator “;” we have just explained, and there is a particular case, where the left
behaviour consists of an action, for example outP(!3);Buffer2[inP,outP]().

2.3 Selection operator

The selection operator “[]” denotes a choice between two possible behaviours. In this way, the behaviour
B1[]B2 (where B1 and B2 are also behaviours) may perform actions either from B1 or from B2. The
choice is solved (in principle) when B1[]B2 interacts with its environment, which is defined by another
behaviour. If the environment offers a first action of B1, then B1 is chosen and B2 is forgotten; otherwise,
if the environment offers a first action of B2 then B2 is chosen and B1 is forgotten. We see below what
happens if the action offered by the environment is a first action of both B1 and B2.

For example, let us suppose we want to specify the two positions register that we introduce in Sec-
tion 1.1, graphically described by

in2

in1

out2

out1

which can communicate with its environment through the gates in1 , in2, out1, and out2. The register is
initially empty and both data have to get in before any one of them gets out; besides, data through gate
in1 have to get in before data through gate in2; and data have to get out in the same order as they get
in. Then the following process describes this behaviour

process Register1 [in1:data,in2:data,out1:data,out2:data] is

var x1:data,x2:data in

in1(?x1); in2(?x2); out1(!x1); out2(!x2)
endvar

endproc

where data is the type of the values the register can save.

But if the first element can go out without waiting for the second element, then we can specify the
register behaviour with the selection operator as

process Register2 [in1:data,in2:data,out1:data,out2:data] is

var x1:data,x2:data in

in1(?x1);
(in2(?x2); out1(!x1)
[]

out1(!x1); in2(?x2)
);

out2(!x2)
endvar

endproc

2.3. Selection operator 23

E-LOTOS grammar forces the user to put parentheses where a behaviour is ambiguous4, so the
user cannot mix binary operators without parentheses. Too many parentheses may lead to unreadable
specifications, so E-LOTOS also has a bracketed syntax for these operators, suggested by Ed Brinksma
in his thesis [Bri88]. The bracketed syntax for the selection operator is as follows:

sel B1[] . . . []Bn endsel

where if some Bi use a binary operator (but ;), it has to use it with parentheses.

Nondeterministic choice

If we have the behaviour B1[]B2 and the environment offers a first observable action of both, then the
process is chosen nondeterministically. To show this, let us see an example with vending machines5.
Suppose we have a machine (Machine 1) whose behaviour is specified as

Machine 1 ≡ (insert10; take coffee) [] (insert5; take milk)

This machine offers to the client (its environment) the choice between inserting a 10 units coin or a 5
units coin. If the client inserts a 10 units coin then the machine evolves to a state where only coffee
is offered, but if the client inserts a 5 units coin, then the machine only offers milk. So, the client can
(indirectly) choose if he is going to take coffee or milk by inserting the right coin.

Let us suppose now that we have another machine (Machine 2) that is like the last one but serves a
more expensive milk, which costs 10 units. If we modify (the behaviour of) Machine 1 getting

Machine 2 ≡ (insert10; take coffee) [] (insert10; take milk)

then we will not obtain the desired behaviour. Now the client has to insert a 10 units coin independently
of what he wants. Once the client has inserted the coin, Machine 2 evolves to one of two possible states:
one in which it only offers coffee, or one in which it only offers milk, and the client can only take what
the machine offers. To which state the machine evolves depends on a nondeterministic choice. It is said
that the machine has evolved internally (without knowledge of the environment) to one of these states.
Therefore, Machine 2 is nondeterministic.

So, if we want to specify a machine that behaves as Machine 1, that is, that offers coffee and milk
after the client has inserted a coin, but with more expensive milk, we have to write instead:

Machine 3 ≡ insert10; (take cofee [] take milk)

Once the client has inserted a coin, Machine 3 offers both coffee and milk, so the client can choose what
he wants.

Another way of introducing nondeterminism is with internal actions, i, which we will present in the
next section.

Variables and selection operator

Regarding variables, we have to say that in a selection B1[]B2, variables which are modified only by B1

or only by B2 must be initialized, that is, they have to be given a value, before the selection, and the
modification must preserve the type of the variables. In this way, it can be assured that, independently
of the behaviour executed, the set of initialized variables after the selection is always the same, and we

4The sequential composition operator is an exception to this rule, and this is the reason why we have said above that
this operator has the greatest precedence.

5This example has been extracted from [LFHH].

24 2. Base Language for processes

know their type. Variables which are modified by both behaviours may have been initialized previously
or not, but both behaviours have to assign them a value of the same type.

Thus, the behaviours

inP(?x:int);

(inP(?x:bool)

[] outP(!x)
)

and
inP(?x:int)

[] inP(?x:bool)

are not allowed, because:

• in the first one, although variable x is initialized before the selection operator by means of the
behaviour inP(?x:int), only one of the subbehaviours of the selection operator, inP(?x:bool),
modifies it, and it changes the type of x;

• in the second one, both subbehaviours, inP(?x:int) and inP(?x:bool), modify variable x, but they
do not give it the same type.

Note that although a variable has been declared, it may have been declared of the universal type any
(see Section 3.2), so it can have values of any type.

Time determinism

Let us consider the following behaviour6

(?x:=5 [] ?x:=2); wait(1);P[. . .]

It is time nondeterministic: intuitively, when one unit of time has passed and process P is executed,
variable x may have either the value 5 or the value 2.

Time nondeterminism is an undesirable feature, and E-LOTOS forbid it requiring that when we build
a behaviour B1[]B2, both behaviours B1 and B2 have to be “guarded,” that is, they have to perform
an action on a gate (or raise an exception as we will see in Section 2.15) before they finish; this action
decides which branch of the selection operator is selected.

The behaviour B1[]B2 lets time pass if both B1 and B2 do so.

2.4 Internal action

The internal action, i, is an action that a process can carry out to evolve in an autonomous manner,
without being observed by the environment. Together with the selection operator it is used to model
nondeterminism. It is also used to represent hidden actions, as we will see in Section 2.14.

Let us suppose now that our two positions register may loose information, that is, it is possible that
an element gets in but never gets out. So, once an element has got in there are two possible cases:
the element is offered or the element is lost, missing the chance of taking it out. We may describe this
behaviour as follows

6We will describe the wait instruction in Section 2.16, and the assignment in Section 2.19

2.4. Internal action 25

process Register3 [in1:data,in2:data,out1:data,out2:data] is

var x1:data,x2:data in

in1(?x1:data);

sel

in2(?x2:data); out1(!x1)
[]

out1(!x1); in2(?x2:data)

[]

i; in2(?x2:data)

endsel;

sel out2(!x2) [] i endsel

endvar

endproc

although we will see below (at the end of this section) that it is not right enough (due to urgency of
internal action).

Once the first element has got in, there are three cases:

1. the second element gets in and then the first gets out,

2. the first element gets out and then the second gets in, or

3. the first element is lost and then the second gets in.

It seems that the case where the second element gets in and then the first element is lost lacks. But since
losing an element is not observable by the environment, it is the same that the first element is lost before
or after the second gets in.

Nondeterministic behaviours

As commented above, internal actions can be used to specify nondeterminism because they can be
executed in an autonomous way. The behaviour

coffee [] milk

offers the possibility of taking either coffee or milk. However, the behaviour

(i;coffee) [] milk

always offers coffee but only may offer milk, that is, if the environment asks for synchronization on gate
milk, the synchronization could be either accepted or rejected, in a nondeterministic way. Instead, if the
client asks for synchronization on gate coffee, he always will succeed.

On the other hand, the behaviour

(i;coffee) [] (i;milk)

may not be able to synchronize on any of its gates, depending on an internal choice.

Urgency

The internal action i is urgent, that is, it cannot idle. This means that when an internal action can
be performed, it must be performed unless another action is performed without delay. So the process
Register3 we have written above has not the meaning we want. Due to the urgency of the internal
action, if actions on gate in2 or out1 are not possible immediately by the environment, then the internal

26 2. Base Language for processes

action must be carried out. So, now, the behaviour specifies that if the second element does not get in
immediately or the first element does not get out immediately, then the first one is lost, which is not the
desired behaviour. In the behaviour

(i;coffee) [] milk

if the environment wants to synchronize after some period of time (greater than 0) on gate milk, it will
never have success.

We can specify the desired behaviour by introducing a nondeterministic internal election between
losing the element or not losing the element. The right Register4 process is:

process Register4 [in1:data,in2:data,out1:data,out2:data] is

var x1:data,x2:data in

in1(?x1:data);

(i;(in2(?x2:data); out1(!x1)
[] out1(!x1); in2(?x2:data)

)

[]

i; in2(?x2:data)

);

(i; out2(!x2)
[] i

)

endvar

endproc

2.5 Successful termination

Successful termination in E-LOTOS is represented by the behaviour null. This behaviour terminates
immediately (it is urgent), without doing anything.

2.6 Inaction and time block

There are two behaviours in E-LOTOS for representing anomalous processes: stop and block. Both
behaviours do not do any communication, and they do not terminate either. The difference is that block
blocks time, whereas stop can delay any time. Both represent a pathological behaviour, a deadlocked
process, that is, an undesirable specification, a broken system. Therefore, they should not be used in a
correct specification in parallel with other behaviours.

For example, the behaviour

stop || wait(1);outP(!3)

can perform a communication on gate outP after one unit of time, but it cannot finish (as we will see in
the next section). However, the behaviour

block || wait(1);outP(!3)

cannot do anything, because it cannot idle one unit of time, since block freezes time.

The behaviour block can be defined with help of the urgency of the internal action:

2.7. Parallel composition operator 27

process Block is

i;Block[]()

endproc

2.7 Parallel composition operator

We are going to study in this section, and the following ones, five different ways of composing processes
in parallel.

The first possibility is using the parallel operator, whose syntax is

B1 |[G1,G2, . . . ,Gn]| B2

where Bi stands for behaviours and Gj for gates.

The behaviour B1 |[G1, . . . ,Gn]| B2 offers observable actions of both B1 and B2 as long as they
are not actions carried out on a gate in the given list G1, G2, . . . , Gn. In order to carry out an action
in the given list, both behaviours have to perform it simultaneously. If one behaviour can communicate
on a gate in the list, but the other cannot, then the first one has to wait for the other, if it can. When
both behaviours offer an action on the same gate, then the communication will be possible if the patterns
associated with both actions match (see Section 3.6). In such a case the whole behaviour will offer the
action on the common gate, and once this happens both behaviours will continue their way until the next
synchronization. This kind of synchronization is called multi-way synchronization, and it is useful when
more than one behaviour have to synchronize on a common gate.

To show the use of this operator, we are going to add components to the register example, introducing
two new processes: a producer that fills the positions and a consumer that empties them. These processes
could be

process Producer [p1:data,p2:data] is

(* produce first value *)

p1(!val1);
(* produce second value *)

p2(!val2)
endproc

where val1 and val2 are two constants of type data, and

process Consumer [c1:data,c2:data] is

var v1:data,v2:data in

c1(?v1);
(* consume first value *)

c2(?v2)
(* consume second value *)

endvar

endproc

In E-LOTOS, comments are enclosed within (* and *).

Now we can put together these processes and the register to model the complete system. Our consumer
only receives two elements and is not prepared for the loss of elements, so we use the register version that
does not loose elements.

We use gates pr1 (producer-register 1), pr2, rc1 (register-consumer 1), and rc2 to represent the
communication between the processes. These gates, and the communications carried on them, are not
interesting outside the complete system, so the environment cannot synchronize on them.

28 2. Base Language for processes

The system may be drawn as

System

Producer Consumer

pr2

pr1

rc2

rc1

The complete E-LOTOS system is:

process System1 is

hide pr1:data,pr2:data,rc1:data,rc2:data in

conc

Producer [pr1,pr2]()

|[pr1,pr2]|

Register2 [pr1,pr2,rc1,rc2]()

|[rc1,rc2]|

Consumer [rc1,rc2]()

endconc

endhide

endproc

So the register must synchronize on its input actions (pr1 and pr2) with the producer, and must syn-
chronize on its output actions (rc1 and rc2) with the consumer. Here we have used the bracketed syntax
of the parallel composition operator,

conc B1 |[...]| . . . |[...]| Bn endconc

(where the parallel composition operator is right associative, like any other binary operator) and the hide
operator that, intuitively, is used to show that the gates that connect the register with the producer and
the consumer are not observable for someone that sees the whole system. We will discuss this operator
in Section 2.14.

In the behaviour B1 |[G1, . . .,Gn]| B2, B1 and B2 must assign disjoint global variables. There
is no share memory that processes running in parallel can use. Communication has to be explicit, that
is, B1 and B2 can communicate only through gates G1, . . . , Gn. Besides, if both behaviours assigned the
same variable, we would not know the last value when the whole behaviour finished.

The behaviour
B1 |[G1, . . . ,Gn]| B2

finishes when B1 and B2 do. It is said that both behaviours B1 and B2 must synchronize on their
termination.

B1 |[G1, . . .,Gn]| B2 lets time pass if both B1 and B2 do so, or if one of them has finished (and
it is waiting for the other) and the other lets time pass.

2.8 Interleaving operator

When the list of gates on which two parallel processes have to synchronize is empty, E-LOTOS has an
abbreviated form of the parallel operator, the interleaving operator, “|||”,

B1 ||| B2 = B1 |[]| B2.

2.9. Synchronization operator 29

As a consequence, this operator generates the merging of the actions of both B1 and B2, in such a
way that the actions belonging to each one of them remain in the same order.

As a matter of fact, there is an occasion when the processes have to synchronize: termination. As for
the previous parallel operator, the interleaving B1 ||| B2 of B1 and B2 finishes when both processes do
it.

We may use this operator to model, in an easier way than we did before, the fact that the register
can receive the second element either before or after the first one has got out:

process Register5 [in1:data,in2:data,out1:data,out2:data] is

var x1 : data,x2:data in

in1(?x1:data);

(in2(?x2:data)

|||

out1(!x1)
);

out2(!x2)
endvar

endproc

The bracketed syntax of the interleaving operator is as follows:

inter B1 ||| . . . ||| Bn endinter

Being an abbreviation, the interleaving operator has the same features as the parallel operator re-
garding variables and time.

2.9 Synchronization operator

This operator is used when the two behaviours composed in parallel have to synchronize on every ob-
servable action. They also have to synchronize on the termination. Its unbracketed syntax is

B1 || B2

and the bracketed syntax is

fullsync B1 || . . . || Bn endfullsync

Note that

B1 || B2 = B1 |[“all gates of B1 and B2”]| B2.

Using both this operator and the interleaving operator we can specify again the complete system that
puts together the producer, the consumer, and the register. Producer and consumer have no common
gate, so their parallel evolutions are independent of each other, and we can put them together using the
interleaving operator. The resulting behaviour has to synchronize on all gates with the register, so we
compose them with the synchronization operator, in the following way:

30 2. Base Language for processes

process System2 is

hide pr1:data,pr2:data,rc1:data,rc2:data in

(Producer [pr1,pr2]()

|||

Consumer [rc1,rc2]()

)

||

Register5 [pr1,rc1,pr2,rc2]()

endhide

endproc

Regarding assignments of variables and time, the synchronization operator behaves like the parallel
operator.

2.10 General parallel operator

The three parallel operators we have seen (“||”, “|||”, and “|[...]|”) are not easy to use when we
want to describe some possible networks of communicating processes. Let us suppose we have a set of m
processes, P1, P2, . . . , Pm, and we want to specify a synchronization scheme where, in order to execute
any action on a given gate, we need the collaboration of any collection of n of these processes. When
n = 2 this means that any process Pi can communicate on that gate with any other process Pj (i 6= j).

The specification in E-LOTOS of this kind of “n among m” synchronization using only the kind of
operators we have already introduced, is not easy. To solve this problem, in E-LOTOS a new generalized
parallel operator has been introduced, which allows to directly express networks of processes.

The syntax of this new operator is:

par G1#n1, . . . ,Gp#np in

[Γ1] -> B1

|| . . .
|| [Γm] -> Bm

endpar

where ni’s are positive natural numbers, p ≥ 0 and Γi’s are gate lists Γi = Gi1, . . . ,Giri
.

The intuitive meaning of this operator is as follows: the whole behaviour can perform an action on a
gate G, if:

• There is a component Bi such that gate G is not in its synchronization list Γi which performs it; or

• There are some components synchronizing in the following way:

• if gate G is in the list of degrees (G1#n1, . . . ,Gp#np) with degree n, then n whatever components
Bi such that G ∈ Γi synchronizes on G.

• if gate G is not in the list of degrees, then all the behaviours Bi having G in their synchronization
list Γi synchronizes on it.

The behaviour finishes when all the behaviours Bi have finished.

With this new operator we can specify, in an easy way, systems like the one graphically represented by

2.11. Parallel over values operator 31

P2 P3

P1

b

a

a

a

where on gate a two processes have to synchronize, and on gate b all the three processes have to syn-
chronize, in the following way:

par a#2 in

[a,b] -> P1

|| [a,b] -> P2

|| [a,b] -> P3

endpar

Regarding variables and time, the general parallel operator behaves as the other parallel operators:
all the behaviours Bi have to assign pairwise disjoint variables, and it lets time pass if all Bi do, or if
some of them have finished and all the unfinished ones let time pass.

2.11 Parallel over values operator

Sometimes we have a behaviour that may depend on a variable, and we want to put together, running in
parallel, some instantiations of this common behaviour each one with a different value of this variable. For
example, we may have a process that describes the behaviour of a node of a network which is identified
by a unique identifier, and we may want to build a network with several nodes each one with a different
identifier.

We can specify this kind of behaviour in E-LOTOS with the parallel over values operator. Its syntax is

par P in N ||| B endpar

where P is a pattern, N is a list of values (the type of N has to be List, a predefined type of E-LOTOS,
see Section 3.1) these values can be matched against P , and B is a behaviour that may depend on the
variables in P . The represented behaviour is the interleaving of a series of instantiations of B, one for
each value of N . For example, if we have a process Node[. . .](id:IdType, . . .), we can specify a network
of five nodes with different identifiers in the following way:

par ?x in [1,2,3,4,5] |||

Node[. . .](x, . . .)
endpar

In other parallel operators, we have said that it is not allowed that two behaviours composed in parallel
assign to the same variable. Here, it is the same behaviour which is used as a template to make several
instantiations. If this template behaviour assigned to a global variable, then the different instantiations
would do, and we would have several behaviours in parallel assigning to the same global variable. In
order to forbid this situation, the template behaviour in a parallel over values cannot assign any global
variable. Of course, it can assign local variables declared inside the template behaviour. In this way, each
instantiation would have its own local variables.

Regarding time, the parallel over values operator lets time pass if all the instantiations do, or if some
of them have finished and all the unfinished instantiations let time pass.

32 2. Base Language for processes

2.12 Disabling operator

The disabling operator “[>” models an interruption of a process by another. So the behaviour B1 [> B2

models the fact that at any point during the execution of B1 there is a choice between doing a next action
of B1 or a first action of B2. Once an action of B2 is carried out, B2 continues evolving and the remaining
behaviour of B1 is forgotten. But if B1 finishes without interruption, the whole behaviour finishes and
B2 is not able to interrupt any more.

Coming back to the register example, we can use the disabling operator to model the fact that the
register fails after 50 units of time if it has not finished yet its “normal” behaviour:

process Register6 [in1:data,in2:data,out1:data,out2:data] is

var x1:data,x2:data in

(in1(?x1);
(in2(?x2) ||| out1(!x1));

out2(!x2))

[> (wait(50); i) (* the register fails *)

endvar

endproc

where we have used the internal action i to represent the internal decision of the register to fail, and the
wait operator (Section 2.16) to express when the register fails.

The disabling operator also has a bracketed syntax which is as follows:

dis B1[> . . . [>Bn enddis

Regarding variables, the disabling operator behaves like the selection operator, that is, in the behaviour
B1[>B2, when only B1 or B2 modifies a variable, it must be initialized before B1[>B2; and if a variable
is modified by both of them, they have to assign a value of the same type.

In order to keep internal action urgent and time deterministic, behaviour B2 is required to be guarded
in the disabling behaviour B1 [> B2. For technical reasons, B1 is not required to be guarded (see
Section 7.13 for a complete discussion on this subject).

The behaviour B1[>B2 let time pass if both B1 and B2 do.

2.13 Suspend/Resume operator

The suspend/resume operator “[X>” is an extension of the disabling operator (Section 2.12) which allows
the resumption of the interrupted behaviour. If during the evolution of the behaviour B1 [X> B2 B1 is
interrupted by B2 then B1 is suspended until B2 resumes it through exception X . Then B1 continues its
evolution with the possibility of being interrupted again. B2 is always restarted after a resumption.

Although exceptions and their handling will be seen in Section 2.15, it is enough to know now that
an exception X can be raised with signal X .

Going on with our register example, if it can recover itself after an unexpected failure and continue
as nothing wrong has happened, then we could specify it as follows:

2.14. Hiding operator 33

process Register7 [in1:data,in2:data,out1:data,out2:data] is

var x1:data,x2:data in

(in1(?x1);
(in2(?x2) ||| out1(!x1));

out2(!x2))

[Ok> (wait(50); i; Repair[](); signal Ok)

endvar

endproc

With this operator we can specify more complex interruption mechanisms, where, for example, a
behaviour controls the evolution of others. Let us consider the next process

((B1 [cont1> stop1; start1;signal cont1) ||| (B2 [cont2> stop2; start2;signal cont2))

|[stop1, stop2 , start1 , start2]|

B3

The behaviour B3 controls B1 and B2 through gates stop1, start1, stop2, and start2. B3 can stop the
evolution of B1 using the gate stop1 and can restart it using start1. Using instead stop2 and start2 it
can control B2.

Regarding variables and time, the suspend/resume operator behaves like the disabling operator.

2.14 Hiding operator

The hiding operator allows the abstraction of the internal operation of a process, by hiding those actions
that are considered internal to it, and which are considered of no interest at certain level of detail. To do it,
the hiding operator transforms observable actions into internal actions, hiding them to the environment,
and making them urgent actions as we will see below.

The syntax of the hiding operator is

hide G1[:T1], . . .,Gn[:Tn] in
B

endhide

where the Gi’s are gates declared in B by the hide operator, so they can be used only by B. Types Ti

are any by default, that is, if we do not declare the type of a gate, it can communicate values of any
type.

Let us suppose that the producer used before is composed of two subprocesses, each of one produces
a value.

Calc2

Calc1

sync

p2

p1

In order to produce the values in the desired order, the components have to synchronize, but this syn-
chronization (or the way it is done) is not interesting from the point of view of the whole system, so we
hide it. Using the hide operator the producer would become

34 2. Base Language for processes

process Producer2 [p1:data,p2:data] is

hide sync in

Calculation[p1, sync](1)
|[sync]|

Calculation[p2, sync](2)
endhide

endproc

where we have used two different instantiations of the same process Calculation, given by

process Calculation [pd:data,sync](turn:int) is

case turn is

!1 -> pd(!val1); sync

| !2 -> sync; pd(!val2)
endcase

endproc

where val1 and val2 are two constants of type data.

The process Calculation has a parameter turn of type int which is used to distinguish whether the
process has to communicate the calculated value either before or after it synchronizes on gate sync. The
case operator (Section 3.6) is used to define conditional behaviours. In this case, if turn is equal to 1
then the process first communicates the value and then offers a synchronization on gate sync, and if turn
is 2 the process first synchronizes and then communicates its value.

Urgency

The behaviour hide G1:T1, . . . ,Gn:Tn in B endhide lets a time d pass if B lets time d pass and B
cannot offer a communication on a hidden gate (G1, . . . , Gn) in a time less than d. So, the hide operator
transforms the actions on hidden gates in urgent actions, that is, they are performed as soon as they are
enabled. Thus, when we hide the gate sync in the example above, we achieve two aims: first, this action
cannot be observed outside the producer, and, second, communication on that gate must be performed
as soon as possible, because sync is an urgent action. We will see another example in Section 2.16.

2.15 Exceptions and their handling

Exceptions are nowadays recognized as a desirable programming feature for dealing with errors and other
abnormal situations. Concerning parallel languages, the importance of exceptions combined with concur-
rency has been pointed out by Berry in relation to the language ESTEREL [Ber93]. That proposal was
adapted to the framework of process algebras by Nicollin and Sifakis in their “Algebra of Timed Pro-
cesses,” ATP [NS94]. However, none of the standardized Formal Description Techniques (SDL, LOTOS,
and ESTELLE) supports exceptions. In E-LOTOS exceptions and their handling have been introduced
through the trap operator (handling) and raise and signal instructions (raising).

Beginning with the trap operator, its syntax is:

trap

exception X1[(P1)[:T1]] is B1 endexn

· · ·
exception Xn[(Pn)[:Tn]] is Bn endexn

[exit [Pn+1] is Bn+1 endexit]
in B
endtrap

2.15. Exceptions and their handling 35

where B stands for the “normal” behaviour and X1, . . . , Xn are the exceptions that can be raised from
B. Each exception Xi can be raised together with a value of type Ti (which is () by default) that will be
trapped with the pattern Pi (which is () by default); and will be handled by behaviour Bi that defines
how the behaviour evolves after the exception has been raised (and trapped). If the exit clause is present,
when the behaviour B finishes and returns a value, this value is matched against the pattern Pn+1 and
the behaviour Bn+1 is executed.

Taking the words of H. Garavel in [GS96], the trap operator behaves like a “watchdog.” The normal
behaviour B evolves until it raises an exception Xi. Then, B is aborted and the exception handler
associated to Xi starts its execution, once the value raised together with the exception have been assigned
to the corresponding pattern.

An exception may be raised with the signal or raise instructions whose syntax is

signal X [(E)]

raise X [(E)]

These instructions are quite similar; both raise an exception (possibly with associated values E), and
if the exception is trapped, then there is no difference. But if the exception is not trapped7, then the
behaviour after a signal instruction can be executed, whereas if the exception has been raised with a raise,
then the whole behaviour is blocked. In fact, raise X(E) is syntactic sugar for signal X(E); block.

In [GS96] some algebraic properties of the trap operator are shown together with the relationship
with other operators which are derived from it.

We can use exceptions for example when our register fails. If it cannot recover itself, it finishes raising
an exception Error.

process Register8 [in1:data,in2:data,out1:data,out2:data] raises [Error] is

var x1:data,x2:data in

(in1 ?x1:data;

(in2 ?x2:data ||| out1 !x1);

out2 !x2)

[> (wait(50); i; signal Error)

endvar

endproc

Note how it is indicated with raises [Error] that this process can raise an exception.

If the producer receives the message that an error has occurred through gate anError, then we can
handle exception Error with a communication with the producer through this gate:

Producer3[pr1,pr2,anError]()

|[pr1,pr2,anError]|

trap

exception Error is anError endexn

in

Register8[pr1,pr2]()[Error]

endtrap

7In order to raise an exception X, it must be declared as an exception, so we could think that we can only raise exceptions
declared in a trap, but as we will see in Section 4.4 a specification can also declare exceptions that are not trapped and are
propagated to the top level, that is, to the level of the environment of the system.

36 2. Base Language for processes

2.16 Delay instruction

We have already seen how to make gates sensitive to the time when they occur (see Section 2.1). Now
we present another construction related to time: the delay operator wait.

The behaviour
wait(E)

is idle while the time indicated by the expression E (which must have type time) passes, and then finishes.

For example, if our register has a delay in such a way that a received value is not able to get out
before three units of time have passed since it was received, we could specify it as

process Register9 [in1:data,in2:data,out1:data,out2:data] is

var x1:data,x2:data in

hide canGetIn2 in

in1(?x1); CanGetIn2; wait(3); out1(!x1)
|[canGetIn2]|

canGetIn2; in2(?x2) ; wait(3); out2(!x2)
endhide

endvar

endproc

By using the hide operator and a synchronization on gate canGetIn2, we have described in a different
way that before the fact that data received through gate in1 has to get in before data through gate in2.
In this way it is easier to specify that we need to let pass three units of time before the corresponding
value can get out.

If we do not know exactly the delay of the register, but we know a lower bound, min, of this delay, we
can specify that the time passed between the moment the element gets in and the moment the element
is able to get out is not less than this value, in the following way:

in1(?x1);
?t := any time [min <= t]; wait(t);
out1(!x1)

where we have used a nondeterministic assignment, whose meaning will be explained in Section 2.19. We
have that once an element has got in through gate in1, an arbitrary value of type time greater than or
equal to min is assigned to variable t, and we have to wait for this time, and then a communication on
gate out1 is offered.

Let us see now another simple, classical example8 which uses both a time annotation on actions
and the wait operator. We have a sender process that, after having transmitted a message, waits for an
acknowledgment. If this acknowledgment does not arrive during a certain time then the sender retransmits
the same message; otherwise, it waits for another message to be transmitted. The process that specifies
the sender behaviour is as follows:

process Sender1[req:message,trans:message,ack] is

var m:message in

req(?m);

Send_Message1[trans,ack](m);

Sender1[req,trans,ack]

endvar

endproc

where we have defined

8This example has been adapted from [LL94].

2.16. Delay instruction 37

process Send_Message1[trans:message,ack](m:message) is

var t:time in

trans(!m);

(ack @?t [t<waiting time]
[] wait(waiting time);Send_Message1[trans,ack](m)

)

endvar

endproc

Note that if the acknowledgment does not arrive before waiting time units of time have passed, the
action on gate ack becomes impossible, and only a new transmission (of the same value) is possible (via
the recursive call to Send_Message1).

Suppose that we want to separate the time constraints from the rest of the behaviour. We can have
a process Timer that controls these constraints and interacts with the sender:

process Timer[setT:time,reset,timeout] is

var t:time in

setT(?t);
(reset

[] wait(t);timeout

);

Timer[setT,reset,timeout]()

endvar

endproc

and modified processes:

process Sender2[req:message,trans:message,ack,setT:time,reset,timeout] is

var m:message in

req(?m);

Send_Message2[trans,ack,setT,reset,timeout](m);

Sender2[req,trans,ack,setT,reset,timeout]

endvar

endproc

and

process Send_Message2[trans:message,ack,setT:time,reset,timeout](m:message) is

trans(!m);setT(!waiting time);
(ack;reset

[] timeout;Send_Message2[trans,ack,setT,reset,timeout](m)

)

endproc

And then the whole sender could be like

Sender2[req,trans,ack,setT,reset,timeout]

|[setT,reset,timeout]|

Timer[setT,reset,timeout]

The problem is that in this last behaviour, the synchronization on gates setT, reset, and timeout is
forced, but it is not forced the time at which they occur. We have to hide these gates in order to make
the actions on them urgent actions, that is, the synchronizations on these gates occur as soon as they are
possible. Thus, the sender can be

38 2. Base Language for processes

process Sender3[req:message,trans:message,ack] is

hide setT:time,reset,timeout in

Sender2[req,trans,ack,setT,reset,timeout]

|[setT,reset,timeout]|

Timer[setT,reset,timeout]

endhide

endproc

2.17 Renaming operator

In E-LOTOS we can rename actions by means of an explicit renaming operator which allows to rename
observable actions into observable actions, and exceptions into exceptions, and also allows to modify the
offers of the actions performed by a behaviour.

For example, let us suppose we have two behaviours B1 and B2 which we cannot modify since they
belong to a private library of processes. If we compose them in parallel and they have to communicate
with each other, we have a problem if the messages sent by any of them, say B1, are not in the same
format as B2 is expecting. For example, B1 could send a message G(!E) through the gate G but B2

could expect messages of the form G(!f(header, E, trailer)), where f is a function to build packets from
messages by adding them a header and a trailer. We can solve this problem by means of the renaming
operator.

An explicit renaming operator is also useful for verification purposes, when it is desirable to rename all
non-interesting (for the verification of the property to be checked) observable actions into some particular
action, different of the internal action (so hiding cannot be used).

The syntax of this operator is as follows:

rename

gate G1[(P1)[:T1]] is G′
1[(P

′
1)]

· · ·
gate Gm[(Pm)[:Tm]] is G′

m[(P ′
m)]

signal X1[(P
′′
1)[:T

′
1]] is X ′

1[(E1)]
· · ·

signal Xn[(P ′′
n)[:T

′
n]] is X ′

n[(En)]
in B
endren

It represents the behaviour B where the gates G1, . . . , Gm and the exceptions X1, . . . , Xn are renamed
into G′

1, . . . , G
′
m and X ′

1, . . . , X
′
n, respectively. These gates and exceptions are declared by the rename

behaviour, so they can be used only in B. Pi’s are patterns used as follows: values associated to
renamed gates or exceptions are bounded to variables in Pi’s, and then these variables can be used in the
corresponding new gates (patterns P ′

i) or exceptions (expressions Ei).

The simplest renaming is the one that only renames one gate into another:

rename

gate inP(?a):int is intro(!a)
in

B
endren

In this way, if behaviour B offers a communication on gate inP of an integer, then this value is bound
to a and the whole behaviour will offer a communication on gate intro of the same integer a.

2.17. Renaming operator 39

However, gate renaming may be more powerful than a simple change of name. We can also use it to
change the structure (type of values) of actions offered by a process. For example we can remove a record
field:

rename

gate inP ((x => ?a, y => ?b)):recordXY is inP(!(x => a))
in

B
endren

where recordXY is a type defined by the user (in E-LOTOS anonymous types cannot be used) as

type recordXY is

(x => int, y => bool)

endtype

Note that there are two gates called inP: the left one is the new declared gate that can be used in B;
and the right one is a gate which have to be declared outside this rename, and cannot be used by B. If
B performs the communication inP (!(x => 3,y => true)) on (local) gate inP, the variable a will be
bound to the value 3, and the variable b will be bound to the value true, and the whole rename behaviour
will perform the communication inP (!(x => 3)) on (global) gate inP.

We can add a field:

rename

gate inP ((x => ?a:int)):recordX is inP (!(x => a,y => true))

in

B
endren

We can even change the values that are being communicated. For example, we can solve the problem at
the beginning of this section in the following way

rename

gate G (?e):message is G(!f(header,e,trailer))
in

B1

endren

||

B2

We can also split a gate G into two gates G1 and G2, depending on the values G carries on. For
example, let us suppose we have defined a process P that sends values through a gate Gout indicating
whether they have to go to the right or to the left side, by using actions like Gout(!(left,dat)) or like
Gout(!(right,dat)) (where left and right are values of an enumerated type (see Section 3.1) and dat is a
variable with a value of type data). If we want to use process P in a context where we have two different
gates, LGout to send values to the left, and RGout to send values to the right,

P

Gout

LGout RGout

40 2. Base Language for processes

we can use the rename operator as follows:

rename

gate Gout ((!left,?d:data)):any is LGout(!d)
gate Gout ((!right,?d:data)):any is RGout(!d)

in

P[Gout]()

endren

We can also do the opposite, that is, we can merge two gates G′ and G′′ in a single gate G:

rename

gate G′
(?a):int is G(!(a,true))

gate G′′
(?a):int is G(!(a, false))

in

B
endren

Exceptions can be renamed in the same way. Let us imagine a process that raises a generic exception
Error together with the number of the produced error. If at some time the association between numbers
and errors is changed in the error table, and we have a function g that defines this change, we can rename
the exception Error in order to vary its parameter as function g indicates:

rename

signal Error (?e):int is Error (g(e))
in

B
endren

2.18 Conditional operator

As in almost every programming language, E-LOTOS includes a conditional if − then− else operator.
Its syntax is:

if E then B
(elsif E then B)∗

[else B]
endif

where E must be a boolean expression. The behaviour associated with the first expression E that
evaluates to true describes how the if − then− else behaves. The behaviour associated with the else
clause is null by default, and therefore this is the behaviour when no expression E is true, and there is
no else clause. For instance, we can use this instruction for communicating the absolute value of variable
x through gate outP:

if x >= 0 then outP(!x)
else outP(!-x)
endif

2.19. Imperative features 41

2.19 Imperative features

In E-LOTOS several imperative features have been introduced in order to make the job of specifying
systems easier to the user of this programming paradigm.

One of these features is assignment. E-LOTOS has write-many variables, that is, variables that can
be assigned several times. The static semantics of the language forbids to read a variable unless it has a
value. We can assign values to a variable by using the assignment instruction, whose syntax is

P := E

where P is a pattern which can be pattern-matched against the value returned by expression E. The
result of the assignment is the creation of a binding between the variable (or variables) in the pattern
and the expression value. In this way, the assignment

?x := 3

binds the value 3 to variable x. On the other hand, the assignment

(?x, ?y) := (5, true)

binds variable x with 5 and variable y with true.

There is another kind of assignment, the nondeterministic assignment, whose syntax is:

P := any T [[E]]

By means of it we bind the variables in pattern P with any value of type T that satisfies the condition
E, which is true by default. For example, the assignment

?x := any int [x < 10]

binds variable x with an integer less than 10.

Another imperative feature introduced in E-LOTOS is the possibility of declaring variables, using
the var operator (as we have seen in several examples), in order to restrict the scope of variables, and
therefore also hiding global variables with the same name. The syntax of this operator is:

var V1:T1[:=E1], . . . ,Vn:Tn[:=En] in
B

endvar

where the declared variables V1, . . . , Vn may be initialized with the corresponding expressions Ej .

The occurrences of the identifiers naming the declared variables in behaviour B refer to these new
variables, hiding in the scope those variables with the same name that already exist. Changes of the
values of these (local) variables do not modify anyway the external ones. On the other hand, they will
not be visible outside the scope of the var operator .

For example, the behaviour

?x := 3;
var x : int in

?x := 5; ?y := x
endvar;

inP(!(x,y))

42 2. Base Language for processes

offers on the gate inP the pair (3,5).

As we said, declared variables may be initialized, and so the following behaviour is equivalent to the
previous one:

?x := 3;
var x : int := 5 in

?y := x
endvar;

inP(!(x,y))

A variable V declared of type T can be assigned a value of any subtype T ′ of T . In the current version
of E-LOTOS, when V is assigned a value of T ′, T ′ ⊑ T , then it can only be assigned a value of a subtype
of T ′, losing the information about the type T in the declaration. We have propose to change this, and
keep the static type T associated with variable V (see Section 7.31.1).

E-LOTOS has also several iterative operators: loop, while, and for. The loop operator represents
an infinite loop whose execution can only be stopped raising an exception with the instruction break. It
has two versions. The first one, whose syntax is

loop B endloop,

represents a loop where the behaviour B is continuously executed until the predefined exception inner is
raised (by means of break command, see below). The second version has syntax

loop X [: T] in
B

endloop

and represents a breakable loop that can be interrupted with the exception X .

We raise this exception9 with a break command, with syntax

break [X [(E)]]

where X is the name of the exception associated with the loop we can stop (and if it has no name, the
default inner exception will be used) and E, the value associated with the exception, represents the result
that the loop returns.

Note that exception X is declared together with the loop, and so we do not need to introduce an
explicit handler for it. The handling of this exception consists of breaking (stopping) the loop, and
returning the associated value, if any10.

For example, using the loop operator we can define the recursive (infinite) process that continuously
receives and sends integers, as follows:

process Buffer3 [inP:int,outP:int] is

var x:int in

loop

inP(?x); outP(!x)
endloop

endvar

endproc

On the other hand, the buffer that receives and sends integers until it receives a 0, can be specified
with a breakable loop:

9And also the predefined inner exception, but in this case no name has to be given.
10In the definition of the semantics [Que98] we see that a trap is included (see Section 6.8).

2.20. Process declaration and instantiation 43

process Buffer4 [inP:int,outP:int] is

var x:int in

loop End in

inP(?x); outP(!x)
if x=0 then break End endif

endloop

endvar

endproc

E-LOTOS has also a conditional loop, the while instruction, whose syntax is:

while E do
B

endwhile

where E is a boolean expression, and B is a behaviour which is executed until the expression E evaluates
to false. For example, we can add all the elements in a list of integers, xs, with type list of int (see
Section 3.1), and send the result through a gate outP as follows:

var total : int := 0,e:int in

while not(isempty(xs)) do

?e := head(xs);
?total := total + e;
?xs := tail(xs)

endwhile;

outP(!total)
envar

where we have used some functions for manipulating lists, to be described in Section 3.1.

The last iterative construction of E-LOTOS is the for loop, whose syntax is:

for E1 while E2 by E3 do
B

endfor

and represents the execution of the expression E1, and then, while expression E2 is evaluated to true,
the execution of behaviour B followed by the evaluation of expression E3. Thus, the for loop is just
syntactic sugar for

E1;

while E2 do
B;E3

endwhile

2.20 Process declaration and instantiation

We can use process declarations to give a name to a behaviour and to abstract the names of actual gates,
parameters, and exceptions. Thus, processes are parameterized by a list of formal gates, a list of formal
variables (parameters), and a list of formal exceptions.

44 2. Base Language for processes

The syntax of a process declaration is as follows:

process Π [[G1[:T1], . . . ,Gn[:Tn]]]
[([in|out]V1:T

′
1, . . . ,[in|out]Vm:T ′

m)]
[raises [X1[:T

′′
1], . . .,Xp[:T

′′
p]]]

is B
endproc

where

• Π is a process identifier;

• [G1[:T1], . . . ,Gn[:Tn]] is the list of gates the process uses, which is empty ([]) by default;

• Ti is the type of gate Gi, that is, the type of values gate Gi can communicate. It is any by default,
that is, a gate can communicate values of any type by default11;

• ([in|out]V1:T
′
1, . . . ,[in|out]Vm:T ′

m) is the list of formal parameters, where each parameter is
either an input parameter (by default), in, or an output parameter, out;

• [X1[:T
′′
1], . . . ,Xp[:T

′′
p]] is the list of formal exceptions, empty by default;

• T ′′
j is the type of values associated with exception Xj, which is () by default, that is, by default an

exception has no value associated; and

• B is the body of the process, the behaviour that describes how the process behaves.

Declared processes may be called by using process instantiations, whose syntax is:

Π [[GPL]]([APL])[[XPL]]

where

• GPL is the gate parameter list and it may be either in positional form, G′
1, . . . ,G′

n, or in named

form, Gi1 => G′
i1
, . . . ,Gis

=> G′
is

(Gij
are the formal gates and G′

ij
the actual gates). When the

named form is used, it is not needed to give all the parameters by using the keyword ... at the end,
and in this case, the absent actual parameters will be added with the same names as the formal ones.
For example, a process with header

process Register [in1:data,in2:data,out1:data,out2:data] is

can be instantiated as follows:

Register [in1 => inGate1,out1 => outGate1,...]()

and this instantiation is equivalent to this one:

Register [inGate1,in2,outGate1,out2]()

• APL is the list of actual parameters where each parameter can be an expression (input parameter)
or a pattern (output parameter), and the list may be either in positional or named form; and

• XPL is the exception parameter list, which may also be either in positional or named form.

An instantiation of a process Π stands for the body of the process where actual gates, parameters,
and exceptions are substituted for formal ones.

11This is made for compatibility with LOTOS.

3 Base Language for data types

In this chapter we describe how the data types used in the behaviour language described in the previous
chapter can be defined in E-LOTOS, and how values of these types are used.

3.1 Data types

As we have said, the part regarding the declaration and use of data types is one of those that has been
changed more in E-LOTOS with respect to its predecessor LOTOS.

In LOTOS the abstract data type specification language ACT ONE [EM85] is used to declare new
data types and to represent their values (called in LOTOS value expressions). This language is not too
user-friendly and suffers from several limitations such as the semi-decidability of equational specifications,
the lack of modularity, and the inability to define partial operations.

In E-LOTOS, ACT ONE has been substituted by a new language in which data types are declared
in a similar way as they are in functional languages (ML, Haskell), and where some facilities for the use
of values are given.

Predefined types. In E-LOTOS there is a set of predefined types with associated operations which
are specified in the “Predefined Library” described in Chapter 7 of [Que98]. Predefined types are:

• bool: with constants true and false, and operations not, and and or among others.

• nat: the natural numbers. In E-LOTOS, we have a specific syntax (similar to the usual one) to
generate values of this type (and also for the rest of the numeric types), so that we can write 1, 7,
2258 . . . instead of having to use the constructors, to write expressions like

Succ(Succ(... Succ(0)...)).

E-LOTOS also provides arithmetic operations, like +, -, *, div, mod, and comparison operations,
like >, >=, !=,

• int: the integer numbers, with a rich syntax like naturals, and with arithmetic and comparison
operations. There is also an operation to transform a positive integer to the corresponding natural
(nat), and another to transform a natural to the corresponding integer (int)

• rational: the rational numbers. In addition to arithmetic and comparison operations, there are
functions like round(r), to get the nearest integer value of r, ceil(r), to get the least integer value
greater than or equal to r, and floor(r), to get the greatest value less than or equal to r.

• float: the real numbers, with arithmetic, comparison, and trigonometric operations.

• char: the character values, written between quote symbols (e.g. ’a’). They represent the ISO Latin-1
characters. There are functions like tolower, toupper, isalpha, isdigit, islower, isupper.

46 3. Base Language for data types

• string: sequences of characters between double quotes (e.g. ‘‘Hello, world!’’). There are opera-
tions to know the number of characters of a string (length), to concatenate two strings (concat), to
take any prefix or suffix of a string, to take the character in any position. There are also comparison
operations, and operations to convert any natural, integer, or float to a string.

• List: lists of values of any type. It is defined as a new data type (see below)

type List is

nil | cons(any,List)

endtype

The user can define lists of a concrete type as we explain below.

Predefined type schemes. In E-LOTOS there is also a set of type schemes that are translated to
usual type and function declarations, and that are used to make easier the definition of typical types, as
suggested by the “rich term syntax” of [Pec94].

We can define an enumerated type ET with values V1, . . . , Vn as

type ET is

enum V1, . . . , Vn

endtype

This type has several predefined functions as a comparison operation (==), and operations to get the next
value (succ) or the previous value (pred) of a given one.

For example, we can define a type colour with some colours:

type colour is

enum Blue, Red, Green, Yellow, Pink

endtype

which is translated into a new data type (see below) with a constructor for each enumerated value:

type colour is

Blue | Red | Green | Yellow | Pink

endtype

The language also allows record types to be easily defined and dealt with. It is possible to declare a
record by giving the list of its fields together with their corresponding types. For example, we can define
the record type

(name => string, address => string, age => nat)

and we can access each field with the “.” notation, for example rec.name, provided variable rec has the
above type.

We can also define sets of values of a given type T , with syntax

type ST is

set of T
endtype

and express extensionally values of this type, i.e., by giving the list of their elements,

{e1, . . . ,en}

3.1. Data types 47

where ei are expressions of type T . This scheme has predefined functions to calculate the union (union),
difference (diff), and intersection (inters) of two sets; to calculate the number of elements (card) of a set;
and to know if an element belongs (isin) to a set; to know if a set is empty (isempty).

We can define lists of elements of type T in the following way

type LT is

list of T
endtype

and write list values with syntax
[e1, . . . ,en]

where ei are expressions of type T . This scheme has predefined functions to know the first element (head)
of a list, to remove the first element of a list (tail), to know the nth element of a list (nth), to concatenate
(concat) two lists, and to know the number of elements (length) of a list.

By using these functions we can write again a behaviour that adds the elements of a list of integers,
xs, and communicates the result through gate outP, but without destroying the given list:

var total : int := 0, len : int := length(xs),e:int,n:nat in

for ?n := 1 while n<=len by ?n := n+1 do

?e := nth(xs,n);
?total := total+e;

endwhile;

outP(!total)
envar

The predefined operations on these types and their implementations are shown in Chapter 7 of [Que98].

User defined types. The user can define two kinds of types: type synonyms and new data types.

A type synonym declaration simply declares a new identifier for an existing type. For example, we
can define the type Complex to represent complex numbers, as a record with two float fields:

type Complex is

(real => float, imag => float)

endtype

The general syntax to declare a type synonym is

type S is (RT) endtype

where S is a type identifier, and RT is a record type, that is, a non empty list of type identifiers separated
by commas, where each type can be labelled with the name of the corresponding record field. In the
previous example the record has two fields: real and imag , both of type float.

It is also possible to declare a type synonym renaming an existing type, with syntax

type S renames T endtype

where T is a type identifier. For example, the type time can be declared as a synonym of the predefined
type nat with the declaration

type time renames nat endtype

Type equality is structural, not by name. Thus, with the above definitions, we can use Complex and
the anonymous type (real => float, imag => float) as the same type, and also nat and time.

48 3. Base Language for data types

The declaration of a new data type consists of the enumeration of all the constructors for that type,
each one with the types of its arguments, separated with “|”. The concrete syntax to declare a new data
type is:

type S is

C1(RT1) | . . . | Cn(RTn)

endtype

For example, we can define a type dest which represents the destination of a message when it reaches
a router with two exits, one on the left and one on the right, as follows:

type dest is

left | right

endtype

Also, we can define the type of messages, data messages or acknowledgment messages (for error
handling), as follows:

type pdu is

send(packet,bit) | ack(bit)

endtype

We can define recursive data types, by using in some constructors the type which is being declared,
as in the predefined type List described above.

The base language does not allow to declare parameterized types. This is left for the module system
(see Section 4.3).

3.2 Type expressions

We have seen in the previous section how the user can declare new types with the facilities of the language.
Now we are going to see how to write type expressions, that is, what the user can write when a type is
needed, for example, when she wants to type a gate or a local variable in a behaviour.

The simplest type expression is a type identifier. We have already seen several examples: nat and
bool are predefined type identifiers, Complex is a type synonym identifier, and dest is a new datatype
identifier.

Type identifiers are the unique type expressions the user can use in order to type an E-LOTOS
element. For example, when the user types a gate of a process, G : T , T must be a predefined or user-
declared type identifier, or one of the special type identifiers, none and any, that we present below. It
is the same when we want to declare a variable or a pattern type. Thus, at the user level, in E-LOTOS
there are no anonymous types. For instance, the user is not able to declare

G : (real => float,imag => float),

although, of course, she can declare

G : Complex

provided the Complex type is already declared.

We have two special types:

• none is the empty type, that has no values, used to give functionality to processes that never stop.

3.3. Subtyping 49

• any represents a wildcard type which is used to type gates which can communicate data of any type,
in order to achieve compatibility with LOTOS.

We can also write record type expressions RT , although as we have seen, the user can only use
them in the declaration of type synonyms. Note that a record type expression in not a type, and it
becomes a (anonymous) type when we enclose it between parentheses, (RT). We have also seen that
each component of a record can be associated with a field name. But when we give name to a field, we
have to give name to all the fields. For example, in the record type expression

(x => float,y => float)

x and y are the names of the record fields. In this way, the order of the different fields is not important,
but, of course, the names of the fields are. However, it is optional to give name to the different fields of
a record, so a correct record type expression is

(int,float),

which represents a record with an integer and a float. In this case the order of the fields is important.
Really, this expression is syntactic sugar for

($1 => int,$2 => float),

where E-LOTOS invents default names for the fields, $1, $2, . . ., when the user does not give them. And
($1 => float,$2 => int) is a different type.

In E-LOTOS we can write extensible record types, with the keyword etc at the end of the record,
meaning any set of fields. So the record type

(message => data, etc)

represents a type of records with at least one field called message of type data. This means that we have
as values of this type all the record values that have at least a field with that name and type.

The notion of extensible records is related to record subtyping, that we detail in the next section.

3.3 Subtyping

E-LOTOS has a built-in subtyping relation between record types. A record type is subtype of another
record type if the former has at least all the fields the latter has. So the record type (etc) is a supertype
of any other record type. And the extensible record type

(message => data, etc)

has as subtypes, for example, the record types

(message => data, de => dest, etc) and (message => data, de => dest).

We denote that type T is a subtype of type T ′ by T ⊑ T ′. Whenever T ⊑ T ′ we can use values of
type T where values of type T ′ are required.

Let us see an example that shows the usefulness of subtyping. Let us suppose we have to specify a
Router process that receives packets through an input gate, and it has to direct them to one of its output
gates, depending on the packet destination. So the only restriction is that packets that get into the router
have to have a field indicating their destination. We can declare an extensible record type

50 3. Base Language for data types

type packet is

(de => dest, etc)

endtype

and then a process specifying the router is the following:

process Router [inP:packet, leftP:packet, rightP:packet] is

var p:packet in

loop

inP(?p);
case p.de is

left -> leftP(!p)
| right -> rightP(!p)

endcase

endloop

endvarendproc

The empty type none is subtype of any type T , none ⊑ T , and it is equivalent to any record with a
field of type none (since that field cannot have any value, the whole type has no values). The universal
type any is supertype of any type T , that is, T ⊑ any.

3.4 Expressions

In contrast to LOTOS [ISO88], where there is a separation between processes and functions, E-LOTOS
considers functions as a kind of processes. A function in E-LOTOS is any process with the following
characteristics: it is deterministic; it cannot communicate (i.e. it has no gates), and so its only capabilities
are to return values and raise exceptions; and has no real-time behaviour (i.e. a function is an immediately
exiting process). Therefore, the expression (sub)language is very similar to that of behaviours, that we
have been introducing, once the elements related to these characteristics are removed.

The simplest expressions are normal forms. A normal form is an expression which cannot be reduced
any further. The following examples are normal forms:

• a primitive constant, such as 5, true, or "Hello, world!",

• a variable, such as x or total,

• a constructor of a new data type applied to normal forms, such as right, nil, cons(5, nil), and
send(aPacket, aBit).

• a record of normal forms, such as (real => 4.5, imag => 8) or (7, 9) (that is syntactic sugar for
($1 => 7, $2 => 9)).

Starting from these simple expressions we can construct more complex ones using the operators of
E-LOTOS.

Expressions can raise exceptions, provided they are in the scope of an application of the trap operator
where they are handled, as we saw in Section 2.15:

trap

exception X1[(P1)[:T1]] is E1 endexn

· · ·
exception Xn[(Pn)[:Tn]] is En endexn

[exit [Pn+1] is En+1 endexit]
in E
endtrap

3.4. Expressions 51

However, we have to remark that the handler behaviours have been substituted by expressions.

For example, let us consider the function Head that returns the head of a list:

function Head (xs:intlist) : int raises [Hd] is

var x:int := 0 in

case xs is

nil -> signal Hd;0
| cons(?x,any:intlist) -> x

endcase

endvar

endfunc

Function Head declares that it may raise an exception, whose formal name is Hd. Inside the function,
pattern-matching is used to distinguish whether the integer list xs is empty or not (patterns and pattern
matching will be detailed in Section 3.6). When the list is empty the function raises the exception Hd

(and if the exception Hd is not trapped, the function Head returns 0, because all the branches in a case
statement have to return something of the same type if they finish). In this way, the user of the function
is who has to give the handler of the exception. For example, if we do not want an error to be produced
when the head of an empty list is consulted, but instead 0 is to be returned, we can use

trap

exception Hd0 is 0 endexn

in

Head (xs) [Hd0]

endtrap

that returns 0 if the list xs is empty, and otherwise returns the head of the list. The exception Hd0 is
the actual exception in the Head function call.

We can also rename exceptions raised by an expression (in this case it has no sense to rename gates,
as expressions do not have gates) with all the renaming power we saw in Section 2.17. Now the syntax is

rename

signal X1[(P
′′
1)[:T

′
1]] is X ′

1[(E1)]
· · ·

signal Xn[(P ′′
n)[:T

′
n]] is X ′

n[(En)]
in E
endren

The expression language also has a conditional expression if − then− else; and some imperative
features, such as:

• assignment, P := E, that produces bindings between the variables in the pattern P and values of
E. That expression does not return a value but produces bindings (between variables in P and the
value returned by expression E).

• sequential composition, E1;E2, which returns bindings produced by E1 not overridden by those of
E2, bindings produced by E2 and the value returned by E2.

• declaration of local variables, with syntax

var V1:T1[:=E1], . . . ,Vn:Tn[:=En] in

E
endvar

For example, the expression

52 3. Base Language for data types

var x:int in

?x:=E; x ∗ x
endvar

returns the same value as the expression E ∗ E does, and it does not produce bindings because
variable x is local to the var declaration, and its binding does not go out of this declaration.

• different iterative constructions such as loop, while, and for.

Finally, E-LOTOS includes some operators that can only be applied to expressions:

• boolean conjunction E1 andalso E2 that evaluates E1 and if its value is true then the value of E2 is
returned, otherwise false is returned. E1 and E2 must be of type bool, that is, they have to return
a value of this type.

• boolean disjunction E1 orelse E2 that evaluates E1 and if its value is false then the value of E2 is
returned, otherwise true is returned. E1 and E2 must be of type bool.

• equality operation, E1 = E2. E1 and E2 do not need to have the same type.

• inequality operation, E1 <> E2. E1 and E2 do not need to have the same type.

• select field operation, E.V . Assuming that expression E returns a record value with a field called
V , E.V returns the value associated with this field.

• explicit typing, E:T , that returns the value of expression E only if it is of type T . This is controlled
by the static semantics at compilation time.

3.5 Function declaration and instantiation

As we can declare processes (Section 2.20), we can declare functions in order to give a name to an
expression E, and abstract the names of variables (or subexpressions) and exceptions in E.

The syntax of a function declaration is as follows:

function F [([in|out]V1:T1, . . . ,[in|out]Vm:Tm)] [:T]
[raises [X1[:T

′
1], . . . ,Xp[:T

′
p]]]

is E
endfunc

where

• F is a process identifier;

• ([in|out]V1:T1, . . . ,[in|out]Vm:Tm) is the list of formal parameters, empty () by default;

• T is the type of the value returned by F , and it is an empty record () by default;

• [X1[:T
′
1], . . .,Xp[:T

′
p]] is the list of formal exceptions, empty [] by default; and

• expression E is the body of the function F .

A function call is an expression. Its syntax is

F [(APL)][[XPL]]

where APL is the list of actual parameters and XPL is the exception parameter list, which may be either
in positional or named form.

We can declare also infix functions

3.6. Patterns and pattern matching 53

function F infix [([in|out]V1:T1,[in|out]V2:T2)] [:T]
[raises [X1[:T

′
1], . . . ,Xp[:T ′

p]]]
is E

endfunc

which can be called as follows:

AP1 F AP2[[XPL]]

We can also declare values, which represent constant functions without parameters, with syntax

value V : T is E endval

where V is the value identifier, T is a type identifier, and the value of expression E (which has to be of
type T) is what value V returns.

3.6 Patterns and pattern matching

We have already used patterns in several examples: assignments P:=E, actions G P1 @ P2, etc. Patterns
are matched against values and can produce bindings on variables. Now we are going to describe the
different kinds of patterns in E-LOTOS. A pattern has one of the following forms:

• a variable, ?x. If we try to match ?x against a value N of type T , the pattern matching succeeds if
the variable x has been declared with type T ′ and T is a subtype of T ′. In this case, x is bound to
N .

• an expression, !E. This pattern can be matched against the value N only if N is the value of the
expression E. In this case, the pattern matching does not produce bindings.

• a wildcard pattern, any:T , that matches against any value of type T without producing bindings.

• a record pattern, (RP), where RP is a list of patterns separated by commas, either in a named

form V1 => P1, . . .,Vn => Pn (where V1, . . . , Vn are the field names of the record) or in a positional

form P1, . . .,Pn. The pattern matching of (RP) against the value N will succeed if N has the
form (RN) and RN is a list of values (possible preceded by a field name) that match against the
corresponding patterns in RP . This pattern matching produces the bindings produced by matching
each pattern of RP against the corresponding value in RN . Patterns in RP must bind disjoint
variables.

For example, the record pattern (real => ?re,imag => ?im) matches against the value (real =>

2.5,imag => 0.3) binding variable re with the value 2.5 and variable im with the value 0.3.

In a record pattern RP we can use the keyword etc at the end of RP for representing all the
unspecified fields. So, the pattern (real => ?re,etc) may be matched against the value (real =>

2.5,imag => 0.3) producing a binding between the variable re and the value 2.5.

• a constructor application, C[(RP)], where RP stands for the arguments of the constructor C (if
needed). The pattern C(RP) matches with the value N if N has the form C(RN) and RN matches
with RP , and the produced bindings are those produced by the pattern matching of each pattern
against the corresponding value. For example, cons(?x,?l) or cons(!3,any:List).

• an explicit typing, P:T . The pattern P:T matches against the value N if N has type T and P
matches against N . For example, the pattern ?l:intlist matches with the value cons(4,nil).

Patterns are also used in the case operator, whose syntax is

54 3. Base Language for data types

case E[:T] is

P1[[E1]] -> B1

...
| Pn[[En]] -> Bn

endcase

where expressions Ei are boolean expressions, which are true by default.

The value of the expression E is matched sequentially against each of the clauses P1[E1], . . . , Pn[En].
A value N matches against a clause Pi[Ei] if the value matches against the pattern Pi and Ei is evaluated
to true in the context of variables bound by the pattern-matching. The behaviour Bi associated with
the first clause that matches N describes how the whole behaviour continues. If there is no clause that
matches N then the predefined exception Match is raised.

For example, we can define a process that receives messages of type pdu and behaves in a different
manner depending on the kind of message:

process P [inP:pdu, . . .] is

var p:packet in

inP(?p);
case p is

send(?pa:paquet,?b:bit) -> (* handle data *)
| ack(?b:bit) -> (* handle acknowledgment *)

endcase

endvar

endproc

There is also the possibility of pattern-matching between two patterns, for example, in the communi-
cation

inP(?x) || inP(!3)

In this case the pattern ?x is pattern-matched against the pattern !3. The pattern-matching between
two patterns succeeds if there is a value N such that both patterns can be matched against N . In the
example this value is 3.

Although strange, we can put together two behaviours that can receives values on a gate inP,

inP(?x) || inP(?y)

In this case, a value of the type of values that G can communicate is “invented” and both x and y are
bound to this value.

4 Module Language

When large specifications are developed, it is useful to encapsulate several related data types, functions,
and processes so that they can be regarded as a single unit (a module) with which one can work. One
can also want to combine different modules, to control what objects a module shows, and to build generic
modules that are parameterized by other modules.

Due to the LOTOS limited form of modularity, whose modules only encapsulate types and operations
but not processes, and do not support abstraction (every object declared in a module is exported outside)1,
E-LOTOS has a new modularization system, which allows

• to define a set of related objects (types, functions, and processes),

• to control what objects the module exports (by means of interfaces),

• to include within a module the objects declared in other modules (by means of import clauses),

• to hide the implementation of some objects (by means of opaque types, functions, and processes),
and

• to build generic modules.

In order to facilitate this modularization, a separation between the concept of module interface and
definition module is done. An interface declares the visible objects of a module and what the user needs
to know about them (the name of a data type or a function profile, for example). A module gives the
definition (or implementation) of objects (visible or not).

A specification in modular E-LOTOS is a sequence of interface (Section 4.1) and module (Section 4.2)
or generic module (Section 4.3) declarations, besides a specification declaration (Section 4.4).

4.1 Interfaces

As we have said above, an interface defines the visible part of the objects (types, functions, and processes)
declared within a module.

The syntax of an interface declaration is as follows:

interface int-id [import int-exp1, . . . ,int-expn] is

i-body

endint

where int-id is an interface identifier, int-exp1, . . . , int-expn are interface expressions that we will describe
below, and i-body is the body of the interface.

In the body of an interface, the visible parts of types, functions, and processes are given. The visible
part of a type is its name and, maybe, its implementation. If the implementation of a type is not given,

1A critical evaluation of LOTOS data types from the user point of view can be found in [Mun91].

56 4. Module Language

the type is called opaque, and only the functions declared in the interface can modify it. An opaque type
declaration is as follows:

type T

If the type is not opaque, it is declared as we saw in Section 3.1.

For functions and processes, only their header is visible. Thus, in an interface function headers like

function F [([in|out]V1:T
′
1, . . . ,[in|out]Vm:T ′

m)] [:T] [raises [X1[:T
′′
1], . . . ,Xp[:T ′′

p]]]

or processes headers like

process Π [[G1[:T1], . . . ,Gn[:Tn]]] [([in|out]V1:T
′
1, . . . ,[in|out]Vm:T ′

m)]
[raises [X1[:T

′′
1], . . . ,Xp[:T ′′

p]]]

may appear.

We can also declare values, which represent constant functions without parameters, with syntax

value V : T

where V is the value identifier, and T is a type identifier.

The types of formal parameters must be either predefined, imported, or declared by the interface.

For example, we can define an interface of a module that implements our register:

interface Register_Interface is

type data

process Register [in1:data,in2:data,out1:data,out2:data]

endint

As we have seen, an interface may import other interfaces, and the imported interfaces are specified
by means of interface expressions. An interface expression may be

• an interface identifier int-id′, that represents all the identifiers declared in the interface int-id′; or

• a renaming of an interface
[int-id′ renaming (reninst)]

representing the identifiers declared in the interface int-id′ renamed by the renaming reninst, ex-
plained below; or

• an explicit interface body (possibly renamed)

[i-body [renaming (reninst)]]

that represents the identifiers declared in the interface body i-body .

In the last two cases reninst is a list of renaming of

• types, types S′
1:=S1, . . .,S′

n:=Sn,

• constructors and functions, opns F ′
1:=F1, . . . ,F ′

m:=Fm,

• processes, opns Π′
1:=Π1, . . . ,Π′

p:=Πp, or

• values, values V ′
1:=V1, . . . ,V ′

s:=Vs.

The primed identifiers are the old names (of int-id′ or of i-body) being renamed, and the unprimed
identifiers are the new names (which can be used in int-id). For example,

[Register_Interface renaming (proc Register := Register_Nat)]

4.2. Modules 57

represents the declarations in the interface Register_Interface where the process Register now is named
Register_Nat.

The imported identifiers have to be all different, so we have to use renaming when there are conflicts.

We can define an interface for our system composed by the register, the producer, and the consumer,
as follows

interface System_Interface import Register_Interface is

process Producer [p1:data,p2:data]

process Consumer [c1:data,c2:data]

endint

All visible objects of an interface (including the imported ones) are visible from outside and may be
imported in other interfaces. The importation is transitive through interfaces.

4.2 Modules

A module specifies the implementation of a set of (related) types, functions, and processes. The objects
that a module exports, that is, that may be imported by other modules, are controlled by means of
interfaces.

In E-LOTOS a module declaration is as follows:

module mod-id [: int-exp] [import mod-exp1, . . . ,mod-expn] is

m-body

endmod

where mod-id is a module identifier; int-exp is an interface expression (Section 4.1) that declares the
visible objects of mod-id, so that other modules that import mod-id only can use the objects declared
in int-exp2; mod-exp1, . . . ,mod-expn are module expressions that we will describe below; and m-body

is the body of the module, which is a sequence of type declarations (Section 3.1), function declarations
(Section 3.5), and process declarations (Section 2.20).

The objects imported by a module have to have all different identifiers, so renaming is needed when
an identifier is used more than once.

For example, we can specify the module that implements a version of the register (a register that
communicates natural numbers) as follows:

module Register_Mod:[Register_Interface renaming (proc Register := Register_Nat)] is

type data renames nat endtype

process Register_Nat [in1:data,in2:data,out1:data,out2:data] is

var x1:data,x2:data in

in1(?x1 : data);

(in2(?x2 : data)

|||

out1(!x1));

out2(!x2)
endvar

endproc

endmod

2By default, the interface of a module is the set of objects imported from other modules and the objects declared by the
module body.

58 4. Module Language

A module expression may be a module identifier possibly restricted by an interface expression and
renamed:

mod-id [: int-exp] [renaming (reninst)]

or an instantiation of a generic module as we will see in Section 4.3.

The module that implements the objects declared in System_Interface may be

module System_Mod import Register_Mod is

value val1:data is 8 endval

value val2:data is 15 endval

process Producer [p1:data,p2:data] is

p1(!val1); p2(!val2)
endproc

process Consumer [c1:data,c2:data] is

var v1 : data,v2 : data in

c1(?v1 : data); c2(?v2 : data)

endvar

endproc

endmod

4.3 Generic Modules

Genericity is a useful mechanism to construct specifications and for code reuse. In E-LOTOS, a generic
module declaration is as follows:

generic gen-id (mod-id1:int-exp1, . . . ,mod-idn:int-expn) [: int-exp]
[import mod-exp1, . . . ,mod-expm] is

m-body

endgen

where gen-id is a generic module identifier, mod-idi are module identifiers, which are called the formal
parameters of the generic module, and whose visible objects are declared in the interface expressions
int-expi; mod-expj are module expressions as defined in Section 4.2, and m-body is the body of the
generic module, where the objects declared in the int-expi, and the imported ones, may be used.

For example, instead of implementing a different register depending on the values that the register
can communicate, we can define a generic module that implements a generic register parameterized by
the type of the values the register can communicate:

interface Data is

type data

endint

generic Register_Gen (D:Data) is

process Register [in1:data,in2:data,out1:data,out2:data] is

var x1 : data,x2 : data in

in1(?x1 : data);

(in2(?x2 : data)

|||

out1(!x1));

out2(!x2)
endvar

endproc

endgen

4.4. Specification 59

In order to use a generic module we have to instantiate it, by providing actual parameters, which must
be modules that match the corresponding interface expression. A module matches an interface whether
it implements at least the objects declared in the interface.

The syntax of a generic module instantiation is as follows:

gen-id (mod-id1 => mod-exp1, . . . ,mod-idn => mod-expn) [: int-exp] [renaming (reninst)]

where mod-idi are module identifiers that must be the names of the formal parameters of gen-id, mod-expi

are module expressions that must match the corresponding interface expressions in the declaration of
gen-id; int-exp is an interface expression and reninst is a renaming clause as we saw in Section 4.1.

A generic module instantiation is a module expression, and may be the body of a module, or may
appear in an importation clause.

We can instantiate our generic register, in order to build a register of natural numbers:

module Mod_Register_Nat is

Register_Gen (D => NaturalNumbers renaming (types nat := data))

renaming (proc Register := Register_Nat)
endmod

4.4 Specification

The entry point of an E-LOTOS description is the specification declaration, with syntax

[top-dec]
specification Σ [import mod-exp1, . . . ,mod-expn] is

[gates G1:T1, . . . ,Gm:Tm]
[exceptions X1:T

′
1, . . . ,Xp:T

′
p]

(behaviour B | value E)
endspec

where

• top-dec is a sequence of interfaces, modules, and generic modules declarations;

• Σ is the name of the specification;

• mod-expi are module expressions that define the imported modules;

• G1:T1, . . . ,Gm:Tm is the list of gates of the whole system;

• X1:T
′
1, . . . ,Xp:T

′
p is the list of exceptions that the system can raise to its environment; and

• the body of the specification may be a behaviour B, or a value E.

For example we can define the specification of the system composed of a producer, a register, and a
consumer:

specification System import System_Mod is

behaviour

hide pr1:data,pr2:data,rc1:data,rc2:data in

conc

Producer [pr1, pr2]()

|[pr1, pr2]|

Register_Nat [pr1, pr2, rc1, rc2]()
|[rc1, rc2]|

60 4. Module Language

Consumer [rc1 , rc2]()
endconc

endhide

endspec

5 Examples

In this chapter we will discuss some well-known examples where the main E-LOTOS features are used.

5.1 Global clock

In this section we are going to specify a global clock, that is, a clock that measures time since it is started
until it is stopped, and to which other processes running in parallel can ask what time it is. The clock is
always able to communicate what time it is, and to be stopped. The process Clock is as follows:

process Clock[stopClock,whatTime:time](gtime:time) is

var gt:time:=0,t:time:=0 in

whatTime(?gt) @?t [gt=gtime+t];Clock[...](gtime+t)
[]

stopClock

endvar

endproc

We use the parameter gtime to measure the global time. Initially, it is set to 0 (in the initial call),
and then its value always represents the time when the last question “What time is it?” was answered.
When another question is asked, the clock performs the action

whatTime(?gt) @?t [gt=gtime+t]

where gt represents the value communicated, and although it is like an input (?gt), really it is the unique
value such that gt = gtime + t where t is the time measured since the action was enabled, that is, since
the last question was answered. Therefore, gt represents the global time (new value for gtime).

At any moment, the clock can be stopped with action stopClock. This is necessary if the clock is
running in parallel with a process that finishes and we want the whole system (the process and the clock)
to finish.

5.2 FIFO queue

Now, we are going to specify a generic FIFO (first-in, first-out) queue, which we will use in Section 5.4.

First, we specify the characteristics that the elements of the queue must fulfill in an interface:

interface Data is

type elem

endint

Now, we specify the generic module that describes the queue operations.

62 5. Examples

generic GenQueue(D:Data) is

type queue is

Empty

| Add(queue,elem)

endtype

function addQueue(q:queue,e:elem):queue is

Add(q,e)
endfunc

function front(q:queue):elem raises [EmptyQueue] is

var e:elem is

e:=any elem;

case q in

Empty -> signal EmptyQueue; e
| Add(Empty,?e) -> e
| Add(Add(?q,?e),any:elem) -> front(Add(q,e))

endcase

endvar

endfunc

function delete(q:queue):queue raises [EmptyQueue] is

var e1:elem,e2:elem is

case q in

Empty -> signal EmptyQueue; Empty

| Add(Empty,any:elem) -> Empty

| Add(Add(?q,?e1),?e2) -> Add(delete(Add(q,e1)),e2)
endcase

endvar

endfunc

function isEmpty(q:queue):bool is

case q in

Empty -> true

| Add(any:queue,any:elem) -> false

endcase

endfunc

endgen

And now we can instantiate this generic queue to make, for example, a queue of natural numbers:

module NatQueue is

GenQueue(D => NaturalNumbers renaming(types nat := elem))

endmod

5.3 Random semaphore

We study now the classical example of the critical section problem, which is one of the classic concurrent
programming problems. Let us suppose that a set of n processes (users) have to access a shared resource
in mutual exclusion, i.e, the resource can be used by at most one user at a time. So the behaviour of
each user should be

1. non-critical section

2. entry protocol

5.3. Random semaphore 63

3. critical section

4. exit protocol

5. go to 1.

In order to ensure mutual exclusion, we introduce a semaphore process which all the users have to
synchronize with, before and after entering the critical section. In this first attempt, the semaphore
allows to enter the critical section to any of the processes that are waiting, provided none is already in.
So the semaphore allows one of those users to enter the critical section and then that user notifies its exit
of the critical section. The structure of the whole system could be

User1 Usern

Semaphore

abd
acc abd

acc

We can model a user as a process that continuously behaves as described above. All the users notify
its exit through the same gate, and the semaphore uses the same gate to allow access to every user, so in
order to distinguish users each one will have a different identifier (implemented as a parameter). A user
has to provide its identifier each time it wants to access or exit the resource. An E-LOTOS specification
of a user may be:

process User1 [acc:id,abd:id](myid:id) is

loop

(* non-critical section *)

acc(!myid);
(* use shared resource *)

abd(!myid)
endloop

endproc

where type id may be a synonym of the predefined nat type:

type id renames

nat

endtype

We can also specify the infinite behaviour of the user with a recursive process:

process User2 [acc:id,abd:id](myid:id) is

(* non-critical section *)

acc(!myid);
(* use shared resource *)

abd(!myid);
User2 [acc,abd](myid)

endproc

As another example, we can modify this process by making explicit the state of the user, i.e, whether
it is in or out the critical section. We could write:

64 5. Examples

process User3 [acc:id,abd:id](myid:id) is

var st:state := outside in

loop

case st is

outside -> (* non-critical section *)

acc(!myid);
?st := inside

| inside -> (* use shared resource *)

abd(!myid);
?st := outside

endcase

endloop

endvar

endproc

where we have used a new type, state, that has two different values, inside and outside, declared as

type state is

inside | outside

endtype

The Semaphore process uses the same gates as users do. When the resource is free, the semaphore
waits for someone who wants to enter, and keeps in variable usr who has entered. Then, the resource
is not free and the semaphore allows the in user (usr) to exit. When this user does so, the semaphore
repeats its behaviour. The specification of this process is as follows:

process Semaphore[acc:id,abd:id] is

var usr:nat in

acc(?usr);
abd(!usr);
Semaphore[acc,abd]()

endvar

endproc

We can model the entire system by instantiating several times the User1 process (each one with a
different identifier) and composing them in parallel with an instantiation of the Semaphore process. We
hide the gates that stand for synchronization between the users and the semaphore, in order to make
them urgent and because they are of no interest from the point of view of the environment. So the
behaviour of the system can be specified with:

hide acc:id,abd:id in

par ?usr in [1,2,3,4,5] |||

User1[acc,abd](usr)
endpar

||

Semaphore[acc,abd]

endhide

And the complete E-LOTOS specification would be:

module CriticalSection1 is

type id renames

nat

5.4. FIFO semaphore 65

endtype

process User1 [acc:id,abd:id](myid:id) is

loop

(* non-critical section *)

acc(!myid);
(* use shared resource *)

abd(!myid)
endloop

endproc

process Semaphore[acc:id,abd:id] is

var usr:nat in

acc(?usr);
abd(!usr);
Semaphore[acc,abd]()

endvar

endproc

endmod

specification RandomSemaphore import CriticalSection1 is

behaviour

hide acc:id,abd:id in

par ?usr in [1,2,3,4,5] |||

User1[acc,abd](usr)
endpar

||

Semaphore[acc,abd]

endhide

endspec

In this example, when there are several users waiting to access the shared resource, it is not known
which of them will succeed. From this point of view, the semaphore is random. Any of the waiting users
can be the next to access the resource. In the next section the semaphore will take care of the order in
which the waiting users access the resource.

5.4 FIFO semaphore

In this section we discuss the same problem as in the last section, but in this case the waiting users will
be served in the order they arrived to the critical section. In order to achieve this, each user has to notify
its intention to access the critical section. So, in this case there is a new communication between the
users and the semaphore:

User1 Usern

Semaphore

not

acc

abd not

acc

abd

66 5. Examples

When a user notifies to the semaphore its wish to access the critical section, the semaphore keeps the
user identifier in a queue of identifiers. When the resource is free, the semaphore allows access to the user
whose identifier is in the front of the queue. So, we need a queue of identifiers. We can use the generic
queue of Section 5.2, by doing the following instantiation:

module NatQueue is

GenQueue(D => DataTypes renaming(types id := elem))

endmod

where DataTypes is the module that specifies the new data types required in this example, and id should
be among them.

We have to modify also the User2 process in order to notify to the semaphore its intention to access
the resource:

process User4 [not:id,acc:id,abd:id](myid:id) is

(* non-critical section *)

not(!myid);acc(!myid);
(* use shared resource *)

abd(!myid);
User4 [...](myid)

endproc

The semaphore has to allow always a user notification, and it has to insert the user identifier in the
queue; if the resource is free and there is some user waiting, then it has to allow access to the user in the
front of the queue; and if the resource is not free, it has to wait for the in user to go out. The semaphore
specification in this case is:

process Semaphore[not:id,acc:id,abd:id](free:bool,q:queue,usrIn:nat) is

var usr:nat:=0 in

trap

exception EmpQ is stop endexn

in

sel

not(?usr);Semaphore[...](free,addQueue(q,usr),usrIn)
[]

acc(!front(q)[EmpQ]) [free and not(isEmpty(q))];
Semaphore[...](false,q,front(q)[EmpQ])

[]

abd(!usrIn)[not(free)];Semaphore[...](true,delete(q)[EmpQ],0)
endsel

endtrap

endvar

endproc

In this case, we have used a different kind of specification than in, for example, User3. We have
used a recursive process and, instead of using several if − then− else instructions, we use a selection
where each branch begins with an action with a selection predicate that specifies when it is possible
to execute this branch. For example, the first branch begins with the action not(?usr) (with default
selection predicate [true]), that is, it is always possible to take a notification from a user. The second
branch begins with

acc(!front(q)[EmpQ]) [free and not(isEmpty(q))]

that is, the user who is the first of the queue can access the resource provided that the resource is free
and there are users waiting. In fact, the condition not(isEmpty(q)) is not necessary, without care of an

5.5. Dining philosophers 67

exception being raised. If q is empty, the pattern !front(q)[EmpQ] fails and it cannot match against
any value, so the action is not offered.

Finally, in the specification of the entire system, the only needed modification is the inclusion of the
new gate not:

specification RandomSemaphore import CriticalSection2 is

behaviour

hide not:id,acc:id,abd:id in

par ?usr in [1,2,3,4,5] |||

User4[...](usr)
endpar

||

Semaphore[...](true,Empty,0)
endhide

endspec

where CriticalSection2 is the module that includes the declaration of types and processes used.

5.5 Dining philosophers

This problem, originally stated and solved by E.W. Dijkstra [Dij65], is set in a monastery where five
monks are dedicated philosophers. Each philosopher has a room in which he can engage in thinking.
There is also a common dining room, with a circular table with five plates, each labeled by the name of
the philosopher who uses it, as the following figure shows:

F4

F3

F2

F1F0

Phil0

Phil4

Phil3 Phil2

Phil1

To the left of each philosopher there is laid a fork, and in the center stands a large bowl of spaghetti,
which is constantly replenished. A philosopher is expected to spend most of his time thinking, but when
he feels hungry, he goes to the dining room, takes a seat, eats, and then returns to his room to think.
However, the spaghetti is so entangled that two forks are needed simultaneously in order to eat.

The problem is to devise a ritual (protocol) that will allow the philosophers to eat. Each philosopher
may use only the two forks adjacent to his plate. The protocol must satisfy the following requirements:

• mutual exclusion, that is, two philosophers cannot use the same fork simultaneously;

• freedom from deadlock and lockout, that is, absence of starvation – literally!.

68 5. Examples

Our first solution1 consists in the philosophers having to ask for the forks in order to take them. In
this way, each fork controls that only one philosopher (one that is adjacent) takes it at any time. The
process that specifies the behaviour of a philosopher may be:

process Philosopher[sits down,picks up,puts down,gets up](id:nat) is

(* think *)

sits down(!id);
picks up(!(id,id)); picks up(!(id,right(id)));
(* eat *)

puts down(!id);
puts down(!(id,right(id)));
gets up(!id);
Philosopher[...](id)

endproc

The process is parameterized by the identifier of the philosopher that represents. When the philosopher
sits down, he tries to pick up the fork on this left, picks up(!(id,id)) (where the second value represents
the number of the fork which is picked up), and when he has picked up it, he tries to pick up the fork
in his right (right(id) represents the identifier of the fork which is on the right of the philosopher id).
When the philosopher has two forks he eats, and then he puts down the forks and gets up.

The process that specifies the behaviour of the forks would be:

process Fork[picks up,puts down](id:nat) is

picks up(!(id,id));puts down(!(id,id));Fork[...](id)
[]

picks up(!(left(id),id));puts down(!(left(id),id));Fork[...](id)
endproc

That is, a fork allows to be picked up by the philosopher with the same identifier or by the philosopher
who is on its left (left(id)).

And the behaviour of the dining room with five philosophers and five forks may be specified as follows:

hide picks up,puts down in

par ?phi in[1,2,3,4,5] |||

Philosopher[...](phi)
endpar

|[picks up,puts down]|

par ?fo in[1,2,3,4,5] |||

Fork[...](fo)
endpar

endhide

But this solution may become deadlocked, for example, if all the philosophers get hungry at the same
time, they all sit down, pick up their left fork, and try to pick up the other fork, which is not free.

The problem may be solved by adding a footman (which acts as the semaphore in the previous
example) whose permission the philosophers have to ask for sitting down, and to whom they must
communicate that they get up. The footman never allows more than four philosophers to be seated
simultaneously. His behaviour may be specified with the following E-LOTOS process:

1As we will see below, this is not really a good solution.

5.6. Readers and writers 69

process Footman[sits down,gets up](seated:nat) is

sits down(?id)[seated<4];Footman[...](seated + 1)
[]

gets up(?id);Footman[...](seated − 1)
endproc

Now, we have to add the footman to the whole system:

hide sits down,picks up,puts down,gets up in

(par ?phi in [1,2,3,4,5] |||

Philosopher[...](phi)
endpar

|[picks up,puts down]|

par ?fo in [1,2,3,4,5] |||

Fork[...](fo)
endpar)

|[sits down,gets up]|

Footman[...](0)
endhide

This solution is free of deadlock, as explained in [Hoa85].

5.6 Readers and writers

This is again a mutual exclusion problem, but now there are two kinds of processes, readers and writers,
sharing a resource, for example a database. Readers only examine information of the database, whereas
writers modify it. A writer must have exclusive access to the database, otherwise the information could
be corrupted. But any number of readers can access the database at a time, provided that there is no
writer modifying it.

In this solution, there will be a manager that controls the right access to the database. In a first
attempt, readers and writers have to wait for the manager’s permission to access the database; when
they have it, they can access the database, and then they have to notify their going out to the manager.
We can specify the readers and writers behaviours in the following way:

process Reader1 [accR:id,abdR:id](myid:id) is

(* other things *)

accR(!myid);
(* read *)

abdR(!myid);
Reader1 [...](myid)

endproc

process Writer1 [accW:id,abdW:id](myid:id) is

(* other things *)

accW(!myid);
(* write *)

abdW(!myid);
Writer1 [...](myid)

endproc

The manager has a boolean parameter, writing, that controls whether there is a writer updating the
database, and an integer parameter, readers, that controls how many readers are reading the database.

70 5. Examples

When a reader wants to access it, the manager will give permission if there is no writer. If a writer wants
to access it, the manager will give permission only if there is no writer and no reader. The specification
of the manager is:

process Manager1[accR:id,abdR:id,accW:id,abdW:id] (writing:bool,readers:nat)is

var r:nat:=0,w:nat:=0 in

sel

accR(?r)[not(writing)];Manager1[...](false, readers + 1)
[]

accW(?w)[not(writing) and (readers = 0)];Manager1[...](true, readers)
[]

abdR(?r);Manager1[...](writing, readers− 1)
[]

abdW(?w);Manager1[...](false, readers)
endsel

endvar

endproc

The complete system with 8 readers and 2 writers is specified as follows:

specification ReadersWriters1 import ReadWriteMod is

behaviour

hide accR:id,accW:id,abdR:id,abdW:id in

(par ?r in [1,2,3,4,5,6,7,8] |||

Reader1[accR,abdR](r)
endpar

|||

par ?w in [1,2] |||

Writer1[accW,abdW](w)

endpar)

||

Manager1[accR,accW,abdR,abdW](false,0)
endhide

endspec

where ReadWriteMod is the module that contains the declarations of the processes Reader1, Writer1,
and Manager1.

This solution suffers from the starvation problem. Once the readers begin using the database, they
can monopolize it, without allowing any writer to access it. We can solve this problem if the manager
does not allow new reader accesses when there is a writer waiting to update the database. In this way,
readers will be finishing (readers will become 0) and the writer will be able to access.

In order to introduce this new idea, the writers have to notify their interest of accessing the database, so
a new gate, notW , that allows communication between writers and the manager has to be included. The
manager will have a new parameter, wwriters, to count how many writers are waiting. The specification
of the readers is as before, but writers and the manager have to be modified as follows:

process Writer2 [notW:id,accW:id,abdW:id](myid:id) is

(* other things *)

notW(!myid); accW(!myid);
(* write *)

abdW(!myid); Writer2 [...](myid)
endproc

5.6. Readers and writers 71

process Manager2[accR:id,abdR:id,notW:id,accW:id,abdW:id]

(writing:bool,readers:nat,wwriters:nat) is

var r:nat:=0,w:nat:=0 in

sel

accR(?r)[not(writing) and (wwriters=0)];
Manager2[...](writing, readers + 1, wwriters)

[]

notW(?w); Manager2[...](writing, readers,wwriters + 1)
[]

accW(?w)[not(writing) and (readers=0)];
Manager2[...](true, readers,wwriters − 1)

[]

abdR(?r)[readers>0]; Manager2[...](writing, readers− 1, wwriters)
[]

abdW(?w)[writing]; Manager2[...](false, readers,wwriters)
endsel

endvar

endproc

where this process will be called from the specification as

Manager2[...](false, 0, 0).

This second attempt has introduced the reverse problem: now writers can be always accessing the
database, not allowing readers to use it. We can solve this problem if the manager stops the notifi-
cations of new writers once it knows there are readers waiting. The writers that have already notified
their intention can access the database sequentially, but no new writers can notify. In this way the
parameter wwriters will become 0 and at least one reader will be able to access.

In this attempt, a new gate, notR, will be included, through which readers can notify to the manager
their wish to access the database. And the manager has to count how many readers are waiting (parameter
wreaders). The specification of the reader has to be changed to

process Reader3 [notR:id,accR:id,abdR:id](myid:id) is

(* other things *)

notR(!myid); accR(!myid);
(* read *)

abdR(!myid) Reader3 [...](myid)
endproc

The writer is the same as in the second attempt, and the new manager is:

process Manager3[notR:id,accR:id,abdR:id,notW:id,accW:id,abdW:id]

(writing:bool,readers:nat,wwriters:nat,wreaders:nat) is

var r:nat:=0,w:nat:=0 in

sel

notR(?r); Manager3[...](writing, readers,wwriters,wreaders + 1)
[]

accR(?r)[not(writing) and (wwriters = 0)];
Manager3[...](writing, readers + 1, wwriters, wreaders− 1)

[]

notW(?w)[readers > 0 or (wreaders = 0)];
Manager3[...](writing, readers,wwriters + 1, wreaders)

[]

accW(?w)[not(writing) and (readers = 0)];

72 5. Examples

Manager3[...](true, readers,wwriters − 1, wreaders)
[]

abdR(?r); Manager3[...](writing, readers − 1, wwriters,wreaders)
[]

abdW(?w); Manager3[...](false, readers,wwriters,wreaders)
endsel

endvar

endproc

The manager could be modified not only to know how many readers and writers are waiting, but who

of them are waiting (as we did in Section 5.4, by means of a queue in a semaphore), so it can control the
order in which they are served.

5.7 Specifying digital logic

In this section, we show how we can deal with the specification of digital logic components in E-LOTOS.
It is entirely based on the work [TS94] by K. J. Turner and Richard O. Sinnott, and the subsequent
work [JT97], by Ji He and K. J. Turner. There, the specification and validation of digital logic components
and circuits using LOTOS are addressed, with the philosophy that it should be easy for the hardware
engineer to translate a circuit schematic into a LOTOS specification, and then to analyze and verify the
properties of this specification. Because of this, a component library (DILL) is introduced.

Here, our aim is simply to show how these jobs can be dealt in E-LOTOS by means of an example:
a specification of a full adder.

First, we introduce some basic ideas. Digital signals are going to be modeled as two-level voltages,
specified as constants of the E-LOTOS data type Bit. The constant bit1 represents logic 1, constant bit0

represents logic 0, and constant bitX represents an unknown, arbitrary or “do not care” value, used as
the initial state of every signal (both inputs and outputs). This data type is specified in a module we
will see below, with the definition of several logical operations on signals.

Each basic logic gate (Inverter, And, Or, XOr, . . .) is modeled as an E-LOTOS process. For example,
And3[Ip1, Ip2, Ip3 , Op] is an E-LOTOS specification of an And gate with three inputs. An E-LOTOS
gate (for example, Ip1) models a physical wire or pin, and an E-LOTOS action (for example, Ip1(!bit1))
models a signal change on the wire (here, for logic 0 to logic 1). Larger circuits can be built from basic
logic gates using E-LOTOS parallel behaviours. For example, an And3 gate followed by an Inverter,

Ip2

Ip3

Ip1
IOpOp

can be modeled as:

And3[Ip1,Ip2,Ip3,Op]() |[Op]| Inverter[Op,IOp]()

Thus, connecting several wires and pins is modeled as synchronization at E-LOTOS gates. We package
the specification of a circuit into an E-LOTOS process in order to reuse it. The E-LOTOS gates of the
process are the inputs and outputs of the circuit, and all the other E-LOTOS gates are hidden. For
example, the circuit above can be specified as:

process And3Inverter [Ip1:Bit,Ip2:Bit,Ip3:Bit,IOp:Bit] is

hide Op:Bit in

And3[Ip1,Ip2,Ip3,Op]()

|[Op]|

5.7. Specifying digital logic 73

Inverter[Op,IOp]()

endhide

endproc

After this introduction, now we are going to specify a full-adder, as explained in [Flo94]. A full-
adder accepts three inputs including an input carry and generates a sum output and an output carry. A
full-adder can be built from two half-adders and an Or2 gate, as the following logic diagram shows:

Sint

Cint0

A

B Cout

S

Cint1Cin

Σ

Σ

Thus, we can specify a process Full-Adder as follows

process Full-Adder[A,B,Cin,S,Cout] is

hide Sint:Bit,Cint0:Bit,Cint1:Bit in

(

Half-Adder[A,B,Sint,Cint0]()

|[Sint]|

Half-Adder[Sint,Cin,S,Cint1]()

)

|[Cint0,Cint1]|

Or2[Cint0,Cint1,Cout]()

endhide

endproc

A half-adder accepts two binary digits on its inputs and produces two binary digits on its outputs, a
sum bit and a carry bit. A half-adder can be built from an And2 gate and a XOr2 gate, connected in
the following way:

��

��

Cin

S

B

A

We can specify it in E-LOTOS with the following process:

process Half-Adder [A:Bit,B:Bit,S:Bit,Cout:Bit] is

Xor2[A,B,S]()

|[A,B]|

And2[A,B,Cout]()

endproc

74 5. Examples

We have reached the logic gate level. We have to specify now the logic gates Or2, XOr2, and And2.
Like it is done in [TS94, JT97], we can specify a process that implements logic gates with two inputs and
which is parameterized by the binary logical operation that it must implement. The process is Logic2:

process Logic2[Ip1:Bit, Ip2:Bit,Op:Bit](bOp:BitOp) is

var bIn1:Bit:=bitX, bIn2:Bit:=bitX, bOut:Bit:=bitX, bOutNew:Bit:=bitX in

loop

sel

Ip1(?bIn1)
[]

Ip2(?bIn2)
[]

?bOutNew:=Apply2(bOp,bIn1,bIn2);
sel

Op(?bOut2) [(bOutNew = bitX) and (bOut = bitX) and(bOut2 <> bitX)];

?bOut:=bOut2
[]

Op(!bOutNew) [(bOutNew <> bitX) and (bOutNew <> bOut)];
?bOut:=bOutNew

endsel

endsel

endloop

endvar

endproc

Variables bIn1, bIn2, and bOut save the state of the pins. The first two branches of the outer selection
describe the possibility of new inputs. If the value of an input pin changes, it is saved in the corresponding
variable. The third branch describes the output. Variable bOutNew saves the value of the application
of the binary logical operation bOp to the values of the inputs. The second branch of the inner selection
describe the case when the inputs are known (that is, they are not bitX) and then the output is also
known (bOutNew<>bitX), and there is a change in the output (bOutNew<>bOut). The first branch
describes the case when the output is unknown, but the output pin takes a known value from outside,
for example, because there is feedback.

And now, by instantiating this process we can specify the needed logic gates:

process Or2[Ip1:Bit,Ip2:Bit,Op:Bit] is

Logic2[Ip1,Ip2,Op](orOp)

endproc

process XOr2[Ip1:Bit,Ip2:Bit,Op:Bit] is

Logic2[Ip1,Ip2,Op](xorOp)

endproc

process And2[Ip1:Bit,Ip2:Bit,Op:Bit] is

Logic2[Ip1,Ip2,Op](andOp)

endproc

Finally, we have to specify the Bit data type, with the logical operations.

module Bit_Mod is

type Bit is

bit1 |bit0 | bitX

endtype

5.7. Specifying digital logic 75

function not(b:Bit):Bit Bis

case b is

bit0 -> bit1

| bitX -> bitX

| bit1 -> bit0

endcase

endfun

function or(b1:Bit,b2:Bit):Bit is

case (b1,b2) is

(?b:Bit,bit0) -> b

| (bit0,bitX) -> bitX

| (bitX,bitX) -> bitX

| (bit1,bitX) -> bit1

| (?b:Bit,bit1) -> bit1

endcase

endfun

function and(b1:Bit,b2:Bit):Bit is

case (b1,b2) is

(?b:Bit,bit0) -> bit0

| (bit0,bitX) -> bit0

| (bitX,bitX) -> bitX

| (bit1,bitX) -> bitX

| (?b:Bit,bit1) -> b

endcase

endfun

function xor(b1:Bit,b2:Bit):Bit is

case (b1,b2) is

(?b:Bit,bit0) -> b

| (?b:Bit,bitX) -> bitX

| (?b:Bit,bit1) -> not(b)

endcase

endfun

type BitOp is

orOp | andOp | xorOp

endtype

function Apply2(bOp:BitOp,b1:Bit,b2:Bit):Bit is

case bOp is

orOp -> or(b1,b2)

| andOp -> and(b1,b2)

| xorOp -> xor(b1,b2)

endcase

endfun

endmod

76 5. Examples

Part II

Semantics

79

In this part we define and explain the E-LOTOS semantics. In Chapter 6 we give the trans-
lation from the concrete syntax, used to write the specifications, to the abstract syntax, used
to define the semantics.

In Chapter 7 we define the static semantics of the Base Language, that defines which E-LOTOS
terms (in the abstract syntax) are semantically correct, and in Chapter 8 we show the dynamic
semantics, that defines how an E-LOTOS specification can evolve. In Chapter 9 we show the
semantics of a simple module system.

We have followed the semantics introduced in [Que98] as much as possible. However, [Que98]
is a draft and is still being revised. From our point of view, it suffers from some problems
which are being discussed. In this report we give our proposed solution to these problems.

80

6 Translation to Abstract Syntax

In this chapter we give the translation from concrete syntax (syntax used by the specifier, that is, the
User Language we have seen in the previous chapters) to abstract syntax (syntax used to define the
semantics of E-LOTOS).

6.1 Introduction

The aims of the translation to abstract syntax are:

• remove syntactic sugar, that is, remove constructs that are non-primitive in the sense that they can
be expressed by using other constructs (which are primitives).

• unify functions and processes, by translating functions to processes where a return type is added
(see Section 6.12).

• unify expressions and behaviours, by translating those expressions that do not have a direct trans-
lation to behaviours. For example, the expression

trap

exception Hd0 is 0 endexn

in

Head (xs) [Hd0]

endtrap

has a direct translation to a behaviour (translating the value 0 and the function instantiation), but

E1 andalso E2

has not (see Section 6.14).

• remove out parameters, by translating both process declarations and process instantiations.

• add default values in constructs with optional parameters.

• add new constructs and write annotations in some constructs in order to define in an easier way the
semantics.

In the following sections we define how constructs that are not trivially translated to abstract syntax
are translated. The constructs that are not present in the following sections are translated removing (if
any) the final keywords as endtrap, endhide, etc; and adding default values for optional parameters
not present.

The translation rules are given in the form

t1
abs

= t2

82 6. Translation to Abstract Syntax

meaning that the E-LOTOS term t1 is translated to the E-LOTOS term t2. Sometimes t2 is not in
abstract syntax (because we can use another rule to translate it), so it is assumed that an E-LOTOS
term is translated by applying these rules until there are no more rules we can apply.

Bracketed syntax as sel B1[]B2[] . . .[]Bn endsel are translated to B1[](B2[] . . . []Bn). An ab-
stract syntax term is a syntactic tree and we do not need parentheses. Since we do not draw trees we
will sometimes use parentheses () to ease the understanding of the abstract syntax terms but they have
no meaning.

Records

In the abstract syntax, all record terms: record types RT , record patterns RP , and record of values RN ,
are named, that is, each field is preceded by a label. Thus, positional record terms have to be translated
as follows:

T1, . . .,Tn
abs
= $1 => T1, . . .,$n => Tn

P1, . . .,Pm
abs
= $1 => P1, . . .,$m => Pm

N1, . . .,Np
abs
= $1 => N1, . . . ,$p => Np

where $1, $2, . . . are the “invented” labels. The abstract syntax uses identifiers beginning with $ when
they are introduced by this translation. This is done in order to do not have conflicts with the user
identifiers.

Abstract syntax context

A context S is used to translate process declarations and process instantiations. It has the following
grammar:

S ::= Π ⇒ Pos positional information (S1)

| Π ⇒ gates([G1, . . . , Gn]) formal gate list (S2)

| Π ⇒ params([V1, . . . , Vp]) formal parameter list (S3)

| Π ⇒ exceptions([X1, . . . , Xm]) formal exception list (S4)

| S ,S union (S5)

• Π⇒Pos means that Pos is the set of positions of out parameters in the process Π, needed to remove
these parameters in a process instantiation.

• Π⇒ gates([G1, . . . , Gn]) means that G1, . . . , Gn are the names of the formal gates in process Π. It
is needed when the abbreviated gate list ... is used.

• Π ⇒ params([V1, . . . , Vp]) means that V1, . . . , Vp are the names of the formal parameters.

• Π ⇒ exceptions([X1, . . . , Xm]) means that X1, . . . , Xm are the formal exceptions identifiers.

6.2. Actions 83

6.2 Actions

The abstract syntax for actions in E-LOTOS is

G ($1 => P1) @P2 E start〈N〉.

That is, there are not optional parameters, and the clause start〈N〉 has been added. This annotation
represents the time since the action was enabled, so N must be a value of the data type time.

Note how the pattern representing the value communicated through the gate is a record pattern with
one field called $1. It is due to the form in which gates are represented in [Que98]. A gate G which has
been declared of type T can communicate values which are records with one field (called $1) of type T .
Hence, the pattern, which has to be pattern-matched against the type ($1 => T), has to be of the form
($1 => P1).

When an action is translated the default values for the optional parameters have to be given: the
pattern P1 is () by default, P2 is any:time, and E is true (which abstract syntax is exit($1 => true));
and the clause start〈0〉 has to be added.

6.3 Successful termination without values

The behaviour null finishes immediately without producing any binding, so it is syntactic sugar for
exit() (see next section):

null
abs
= exit().

6.4 Successful termination with values

exit(RN) is a new abstract syntax behaviour which is not in the User Language. It represents a behaviour
that finishes immediately, returning the values indicated by RN , which is a list V1 =>N1, . . . , Vn =>Nn. It
is used in the definition of the semantics to represent the bindings between variables and values produced
by a behaviour, as we will see in the next chapter.

6.5 Interleaving operator

The interleaving operator is syntactic sugar for the parallel operator when the list of gates on which the
processes have to synchronize is empty. Thus,

B1 ||| B2
abs
= B1 |[]| B2.

Note that, in the abstract syntax, the parallel operator may have an empty list of gates.

6.6 Exception raising

An exception raised with the raise operator has the same meaning as if the exception is raised with
the signal operator, if the exception is in the scope of a trap operator. But if the exception is not in
the scope of a trap behaviour, the raise operator blocks time. Since any behaviour behind the signal
operator is not executed if the raised exception is trapped, we have the following translation

84 6. Translation to Abstract Syntax

raise X [(E)]
abs
= signal X(E); block

The default expression is exit($1 => ()). That is, when no expression is given in the specification, the
value () is sent together with the exception.

6.7 Conditional operator

The if − then− else instruction is syntactic sugar for a case where the expression on which the choice
is made is a boolean expression and there are two possibilities. In order to achieve this translation, an
if − then− else behaviour is translated in two steps. First, if there are elsif clauses, they are removed
in the following way:

if E1 then B1 elsif E2 then B2 else B3 endif
def
=

if E1 then B1 else if E2 then B2 else B3 endif endif

Second, when there is no elsif clause, the following translation is made:

if E then B1 else B2 endif
def
=

case E:bool is true -> B1 | false -> B2

6.8 Imperative features

A loop like loop B endloop can be stopped by means of the predefined exception inner. This is achieved
by translating the loop in the following way:

loop B endloop
def
=

trap exception inner($1 => ()) is exit()

in loop B

A “named” loop, that is, a loop where the name of the exception which breaks the loop has been given,
and where the type of the values that go with the exception is declared, is translated in the following
way:

loop X[:T] in B endloop
def
=

trap exception X($1 => ?x):T is exit($1 => x)
in loop B

where the type T is () by default.

The break instruction is used to stop a loop. Since the loops are translated to trap behaviours, the
break instruction has to be translated to exception raising:

break [X [(E)]]
abs
= raise X (E)

The default exception raised is the exception inner, and the default expression is exit($1 => ()).

6.9. Process declaration 85

The while loop is syntactic sugar for a loop whose body is an if − then− else: if the (expression)
condition of the while is true then the body of the while is executed, and if it is false, then the loop is
finished. Thus, the while is translated as follows:

while E do B endwhile
def
=

loop if E then B else break endif endloop

As we saw, the for loop is syntactic sugar for a while which has an initialization before it starts and
whose body has an “increment” behaviour at the end:

for E1 while E2 by E3 do B endfor
def
=

E1; while E2 do B;E3 endwhile

6.9 Process declaration

Regarding process declarations, there are several things to do in order to translate them to abstract
syntax. First we have to record information needed later in the translation of the process instantiations.
So, if the following process declaration

process Π [G1 : T1, . . . ,Gn : Tn] (FPL) raises [X1 : T ′′
1 , . . . ,Xm : T ′′

m]

is B
endproc

is being translated, where

FPL = [in|out] V1 : T ′
1, . . . , [in|out] Vp : T ′

p

stands for the list of formal parameters, the following information is recorded in the context S:

• the positions of the out parameters. This is needed to remove actual parameters in the process
instantiation,

Π ⇒{j | out Vj : Tj ∈ FPL}.

• the names of the formal gates, needed if the abbreviated gate parameter list ... is used in the
instantiation of the process,

Π ⇒ gates([G1, . . . , Gn]).

• the names of the formal parameters, for the same reason as above,

Π ⇒ params([V1, . . . , Vp]).

• the names of the formal exceptions,

Π ⇒ exceptions([X1, . . . , Xm]).

Second, we have to translate the process declaration in order to remove out parameters (if any).
In the abstract syntax process declaration the parameter list has only in parameters, and a new clause
indicating the “return” type of the process (formed from the out parameters) is added.

In the body of the process, (old) out parameters are translated to local variables, so a local variable
declaration has to be included, and the values associated to these variables when the body of the process

86 6. Translation to Abstract Syntax

finishes are returned outside the process by means of an exit behaviour (see bellow). So, the process
declaration translation is as follows:

process Π [G1 : T1, . . . ,Gn : Tn](FPL) raises [X1 : T ′′
1 , . . . ,Xm : T ′′

m]

is B endproc
def
=

process Π [G1 : T1, . . . ,Gn : Tn](I) :OT raises [X1 : T ′′
1 , . . . ,Xm : T ′′

m]

is var O in B ; exit(RV)

where

• I stands for the formal input parameters, I = Vi1:Ti1, . . . ,Vik
:Tik

, where

{Vi1:Ti1 , . . . , Vik
:Tik

} = {Vi:Ti | [in] Vi:Ti ∈ FPL} i1 < i2 < . . . < ik

• OT stands for the return type of the process, OT = ($1 => Ti1, . . . ,$l => Til
), where

{Ti1 , . . . , Til
} = {Ti | out Vi:Ti ∈ FPL} i1 < i2 < . . . < il

Note that when there are no out parameters the type OT is (). In [Que98] the type none is used
when there are no out parameters, but this gives problems because none is used when a process does
not finish. We have proposed that when a process finishes but does not return anything (because it
has no out parameter) it has type (), and it has been accepted.

• O stands for the variables that represent the out parameters, O = Vi1:Ti1, . . .,Vil
:Til

, where

{Vi1:Ti1 , . . . , Vil
:Til

} = {Vi:Ti | out Vi:Ti ∈ FPL} i1 < i2 < . . . < il

• and RV stands for the returned variables, RV = $1 => Vi1, . . . ,$l => Vil
, where

{Vi1 , . . . , Vil
} = {Vi | out Vi:Ti ∈ FPL} i1 < i2 < . . . < il

Example 6.1 The process

process P [G:int](v:int,out w:int) is

G(!v);G(?w)

endproc

is translated to

process P [G:int](v:int) raises [] is

var w:int in

G(!v);G(?w);exit($1 => w)

and the following information is saved in the context S:

P ⇒{2}
P ⇒ gates([G])
P ⇒ params([v, w])
P ⇒ exceptions([])

6.10. Process instantiation 87

6.10 Process instantiation

A process instantiation is translated to abstract syntax in two steps. First, if actual gates, parameters,
or exceptions are given in abbreviated form, then, the non-present ones are provided, by using the
information in the context S. The following rule is used in this step:

S ⊢ Π ⇒ gates([G1, . . . , Gn])
S ⊢ Π ⇒ params([V1, . . . , Vp])

S ⊢ Π ⇒ exceptions([X1, . . . , Xm])

Π [GPL](APL)[XPL]
abs
= Π [g1, . . . , gn](ep1, . . . , epp)[x1, . . . , xm]

where

• if GPL = Gk1
=>G′

k1
, . . . ,Gkr

=>G′
kr

[,...] and Gki
∈ {G1, . . . , Gn} then

gi =

{

G′
i iff Gi => G′

i ∈ GPL
Gi otherwise

• if APL = Vj1=>APj1, . . .,Vjs
=>APjs

[,...] and Vji
∈ {V1, . . . , Vp} then

epi =







E′
i iff Vi => APi ∈ APL

P ′
i iff Vi => APi ∈ APL

Vi otherwise

where APi must be an expression if parameter i is an in parameter, and a pattern if parameter i is
an out parameter. In the latter case, the pattern APi must be able to be pattern matched against
a value of the corresponding type.

• if XPL = Xl1=>X
′
l1
, . . . ,Xlq=>X

′
lq

[,...] and Xli ∈ {X1, . . . , Xp} then

xi =

{

X ′
i iff Xi => X ′

i ∈ XPL
Xi otherwise

Second, the actual parameters in the position of out parameters (which have to be patterns) are
removed. This is done by means of a trap behaviour that traps with an exit clause the returned values
and assigns them to the actual out parameters. The following rule is applied:

S ⊢ Π ⇒ Pos

Π [GPL] (AP1, . . . ,APn) [XPL]
abs
= trap exit ?$param is (outRP) := exit($1 => $param)

in Π [GPL] (inRE) [XPL]

[Pos 6= ∅]

where

• outRP = $1 => APi1, . . .,$s =>APis
with i1 < i2 < . . . < is and {i1, . . . , is} = Pos;

• inRE = APj1, . . . ,APjk
with j1 < j2 < . . . < jk and {j1, . . . , jk} = {1, . . . , n} − Pos; and

• $param is a new variable, which cannot be used by the specification writer.

Example 6.2 The process declared in Example 6.1 can be instantiated as follows:

P[G′
](5, ?a)

which is translated into abstract syntax to

trap exit ?$param is ($1 => ?a) := exit($1 => $param)

in P[G′](5)[]

88 6. Translation to Abstract Syntax

6.11 Case operator

The case operator is translated to abstract syntax by adding a final clause to ensure that the pattern-
matching is exhaustive, if all the branches (but the last one) fail then the last one (which never fails)
raise the predefined exception Match.

case E:T is BM endcase
def
=

case E:T is BM | any:T -> signal Match

The case with several expressions is translated in the same way.

6.12 Function declaration

A function declaration is translated to a process declaration

function F ([in|out]V1:T1, . . . ,[in|out]Vm:Tm) :T raises [X1:T
′
1, . . . ,Xp:T

′
p] is E endfunc

def
=

process F [] ([in|out]V1:T1, . . . ,[in|out]Vm:Tm,out $result:T) raises [X1:T
′
1, . . . ,Xp:T

′
p]

is ?$result := E endproc

where a new out parameter is added that represents the result of the function. We have propose to
include this new parameter because in [Que98] the value returned by a function is not taken into account
in the translation to abstract syntax.

An infix function declaration is translated in the same way.

Example 6.3 Let us see how the (very simple) function declaration

function two:int is

2
endfunc

is translated.

First, it is translated to the following process declaration:

process two[](out $result:int) raises [] is

?$result := 2
endproc

which is then translated to abstract syntax as

process two[]():($1 => int) raises [] is

var $result:int in

?$result := exit($1 => 2) ; exit($1 => $res)

6.13 Type expressions

Although in the User Language there is no anonymous type, that is, every type has a name, in the abstract
syntax, anonymous types are accepted. Thus, a record type expression enclosed between brackets (RT)
is considered a type expression.

6.14. Expressions 89

6.14 Expressions

In the abstract syntax, expressions are considered as a kind of behaviour. An expression is a particular
case of behaviour which can only raise exceptions and terminate (possibly assigning values to variables)
but which cannot communicate on gates or delay. Most of the expressions can be seen as the corresponding
behaviour, and others need an explicit translation. We are going to show now these latter ones.

Values

Values, that is, expressions which are in normal form, are translated by using the new abstract operator
exit. By using this operator, a value expression N is translated to exit($1 => N), that is, a value
expression N is a behaviour that associates the identifier $1 with the value N .

We have to note that only the values which are situated in a place of an expression (where an expression
is needed) are translated in this way. For example, if we have the assignment ?p := (x => 8,y => 3), then
the record (x => 8,y => 3) is an expression, so it is translated as indicated above, and the assignment in
abstract syntax would be ?p := exit($1 => (x => 8,y => 3)), where the values 8 and 3 do not need to be
translated.

andalso operation

The expression E1 andalso E2 returns the value of E2 if E1 evaluates to true, and false otherwise. It is
translated by using an if − then − else, that needs to be translated later.

E1 andalso E2
abs
= if E1 then E2 else false endif

orelse operation

The expression E1 orelse E2 returns the value of E2 if E1 evaluates to false, and true otherwise. This
expression is translated as the last one by using an if − then − else.

E1 orelse E2
abs
= if E1 then true else E2 endif

Equality operation

E-LOTOS provides an equality operation that compares the values of two expressions of any type. This
is done by means of a case behaviour that force to evaluate the expressions and then compare them with
other case. The translation of this equality operator is as follows:

E1 = E2
def
=

case (E1:any, E2:any) is (?x,?y)-> case x:any is !y->true | any:any->false

Inequality operation

E1 <> E2 returns false if E1 = E2 returns true and vice-versa. So we can translate first

E1 <> E2
def
=

if E1 = E2 then false else true endif

and then translate both E1 = E2 and the if − then− else.

90 6. Translation to Abstract Syntax

Select field operation

The required value is obtained by means of a case. If the operation E.V is correct, then the expression
E has to be able to be reduced to a record of values with a field named V . This value can be matched
against the pattern (V => ?x,etc). The value of the variable x after the pattern matching is the desired
valued.

E . V
abs
= case E:any is (V => ?x,etc) -> x

Explicit typing operation

An explicit typing E:T is translated as follows:

E:T
abs
= case E:T is ?x -> x

The operational semantics of the case operator ensures that E:T only has meaning when the expression
E has type T .

Function instantiation

A function instantiation is translated to a process instantiation with a new actual parameter ?$1 that
will be associated with the value that the function body returns:

F(APL) [XPL]
abs
= F(APL,?$1) [XPL]

Example 6.4 Let us see how the following use of the function in Example 6.3,

?x := two

is translated.

First, the function instantiation is translated to a process instantiation

?x := two[](?$1)[]

which is then translated to abstract syntax as

?x := trap exit ?$param is ($1 => ?$1) := exit($1 => $param)

in two[]()[]

7 Static Semantics of Base Language

The aim of the static semantics of a language is to check decidable properties of a program, in this case
a specification in E-LOTOS. The most common property is type checking, that ensures, in a strongly
typed language such as E-LOTOS, that no type error will occur at execution or evaluation time. Another
property checked by the E-LOTOS static semantics is that variables are always read after they have been
assigned a value.

In the following sections we describe the properties checked by the static semantics in the Base
Language, as well as the contexts and inference rules used for the different constructs in E-LOTOS.

7.1 Introduction

In the Base Language, static semantics checks the following properties:

• That all the objects that appear in a behaviour have the correct type. For example, that values
sent through a gate have the same type as values that the gate can communicate, that a process
instantiation has parameters with correct types, or that in the case operator all possible patterns
have the right type.

• What is the type of a behaviour, that is, what bindings between variables and types the behaviour
produces, and whether the behaviour can finish immediately or it has to carry out an action or raise
an exception before finishing. Static semantics judgements that check the type of a behaviour B are
as follows:

C ⊢ B =⇒ exit 〈|RT |〉,

meaning that in the context C behaviour B finishes producing bindings RT , or

C ⊢ B =⇒ guarded 〈|RT |〉.

meaning that in the context C behaviour B produces bindings RT and it cannot finish initially, i.e.,
without carrying out an action or raise an exception. As we explain below, record type terms, RT ,
are used to indicate the bindings between variables and types that a behaviour produces.

• That time is deterministic, by rejecting behaviours that could be time nondeterministic. Static
semantics forbids behaviours like

(?x:=5 [] ?x:=2); wait(1)

that, as we saw, is time nondeterministic: when one unit of time has passed, variable x may have
either value 5 or 2. This behaviour is rejected by requiring that behaviours composed with the
selection operator must be guarded, i.e., that they must do an action on a gate or raise an exception
before they finish (see Section 7.4).

• That variables are used in the right way, i.e., that a variable that has not been assigned a value yet is
never read, and that a variable is never assigned a value of an incompatible type (see Section 7.22).

92 7. Static Semantics of Base Language

Contexts

In the previous judgements, a context C appears. It keeps all the information related to identifiers that
have already appeared in the specification and that are visible in this moment. Contexts are built with
this grammar:

C ::= K ⇒ T predefined constant (C1)

| V => T initialized variable (C2)

| V ⇒?T typed variable (C3)

| S ⇒ type type (C4)

| S ≡ T type equivalence (C5)

| T ⊑ T ′ subtype (C6)

| C ⇒ (RT)→ S constructor (C7)

| Π ⇒ [gate〈($1 => T1)〉, . . . ,gate〈($1 => Tm)〉]
(V1:T

′
1, . . . , Vp:T

′
p)

[exn〈($1 => T ′′
1)〉, . . . ,exn〈($1 => T ′′

n)〉]→ exit 〈|RT |〉

process identifier (C8)

| Π ⇒ [gate〈($1 => T1)〉, . . . ,gate〈($1 => Tm)〉]
(V1:T

′
1, . . . , Vp:T

′
p)

[exn〈($1 => T ′′
1)〉, . . . ,exn〈($1 => T ′′

n)〉]→ guarded 〈|RT |〉

process identifier (C9)

| G ⇒ gate〈(RT)〉 gate (C10)

| X ⇒ exn〈(RT)〉 exception (C11)

| trivial (C12)

| C,C disjoint union (C13)

where each element has the following meaning:

• K⇒T means that K is a predefined constant of type T . This information is introduced in the initial
context when the predefined library of E-LOTOS is read. Any specification is checked in a context
with this information.

• V => T means that variable V has been initialized, that is, V has been given a value, and this value
has type T .

• V ⇒?T means that variable V has been declared in a var behaviour, so it is restricted to have a
value of type T .

• S ⇒ type means that S is the name given to a declared type.

• S ≡ T means that types S and T are equivalent. When this information is included in the context,
we use it to denote that T is the definition of the identifier S. We also write T ≡ T ′ as a shorthand
for T ⊑ T ′ and T ′ ⊑ T .

• T ⊑ T ′ means that type T is a subtype of type T ′, that is, all values of type T are also values of
type T ′.

• C⇒(RT)→S means that C is a constructor of the datatype S, and it has arguments of type (RT).

• Π ⇒ [gate〈($1 => T1)〉, . . . ,gate〈($1 => Tm)〉]
(V1:T

′
1, . . . , Vp:T

′
p)

[exn〈($1 => T ′′
1)〉, . . . ,exn〈($1 => T ′′

n)〉]→ exit 〈|RT |〉
means that process Π has been declared; that it has m formal gates, that can communicate values
of types Ti; that it has p formal input parameters called V1, . . . , Vp of types T ′

i ; that it has n formal
exceptions, which are raised together with values of types T ′′

i ; and that the body of the process

7.1. Introduction 93

produces bindings RT , and it may perform no action or raise no exception before finishing, that is,
the body is an exit behaviour.

• Π ⇒ [gate〈($1 => T1)〉, . . . ,gate〈($1 => Tm)〉]
(V1:T

′
1, . . . , Vp:T

′
p)

[exn〈($1 => T ′′
1)〉, . . . ,exn〈($1 => T ′′

n)〉]→ guarded 〈|RT |〉
means the same as above but now the body of the process performs an action or raises an exception
before finishing, that is, the body is a guarded behaviour.

• G⇒gate〈(RT)〉 means that gate G has been declared, and it can communicate values of type (RT).
In [Que98] gates are handled in the following way: A gate G which has been declared of type T can
communicate values which are records with one field (called $1) of type T . Thus, G ⇒ gate〈(RT)〉
is always of the form G ⇒ gate〈($1 => T)〉. We are going to follow this decision in order to do not
separate from the proposed standard although we think that it would be clearer to save only the
type T , and have things like gate〈T 〉. Nevertheless, we will write gate〈($1 => T)〉 when we want to
do explicit that G communicates values of type T .

• X ⇒ exn〈(RT)〉 means that exception X has been declared, and it is raised together with values of
type (RT). As with gates, (RT) will be always of the form ($1 => T).

Operations used on contexts are the “,” (disjoint union), “⊙” (matching union), “;” (context overrid-
ing), and “−” (subtraction). Their meaning is as follows:

• C1, C2 represents the union of the bindings of C1 and C2, and it is defined only if C1 and C2 bind
different identifiers.

• C1 ⊙ C2 denotes the matching union of contexts C1 and C2. It is defined only if the common names
of C1 and C2 have the same bindings in both contexts. By considering contexts as functions from
identifiers to their declaration, the formal definition of the operator ⊙ is:

(C1 ⊙ C2)(id) =







C1(id) if id 6∈ Dom(C2)
C2(id) if id 6∈ Dom(C1)
C1(id) if C2(id) = C1(id)

where Dom(C) denotes the identifiers bound by C.

• C1 ; C2 represents the context with all the bindings of C2, and any binding from C1 not overridden by
C2. That is,

(C1 ; C2)(id) =

{

C2(id) if id ∈ Dom(C2)
C1(id) if id 6∈ Dom(C2)

• C−{V1, . . . , Vn} represents the context C where all bindings related to variables in {V1, . . . , Vn} have
been removed.

The precedence of these operators is ⊙ > , > ; > −.

Bindings

When a behaviour is executed it can perform actions, raise exceptions, and it can also assign variables.
The assignment ?V := E produces a binding between variable V and type T of the value of the expression
E. This binding, V => T , represents that variable V has been assigned a value of type T . Bindings are
also produced by means of pattern-matching. When a behaviour produces more than one binding, these
bindings are put together in a list V1 => T1, . . . , Vn => Tn which has the same syntax as a record type
expression. Thus, we will use record type expressions, RT , to represent the bindings produced by a
behaviour.

94 7. Static Semantics of Base Language

It is important to know the bindings produced by a behaviour B when it finishes, because this
information can be used by a behaviour B′ after B, for example in the behaviour B;B′. Behaviour B′

knows the bindings produced by B if it is executed in a context with these bindings (see Section 7.3 for
the static semantics of the sequential composition). The binding V =>T can also be part of a context, so
we will use RT as a record type expression, a list of bindings produced by a behaviour, and a context,
interchangeably. We do the same with bindings produced by pattern-matching which are introduced in
the context (see, for example, Section 7.2).

Due to the way value N is translated into the behaviour exit($1 => N), the identifier $1 is used to
keep the value returned by a behaviour1. So, the behaviour exit($1 => 3), which is the translation of
the integer value 3, finishes by producing binding $1 => int, and this means that exit($1 => 3) returns

an integer (see Example 7.9 in Section 7.6). In the inference rules of the following sections, E denotes
a behaviour which is a translation of an expression. When we want that this expression only returns a
value, we require it to be of type exit 〈| $1 => T |〉. For example, E is a boolean expression if it is of type
exit 〈| $1 => bool |〉.

Judgements

The relation between the predicates guarded and exit can be expressed with the following general inference
rule:

C ⊢ B =⇒ guarded 〈|RT |〉

C ⊢ B =⇒ exit 〈|RT |〉
(7.14)

That is, guarded is a stronger condition. Thus, if we require a behaviour B to be an exit 〈|RT |〉 behaviour,
then a guarded 〈|RT |〉 behaviour may be used instead.

By relating these judgements with the notion of subtyping (we will see the subtyping judgements
below), we have the following inference rules:

C ⊢ B =⇒ exit 〈|RT |〉

C ⊢ RT ⊑ RT ′

C ⊢ B =⇒ exit 〈|RT ′ |〉

(7.15)

C ⊢ B =⇒ guarded 〈|RT |〉

C ⊢ RT ⊑ RT ′

C ⊢ B =⇒ guarded 〈|RT ′ |〉

(7.16)

That is, if we can prove that behaviour B produces bindings RT and, by seeing RT as a record type, we
can prove that RT is a subtype of RT ′, then we can deduce that behaviour B produces bindings RT ′.

Although previous judgements are the most important ones, since they refer to behaviours, we have
also other judgements, needed to check properties of E-LOTOS elements that are not behaviours, and
which are used to deduce facts regarding the latter.

Thus, we have judgements to check the type of a value, as follows

C ⊢ N ⇒T T,

meaning that in context C value N has type T . The same kind of judgement is used to deduce the
(record) type of a record of values,

C ⊢ RN ⇒T RT.

1Behaviours that return values are those which were expressions before translating into abstract syntax.

7.1. Introduction 95

We can relate these judgements with the notion of subtyping by means of the following inference rules:

C ⊢ N ⇒T T

C ⊢ T ⊑ T ′

C ⊢ N ⇒T T ′

(7.17)

That is, if we can deduce from the context C that value N has type T , and that T is a subtype of type
T ′, then we can also prove from context C that value N has type T ′. In other words, we can use a value
of type T where a value of type T ′ is required, provided that T ⊑ T ′ can be proved. We have a similar
rule for record types:

C ⊢ RN ⇒T RT

C ⊢ RT ⊑ RT ′

C ⊢ RN ⇒T RT ′

(7.18)

As we see in Section 7.28.3 the order of the fields of a record is not important in the abstract syntax
because the fields are named.

Another kind of judgement we use is that relative to pattern matching. The judgement

C ⊢ (P ⇒PM T) 7→ 〈|RT |〉

means that in context C, when we match pattern P against type T , we succeed and bindings RT (between
variables in P and types in T) are produced. And there are also judgements to deal with record pattern
matching:

C ⊢ (RP ⇒PM RT) 7→ 〈|RT ′ |〉

Judgements to deal with the pattern matching of all the branches of a case behaviour against a type
are also used:

C ⊢ (BM ⇒PM T) =⇒ exit 〈|RT |〉

C ⊢ (BM ⇒PM T) =⇒ guarded 〈|RT |〉

where BM stands for all the possibilities (patterns) and associated behaviours in a case body.

As we have already seen, we also have judgements that assert that a type T is a subtype of another
type T ′, with the following form:

C ⊢ T ⊑ T ′

The subtyping relation is a preorder, that is, it is reflexive and transitive, which is established by the
following rules:

C ⊢ T ⊑ T (7.19)

C ⊢ T ⊑ T ′ C ⊢ T ′ ⊑ T ′′

C ⊢ T ⊑ T ′′
(7.20)

We will write T ≡ T ′ as abbreviation for T ⊑ T ′ and T ′ ⊑ T .

Similarly, the judgement
C ⊢ RT ⊑ RT ′

states that the record type RT is a subtype of the record type RT ′, and record subtyping is also a
preorder:

C ⊢ RT ⊑ RT (7.21)

96 7. Static Semantics of Base Language

C ⊢ RT ⊑ RT ′ C ⊢ RT ′ ⊑ RT ′′

C ⊢ RT ⊑ RT ′′
(7.22)

We will write RT ≡ RT ′ as abbreviation for RT ⊑ RT ′ and RT ′ ⊑ RT .

Another kind of judgements is the one that asserts that a RT is really a record type, that is, it is
well-formed:

C ⊢ RT ⇒ record

We will see in Section 7.28 how well-formed records are.

There is a general axiom that asserts that for any binding J from a context C, J may be inferred from
that context:

C, J ⊢ J (7.23)

New inference rules

There are some gaps in the semantics of pattern-matching defined in [Que98]. For example, the pattern
(x => ?a,y => ?b) cannot be matched against the type (y => int,x => int) although it is said that the
order of the fields are not important when they are named.

We have propose to include (there is nothing similar in [Que98]) a rule that relates pattern-matching
with type equivalence:

C ⊢ T1 ≡ T2

C ⊢ (P ⇒PM T1) 7→ 〈|RT |〉

C ⊢ (P ⇒PM T2) 7→ 〈|RT |〉

(7.24)

This is needed, for example, if we want to pattern-match (x =>?a,y =>?b) against the type (y => int,x =>

int).

We need also a rule for record type equivalence:

C ⊢ RT1 ≡ RT2

C ⊢ (RP ⇒PM RT1) 7→ 〈|RT |〉

C ⊢ (RP ⇒PM RT2) 7→ 〈|RT |〉

(7.25)

We have also propose to include in [Que98] an inference rule relating the type of values a gate can
communicate and subtyping. If we know that a gate G can communicate values of type T and we know
that T ⊑ T ′, then we know that G communicates values of type T ′.

C ⊢ G ⇒ gate〈($1 => T)〉

C ⊢ T ⊑ T ′

C ⊢ G ⇒ gate〈($1 => T ′
)〉

(7.26)

This is needed, for example, to instantiate a process like Router in Section 3.3. There, we define the
extensible type packet,

type packet is

(de => dest, etc)

endtype

7.2. Actions 97

and Router has three gates that can communicate values of this type, that is, Router can be used to
send values that are records with at least one field called de of type dest. Thus, if we define the type
completePacket,

type completePacket is

(de => dest, value => data)

endtype

we should be able to instantiate Router with a gate inCompP declared of type completePacket. But this
is not possible (see Section 7.26) if we have not the rule 7.26. By using this rule we have

C ⊢ inCompP ⇒ gate〈($1 => completePacket)〉

C ⊢ completePacket ⊑ packet

C ⊢ G ⇒ gate〈($1 => packet)〉
(7.26)

In the following sections we will comment inference rules associated with the different elements of
E-LOTOS. We will show examples of applications in each case.

7.2 Actions

We begin by showing the rule associated with a communication or synchronization through a gate of
the form

G ($1 => P1) @P2 E start〈N〉.

The inference rule is as follows:

C ⊢ G ⇒ gate〈($1 => T)〉

C ⊢ (($1 => P1) ⇒PM
($1 => T)) 7→ 〈|RT1 |〉

C ⊢ (P2 ⇒PM time) 7→ 〈|RT2 |〉

C; RT1, RT2 ⊢ E =⇒ exit 〈| $1 => bool |〉

C ⊢ N ⇒T time

C ⊢ G ($1 => P1) @P2 E start〈N〉 =⇒ guarded 〈|RT1, RT2 |〉

(7.27)

with the additional condition that RT1 and RT2 are disjoint, that is, they bind different variables.

It means that from the context C we can deduce that action G ($1 => P1) @P2 E start〈N〉 is seman-
tically correct and it produces bindings RT1, RT2, by doing an action before terminating, provided that
all the following conditions are fulfilled:

1. G is a gate identifier declared in the context C and the gate can communicate values of type ($1=>T),

C ⊢ G ⇒ gate〈($1 => T)〉.

2. The pattern matching of pattern ($1=>P1) against type ($1=>T) succeeds, and it produces bindings
RT1,

C ⊢ (($1 => P1) ⇒PM ($1 => T)) 7→ 〈|RT1 |〉.

3. Pattern P2 matches against type time by producing bindings RT2,

C ⊢ (P2 ⇒PM time) 7→ 〈|RT2 |〉.

98 7. Static Semantics of Base Language

4. In the context C; RT1, RT2, that is, in the context which is the result of adding to C the bindings
previously produced, expression E finishes and it returns a value of type bool,

C; RT1, RT2 ⊢ E =⇒ exit 〈| $1 => bool |〉.

5. Value N has type time,
C ⊢ N ⇒T time.

In fact, when the static semantics is checked, every action has the clause start〈0〉 (included by
translating to abstract syntax), so this condition becomes 0 ⇒T time which must be true in any
context. We have propose to remove it.

Example 7.1 Let us see what kind of behaviour outP(!3) is. This behaviour is translated to abstract
syntax as follows:

outP($1 => !exit($1 => 3)) @any : time exit($1 => true) start〈0〉.

By using inference rule 7.27, we can deduce that

C ⊢ outP ⇒ gate〈($1 => int)〉

C ⊢ (($1 => !exit($1 => 3)) ⇒PM
($1 => int)) 7→ 〈| |〉

C ⊢ (any : time ⇒PM time) 7→ 〈| |〉

C ⊢ exit($1 => true) =⇒ exit 〈| $1 => bool |〉

C ⊢ 0 ⇒T time

C ⊢ outP($1 => !exit($1 => 3)) @any : time exit($1 => true) start〈0〉 =⇒ guarded 〈| |〉
(7.27)

That is, outP(!3) is a behaviour that does not finish immediately, but it has to do an action before
finishing (guarded), and it does not return any value nor produce any bindings between variables and
types (〈| |〉).

The first premise is an application of the axiom 7.23, provided that the information

outP ⇒ gate〈($1 => int)〉

exists in the context C.

The second premise is proved in Example 7.28 in Section 7.31.4. The third premise is fulfilled thanks to:

C ⊢ time ⇒ type

C ⊢ (any : time ⇒PM time) 7→ 〈| |〉
(7.106)

Finally, the fourth premise is proved in the following way:

C ⊢ true => bool

C ⊢ true ⇒T bool
(7.95)

C ⊢ $1 => true ⇒T $1 => bool
(7.100)

C ⊢ exit($1 => true) =⇒ exit 〈| $1 => bool |〉
(7.33)

Example 7.2 Let us study now a communication in which an integer is received, by considering the
behaviour

inP(?x : int).

Its translation to abstract syntax is

inP($1 => ?x : int) @any:time exit($1 => true) start〈0〉.

7.2. Actions 99

By using rule 7.27, we can deduce that

C ⊢ inP ⇒ gate〈($1 => int)〉

C ⊢ (($1 => ?x : int) ⇒PM
($1 => int)) 7→ 〈|x => int |〉

C ⊢ (any : time ⇒PM time) 7→ 〈| |〉

C; x => int ⊢ exit($1 => true) =⇒ exit 〈| $1 => bool |〉

C ⊢ 0 ⇒T time

C ⊢ inP($1 => ?x : int) @any : time exit($1 => true) start〈0〉 =⇒ guarded 〈|x => int |〉
(7.27)

that is, action inP(?x : int) is a behaviour that finishes after doing an action, and it binds variable x
with type int (after the execution of this action, it is known that variable x has a value of type int).

The first premise is proved by axiom 7.23, if the corresponding information is in the context C. The
second premise has the following proof:

C ⊢ int ⇒ type C ⊢ int ⊑ int
(7.19)

C ⊢ (?x ⇒PM int) 7→ 〈|x => int |〉
(7.103)

C ⊢ (?x:int ⇒PM int) 7→ 〈| x => int |〉
(7.110)

C ⊢ ($1 => ?x : int ⇒PM $1 => int) 7→ 〈|x => int |〉
(7.112)

C ⊢ (($1 => ?x : int) ⇒PM ($1 => int)) 7→ 〈|x => int |〉
(7.107)

where we have assumed that there is no information that restricts the type of variable x in the context C.

The other premises are analogous to ones in the previous example.

Example 7.3 We can see now a more complicated communication through a gate, like

outP(!(x => 2,y => true)) @?t,

which is translated to

outP($1 => !exit($1 => (x => 2,y => true))) @?t exit($1 => true) start〈0〉.

Let us imagine that the gate outP has been declared without type and the default type any has been
given to it in the translation into abstract syntax, that is, the information

outP ⇒ gate〈($1 => any)〉

is in the context C.

We can use inference rule 7.27 to deduce that

C ⊢ outP ⇒ gate〈($1 => any)〉

C ⊢ (($1 => !exit($1 => (x => 2,y => true))) ⇒PM ($1 => any)) 7→ 〈| |〉

C ⊢ (?t ⇒PM time) 7→ 〈| t => time |〉

C; t => time ⊢ exit($1 => true) =⇒ exit 〈| $1 => bool |〉

C ⊢ 0 ⇒T time

C ⊢ outP($1 => !exit($1 => (x => 2,y => true))) @?t exit($1 => true) start〈0〉
=⇒ guarded 〈| t => time |〉

(7.27)

The second premise is proved in Example 7.29 in Section 7.31.4, and the third premise is fulfilled thanks
to:

C ⊢ (?t ⇒PM time) 7→ 〈| t => time |〉
(7.102)

assuming that variable t has been declared of type time.

The other premises are analogous to those of previous examples.

100 7. Static Semantics of Base Language

7.3 Sequential composition

The rules for the sequential composition B1;B2 state that composition is well-formed if both B1 and B2

are, that it returns bindings produced by behaviour B1 overridden by those produced by behaviour B2,
and that it is “guarded” if at least one of them is. The inference rules are as follows:

C ⊢ B1 =⇒ exit 〈|RT1 |〉

C; RT1 ⊢ B2 =⇒ exit 〈|RT2 |〉

C ⊢ B1 ; B2 =⇒ exit 〈|RT1; RT2 |〉

(7.28)

C ⊢ B1 =⇒ exit 〈|RT1 |〉

C; RT1 ⊢ B2 =⇒ guarded 〈|RT2 |〉

C ⊢ B1 ; B2 =⇒ guarded 〈|RT1; RT2 |〉

(7.29)

C ⊢ B1 =⇒ guarded 〈|RT1 |〉

C; RT1 ⊢ B2 =⇒ exit 〈|RT2 |〉

C ⊢ B1 ; B2 =⇒ guarded 〈|RT1; RT2 |〉

(7.30)

We have to note that in all three cases, the second behaviour B2 is executed in a context where
bindings RT1 produced by the first one B1 have been included (overriding context C). If both behaviours
are guarded, then we can use first the rule 7.14 with one of them, and then follow using rule 7.29 or 7.30
(see next example).

Example 7.4 We can use these rules to know what kind of behaviour

inP(?x : int); outP(!x)

is. It is translated to abstract syntax as follows:

inP($1 => ?x : int) @any : time exit($1 => true) start〈0〉;
outP($1 => !exit($1 => x)) @any : time exit($1 => true) start〈0〉

By using inference rule 7.29 we can deduce that

C ⊢ inP($1 => ?x : int) . . . =⇒ exit 〈|x => int |〉

C; x => int ⊢ outP($1 => !exit($1 => x)) . . . =⇒ guarded 〈| |〉

C ⊢ inP($1 => ?x : int) . . . ; outP($1 => !exit($1 => x)) . . . =⇒ guarded 〈| x => int |〉
(7.29)

(where . . . stands for @any : time exit($1 => true) start〈0〉).

We can deduce the first premise from Example 7.2, by using the general rule 7.14:

C ⊢ inP($1 => ?x : int) . . . =⇒ guarded 〈|x => int |〉

C ⊢ inP($1 => ?x : int) . . . =⇒ exit 〈|x => int |〉
(7.14)

The second premise has the following proof:

7.4. Selection operator 101

. . .

C; x => int ⊢ x => int
(7.23)

C; x => int ⊢ x ⇒T int
(7.96)

C; x => int ⊢ $1 => x ⇒T $1 => int
(7.100)

C; x => int ⊢ exit($1 => x) =⇒ exit 〈| $1 => int |〉
(7.33)

C; x => int ⊢ (!exit($1 => x) ⇒PM int) 7→ 〈| |〉
(7.105)

C; x => int ⊢ ($1 => !exit($1 => x) ⇒PM $1 => int) 7→ 〈| |〉
(7.112)

C;x => int ⊢ (($1 => !exit($1 => x)) ⇒PM
($1 => int)) 7→ 〈| |〉

(7.107)
. . .

C; x => int ⊢ outP($1 => !exit($1 => x)) . . . =⇒ guarded 〈| |〉
(7.27)

where absent premises are analogous to others we have already seen. Note that in order to use variable
x as a value, the information x => int has to be present in the context.

7.4 Selection operator

Behaviours B1 and B2 composed in a selection like B1 [] B2 cannot finish without doing an action, that
is, they have to be guarded. In this way, it is this action which decides the election (by synchronization
with another process). Variables which are modified only by B1 or B2 must have been initialized before
the selection, and the behaviour cannot change their types. Thus, it can be assured that independently
of the behaviour executed, initialized variables after the selection are always the same. Variables which
are modified by both behaviours may have been initialized previously or not, but both behaviours have
to bind them to the same type. If this is the case, then selection B1 [] B2 returns bindings produced by
both, and we know that it does an action before finishing.

The inference rule that formalizes these conditions is:

C, RT1, RT2 ⊢ B1 =⇒ guarded 〈|RT1, RT |〉

C, RT1, RT2 ⊢ B2 =⇒ guarded 〈|RT2, RT |〉

C,RT1, RT2 ⊢ B1 [] B2 =⇒ guarded 〈|RT1, RT2, RT |〉

(7.31)

where RT1 consists of the initialized variables (present in the context) modified only by B1, RT2 consists
of the initialized variables modified only by B2, and RT consists of the variables modified by both B1

and B2, and they may be in the context or not, that is, they may be initialized or not. Note that RT1,
RT2, and RT are pairwise disjoint.

Example 7.5 In order to show the application of this rule, let us see if the behaviour

in2(?x2 : data); out1(!x1)
[]

out1(!x1); in2(?x2 : data)

is correct in a context C = C′, x1 => data (where, among other things, there is the information x1 => data,
that is, variable x1 has a value of type data) and what bindings it produces. The behaviour is translated to

selection ≡
in2($1 => ?x2 : data) . . . ; out1($1 => !exit($1 => x1)) . . .

[]

out1($1 => !exit($1 => x1)) . . . ; in2($1 => ?x2 : data) . . .

where, everywhere, . . . stands for @any:time exit($1 => true) start〈0〉.

102 7. Static Semantics of Base Language

First we use rule 7.29 twice to know if the sequential compositions are correct, and what they return.
We can deduce that

C ⊢ in2($1 => ?x2 : data) . . . =⇒ exit 〈|x2 => data |〉

C; x2 => data ⊢ out1($1 => !exit($1 => x1)) . . . =⇒ guarded 〈| |〉

C ⊢ in2($1 => ?x2 : data) . . . ; out1($1 => !exit($1 => x1)) . . .
=⇒ guarded 〈|x2 => data |〉

(7.29)

We also deduce that

C ⊢ out1($1 => !exit($1 => x1)) . . . =⇒ guarded 〈| |〉

C ⊢ in2($1 => ?x2 : data) . . . =⇒ exit 〈|x2 => data |〉

C ⊢ out1($1 => !exit($1 => x1)) . . . ; in2($1 => ?x2 : data) . . . =⇒ guarded 〈| x2 => data |〉
(7.30)

Now, we can use rule 7.31 in order to deduce

C ⊢ in2($1 => ?x2 : data) . . . ; out1($1 => !exit($1 => x1)) . . . =⇒ guarded 〈| x2 => data |〉

C ⊢ out1($1 => !exit($1 => x1)) . . . ; in2($1 => ?x2 : data) . . . =⇒ guarded 〈| x2 => data |〉

C ⊢ selection =⇒ guarded 〈| x2 => data |〉
(7.31)

where we consider the application of the rule when RT1 and RT2 are empty and RT is equal to x2=>data.

Example 7.6 Let us see now an example where a variable which has already a value is modified only in
one part of the selection. Let us consider the following behaviour

inP(?x : int);

(inP(?x : int)

[]

outP(!x))

which is translated to

selection2 ≡
inP($1 => ?x : int) . . . ;
(inP($1 => ?x : int) . . .
[]

outP($1 => !exit($1 => x)) . . .)

Note that we use parentheses () to make the abstract syntax behaviour clearer, although they have no
meaning.

We have to use the sequential composition rule 7.29 to deduce

C ⊢ inP($1 => ?x : int) . . . =⇒ exit 〈|x => int |〉

C;x => int ⊢ inP($1 => ?x : int) . . . [] outP($1 => !exit($1 => x)) . . . =⇒ guarded 〈|x => int |〉

C ⊢ selection2 =⇒ guarded 〈|x => int |〉
(7.29)

where we can deduce the second premise by using rule 7.31 as follows:

C; x => int ⊢ inP($1 => ?x : int) . . . =⇒ guarded 〈|x => int |〉

C; x => int ⊢ outP($1 => !exit($1 => x)) . . . =⇒ guarded 〈| |〉

C;x => int ⊢ inP($1 => ?x : int) . . . [] outP($1 => !exit($1 => x)) . . . =⇒ guarded 〈|x => int |〉
(7.31)

with RT1 = x => int, and RT2 and RT both equal to the empty list of bindings.

7.5. Internal action 103

Example 7.7 Let us see now that the behaviour (?x:=5 [] ?x:=2); wait(1) is not correct, by showing
that we cannot deduce what kind of behaviour it is. It is translated to abstract syntax as

(?x:=exit($1 => 5) [] ?x:=exit($1 => 2)); wait(exit($1 => 1)).

First, we have to use one of the rules of the sequential composition.

C ⊢ ?x:=exit($1 => 5) [] ?x:=exit($1 => 2) =⇒ ?

C; RT ⊢ wait(exit($1 => 1)) =⇒ exit 〈| |〉

C ⊢ (?x:=exit($1 => 5) [] ?x:=exit($1 => 2)); wait(exit($1 => 1)) =⇒ ?
()

In order to prove the first premise we have to use rule 7.31, but we cannot because the assignments are
not guarded.

C ⊢ ?x:=exit($1 => 5) =⇒ exit 〈|x => int |〉

C ⊢ ?x:=exit($1 => 2) =⇒ exit 〈|x => int |〉

C ⊢ ?x:=exit($1 => 5) [] ?x:=exit($1 => 2) =⇒ ?
()

That ?x:=5 is an exit 〈|x => int |〉 behaviour is proved in Example 7.21 in Section 7.20.

This is the only way of trying to “check” this behaviour because we cannot apply any other inference
rule. Thus, this behaviour does not pass the static semantics, that is, it has no meaning.

7.5 Internal action

The internal action i represents a behaviour that does not produce any binding, and that carries out an
action before finishing. The following rule formalizes this:

C ⊢ i =⇒ guarded 〈| |〉 (7.32)

Example 7.8 As an example of the application of this rule, we can check if the behaviour

out2(!x2) [] i

which is translated to abstract syntax as

out2($1 => !exit($1 => x2)) . . . [] i

is semantically correct in a context where the information x2 => data is included. We have to do the
following proof:

C, x2 => data ⊢ out2($1 => !exit($1 => x2)) . . . =⇒ guarded 〈| |〉

C, x2 => data ⊢ i =⇒ guarded 〈| |〉

C, x2 => data ⊢ out2($1 => !exit($1 => x2)) . . . [] i =⇒ guarded 〈| |〉
(7.31)

where, the second premise is proved using the previous rule:

C, x2 => data ⊢ i =⇒ guarded 〈| |〉
(7.32)

104 7. Static Semantics of Base Language

7.6 Successful termination with values

exit(RN) is a behaviour that finishes immediately, returning the values indicated by RN . If RN is of
the form V1 =>N1, . . . , Vn =>Nn, then exit(RN) produces the bindings V1 => T1, . . . , Vn => Tn, where Ti

is the type of the value Ni. The following rule explains what kind of behaviour exit(RN) is:

C ⊢ RN ⇒T RT

C ⊢ exit(RN) =⇒ exit 〈|RT |〉
(7.33)

Example 7.9 The value expression 3 is translated into the behaviour exit($1=>3) which is a behaviour
that returns an integer value (note the use of $1 to represent this), as stated in the following proof.

C ⊢ 3 => int

C ⊢ 3 ⇒T int
(7.95)

C ⊢ $1 => 3 ⇒T $1 => int
(7.100)

C ⊢ exit($1 => 3) =⇒ exit 〈| $1 => int |〉
(7.33)

7.7 Inaction

stop is a behaviour that cannot do anything, and it does not finish. It is expressed by saying that stop
returns a value of type none. Since none has no value, it says that stop does not finish.

C ⊢ stop =⇒ guarded 〈| $1 => none |〉 (7.34)

We think that it is not a good idea to represent the no termination of stop with the binding $1=>none.
This makes that the behaviour G(?x:int) [] stop is considered semantically incorrect because stop
produces the “binding” $1 => none, which is not in the context, and which cannot be produced by
G(?x:int).

One solution is to make stop a guarded 〈| |〉 behaviour, and do not care about the no termination.
Another solution is to modify the semantics of the selection operator and to add the following rule

C ⊢ B1 =⇒ guarded 〈|RT |〉

C ⊢ B2 =⇒ guarded 〈| $1 => none |〉

C ⊢ B1 [] B2 =⇒ guarded 〈|RT |〉

and symmetrically. This modifies the meaning of B =⇒ guarded 〈|RT |〉 since now it would mean that
if B finishes then it produces bindings RT . Analogous rules should be included in the semantics of the
others branching operators ([>, trap, etc.).

7.8 Time block

From the point of view of the static semantics, stop and block are equal, that is, behaviours which do
not finish.

C ⊢ block =⇒ guarded 〈| $1 => none |〉 (7.35)

7.9. Parallel operator 105

7.9 Parallel operator

The parallel composition of two behaviours B1 |[G1, . . . ,Gn]| B2 (n ≥ 0) is correct in the context C,
from the point of view of the static semantics, if both behaviours are correct and they return disjoint
bindings, and if the gate identifiers G1, . . . , Gn are declared in the context C. The bindings returned
by the composition are those produced by both behaviours (which must be disjoint), and the parallel
composition is guarded if at least one of them is. The inference rules are:

C ⊢ B1 =⇒ exit 〈|RT1 |〉 C ⊢ B2 =⇒ exit 〈|RT2 |〉

C ⊢ G1 ⇒ gate〈(RT ′
1)〉 · · · C ⊢ Gn ⇒ gate〈(RT ′

n)〉

C ⊢ B1 |[G1, . . . ,Gn]| B2 =⇒ exit 〈|RT1, RT2 |〉

(7.36)

C ⊢ B1 =⇒ exit 〈|RT1 |〉 C ⊢ B2 =⇒ guarded 〈|RT2 |〉

C ⊢ G1 ⇒ gate〈(RT ′
1)〉 · · · C ⊢ Gn ⇒ gate〈(RT ′

n)〉

C ⊢ B1 |[G1, . . . ,Gn]| B2 =⇒ guarded 〈|RT1, RT2 |〉

(7.37)

C ⊢ B1 =⇒ guarded 〈|RT1 |〉 C ⊢ B2 =⇒ exit 〈|RT2 |〉

C ⊢ G1 ⇒ gate〈(RT ′
1)〉 · · · C ⊢ Gn ⇒ gate〈(RT ′

n)〉

C ⊢ B1 |[G1, . . . ,Gn]| B2 =⇒ guarded 〈|RT1, RT2 |〉

(7.38)

where RT1 and RT2 must be disjoint, that is, it is not allowed that both behaviours bind the same
variable.

Note that the behaviour B1 |[G1, . . . ,Gn]| B2 is guarded if at least one of them is2. This is because
the whole behaviour finishes when both has finished, so if one of them does an action before finishing,
the whole behaviour does it too.

Example 7.10 Let us see if the behaviour in2(?x2:data) ||| out1(!x1) is semantically correct in a
context C = C′, x1 => data. It is translated to

in2($1 => ?x2:data) . . . |[]| out1($1 => !exit($1 => x1)) . . .

By using rule 7.38, we have

C ⊢ in2($1 => ?x2:data) . . . =⇒ guarded 〈| x2 => data |〉

C ⊢ out1($1 => !exit($1 => x1)) . . . =⇒ exit 〈| |〉

C ⊢ in2($1 => ?x2:data) . . . |[]| out1($1 => !exit($1 => x1)) . . . =⇒ guarded 〈|x2 => data |〉
(7.38)

Example 7.11 We can prove that

pd(!x1); sync |[sync]| sync; pd(!x2)

is semantically correct in a context with at least the following information:

C = C′, pd ⇒ gate〈($1 => data)〉, sync ⇒ gate〈($1 => any)〉, x1 => data, x2 => data.

The behaviour is translated into

2Note that we do not need a rule for the case in which both behaviours are guarded, because in this case we can use
rule 7.14 first with one of them.

106 7. Static Semantics of Base Language

parallel ≡
pd($1 => !exit($1 => x1)) . . . ; sync($1 => ()) . . .

|[sync]|

sync($1 => ()) . . . ; pd($1 => !exit($1 => x2)) . . .

We can use rule 7.38

C ⊢ pd($1 => !exit($1 => x1)) . . . ; sync($1 => ()) . . . =⇒ guarded 〈| |〉

C ⊢ sync($1 => ()) . . . ; pd($1 => !exit($1 => x2)) . . . =⇒ exit 〈| |〉

C ⊢ sync ⇒ gate〈($1 => any)〉

C ⊢ parallel =⇒ guarded 〈| |〉
(7.38)

where the first and second premises are easily proved, and the third premise is an application of axiom 7.23.

However, the behaviour

pd(?x:data); sync

|[sync]|

sync; pd(!x)

is not correct in a context C where there is no information about x having a value because although

C ⊢ pd($1 => ?x:data) . . . ; sync($1 => ()) . . . =⇒ guarded 〈|x => data |〉

the binding x => data is not propagated to sync; pd(!x). Thus

sync($1 => ()) . . . ; pd($1 => !exit($1 => x)) . . .

is not semantically correct.

7.10 Synchronization operator

The static semantics rules for the synchronization operator are similar to those of the parallel operator.

C ⊢ B1 =⇒ exit 〈|RT1 |〉 C ⊢ B2 =⇒ exit 〈|RT2 |〉

C ⊢ B1 || B2 =⇒ exit 〈|RT1, RT2 |〉
(7.39)

C ⊢ B1 =⇒ exit 〈|RT1 |〉 C ⊢ B2 =⇒ guarded 〈|RT2 |〉

C ⊢ B1 || B2 =⇒ guarded 〈|RT1, RT2 |〉
(7.40)

C ⊢ B1 =⇒ guarded 〈|RT1 |〉 C ⊢ B2 =⇒ exit 〈|RT2 |〉

C ⊢ B1 || B2 =⇒ guarded 〈|RT1, RT2 |〉
(7.41)

where RT1 and RT2 must be disjoint.

Like the parallel operator, B1 || B2 is guarded if at least B1 or B2 is.

7.11 General parallel operator

We use the notation ~Gi to abbreviate the gate list Gi1, . . .,Giri
.

7.11. General parallel operator 107

A general parallel composition

par G1#n1, . . .,Gp#np in

[~G1] -> B1

· · ·

||[~Gm] -> Bm

is correct in context C if all the gate identifiers are declared in the context C, all the Bi are correct
behaviours, and they produce pairwise disjoint bindings. This is formalized with the following rule:

C ⊢ G1 ⇒ gate〈(RT1)〉 · · · C ⊢ Gp ⇒ gate〈(RTp)〉

∀ i . 1 ≤ i ≤ m.∀ j . 1 ≤ j ≤ ri . C ⊢ Gij ⇒ gate〈(RTij)〉

C ⊢ B1 =⇒ exit 〈|RT ′
1 |〉 · · · C ⊢ Bm =⇒ exit 〈|RT ′

m |〉

C ⊢ (par G1#n1, . . . ,Gp#np in

[~G1] -> B1

· · ·

||[~Gm] -> Bm) =⇒ exit 〈|RT ′
1, . . . , RT ′

m |〉

(7.42)

with the side condition that RT ′
1, . . . , RT ′

m must be pairwise disjoint. We have to ensure also that if gate
Gi is in the list of degrees (G1#n1, . . . ,Gp#np) with degree ni, then there are at least ni behaviours that

have Gi in their synchronization list ~Gj . So, we add the following side conditions

n1 ≤ | { ~Gj | G1 ∈ ~Gj , 1 ≤ j ≤ m} |
...

np ≤ | { ~Gj | Gp ∈ ~Gj , 1 ≤ j ≤ m} |

where ni’s must be natural numbers greater than zero.

If at least one of the behaviours Bi is guarded then the general parallel composition is guarded:

C ⊢ G1 ⇒ gate〈(RT1)〉 · · · C ⊢ Gp ⇒ gate〈(RTp)〉

C ⊢ Gij ⇒ gate〈(RTij)〉 ∀ 1 ≤ i ≤ m ∀ 1 ≤ j ≤ ri

C ⊢ B1 =⇒ exit 〈|RT ′
1 |〉

· · ·

C ⊢ Bj =⇒ guarded 〈|RT ′
j |〉

· · ·

C ⊢ Bm =⇒ exit 〈|RT ′
m |〉

C ⊢ (par G1#n1, . . . ,Gp#np in

[~G1] -> B1

· · ·

||[~Gm] -> Bm) =⇒ guarded 〈|RT ′
1, . . . , RT ′

m |〉

(7.43)

with the same side condition.

Example 7.12 Let us check that the general parallel behaviour

generalPar ≡
par G#2 in [G,G′

] -> P1 || [G,G′
] -> P2 || [G,G′

] -> P3

is semantically correct assuming that behaviour Pi are correct guarded 〈| |〉 behaviours, and gates G and
G′ are declared in the context C. We can use rule 7.43

108 7. Static Semantics of Base Language

C ⊢ G ⇒ gate〈($1 => int)〉C ⊢ G′ ⇒ gate〈($1 => int)〉

C ⊢ P1 =⇒ exit 〈| |〉

C ⊢ P2 =⇒ exit 〈| |〉

C ⊢ P3 =⇒ guarded 〈| |〉

C ⊢ generalPar =⇒ guarded 〈| |〉
(7.43)

since 2 ≤ 3.

7.12 Parallel over values

A parallel over values behaviour par P in N ||| B is semantically correct in the context C if the value N
has type List (the predefined type of lists of any type); the pattern P can be matched against the general
type any; and the behaviour B is correct in the context C overridden with the bindings produced by
the previous pattern-matching and it does not produce bindings. B is required to not produce bindings
because the parallel over values represents the interleaving of a series of instantiations of B, one for each
value of N . If B produce bindings, all the instantiations would produce the same bindings, and we would
have an interleaving of behaviours which do not produce disjoint bindings as required in Section 7.9.

The whole behaviour par P in N ||| B is guarded if B is guarded.

A behaviour can produce no bindings because it finishes and does not produce bindings (it is an
exit 〈| |〉 behaviour), or because it does not finish (it is an exit 〈| $1 => none |〉 behaviour). The following
rules covers all the cases:

C ⊢ N ⇒T List

C ⊢ (P ⇒PM any) 7→ 〈|RT |〉

C; RT ⊢ B =⇒ guarded 〈| $1 => none |〉

C ⊢ par P in N ||| B =⇒ guarded 〈| $1 => none |〉

(7.44)

C ⊢ N ⇒T List

C ⊢ (P ⇒PM any) 7→ 〈|RT |〉

C;RT ⊢ B =⇒ exit 〈| $1 => none |〉

C ⊢ par P in N ||| B =⇒ exit 〈| $1 => none |〉

(7.45)

C ⊢ N ⇒T List

C ⊢ (P ⇒PM any) 7→ 〈|RT |〉

C; RT ⊢ B =⇒ guarded 〈| |〉

C ⊢ par P in N ||| B =⇒ guarded 〈| |〉

(7.46)

C ⊢ N ⇒T List

C ⊢ (P ⇒PM any) 7→ 〈|RT |〉

C; RT ⊢ B =⇒ exit 〈| |〉

C ⊢ par P in N ||| B =⇒ exit 〈| |〉

(7.47)

Example 7.13 Let us check that the behaviour

par ?x in [1,2,3] |||

inP(!x)
endpar

7.13. Disabling operator 109

which communicates the values 1, 2, and 3 through gate inP in any order, is semantically correct. It is
translated into abstract syntax as:

par ?x in cons(1,cons(2,cons(3,nil()))) |||

inP(!exit($1 => x)) @any : time exit($1 => true) start〈0〉

We can use rule 7.46 and deduce

C ⊢ cons(1,cons(2,cons(3,nil()))) ⇒T List

C ⊢ (?x ⇒PM any) 7→ 〈|x => any |〉

C;x => any ⊢ inP(!exit($1 => x)) . . . =⇒ guarded 〈| |〉

C ⊢ par ?x in cons(1,cons(2,cons(3,nil()))) |||

inP(!exit($1 => x)) . . . =⇒ guarded 〈| |〉

The first premise is proved in Example 7.27 (in Section 7.29.3) for a shorter list, and the others are similar
to others we have already seen.

7.13 Disabling operator

In order to keep internal action urgent and time deterministic, behaviour B2 is required to be guarded
in the disabling behaviour B1 [> B2. Let us imagine the following behaviour (i [> exit());wait(1);...
Intuitively, it can perform an internal action or the behaviour exit() can finish immediately disabling the
internal action and the whole behaviour can wait one unit of time. In fact, the real problem is that the
termination of a behaviour is not directly observable when it is composed in sequence with another one.
If we have the behaviour B;B′ and B finishes, B′ starts to be executed immediately, and the termination
of B is not observed explicitly. Therefore, (i [> exit());wait(1);... can perform an internal action or

wait one unit of time, and this is what we do not want, because it means that the internal action is not
urgent. If B2 is required to be guarded we forbid this problem, because it cannot finish immediately.

By the same reason, it seems that B1 should be also guarded, in order to forbid, for example, the
behaviour (exit() [> i);wait(1);... which can wait one unit of time if exit() finishes immediately
before the internal action disables it, or the internal action can disable to the exit() behaviour, and
the whole behaviour would perform an internal action. The problem is that requiring B1 to be guarded
does not avoid the problem, since when B1 evolves (but does not finish) the disabling operator does not
disappear. For example, G;exit() is guarded, but (G;exit() [> i);wait(1);... can perform an action
on gate G and becomes (exit() [> i);wait(1);... which does not preserve the urgency of the internal
action. The solution is given by means of the dynamic semantics of this operator. When B1 finishes, the
dynamic semantics rule of the disabling operator (see Section 8.13) states that the behaviour B1 [> B2

performs an internal action. Thus, the termination of B1 is “observable” in the sense that something
happens between the termination of B1 and the starting of that behaviour composed in sequence after
the disabling.

Regarding variables, the disabling operator behaves like the selection operator: initialized variables,
that is, variables V such that V => T appears in the context, may be modified only by B1 or B2, but
non-initialized variables which are assigned (given a value) by one of them have to be assigned also by
the another one. In that way the bindings produced by the disabling behaviour are always the same.
Bindings produced by B1 are forgotten if it is interrupted by B2, so now we do not have to require that
bindings produced by B1 and B2 be disjoint.

The rules for the disabling operator are:

110 7. Static Semantics of Base Language

C, RT1, RT2 ⊢ B1 =⇒ guarded 〈|RT1, RT |〉

C, RT1, RT2 ⊢ B2 =⇒ guarded 〈|RT2, RT |〉

C,RT1, RT2 ⊢ B1 [> B2 =⇒ guarded 〈|RT1, RT2, RT |〉

(7.48)

C, RT1, RT2 ⊢ B1 =⇒ exit 〈|RT1, RT |〉

C, RT1, RT2 ⊢ B2 =⇒ guarded 〈|RT2, RT |〉

C, RT1, RT2 ⊢ B1 [> B2 =⇒ exit 〈|RT1, RT2, RT |〉

(7.49)

Example 7.14 Let us see that the behaviour out2(!x2)[> (wait(50); i) is semantically correct. It
is translated into abstract syntax as

out2($1 => !exit($1 => x2)) . . .[> (wait(exit($1 => 50)); i)

We can use inference rule 7.48 with all RT1, RT2, and RT equal to the empty record type.

C ⊢ out2($1 => !exit($1 => x2)) . . . =⇒ guarded 〈| |〉

C ⊢ wait(exit($1 => 50)); i =⇒ guarded 〈| |〉

C ⊢ out2($1 => !exit($1 => x2)) . . . [> (wait(exit($1 => 50)); i) =⇒ guarded 〈| |〉
(7.48)

However, the behaviour in1(?x1:data)[> (wait(50); i) is not correct in a context C where there
is no information about x1, because

C ⊢ in1($1 => ?x1:data) . . . =⇒ guarded 〈|x1 => data |〉

but
C ⊢ wait(exit($1 => 50)); i =⇒ guarded 〈| |〉

and we cannot use rules 7.48 or 7.49, and there are not more rules that we can apply to the whole
behaviour.

7.14 Suspend/Resume operator

This operator has a static semantics similar to the previous one. The only difference is that B2 is checked
in a context where the exception X is declared, so it can be used by B2.

C, RT1, RT2 ⊢ B1 =⇒ guarded 〈|RT1, RT |〉

C, RT1, RT2; X ⇒ exn〈($1 => ())〉 ⊢ B2 =⇒ guarded 〈|RT2, RT |〉

C, RT1, RT2 ⊢ B1 [X> B2 =⇒ guarded 〈|RT1, RT2, RT |〉

(7.50)

C, RT1, RT2 ⊢ B1 =⇒ exit 〈|RT1, RT |〉

C, RT1, RT2; X ⇒ exn〈($1 => ())〉 ⊢ B2 =⇒ guarded 〈|RT2, RT |〉

C, RT1, RT2 ⊢ B1 [X> B2 =⇒ exit 〈|RT1, RT2, RT |〉

(7.51)

Example 7.15 Let us see now that the behaviour out2(!x2)[Ok> (wait(50); i ; signal Ok) is
semantically correct. It is translated into abstract syntax as

out2($1 => !exit($1 => x2)) . . .[Ok> (wait(exit($1 => 50)); i ; signal Ok(exit($1 => ())))

We can use inference rule 7.50 with all RT1, RT2, and RT equal to the empty record type.

7.15. Hiding operator 111

C ⊢ out2($1 => !exit($1 => x2)) . . . =⇒ guarded 〈| |〉

C;Ok ⇒ exn〈($1 => ())〉 ⊢ wait(exit($1 => 50)); i ; signal Ok(exit($1 => ())) =⇒ guarded 〈| |〉

C ⊢ out2($1 => !exit($1 => x2)) . . .
[Ok> (wait(exit($1 => 50)); i ; signal Ok(exit($1 => ()))) =⇒ guarded 〈| |〉

(7.48)

where the second premise is proved in Example 7.18 in Section 7.17.

7.15 Hiding operator

The behaviour hide G1:T1, . . . ,Gn:Tn in B is correct in the context C, if the Ti’s are correct types in
that context, and the behaviour B is correct in the context C overridden by the information that Gi’s
are gates of the corresponding type. Thus the hide operator declares new gates, that may be used in the
behaviour B. The whole behaviour is guarded if the behaviour B is. The semantic rules are the following
ones:

C ⊢ T1 ⇒ type · · · C ⊢ Tn ⇒ type

C;G1 ⇒ gate〈($1 => T1)〉,

. . . ,

Gn ⇒ gate〈($1 => Tn)〉 ⊢ B =⇒ exit 〈|RT |〉

C ⊢ hide G1:T1, . . . ,Gn:Tn in B =⇒ exit 〈|RT |〉

(7.52)

C ⊢ T1 ⇒ type · · · C ⊢ Tn ⇒ type

C; G1 ⇒ gate〈($1 => T1)〉,

. . . ,

Gn ⇒ gate〈($1 => Tn)〉 ⊢ B =⇒ guarded 〈|RT |〉

C ⊢ hide G1:T1, . . . ,Gn:Tn in B =⇒ guarded 〈|RT |〉

(7.53)

Example 7.16 Let us check that the following behaviour is a guarded 〈| |〉 behaviour:

hide sync in

pd(!x1); sync

|[sync]|

sync; pd(!x2)
endhide

It is translated into abstract syntax as

hide sync:any in hideBody

where

hideBody ≡
pd($1 => !exit($1 => x1)) . . . ; sync($1 => ()) . . .

|[sync]|

sync($1 => ()) . . . ; pd($1 => !exit($1 => x2)) . . .

By using rule 7.53 we can infer

112 7. Static Semantics of Base Language

C ⊢ any ⇒ type

C; sync ⇒ gate〈($1 => any)〉 ⊢ hideBody =⇒ guarded 〈|RT |〉

C ⊢ hide sync:any in hideBody =⇒ guarded 〈| |〉
(7.53)

The first premise is rule 7.81, and the second premise was proved in Example 7.11.

7.16 Exception handling

A trap behaviour

trap

exception X1($1 => P1):T1 is B1

· · ·
exception Xn($1 => Pn):Tn is Bn

exit Pn+1 is Bn+1

in B

is semantically correct in a context C (we say below what conditions this context fulfills) if:

• The types given to the trapped (declared) exceptions are correct types declared in the context C.

• The patterns catching the values communicated through the trapped exceptions can be matched
against the corresponding types.

• The behaviours that handle the trapped exceptions are correct.

• The main behaviour B is semantically correct in the context C where the declared exceptions have
been included.

• The pattern Pn+1 can be pattern-matched against part of the bindings produced by B.

• The behaviour Bn+1 is semantically correct.

The trap operator is a branching operator as the selection or disabling operators, in the sense that
not all the parts of the behaviour are executed always. Hence, regarding variables, it behaves in a similar
way. Initialized variables, that is, variables that has a value before the trap behaviour is started, can
be modified only by some subcomponents; but non-initialized variables modified by one subcomponent
have to be assigned by all the subcomponents. In the following rules the context C stands for a context
C′, RT ′

i ⊙ . . . ⊙ RT ′
n+2, where RT ′

i represents the bindings produced by branch i related to initialized
variables. Since an initialized variable can be modified by more than one branch, we use the ⊙ operator.

If the behaviours handling the trapped exceptions, the main behaviour B, and the behaviour handling
the termination of B are all exit behaviours, then the whole behaviour is also exit.

7.16. Exception handling 113

C ⊢ T1 ⇒ type · · · C ⊢ Tn ⇒ type

∀ i . 1 ≤ i ≤ n . C ⊢ (($1 => Pi) ⇒PM
($1 => Ti)) 7→ 〈|RTi |〉

∀ i . 1 ≤ i ≤ n . C;RTi ⊢ Bi =⇒ exit 〈|RT ′
i , RT |〉

C; X1 ⇒ exn〈($1 => T1)〉, . . . ,

Xn ⇒ exn〈($1 => Tn)〉 ⊢ B =⇒ exit 〈|RT ′
n+2, RT ′ |〉

C ⊢ Pn+1 ⇒PM
(RT ′

) 7→ 〈|RT ′′ |〉

C; RT ′′ ⊢ Bn+1 =⇒ exit 〈|RT ′
n+1, RT |〉

C ⊢ trap

exception X1($1 => P1):T1 is B1

· · ·
exception Xn($1 => Pn):Tn is Bn

exit Pn+1 is Bn+1

in B =⇒ exit 〈|RT ′
1 ⊙ . . . ⊙ RT ′

n+2, RT |〉

(7.54)

If the behaviours handling the trapped exceptions and the main behaviour B are guarded behaviours,
then the whole behaviour is guarded.

C ⊢ T1 ⇒ type · · · C ⊢ Tn ⇒ type

∀ i . 1 ≤ i ≤ n . C ⊢ (($1 => Pi) ⇒PM
($1 => Ti)) 7→ 〈|RTi |〉

∀ i . 1 ≤ i ≤ n . C; RTi ⊢ Bi =⇒ guarded 〈|RT ′
i , RT |〉

C;X1 ⇒ exn〈($1 => T1)〉, . . . ,

Xn ⇒ exn〈($1 => Tn)〉 ⊢ B =⇒ guarded 〈|RT ′
n+2, RT ′ |〉

C ⊢ Pn+1 ⇒PM
(RT ′

) 7→ 〈|RT ′′ |〉

C;RT ′′ ⊢ Bn+1 =⇒ exit 〈|RT ′
n+1, RT |〉

C ⊢ trap

exception X1($1 => P1):T1 is B1

· · ·
exception Xn($1 => Pn):Tn is Bn

exit Pn+1 is Bn+1

in B =⇒ guarded 〈|RT ′
1 ⊙ . . . ⊙ RT ′

n+2, RT |〉

(7.55)

Finally, if the behaviours handling the trapped exceptions and the behaviour handling the termination
of B are guarded, then the whole behaviour is also guarded.

C ⊢ T1 ⇒ type · · · C ⊢ Tn ⇒ type

C ⊢ (($1 => Pi) ⇒PM
($1 => Ti)) 7→ 〈|RTi |〉 ∀ 1 ≤ i ≤ n

C; RTi ⊢ Bi =⇒ guarded 〈|RT ′
i , RT |〉 ∀ 1 ≤ i ≤ n

C;X1 ⇒ exn〈($1 => T1)〉,

. . . , Xn ⇒ exn〈($1 => Tn)〉 ⊢ B =⇒ exit 〈|RT ′
n+2, RT ′ |〉

C ⊢ Pn+1 ⇒PM
(RT ′

) 7→ 〈|RT ′′ |〉

C; RT ′′ ⊢ Bn+1 =⇒ guarded 〈|RT ′
n+1, RT |〉

C ⊢ trap

exception X1($1 => P1):T1 is B1

· · ·
exception Xn($1 => Pn):Tn is Bn

exit Pn+1 is Bn+1

in B =⇒ guarded 〈|RT ′
1 ⊙ . . . ⊙ RT ′

n+2, RT |〉

(7.56)

Example 7.17 Let us see what kind of behaviour

114 7. Static Semantics of Base Language

trap

exception Hd is outP(!0) endexn

in

case ys:List is

Nil -> signal Hd

| Cons(?x,?xs) -> outP(!x)
endcase

endtrap

is, supposing that ys has a value of type List. It is translated into abstract syntax as follows:

exnHandling ≡
trap

exception Hd($1 => ()) is outP($1 => !exit($1 => 0)) . . .
exit () is exit()

in

case exit($1 => ys):List is BM1 | (BM2 | BM3)

where BM1, BM2, and BM3 are defined in Example 7.25 in Section 7.23 where this case behaviour is
checked.

We have to use rule 7.55:

C ⊢ ()⇒ type

C ⊢ (($1 => ()) ⇒PM ($1 => ())) 7→ 〈| |〉

C ⊢ outP(!exit($1 => 0)) . . . =⇒ guarded 〈| |〉

C;Hd ⇒ exn〈($1 => ())〉 ⊢ case exit($1 => ys):List is BM1 | (BM2 | BM3) =⇒ guarded 〈| |〉

C ⊢ () ⇒PM
() 7→ 〈| |〉

C ⊢ exit() =⇒ exit 〈| |〉

C ⊢ exnHandling =⇒ guarded 〈| |〉
(7.55)

where the premise dealing with the case behaviour is checked in Example 7.25 and the rest are easy to
prove.

7.17 Exception signaling

The abstract syntax of the signal instruction is

signal X(E)

where the expression E is exit($1 => ()) by default. That is, when no expression is given in the
specification, the value () is sent together with the exception.

The behaviour signal X(E) is semantically correct in the context C if X is an exception in that
context, and if when X has type exn〈($1 => T)〉 then expression E returns one value of type T .

C ⊢ X ⇒ exn〈($1 => T)〉

C ⊢ E =⇒ exit 〈| $1 => T |〉

C ⊢ signal X(E) =⇒ guarded 〈| |〉

(7.57)

Example 7.18 Let us check that the behaviour wait(50); i ; signal Ok is semantically correct in a
context C = C′, Ok ⇒ exn〈($1 => ())〉 where exception Ok is declared. The behaviour is translated to

7.18. Delay instruction 115

abstract syntax as follows:

wait(exit($1 => 50)); (i ; signal Ok(exit($1 => ())))

We have to use rule 7.29 as follows:

C ⊢ wait(exit($1 => 50)) =⇒ exit 〈| |〉

C ⊢ i =⇒ guarded 〈| |〉
C ⊢ signal Ok(exit($1 => ())) =⇒ guarded 〈| |〉

C ⊢ i ; signal Ok(exit($1 => ())) =⇒ guarded 〈| |〉
(7.30)

C ⊢ wait(exit($1 => 50)); (i ; signal Ok(exit($1 => ()))) =⇒ guarded 〈| |〉
(7.29)

where the premise regarding the exception signaling is proved as follows:

C ⊢ Ok ⇒ exn〈($1 => ())〉

C ⊢ exit($1 => ()) =⇒ exit 〈| $1 => () |〉

C ⊢ signal Ok(exit($1 => ())) =⇒ guarded 〈| |〉
(7.57)

7.18 Delay instruction

If E is an expression that returns only a value of type time then the behaviour wait(E) is correct, it
does no action before finishing, and produces no bindings.

C ⊢ E =⇒ exit 〈| $1 => time |〉

C ⊢ wait(E) =⇒ exit 〈| |〉
(7.58)

Example 7.19 We can see that wait(1) is a correct behaviour, assuming that data type time is a
synonymous of nat. It is translated to wait(exit($1 => 1)). The proof is as follows:

C ⊢ 1 => time

C ⊢ 1 ⇒T time
(7.95)

C ⊢ $1 => 1 ⇒T $1 => time
(7.100)

C ⊢ exit($1 => 1) =⇒ exit 〈| $1 => time |〉
(7.33)

C ⊢ wait(exit($1 => 1)) =⇒ exit 〈| |〉
(7.58)

7.19 Renaming operator

A renaming behaviour

rename

gate G1($1 => P1):T1 is G′
1($1 => P ′

1)

· · ·
gate Gm($1 => Pm):Tm is G′

m($1 => P ′
m)

signal X1($1 => P ′′
1):T

′
1 is X ′

1(E1)

· · ·
signal Xn($1 => P ′′

n):T
′
n is X ′

n(En)

in B

is semantically correct in the context C if all the following conditions are fulfilled:

116 7. Static Semantics of Base Language

• The types given to the declared gates are correct types declared in the context C,

C ⊢ T1 ⇒ type · · · C ⊢ Tm ⇒ type.

• The declared patterns that catch the values communicated through the gates can be matched against
the corresponding types:

∀ i . 1 ≤ i ≤ m . C ⊢ (($1 => Pi) ⇒PM
($1 => Ti)) 7→ 〈|RTi |〉.

• The actions performed instead of the renamed gates are correct actions in the context C,

∀ i . 1 ≤ i ≤ m . C; RTi ⊢ G′
i ($1 => P ′

i) @any : time exit($1 => true) start〈0〉 =⇒ guarded 〈| |〉.

• The types given to the declared exceptions are correct,

C ⊢ T ′
1 ⇒ type · · · C ⊢ T ′

m ⇒ type.

• The patterns used to catch the value raised together with the declared exceptions can be matched
against the corresponding types,

∀ i . 1 ≤ i ≤ n . C ⊢ (($1 => P ′′
i) ⇒PM

($1 => T ′
i)) 7→ 〈|RT ′

i |〉.

• The behaviours that raise the exceptions used instead of the renamed exceptions are correct

∀ i . 1 ≤ i ≤ n . C; RT ′
i ⊢ signal X ′

i(Ei) =⇒ guarded 〈| |〉,

and

• The behaviour B is correct in a context where the declared gates and exceptions have been included,

C; G1 ⇒ gate〈($1 => T1)〉⊙
. . . ⊙ Gm ⇒ gate〈($1 => Tm)〉
⊙X1 ⇒ exn〈($1 => T ′

1)〉⊙
. . . ⊙ Xm ⇒ exn〈($1 => T ′

n)〉 ⊢ B =⇒ exit 〈|RT |〉

where the matching union operator ⊙ is used because, if the same gate G is used in several renaming
clauses, the declared type must be the same.

C ⊢ T1 ⇒ type · · · C ⊢ Tm ⇒ type

∀ i . 1 ≤ i ≤ m. C ⊢ (($1 => Pi) ⇒PM ($1 => Ti)) 7→ 〈|RTi |〉

∀ i . 1 ≤ i ≤ m. C; RTi ⊢ G′
i ($1 => P ′

i) @any : time exit($1 => true) start〈0〉 =⇒ guarded 〈| |〉

C ⊢ T ′
1 ⇒ type · · · C ⊢ T ′

m ⇒ type

∀ i . 1 ≤ i ≤ n . C ⊢ (($1 => P ′′
i) ⇒PM

($1 => T ′
i)) 7→ 〈|RT ′

i |〉

∀ i . 1 ≤ i ≤ n . C; RT ′
i ⊢ signal X ′

i(Ei) =⇒ guarded 〈| |〉

C;G1 ⇒ gate〈($1 => T1)〉⊙

. . . ⊙ Gm ⇒ gate〈($1 => Tm)〉

⊙X1 ⇒ exn〈($1 => T ′
1)〉⊙

. . . ⊙ Xm ⇒ exn〈($1 => T ′
n)〉 ⊢ B =⇒ exit 〈|RT |〉

C ⊢ rename

gate G1($1 => P1):T1 is G′
1($1 => P ′

1)

· · ·
gate Gm($1 => Pm):Tm is G′

m($1 => P ′
m)

signal X1($1 => P ′′
1):T

′
1 is X ′

1(E1)

· · ·
signal Xm($1 => P ′′

n):T
′
n is X ′

n(En)

in B =⇒ exit 〈|RT |〉

(7.59)

7.19. Renaming operator 117

C ⊢ T1 ⇒ type · · · C ⊢ Tm ⇒ type

∀ i . 1 ≤ i ≤ m. C ⊢ (($1 => Pi) ⇒PM
($1 => Ti)) 7→ 〈|RTi |〉

∀ i . 1 ≤ i ≤ m. C; RTi ⊢ G′
i ($1 => P ′

i) @any : time exit($1 => true) start〈0〉 =⇒ guarded 〈| |〉

C ⊢ T ′
1 ⇒ type · · · C ⊢ T ′

m ⇒ type

∀ i . 1 ≤ i ≤ n . C ⊢ (($1 => P ′′
i) ⇒PM

($1 => T ′
i)) 7→ 〈|RT ′

i |〉

∀ i . 1 ≤ i ≤ n . C; RT ′
i ⊢ signal X ′

i(Ei) =⇒ guarded 〈| |〉

C;G1 ⇒ gate〈($1 => T1)〉⊙

. . . ⊙ Gm ⇒ gate〈($1 => Tm)〉

⊙X1 ⇒ exn〈($1 => T ′
1)〉⊙

. . . ⊙ Xm ⇒ exn〈($1 => T ′
n)〉 ⊢ B =⇒ guarded 〈|RT |〉

C ⊢ rename

gate G1($1 => P1):T1 is G′
1($1 => P ′

1)

· · ·
gate Gm($1 => Pm):Tm is G′

m($1 => P ′
m)

signal X1($1 => P ′′
1):T

′
1 is X ′

1(E1)

· · ·
signal Xm($1 => P ′′

n):T
′
n is X ′

n(En)

in B =⇒ guarded 〈|RT |〉

(7.60)

Example 7.20 Let us check that the renaming behaviour

rename

gate inP (?a):int is intro (!a)
in

inP(!3)
endren

is a semantically correct guarded 〈| |〉 behaviour.

It is translated into abstract syntax as follows:

renaming ≡
rename

gate inP ($1 => ?a):int is intro ($1 => !exit($1 => a))
in

inP(!exit($1 => 3)) @any : time exit($1 => true) start〈0〉

We use rule 7.60 as follows:

C ⊢ int ⇒ type

C ⊢ (($1 => ?a) ⇒PM ($1 => int)) 7→ 〈| a => int |〉

C; a => int ⊢ intro ($1 => !exit($1 => a)) @any : time exit($1 => true) start〈0〉 =⇒ guarded 〈| |〉

C; inP ⇒ gate〈($1 => any)〉 ⊢ inP(!exit($1 => 3)) @any : time exit($1 => true) start〈0〉 =⇒ guarded 〈| |〉

C ⊢ renaming =⇒ guarded 〈| |〉
(7.60)

where all the premises are easily proved.

118 7. Static Semantics of Base Language

7.20 Assignment

In order to ensure that the assignment P:=E is semantically correct, we have to show that E is a correct
expression that returns only one value, say with type T ; and that we can match the pattern P against
type T , producing some bindings RT . If this is fulfilled, then P:=E finishes immediately and returns the
bindings RT . This is formally expressed in the following rule:

C ⊢ E =⇒ exit 〈| $1 => T |〉

C ⊢ (P ⇒PM T) 7→ 〈|RT |〉

C ⊢ P:=E =⇒ exit 〈|RT |〉

(7.61)

Example 7.21 Let us see what kind of behaviour ?x := 5 is. It is translated to ?x := exit($1 => 5).
We use rule 7.61 to do the following proof:

C ⊢ exit($1 => 5) =⇒ exit 〈| $1 => int |〉

C ⊢ (?x ⇒PM int) 7→ 〈| x => int |〉

C ⊢ ?x := exit($1 => 5) =⇒ exit 〈|x => int |〉
(7.61)

where the first premise was proved in Example 7.9, and the second one is proved by using rule 7.102
assuming that variable x is declared in context C of type int. Example 7.23 in Section 7.22 shows that
this assignment is not correct in a context where variable x is restricted to have type bool.

Example 7.22 We can write multiple assignments by means of records of patterns. Let us see that the
behaviour (?x,?y) := (5,true) is semantically correct. It is translated to

($1 => ?x,$2 => ?y) := exit($1 => ($1 => 5,$2 => true))

We have to use rule 7.61 to conclude that the behaviour is correct and it binds both variables, x and y.

C ⊢ exit($1 => ($1 => 5,$2 => true)) =⇒ exit 〈| $1 => ($1 => int,$2 => bool) |〉

C ⊢ (($1 => ?x,$2 => ?y) ⇒PM ($1 => int,$2 => bool)) 7→ 〈|x => int,y => bool |〉

C ⊢ ($1 => ?x,$2 => ?y) :=exit($1 => ($1 => 5,$2 => true)) =⇒ exit 〈|x => int,y => bool |〉
(7.61)

where the premises are fulfilled thanks to the following proofs:

C ⊢ 5 => int

C ⊢ $1 => 5 ⇒T $1 => int
(7.100)

C ⊢ true => bool

C ⊢ $2 => true ⇒T $2 => bool
(7.100)

C ⊢ $1 => 5,$2 => true ⇒T $1 => int,$2 => bool
(7.101)

C ⊢ ($1 => 5,$2 => true) ⇒T ($1 => int,$2 => bool)
(7.98)

C ⊢ ($1 => ($1 => 5,$2 => true)) ⇒T ($1 => ($1 => int,$2 => bool))
(7.100)

C ⊢ exit($1 => ($1 => 5,$2 => true)) =⇒ exit 〈| $1 => ($1 => int,$2 => bool) |〉
(7.33)

C ⊢ ?x ⇒PM int 7→ 〈|x => int |〉
(7.103)

C ⊢ $1 => ?x ⇒PM $1 => int 7→ 〈|x => int |〉
(7.112)

C ⊢ ?y ⇒PM bool 7→ 〈| y => bool |〉
(7.103)

C ⊢ $2 => ?y ⇒PM $2 => bool 7→ 〈| y => bool |〉
(7.112)

C ⊢ $1 => ?x,$2 => ?y ⇒PM $1 => int,$2 => bool 7→ 〈|x => int,y => bool |〉
(7.113)

C ⊢ (($1 => ?x,$2 => ?y) ⇒PM
($1 => int,$2 => bool)) 7→ 〈|x => int,y => bool |〉

(7.107)

7.21. Nondeterministic assignment 119

7.21 Nondeterministic assignment

The nondeterministic assignment P := any T [E] is correct in the context C if T is a type declared
in the context, the pattern P can be matched against the type T by producing bindings RT , and in the
context C; RT where the information in RT has been included, the boolean expression E is correct. This
kind of assignment does an internal action i before finishing, indicating that a value of type T that fulfills
E has been chosen in an internal way. Thus, the nondeterministic assignment is guarded and it produces
bindings RT .

C ⊢ T ⇒ type

C ⊢ (P ⇒PM T) 7→ 〈|RT |〉

C; RT ⊢ E =⇒ exit 〈| $1 => bool |〉

C ⊢ P := any T [E] =⇒ guarded 〈|RT |〉

(7.62)

7.22 Variable declaration

In order to check if a variable declaration

var V1:T1[:=E1], . . . , Vn:Tn[:=En] in B

is semantically correct in the context C, the following conditions must be fulfilled:

1. The assignments to the initialized variables Vk:Tk:=Ek must be correct behaviours in the context C.
If some expression Ek refers to a variable V with the same name than one in {V1, . . . , Vn}, it refers
to a global variable with the same name V .

2. The behaviour B must be correct in the context C where the information that the declared variables
have their type restricted (Vi⇒?Ti) and the bindings produced by the assignments have been added.
The behaviour B may produce bindings RT, RT ′′, where RT represents (global) variables not in
{V1, . . . , Vn} and RT ′′ represents declared variables modified by B.

The whole var behaviour is an exit or guarded behaviour depending on what B is, and it produces
bindings RT in any case. The rules are:

∀ ji ∈ {k | Vk:Tk:=Ek} . C ⊢ ?Vji
:=Eji

=⇒ exit 〈|RTji
|〉

C; (V1⇒?T1);
...

(Vn⇒?Tn); RT ′ ⊢ B =⇒ exit 〈|RT, RT ′′ |〉

C ⊢ var V1:T1[:=E1], . . . , Vn:Tn[:=En] in B =⇒ exit 〈|RT |〉

(7.63)

with the side conditions that

• RTji
’s are pairwise disjoint, that is, variables {V1, . . . , Vn} have different names,

• RT ′ = RTj1 , . . . , RTjm
where {j1, . . . , jm} = {k | Vk:Tk:=Ek},

• RT is disjoint with V1 => T1, . . . , Vn => Tn, and

• RT ′′ ⊆ V1 => T1, . . . , Vn => Tn.

120 7. Static Semantics of Base Language

∀ ji ∈ {k | Vk:Tk:=Ek} . C ⊢ ?Vji
:=Eji

=⇒ exit 〈|RTji
|〉

C; (V1⇒?T1);
...

(Vn⇒?Tn); RT ′ ⊢ B =⇒ guarded 〈|RT, RT ′′ |〉

C ⊢ var V1:T1[:=E1], . . . , Vn:Tn[:=En] in B =⇒ guarded 〈|RT |〉

(7.64)

with the same side conditions.

Example 7.23 Let us check that the behaviour var x:bool in ?x:=5 endvar is not correct. It is
translated to var x:bool in ?x:=exit($1 => 5).

We have to use one of the rules above (7.63 or 7.64) with only the last condition because there are no
initialized variables:

C; x⇒?bool ⊢ ?x:=exit($1 => 5) =⇒ ?

C ⊢ var x:bool in ?x:=exit($1 => 5) =⇒ ?

In order to prove the second premise, we have to use rule 7.61

C; x⇒?bool ⊢ exit($1 => 5) =⇒ exit 〈| $1 => int |〉

C; x⇒?bool ⊢ (?x ⇒PM int) 7→ ?

C; x⇒?bool ⊢ ?x:=exit($1 => 5) =⇒ ?

Now, we have to use rule 7.102 (in Section 7.31.1) because there is a restriction about variable x in the
context, but we cannot because int 6⊑ bool.

Example 7.24 Let us check that the behaviour

var x:int := 0 ,y:bool in G(!x);G′
(?y) endvar

is semantically correct. It is translated to

varDecl ≡
var x:int := exit($1 => 0) ,y:bool in G($1 => !exit($1 => x)) . . . ;G′

($1 => ?y) . . .

We use rule 7.64 as follows:

C ⊢ ?x := exit($1 => 0) =⇒ exit 〈| x => int |〉

C;x⇒?int;

y⇒?bool; x => int ⊢ G($1 => !exit($1 => x)) . . . ;G′
($1 => ?y) . . . =⇒ guarded 〈| y => bool |〉

C ⊢ varDecl =⇒ guarded 〈| |〉
(7.64)

with RT ′′ = y => bool and RT equal to the empty list of bindings.

7.23 Case operator

The behaviour case E:T is BM (where BM represents the different branches of the case statement) is
semantically correct in a context C if expression E returns a value of type T (in that context) and BM can
be “behaviour pattern-matched” against type T by producing bindings RT . Behaviour pattern-matching

7.23. Case operator 121

is explained in the next section. If these premises are fulfilled, then the case behaviour returns bindings
RT , and it is guarded only when the behaviour pattern-matching is guarded.

C ⊢ T ⇒ type

C ⊢ E =⇒ exit 〈| $1 => T |〉

C ⊢ (BM ⇒PM T) =⇒ exit 〈|RT |〉

C ⊢ case E:T is BM =⇒ exit 〈|RT |〉

(7.65)

C ⊢ E =⇒ exit 〈| $1 => T |〉

C ⊢ (BM ⇒PM T) =⇒ guarded 〈|RT |〉

C ⊢ case E:T is BM =⇒ guarded 〈|RT |〉

(7.66)

If more than one expression is used in the case, then each expression must be correct, and the
branches BM must be behaviour pattern-matched against the record type built from the types of these
expressions.

C ⊢ T1 ⇒ type · · · C ⊢ Tn ⇒ type

C ⊢ E1 =⇒ exit($1 => T1) · · · C ⊢ En =⇒ exit($1 => Tn)

C ⊢ (BM ⇒PM
($1 => T1, . . . , $n => Tn)) =⇒ exit 〈|RT ′ |〉

C ⊢ case (E1:T1, . . . , En:Tn) is BM =⇒ exit 〈|RT ′ |〉

(7.67)

C ⊢ T1 ⇒ type · · · C ⊢ Tn ⇒ type

C ⊢ E1 =⇒ exit($1 => T1) · · · C ⊢ En =⇒ exit($1 => Tn)

C ⊢ (BM ⇒PM ($1 => T1, . . . , $n => Tn)) =⇒ guarded 〈|RT ′ |〉

C ⊢ case (E1:T1, . . . , En:Tn) is BM =⇒ guarded 〈|RT ′ |〉

(7.68)

Example 7.25 The behaviour

case ys:List is

nil -> signal Hd

| cons(?x,?xs) -> outP(!x)
endcase

communicates the head of the list ys through gate outP if it is not empty. If ys is empty, the exception
Hd is raised. Let us check that it is correct in the context C = C′, ys=>List, Hd⇒exn〈($1=>())〉, outP⇒
gate〈($1 => any)〉.

It is translated to abstract syntax as:

case exit($1 => ys):List is BM1 | (BM2 | BM3)

where

BM1 ≡ Nil() [exit($1 => true)]-> signal Hd(exit($1 => ()))

BM2 ≡ Cons($1 => ?x,$2 => ?xs) [exit($1 => true)]-> outP($1 => !exit($1 => x)) . . .

BM3 ≡ any:List [exit($1 => true)] -> signal Match(exit($1 => ()))

We have to use rule 7.66

122 7. Static Semantics of Base Language

C ⊢ exit($1 => ys) =⇒ exit 〈| $1 => List |〉

C ⊢ (BM1 | (BM2 | BM3) ⇒PM List) =⇒ guarded 〈| |〉

C ⊢ case exit($1 => ys):List is BM1 | (BM2 | BM3) =⇒ guarded 〈| |〉
(7.66)

where the second premise is proved using rule 7.72 twice:

C ⊢ (BM1 ⇒PM List) =⇒ guarded 〈| |〉

C ⊢ (BM2 ⇒PM List) =⇒ guarded 〈| |〉
C ⊢ (BM3 ⇒PM List) =⇒ guarded 〈| |〉

C ⊢ (BM2 | BM3 ⇒PM List) =⇒ guarded 〈| |〉
(7.72)

C ⊢ (BM1 | (BM2 | BM3) ⇒PM List) =⇒ guarded 〈| |〉
(7.72)

where all the premises are fulfilled due to the following proofs:

C ⊢ (Nil() ⇒PM List) 7→ 〈| |〉

C ⊢ exit($1 => true) =⇒ exit 〈| $1 => bool |〉

C ⊢ signal Hd(exit($1 => ())) =⇒ guarded 〈| |〉

C ⊢ (BM1 ⇒PM List) =⇒ guarded 〈| |〉
(7.70)

C ⊢ (Cons($1 => ?x,$2 => ?xs) ⇒PM List) 7→ 〈|x => any, xs => List |〉

C;x => any, xs => List ⊢ exit($1 => true) =⇒ exit 〈| $1 => bool |〉

C;x => any, xs => List ⊢ outP($1 => !exit($1 => x)) . . . =⇒ guarded 〈| |〉

C ⊢ (BM2 ⇒PM List) =⇒ guarded 〈| |〉
(7.70)

C ⊢ (any:List ⇒PM List) 7→ 〈| |〉

C ⊢ exit($1 => true) =⇒ exit 〈| $1 => bool |〉

C ⊢ signal Match(exit($1 => ())) =⇒ guarded 〈| |〉

C ⊢ (BM3 ⇒PM List) =⇒ guarded 〈| |〉
(7.70)

7.24 Behaviour pattern-matching

In this section we explain how the different possibilities (or branches) of a case behaviour, BM , are
matched against a type T .

7.24.1 Single match

The clause P [E] -> B can be behaviour pattern-matched against type T in the context C if:

• pattern P can be matched against type T in the context C, by producing bindings RT ,

• expression E returns a boolean value in the context C overridden by bindings RT , and

• behaviour B is correct in the context C overridden by bindings RT .

Then behaviour pattern-matching returns bindings produced by behaviour B, and it is guarded if B is.

7.24.2 Multiple match 123

C ⊢ (P ⇒PM T) 7→ 〈|RT |〉

C; RT ⊢ E =⇒ exit 〈| $1 => bool |〉

C; RT ⊢ B =⇒ exit 〈|RT ′ |〉

C ⊢ ((P [E] -> B) ⇒PM T) =⇒ exit 〈|RT ′ |〉

(7.69)

C ⊢ (P ⇒PM T) 7→ 〈|RT |〉

C; RT ⊢ E =⇒ exit 〈| $1 => bool |〉

C; RT ⊢ B =⇒ guarded 〈|RT ′ |〉

C ⊢ ((P [E] -> B) ⇒PM T) =⇒ guarded 〈|RT ′ |〉

(7.70)

7.24.2 Multiple match

When there is more than one branch, BM1 | BM2, BM1 and BM2 are behaviour pattern-matched
against type T . Regarding variables, it is like in the case of the selection operator, that is, initialized
variables may be modified only by BM1 or BM2, but non-initialized variables (modified by BM1 or
BM2) may be assigned by both. The multiple behaviour pattern-matching is guarded if all the branches
are guarded.

C, RT1, RT2 ⊢ (BM1 ⇒PM T) =⇒ exit 〈|RT1, RT |〉

C, RT1, RT2 ⊢ (BM2 ⇒PM T) =⇒ exit 〈|RT2, RT |〉

C,RT1, RT2 ⊢ (BM1 | BM2 ⇒PM T) =⇒ exit 〈|RT1, RT2, RT |〉

(7.71)

C, RT1, RT2 ⊢ (BM1 ⇒PM T) =⇒ guarded 〈|RT1, RT |〉

C, RT1, RT2 ⊢ (BM2 ⇒PM T) =⇒ guarded 〈|RT2, RT |〉

C, RT1, RT2 ⊢ (BM1 | BM2 ⇒PM T) =⇒ guarded 〈|RT1, RT2, RT |〉

(7.72)

7.25 Iteration loop

The infinite loop loop B is semantically correct if behaviour B is, and it does not finish. It is indicated
as in the case of the stop behaviour with binding $1 => none.

C ⊢ B =⇒ exit 〈|RT |〉

C ⊢ loop B =⇒ guarded 〈| $1 => none |〉
(7.73)

7.26 Process instantiation

An abstract syntax process instantiation

Π [G1, . . . ,Gm] (E1, . . .,Ep) [X1, . . .,Xn]

is semantically correct in the context C if all the following conditions are fulfilled:

• The identifier Π is declared in the context C,

C ⊢ Π ⇒ [gate〈($1 => T1)〉, . . . ,gate〈($1 => Tm)〉]
(V1:T

′
1, . . . , Vp:T

′
p)

[exn〈($1 => T ′′
1)〉, . . .,exn〈($1 => T ′′

n)〉]→ exit 〈|RT |〉.

124 7. Static Semantics of Base Language

• The actual gates, that is, the gate identifiers in the instantiation, are declared in the context C, and
their types correspond with the types in the process declaration,

C ⊢ G1 ⇒ gate〈($1 => T1)〉 · · · C ⊢ Gm ⇒ gate〈($1 => Tm)〉.

• The actual (input) parameters are expressions that return values of the corresponding types,

C ⊢ E1 =⇒ exit 〈| $1 => T ′
1 |〉 · · · C ⊢ Ep =⇒ exit 〈| $1 => T ′

p |〉.

• The actual exceptions are declared exceptions that are raised together with types that correspond
with the types of the formal exceptions

C ⊢ X1 ⇒ exn〈($1 => T ′′
1)〉 · · · C ⊢ Xm ⇒ exn〈($1 => T ′′

n)〉.

If these conditions are fulfilled, then the instantiation is an exit 〈|RT |〉 behaviour, as stated by the following
rule:

C ⊢ Π ⇒ [gate〈($1 => T1)〉, . . . ,gate〈($1 => Tm)〉]

(V1:T
′
1, . . . , Vp:T

′
p)

[exn〈($1 => T ′′
1)〉, . . . ,exn〈($1 => T ′′

n)〉]→ exit 〈|RT |〉

C ⊢ G1 ⇒ gate〈($1 => T1)〉 · · · C ⊢ Gm ⇒ gate〈($1 => Tm)〉

C ⊢ E1 =⇒ exit 〈| $1 => T ′
1 |〉 · · · C ⊢ Ep =⇒ exit 〈| $1 => T ′

p |〉

C ⊢ X1 ⇒ exn〈($1 => T ′′
1)〉 · · · C ⊢ Xm ⇒ exn〈($1 => T ′′

n)〉

C ⊢ Π [G1, . . . ,Gm] (E1, . . . ,Ep) [X1, . . . ,Xn] =⇒ exit 〈|RT |〉

(7.74)

If the process declaration in the context says that Π is a guarded 〈|RT |〉 behaviour and the same
conditions as above are fulfilled, then the process instantiation is of type guarded 〈|RT |〉.

C ⊢ Π ⇒ [gate〈($1 => T1)〉, . . . ,gate〈($1 => Tm)〉]

(V1:T
′
1, . . . , Vp:T

′
p)

[exn〈($1 => T ′′
1)〉, . . . ,exn〈($1 => T ′′

n)〉]→ guarded 〈|RT |〉

C ⊢ G1 ⇒ gate〈($1 => T1)〉 · · · C ⊢ Gm ⇒ gate〈($1 => Tm)〉

C ⊢ E1 =⇒ exit 〈| $1 => T ′
1 |〉 · · · C ⊢ Ep =⇒ exit 〈| $1 => T ′

p |〉

C ⊢ X1 ⇒ exn〈($1 => T ′′
1)〉 · · · C ⊢ Xm ⇒ exn〈($1 => T ′′

n)〉

C ⊢ Π [G1, . . . ,Gm] (E1, . . . ,Ep) [X1, . . . ,Xn] =⇒ guarded 〈|RT |〉

(7.75)

Example 7.26 Let us check that the process instantiation

User2 [acc,abd](myid)

is correct in a context C like

C = C′, acc ⇒ gate〈($1 => id)〉, abd ⇒ gate〈($1 => id)〉, myid => id

User2 ⇒ [gate〈($1 => id)〉,gate〈($1 => id)〉](myid:id)[]→ guarded 〈| |〉

It is translated to

User2 [acc,abd](exit($1 => myid))[]

and is easily checked using rule 7.75

7.27. Type expressions 125

C ⊢ User2 ⇒ [gate〈($1 => id)〉,gate〈($1 => id)〉](myid:id)[]→ guarded 〈| |〉

C ⊢ acc ⇒ gate〈($1 => id)〉

C ⊢ abd ⇒ gate〈($1 => id)〉

C ⊢ exit($1 => myid) =⇒ exit 〈| $1 => id |〉

C ⊢ User2 [acc,abd](exit($1 => myid))[] =⇒ guarded 〈|RT |〉
(7.75)

This example is related with Example 9.1 in Section 9.1.4.

7.27 Type expressions

In the abstract syntax, we have four different kinds of type expressions: an identifier, the empty type
none, the universal type any, and a record type, (RT).

7.27.1 Type identifier

The only information we can deduce about a type identifier S in a context C is what is included in the
context. We can deduce that a type S is a declared type in the context C,

C, S ⇒ type ⊢ S ⇒ type (7.76)

or that the type S is equivalent to another type T , that is, type T is the definition of the type identifier
S,

C, S ≡ T ⊢ S ≡ T (7.77)

Note that these two rules are not new, but instantiations of the general axiom 7.23 in Section 7.1.

7.27.2 Empty type

The type none, which has no values, is a predefined type, so we can deduce that it is a type in any
context C,

C ⊢ none ⇒ type (7.78)

If we have a value of type none, then this value may be of any type because none has no values.
Therefore, none is subtype of any type T .

C ⊢ none ⊑ T (7.79)

Finally, if we have a record type with a field V of type none, then the whole record type is equivalent to
none, that is, since the field V can have no value, then there is no value of the whole record type,

C ⊢ none ≡ (V => none,RT) (7.80)

126 7. Static Semantics of Base Language

7.27.3 Universal type

The type any, which includes all values of any type, is a predefined type,

C ⊢ any ⇒ type (7.81)

Every type T is a subtype of any,

C ⊢ T ⊑ any (7.82)

7.27.4 Record type

A record type (RT) is correct in the context C if we can deduce from C that RT is a correct record type
expression (see next section),

C ⊢ RT ⇒ record

C ⊢ (RT)⇒ type
(7.83)

A record type (RT) is a subtype of another record type (RT ′) whenever RT is a subtype of RT ′ (see
next section).

C ⊢ RT ⊑ RT ′

C ⊢ (RT) ⊑ (RT ′
)

(7.84)

7.28 Record type expressions

A record type expression is what we can write enclosed between parentheses () to build a record type.
They are lists (possibly empty) of types named with field names, V => T , and they can include at the
end the reserved word etc that represents any record type expression.

7.28.1 Empty record

The empty record type expression (which has no syntax, and is represented here by “()”) is considered
correct in the static semantics.

C ⊢ () ⇒ record (7.85)

7.28.2 Singleton record

A singleton record type expression, V => T , is correct in the context C if T is a type in that context.

C ⊢ T ⇒ type

C ⊢ (V => T) ⇒ record
(7.86)

Do not confuse the parentheses (), that we use to group elements and has no meaning, with the parentheses
() used to build record types.

Regarding the subtyping relation, if T is a subtype of T ′, then the record type expression V => T is a
subtype of V => T ′. Note that both record type expressions have the same field name.

7.28.3 Record disjoint union 127

C ⊢ T ⊑ T ′

C ⊢ (V => T) ⊑ (V => T ′)
(7.87)

7.28.3 Record disjoint union

A record type expression with more than one field RT1,RT2 is a well-formed record type expression if
both RT1 and RT2 are correct and they have disjoint fields.

C ⊢ RT1 ⇒ record C ⊢ RT2 ⇒ record

C ⊢ RT1,RT2 ⇒ record
(7.88)

with the side condition that RT1 and RT2 have disjoint fields.

With respect to subtyping, the disjoint union RT1,RT2 is a subtype of RT ′
1,RT ′

2 if it can be proved
that RT1 ⊑ RT ′

1 and RT2 ⊑ RT ′
2.

C ⊢ RT1 ⊑ RT ′
1 C ⊢ RT2 ⊑ RT ′

2

C ⊢ RT1,RT2 ⊑ RT ′
1,RT ′

2

(7.89)

The binary operator “,” between records is commutative, associative, and it has the empty record as
identity.

C ⊢ RT1,RT2 ≡ RT2,RT1
(7.90)

C ⊢ (RT1,RT2),RT3 ≡ RT1,(RT2,RT3) (7.91)

C ⊢ (),RT ≡ RT (7.92)

7.28.4 Universal record

Intuitively, etc represents the fields that have no interest at certain level. It is a record type expression
in any context

C ⊢ etc ⇒ record (7.93)

and it is a supertype of any record type expression RT

C ⊢ RT ⊑ etc (7.94)

7.29 Value Expressions

7.29.1 Primitive constants

A primitive constant K is a constant defined in the predefined library of E-LOTOS. We can deduce
that a constant K has type T if this information is in the context. The initial context must include
information about all constants in the predefined library of E-LOTOS.

128 7. Static Semantics of Base Language

C ⊢ K ⇒ T

C ⊢ K ⇒T T
(7.95)

7.29.2 Variables

Variable V is a correct value expression of type T if it has been assigned a value of that type.

C ⊢ V => T

C ⊢ V ⇒T T
(7.96)

7.29.3 Constructor application

The constructor application C N is correct and it has type S if the constructor C is declared of type
(RT)→ S, and value N has type (RT).

C ⊢ C ⇒ ((RT)→ S)

C ⊢ N ⇒T (RT)

C ⊢ C N ⇒T S

(7.97)

Example 7.27 Let us see the type of the value cons(3,nil()) in a context C = (C′, cons⇒(any,List)→
List, nil ⇒ ()→ List), where the constructors cons and nil are the predefined constructors. The proof is
as follows:

C ⊢ cons ⇒ (any,List)→ List

C ⊢ 3 => int

C ⊢ 3 ⇒T int
(7.95)

C ⊢ int ⊑ any
(7.82)

C ⊢ 3 ⇒T any
(7.17)

C ⊢ nil ⇒ ()→ List

C ⊢ () ⇒T ()
(7.99)

C ⊢ () ⇒T
()

(7.98)

C ⊢ nil() ⇒T List
(7.97)

C ⊢ 3,nil() ⇒T any,List
(7.101)

C ⊢ (3,nil()) ⇒T (any,List)
(7.98)

C ⊢ cons(3,nil()) ⇒T List
(7.97)

7.29.4 Record values

We can deduce that the record value (RN) has type (RT) if the record value expression RN has type
RT (see Section 7.30).

C ⊢ RN ⇒T RT

C ⊢ (RN) ⇒T
(RT)

(7.98)

7.30 Record value expressions

A record value expression is a list (possibly empty) of values where each value has a field name.

7.30.1 Empty record 129

7.30.1 Empty record

The empty record value expression (which has no syntax, and is represented here by ()) has empty record
type (which is also represented by ()):

C ⊢ () ⇒T () (7.99)

7.30.2 Singleton record

If the value N has type T , then the record value expression V => N has type V => T .

C ⊢ N ⇒T T

C ⊢ (V => N) ⇒T (V => T)
(7.100)

7.30.3 Record disjoint union

The type of a record value expression with more than one field is built from the types of each field, in a
recursive way.

C ⊢ RN1 ⇒T RT1 C ⊢ RN2 ⇒T RT2

C ⊢ RN1, RN2 ⇒T RT1, RT2

(7.101)

with the side condition that RN1 and RN2 have disjoint fields.

7.31 Patterns

We are going to see now the meaning of the different patterns used in E-LOTOS. The following rules
define how pattern-matching is performed. In the static semantics, patterns are matched against types.
The pattern-matching produces bindings between these variables and types, meaning that variables have
been given a value. As we will see in Chapter 8, patterns are matched against values in the dynamic
semantics.

7.31.1 Variable pattern

If pattern ?V is matched against type T in context C, there are two cases:

• if variable V is declared with a var operator, then it is restricted, and something like V =>?T ′ will
be in the context C. In this case, the pattern ?V can be matched against type T provided that T is
a subtype of T ′. The binding produced binds V with the type T :

C ⊢ T ⊑ T ′

C ⊢ (?V ⇒PM T) 7→ 〈|V => T |〉
[V ⇒?T ′ ∈ C] (7.102)

• if variable V is not declared, then ?V can be matched against any type T , and the binding produced
binds V with the type T :

C ⊢ (?V ⇒PM T) 7→ 〈|V => T |〉
[6 ∃V ⇒?T ′ ∈ C] (7.103)

130 7. Static Semantics of Base Language

These are the rules in [Que98] because there variables do not need to be declared. But we have
discovered that a process declaration is semantically correct (Section 9.1.4) if the body of the process
only produces those bindings related to out parameters. This implies that (local) variables used in the
body have to be in the scope of a var declaration because bindings related to these variables cannot go
outside the process body. And, since all the behaviours are declared inside a process declaration, this
implies that variables have to be declared, as we said at the beginning of the tutorial. Thus, rule 7.103
will never be used.

Another problem (present in [Que98]) is that when a variable V is bound to a type T and the binding
V =>T is included in the context, it overrides the information V ⇒?T ′, so it is lost the information about
the type T ′ used in the declaration of the variable V . Therefore, rule 7.103 could be used and the variable
V could be assigned a value of any type. For example, the behaviour

var x:bool in

?x := true ; ?x := 5
endvar

would be semantically correct! We have propose to remove rule 7.103 and to modify rule 7.102 as follows:

C ⊢ T ⊑ T ′

C ⊢ (?V ⇒PM T) 7→ 〈|V => T ′ |〉
[V ⇒?T ′ ∈ C ∨ V => T ′ ∈ C] (7.104)

That is, the static type T ′ used in the declaration of variable V is always kept together with the variable.
So the behaviour

var x:any in

?x := true ; ?x := 5
endvar

is semantically correct, but

var x:bool in

?x := true ; ?x := 5
endvar

is not.

7.31.2 Expression pattern

Pattern !E can be matched against type T if expression E returns a value of type T .

C ⊢ E =⇒ exit 〈| $1 => T |〉

C ⊢ (!E ⇒PM T) 7→ 〈| |〉
(7.105)

Note that although the syntax of E-LOTOS allows to write things like !(?x:=3), it has no meaning,
that is, it cannot be matched against any type. In a pattern !E, we can only write an expression E that
returns on value (which may be a record), so we can write !3, or !if x>0 then 3 else 5 endif .

7.31.3 Wildcard pattern

In [Que98] it is said that the wildcard pattern any:T is well formed in the context C if T is a type in
that context, and it can be matched only against type T .

7.31.4 Record pattern 131

C ⊢ T ⇒ type

C ⊢ (any:T ⇒PM T) 7→ 〈| |〉

But then we have that !3:nat ⇒PM int (assuming nat ⊑ int) but any:nat 6⇒PM int.

We have propose to modify this rule and to say that the pattern any:T can be matched against type
T ′ if T is a subtype of T ′.

C ⊢ T ⇒ type

C ⊢ T ⊑ T ′

C ⊢ (any:T ⇒PM T ′) 7→ 〈| |〉

(7.106)

7.31.4 Record pattern

The record pattern (RP) can be matched against the record type (RT) provided that the record of
patterns RP can be matched against RT (see Section 7.32).

C ⊢ (RP ⇒PM RT ′) 7→ 〈|RT |〉

C ⊢ ((RP) ⇒PM
(RT ′

)) 7→ 〈|RT |〉
(7.107)

(RP) can also be matched against the universal type any, provided that RP can be matched against
the record type which has the same fields as RP and all its fields have type any:

C ⊢ (V1 => P1, . . . ,Vn => Pn ⇒PM V1 => any, . . . ,Vn => any) 7→ 〈|RT |〉

C ⊢ ((V1 => P1, . . . ,Vn => Pn) ⇒PM any) 7→ 〈|RT |〉
(7.108)

Example 7.28 The following proof shows how the pattern ($1=>!exit($1=>3)) can be matched against
the type ($1 => int).

C ⊢ 3 => int

C ⊢ 3 ⇒T int
(7.95)

C ⊢ $1 => 3 ⇒T $1 => int
(7.100)

C ⊢ exit($1 => 3) =⇒ exit 〈| $1 => int |〉
(7.33)

C ⊢ (!exit($1 => 3) ⇒PM int) 7→ 〈| |〉
(7.105)

C ⊢ ($1 => !exit($1 => 3) ⇒PM $1 => int) 7→ 〈| |〉
(7.112)

C ⊢ (($1 => !exit($1 => 3)) ⇒PM ($1 => int)) 7→ 〈| |〉
(7.107)

Example 7.29 Let us see how the pattern (!(x => 2,y => true)), which is translated to

($1 => !exit($1 => (x => 2,y => true))),

can be patter-matched against type any.

The proof is as follows:

T1 T2

C ⊢ (x => !exit($1 => 2),y => !exit($1 => true) ⇒PM x => any,y => any) 7→ 〈| |〉
(7.113)

C ⊢ ((x => !exit($1 => 2),y => !exit($1 => true)) ⇒PM any) 7→ 〈| |〉
(7.108)

132 7. Static Semantics of Base Language

where the proof trees T 1 and T 2 are

C ⊢ 2 ⇒ int

C ⊢ 2 ⇒T int
(7.95)

C ⊢ $1 => 2 ⇒T $1 => int
(7.100)

C ⊢ exit($1 => 2) =⇒ exit 〈| $1 => int |〉
(7.33)

C ⊢ int ⊑ any
(7.82)

C ⊢ $1 => int ⊑ $1 => any
(7.87)

C ⊢ exit($1 => 2) =⇒ exit 〈| $1 => any |〉
(7.15)

C ⊢ (!exit($1 => 2) ⇒PM any) 7→ 〈| |〉
(7.105)

C ⊢ (x => !exit($1 => 2) ⇒PM x => any) 7→ 〈| |〉
(7.112)

and

C ⊢ true ⇒ bool

C ⊢ true ⇒T bool
(7.95)

C ⊢ $1 => true ⇒T $1 => bool
(7.100)

C ⊢ exit($1 => true) =⇒ exit 〈| $1 => bool |〉
(7.33)

C ⊢ bool ⊑ any
(7.82)

C ⊢ $1 => bool ⊑ $1 => any
(7.87)

C ⊢ exit($1 => true) =⇒ exit 〈| $1 => any |〉
(7.15)

C ⊢ (!exit($1 => true) ⇒PM any) 7→ 〈| |〉
(7.105)

C ⊢ (y => !exit($1 => true) ⇒PM y => any) 7→ 〈| |〉
(7.112)

7.31.5 Constructor pattern

Pattern C P can be matched against type T in the context C if C is a constructor declared in C,
C ⇒ (RT) → S, S is a subtype of T (in this case T may be only S or any), and pattern P can be
matched against record type (RT). Bindings returned by this last pattern-matching are also returned
by the first one.

C ⊢ C ⇒ (RT)→ S

C ⊢ S ⊑ T

C ⊢ (P ⇒PM
(RT)) 7→ 〈|RT ′ |〉

C ⊢ (C P ⇒PM T ′) 7→ 〈|RT ′ |〉

(7.109)

Example 7.30 Pattern cons(?x,?xs) can be matched against type intlist in a context C = C′, cons ⇒
(int,intlist)→ intlist, and it produces bindings x => int, xs => intlist. The proof is as follows:

C ⊢ cons ⇒ (int,intlist)→ intlist

C ⊢ intlist ⊑ intlist

C ⊢ ((?x,?xs) ⇒PM
(int,intlist)) 7→ 〈|x => int, xs => intlist |〉

C ⊢ (cons(?x,?xs) ⇒PM intlist) 7→ 〈| x => int, xs => intlist |〉
(7.109)

7.31.6 Explicit typing pattern

The explicit typing pattern P:T is correct in the context C provided that T is a type in that context,
and it can be matched against type T ′ whenever P can be matched against type T (producing bindings
RT) and T is a subtype of T ′. The bindings RT are produced.

7.32. Record of patterns 133

C ⊢ T ⇒ type

C ⊢ T ⊑ T ′

C ⊢ (P ⇒PM T) 7→ 〈|RT |〉

C ⊢ (P:T ⇒PM T ′) 7→ 〈|RT |〉

(7.110)

7.32 Record of patterns

A record of patterns, RP , is a list (possibly empty) of patterns separated by commas, where each element
is preceded by a field name, V1 => P1, . . .,Vn => Pn.

7.32.1 Empty record pattern

The empty record of patterns (which has no syntax, and is represented here by “()”) can be only matched
against the empty record type (also represented by “()”).

C ⊢ (() ⇒PM ()) 7→ 〈| |〉 (7.111)

7.32.2 Singleton record pattern

A singleton record of patterns V =>P can be matched against type V =>T (note that the same field name
is used), provided that pattern P can be matched against type T .

C ⊢ (P ⇒PM T) 7→ 〈|RT |〉

C ⊢ ((V => P) ⇒PM (V => T)) 7→ 〈|RT |〉
(7.112)

7.32.3 Record disjoint union

The record of patterns RP1, RP2 can be matched against the record type RT1, RT2, provided that RP1

can be matched against RT1, RP2 can be matched against RT2, and these pattern matchings produce
disjoint bindings.

C ⊢ (RP1 ⇒PM RT1) 7→ 〈|RT ′
1 |〉 C ⊢ (RP2 ⇒PM RT2) 7→ 〈|RT ′

2 |〉

C ⊢ (RP1, RP2 ⇒PM RT1, RT2) 7→ 〈|RT ′
1, RT ′

2 |〉
(7.113)

with the side condition that RT ′
1 and RT ′

2 must have disjoint fields.

7.32.4 Wildcard record pattern

The pattern etc can be used to be matched against any record type, RT .

C ⊢ (etc ⇒PM RT) 7→ 〈| |〉 (7.114)

134 7. Static Semantics of Base Language

8 Dynamic Semantics of Base
Language

In this chapter we introduce the dynamic operational semantics of E-LOTOS. This semantics allows to
deduce the transitions that a behaviour in the abstract syntax which has passed the static semantics can
perform.

8.1 Introduction

The transitions that a behaviour B can perform are:

• B
G(RN)

−−−−−−−→ B′: behaviour B can perform an action on gate G, communicating the value (RN),
and becoming B′ in doing so. As we saw in the static semantics, a gate can communicate only values
which are records with one field, named $1, so (RN) will have always the form ($1 => N). When

we want to distinguish the value N , we will write B
G($1=>N)

−−−−−−−−−→ B′.

• B
X(RN)

−−−−−−−→ B′: B can raise the exception X together with the value (RN), which is a record with
one field called $1, and becomes B′ in doing so.

• B
i

−−→ B′: behaviour B can perform an internal action i, becoming B′.

• B
δ(RN)
−−−−−→ B′: behaviour B can finish producing bindings RN between variables in patterns of B

and values. These bindings are not saved in a memory or state, but they are transferred to the
following behaviours, that is, behaviours composed in sequence with B, by means of the substitution
operator (see below). δ is a special gate used by the dynamic semantics to propagate the bindings
produced by a behaviour. For example, the abstract syntax behaviour ?x := exit($1 => 3) binds
variable x with the value 3, and this binding is propagated by means of gate δ,

?x := exit($1 => 3)
δ(x=>3)

−−−−−−−→ block

as we will see in Example 8.8. Behaviour B′ is never used in the inference rules, in the sense that
when it appears in a premise of an inference rule, it is never used in the conclusion. We write it in
order to write always transitions ending in a behaviour, and it will be always the behaviour block.

• B
ǫ〈d〉

−−−−→ B′: behaviour B can idle d units of time, becoming B′.

Sometimes we will use these abbreviations:

• B
a(RN)
−−−−−→ B′, meaning B

G(RN)
−−−−−−−→ B′, B

X(RN)
−−−−−−−→ B′, or B

i
−−→ B′; and

• B
µ(RN)

−−−−−→ B′, meaning B
a(RN)
−−−−−→ B′ or B

δ(RN)
−−−−−→ B′.

136 8. Dynamic Semantics of Base Language

We will also write B
µ(RN)@d
−−−−−−−→ B′ when either:

• B
µ(RN)
−−−−−→ B′ and d = 0, or

• B
ǫ〈d〉

−−−−→ B′′ and B′′
µ(RN)
−−−−−→ B′.

Contexts

The main judgements of the dynamic semantics are

E ⊢ B
µ(RN)
−−−−−→ B′

E ⊢ B
ǫ〈d〉

−−−−→ B′

which mean that in context E the given transitions are possible, where context E gives the needed
information related to identifiers in B. These contexts are built with the following grammar:

E ::= K ⇒ T predefined constant (E1)

| S ≡ T type equivalence (E2)

| T ⊑ T ′ subtype (E3)

| C ⇒ (RT)→ S constructor (E4)

| Π ⇒ λ[G1:T1, . . . , Gm:Tm]

(V1:T
′
1, . . . , Vp:T

′
p)

[X1:T
′′
1 , . . . , Xn:T

′′
n]→ B

process identifier (E5)

| trivial (E6)

| E ,E disjoint union (E7)

The information saved in the contexts of the dynamic semantics consists of

• a subset of the information saved in the static semantics contexts that needed to be able to infer the
type of a value N (and which has the same meaning as in the static semantics); and

• the information related to a process declaration needed to execute an instantiation, that is, the name
and type of the formal gates, parameters, and exceptions, and the body of the process.

Judgements

As in the static semantics, there are more judgements not dealing with transitions. There are judgements
to know a value’s type, as follows

E ⊢ N →T T

meaning that in context E value N has type T . Similarly for records of values,

E ⊢ RN →T RT.

There are also judgements dealing with subtyping,

E ⊢ T ⊑ T ′

E ⊢ RT ⊑ RT ′

8.1. Introduction 137

and inference rules stating that the subtyping relation is a preorder. We omit them here because they
are as in the static semantics.

We have also judgements relative to pattern matching between patterns and values:

E ⊢ (P →PM N) 7→ 〈|RN |〉

E ⊢ (RP →PM RN) 7→ 〈|RN ′ |〉

and a new kind of judgements
E ⊢ (P →PM N) 7→ fail

E ⊢ (RP →PM RN) 7→ fail

meaning that it is not possible to match the pattern P (respectively RP) against value N (respectively
RN). This information is needed when the different branches of a case statement are checked (see
Section 8.24).

Substitution operator

The substitution operator, B [[RN]] is used to propagate bindings RN produced by a behaviour to
the following one B. For example, when the behaviour B1;B2 is executed and B1 finishes producing
bindings RN1, then B2 is executed after substituting variables bound in RN1 (see inference rule 8.11
below). For example, if ?x:=1;G(!x) is executed, ?x:=1 finishes producing binding x => 1, and G(!1)
is then executed. But if ?x:=1;?x:=x+1;G(!x) is executed and the binding x => 1 is produced, it can
only affect to the expression in the second assignment but not to the action on gate G, because the
second assignment binds variable x again. Therefore, the substitution operator is defined as syntactic
substitution of free variables for values with the following exceptions:

• Actions

(G ($1 => P1) @P2 E start〈d〉) [[RN]]
def
= G ($1 => P1 [[RN]]) @P2 [[RN]] E [[RN ′]] start〈d〉

where RN ′ = RN − (vars(P1) ∪ vars(P2)), and vars(P) is the set of variables bound by pattern P
(and it is easy to define).

• Sequential composition

(B1;B2) [[RN]]
def
= B1 [[RN]];B2 [[RN − vars(B1)]]

where vars(B) represents the set of variables bound by behaviour B, and it is easy and cumbersome
to define1.

• Selection operator In the branching operators (those composed by several subbehaviours where
not all of them have to be executed) not all the branches have to assign the same variables. If the
behaviour ?x:=1;(?x:=x+1;G1 [] G2);?y:=x begins to be executed and binding x=>1 is produced,
it should not affect the last assignment, since if the first branch of the selection is chosen, the value
of variable x will change. Therefore, branching operators stops the substitution of variables bound
in any branch and remembers the bindings introducing them in the behaviours:

(B1 [] B2) [[RN]]
def
= beh(RN);B1 [] beh(RN);B2

where beh(V1 =>N1, . . . , Vn =>Nn)
def
= ?V1:=exit($1 =>N1); . . . ;?Vn:=exit($1 =>Nn).

1In fact, if C ⊢ B =⇒ exit 〈| V1=>T1, . . . , Vn =>Tn |〉 then vars(B) = {V1, . . . , Vn}. C is the context of the static semantics.

138 8. Dynamic Semantics of Base Language

• Parallel over values operator

(par P in N ||| B) [[RN]]
def
= par P in N ||| B [[RN − vars(P)]]

• Disabling operator This is also a branching operator.

(B1 [> B2) [[RN]]
def
= beh(RN);B1 [> beh(RN);B2

• Suspend/Resume operator This is a branching operator.

(B1 [X> B2) [[RN]]
def
= beh(RN);B1 [X> beh(RN);B2

• Exception handling This is a branching operator.

(trap
exception X1($1 => P1):T1 is B1

· · ·
exception Xn($1 => Pn):Tn is Bn

exit Pn+1 is Bn+1

in B) [[RN]]

def
= trap

exception X1($1 => P1):T1 is B1 [[RN − vars(P1)]]
· · ·

exception Xn($1 => Pn):Tn is Bn [[RN − vars(Pn)]]
exit Pn+1 is Bn+1 [[RN − vars(Pn+1)]]

in B [[RN]]

• Renaming operator

(rename

gate G1($1 => P1):T1 is G′
1($1 => P ′

1)

· · ·
gate Gm($1 => Pm):Tm is G′

m($1 => P ′
m)

signal X1($1 => P ′′
1):T

′
1 is X ′

1(E1)

· · ·
signal Xm($1 => P ′′

n):T
′
n is X ′

n(En)

in B) [[RN]]

def
= rename

gate G1($1 => P1):T1 is G′
1($1 => P ′

1 [[RN − vars(P1)]])
· · ·

gate Gm($1 => Pm):Tm is G′
m($1 => P ′

m [[RN − vars(Pm)]])
signal X1($1 => P ′′

1):T
′
1 is X ′

1(E1 [[RN − vars(P ′′
1)]])

· · ·
signal Xm($1 => P ′′

n):T
′
n is X ′

n(En [[RN − vars(P ′′
n)]])

in B [[RN]]

• Variable declaration

(var V1:T1[:=E1], . . . , Vn:Tn[:=En] in B) [[RN]]
def
= var V1:T1[:=E1 [[RN]]], . . . , Vn:Tn[:=En [[RN]]] in B [[RN]]

• Case operator This is also a branching operator.

(case E:T is P1 [E1] -> B1 | . . . | Pn [En] -> Bn) [[RN]]
def
= case E:T is P1 [E1 [[RN − vars(P1)]]] -> B1 [[RN − vars(P1)]]

| . . . | Pn [En [[RN − vars(Pn)]]] -> Bn [[RN − vars(Pn)]]

• Iteration loop

(loop B) [[RN]]
def
= B [[RN]];loop B [[RN − vars(B)]]

8.2. Actions 139

8.2 Actions

The action G ($1=>P1) @P2 E start〈d〉 has the transition labelled G($1 => N), in the context E , provided
that the following conditions are fulfilled:

• The pattern ($1 => P1) can be matched (in the context E) against the value ($1 => N), producing
bindings RN1,

E ⊢ (($1 => P1) →PM ($1 =>N)) 7→ 〈|RN1 |〉

• The pattern P2 can be matched against the time value d, producing bindings RN2,

E ⊢ (P2 →PM d) 7→ 〈|RN2 |〉

• The expression E after substituting the bindings RN1, RN2 returns true,

E ⊢ E [[RN1, RN2]]
δ($1=>true)
−−−−−−−−−→ E′

The following inference rule summarizes these conditions:

E ⊢ (($1 => P1) →PM
($1 => N)) 7→ 〈|RN1 |〉

E ⊢ (P2 →PM d) 7→ 〈|RN2 |〉

E ⊢ E [[RN1, RN2]]
δ($1=>true)

−−−−−−−−−−→ E′

E ⊢ G ($1 => P1) @P2 E start〈d〉
G($1=>N)

−−−−−−−−−→ exit(RN1,RN2)

(8.8)

The behaviour exit(RN1,RN2) is used in order to

• indicate that the action has finished and if there is a behaviour B composed in sequence with the
action, B can start to be executed; and to

• propagate the bindings produced by the action to any behaviour which is composed in sequence with
this action (see Section 8.3 and Example 8.7).

When we were studying the inference rules in [Que98] we though that rule 8.8 should check that N
is a correct value for gate G, that is, if gate G can communicate values of type T , N must have type
T . These type checking is not needed because when this rule is used, that is, when we want to know if

an action on gate G has the transition
G($1=>N)

−−−−−−−−−→ , N has the type of values which G can communicate.
This rule is used in the inference rules of the hide (Section 8.15) and rename (Section 8.19) operators
and, there, the value N is invented (we say that a value is invented in an inference rule if it appears in a
premise of the rule but not in the conclusion) of the corresponding type.

Regarding time, an action can idle any period of time. Hence, we have the following transition

E ⊢ G ($1 => P1) @P2 E start〈d〉
ǫ〈d′〉
−−−−→ G ($1 => P1) @P2 E start〈d + d′〉

[d′ > 0]
(8.9)

for any time delay d′ > 0. Although pattern P2 is used to restrict when the action can be performed,
that is not taken into account in this rule, but in the previous one. Thus, an action can idle any time,
even if it cannot be performed then due to the restrictions in P2.

Example 8.1 Let us see how the behaviour outP(!3) can evolve. It is translated to abstract syntax as

outP($1 => !exit($1 => 3)) @any : time exit($1 => true) start〈0〉.

140 8. Dynamic Semantics of Base Language

By using rule 8.8 we can deduce

E ⊢ (($1 => !exit($1 => 3)) →PM
($1 => 3)) 7→ 〈| |〉

E ⊢ (any : time →PM 0) 7→ 〈| |〉

E ⊢ exit($1 => true)
δ($1=>true)

−−−−−−−−−−→ block

E ⊢ outP($1 => !exit($1 => 3)) @any : time exit($1 => true) start〈0〉
outP($1=>3)

−−−−−−−−−−→ exit()

(8.8)

The first premise is proved as follows:

E ⊢ exit($1 => 3)
δ($1=>3)
−−−−−−−→ block

E ⊢ (!exit($1 => 3) →PM 3) 7→ 〈| |〉
(8.150)

E ⊢ ($1 => !exit($1 => 3) →PM $1 => 3) 7→ 〈| |〉
(8.140)

E ⊢ (($1 => !exit($1 => 3)) →PM ($1 => 3)) 7→ 〈| |〉
(8.134)

The second and third premises have the following proofs

E ⊢ 0 →T time

E ⊢ (any : time →PM 0) 7→ 〈| |〉
(8.137)

E ⊢ exit($1 => true)
δ($1=>true)

−−−−−−−−−−→ block

(8.23)

We can also use rule 8.9 to show that the given action can idle, for example, two units of time:

E ⊢ outP($1 => !exit($1 => 3)) . . . start〈0〉
ǫ〈2〉

−−−−→ outP($1 => !exit($1 => 3)) . . . start〈2〉

(8.9)

where . . . stands for @any : time exit($1 => true).

And, by combining these results, we can show that the evolution of the action outP(!3) might be:

outP($1 => !exit($1 => 3)) @any : time exit($1 => true) start〈0〉
ǫ〈2〉

−−−−→

outP($1 => !exit($1 => 3)) @any : time exit($1 => true) start〈2〉
outP($1=>3)

−−−−−−−−−−→

exit()

where, in order to prove the second step, we have to change 0 to 2 in the first proof.

Therefore, the action outP(!3) may perform a communication on gate outP immediately, or it can
delay any time before doing this communication. The next example shows how we can control the time
instant when the communication occurs.

Example 8.2 Let us suppose that the value 3 has to be communicated through the gate outP exactly
after one unit of time has passed since the action was enabled. That is, the action is specified as
outP(!3) @!1, translated to abstract syntax as

outP($1 => !exit($1 => 3)) @!exit($1 => 1) exit($1 => true) start〈0〉.

If we try to use rule 8.8 directly, we cannot prove anything, because the pattern !1 cannot be matched
against the value 0. So, we can only use the rule 8.9, and prove the following2

E ⊢ outP($1 => !exit($1 => 3)) @!exit($1 => 1) exit($1 => true) start〈0〉
ǫ〈1〉

−−−−→ outP($1 => !exit($1 => 3)) @!exit($1 => 1) exit($1 => true) start〈1〉

(8.9)

2In fact, we can use this rule to prove that the action outP(!3) @!1 can idle any time, but only when exactly one unit
of time is delayed, the resulting behaviour can perform the communication.

8.3. Sequential composition 141

Now, we can use rule 8.8 to show the following:

E ⊢ (($1 => !exit($1 => 3)) →PM
($1 => 3)) 7→ 〈| |〉

E ⊢ (!exit($1 => 1) →PM 1) 7→ 〈| |〉

E ⊢ exit($1 => true)
δ($1=>true)

−−−−−−−−−−→ block

E ⊢ outP($1 => !exit($1 => 3)) @!exit($1 => 1) exit($1 => true) start〈1〉
outP($1=>3)

−−−−−−−−−−→ exit()

(8.8)

where the premises are easily proved.

Example 8.3 Let us see now how the behaviour inP(?x : int), which is translated to

inP($1 => ?x : int) @any : time exit($1 => true) start〈0〉,

can evolve.

By applying rule 8.8, we can deduce

E ⊢ (($1 => ?x : int) →PM ($1 => n)) 7→ 〈| x => n |〉

E ⊢ (any : time →PM 0) 7→ 〈| |〉

E ⊢ exit($1 => true)
δ($1=>true)

−−−−−−−−−−→ block

E ⊢ inP($1 => ?x : int) @any : time exit($1 => true) start〈0〉
inP($1=>n)
−−−−−−−−−→ exit(x => n)

(8.8)

where n may be any constant of type int. That is, this action can offer a communication of any integer
through the gate inP, binding the variable x with this value.

The first premise is proved in Example 8.16 in Section 8.31.3 with n = 8.

8.3 Sequential composition

We are going to see now how a sequential composition B1;B2 can evolve. Its evolution depends, obviously,
on the evolutions of both B1 and B2. If B1 can offer a communication, perform an internal action, or
raise an exception (all of them represented by a), then, the sequential composition can do the same.

E ⊢ B1
a(RN)
−−−−−→ B′

1

E ⊢ B1;B2
a(RN)
−−−−−→ B′

1;B2

(8.10)

If the first behaviour finishes producing bindings RN1, and the second behaviour modified by these
bindings can perform an a, then, we have

E ⊢ B1

δ(RN1)
−−−−−−−→ B′

1

E ⊢ B2 [[RN1]]
a(RN2)

−−−−−−−→ B′
2

E ⊢ B1;B2

a(RN2)
−−−−−−−→ exit(RN1);B

′
2

(8.11)

Note how the bindings produced by B1 are transfered to B2 via the substitution operator.

We use the behaviour exit(RN1) to annotate the bindings produced by B1. These bindings will be
used later, when B2 also finishes. The following rule shows how when B1 can finish, and B2 modified by
the bindings produced by B1 can also finish, the whole sequential composition finishes and it produces
the bindings of B1 overridden by the bindings of B2:

142 8. Dynamic Semantics of Base Language

E ⊢ B1

δ(RN1)
−−−−−−−→ B′

1

E ⊢ B2 [[RN1]]
δ(RN2)

−−−−−−−→ B′
2

E ⊢ B1;B2

δ(RN1;RN2)
−−−−−−−−−−→ block

(8.12)

The sequential composition B1;B2 can idle a period of time d if B1 can do so:

E ⊢ B1

ǫ〈d〉
−−−−→ B′

1

E ⊢ B1;B2

ǫ〈d〉
−−−−→ B′

1;B2

(8.13)

And, if B1 can finish after d1 units of time, and B2 (modified by the bindings produced by B1) can
idle a period of time d2, then the sequential composition can delay d1 + d2:

E ⊢ B1

δ(RN1)@d1

−−−−−−−−−→ B′
1

E ⊢ B2 [[RN1]]
ǫ〈d2〉

−−−−−→ B′
2

E ⊢ B1;B2

ǫ〈d1+d2〉
−−−−−−−→ exit(RN1);B

′
2

(8.14)

Example 8.4 Let us see the (possible) evolution of the behaviour inP(?x : int); outP(!x) which is
translated to

inP($1 => ?x : int) @any : time exit($1 => true) start〈0〉;
outP($1 => !exit($1 => x)) @any : time exit($1 => true) start〈0〉

.

First, we can use rule 8.10 to prove that

E ⊢ inP($1 => ?x : int) . . .
inP($1=>n)
−−−−−−−−−→ exit(x => n)

E ⊢ inP($1 => ?x : int) . . . ; outP($1 => !exit($1 => x)) . . .
inP($1=>n)
−−−−−−−−−→ exit(x => n); outP(!exit($1 => x)) . . .

(8.10)

where n stands for any integer constant. Then, we can use rule 8.11 to prove that

E ⊢ exit(x => n)
δ(x=>n)

−−−−−−−→ block

E ⊢ outP($1 => !exit($1 => n)) . . .
outP($1=>n)

−−−−−−−−−−→ exit()

E ⊢ exit(x => n); outP($1 => !exit($1 => x)) . . .
outP($1=>n)

−−−−−−−−−−→ exit(x => n); exit()

(8.11)

Note how value n has been substituted for variable x in the second premise.

Finally, we use rule 8.12 to conclude that

E ⊢ exit(x => n)
δ(x=>n)

−−−−−−−→ block

E ⊢ exit()
δ()

−−−−→ block

E ⊢ exit(x => n); exit()
δ(x=>n)

−−−−−−−→ block

(8.12)

8.4 Selection operator

A selection B1 [] B2 can offer a communication on a gate if B1 or B2 does, and this offer constitutes a
decision, in the sense that only one branch will continue.

8.4. Selection operator 143

E ⊢ B1
G(RN)

−−−−−−−→ B′
1

E ⊢ B1 [] B2
G(RN)

−−−−−−−→ B′
1

(8.15)

E ⊢ B2
G(RN)

−−−−−−−→ B′
2

E ⊢ B1 [] B2
G(RN)

−−−−−−−→ B′
2

(8.16)

The same occurs if one of the behaviours performs an internal action:

E ⊢ B1
i

−−→ B′
1

E ⊢ B1 [] B2
i

−−→ B′
1

(8.17)

E ⊢ B2
i

−−→ B′
2

E ⊢ B1 [] B2
i

−−→ B′
2

(8.18)

However, things are not the same when B1 or B2 raises an exception. If we said that in this case the
whole behaviour raises the same exception, we would not preserve the urgency of internal actions. For
example, the behaviour

trap

exception X is wait(1) endexn

in (i [] signal X)

endtrap

could perform an internal action (the selection can do an internal action, and then the trap behaviour
can too), or it could wait one unit of time (the selection would raise exception X and the exception would
be trapped and handled with the behaviour wait(1)), and this is what we do not want. In order to avoid
this problem, the dynamic semantics rules of the selection operator do not allow a selection behaviour to
raise an exception. If B1 (or B2) raises an exception becoming B′

1 (respectively B′
2), B1 [] B2 performs

an internal action (that breaks the selection) becoming a behaviour that raise the exception raised by B1

and follows as B′
1 (respectively B′

2). Example 8.12 in Section 8.16 shows the possible transitions of the
above behaviour.

The rules are as follows:

E ⊢ B1
X($1=>N)

−−−−−−−−−→ B′
1

E ⊢ B1 [] B2
i

−−→ signal X(exit($1 => N));B′
1

(8.19)

E ⊢ B2
X($1=>N)

−−−−−−−−−→ B′
2

E ⊢ B1 [] B2
i

−−→ signal X(exit($1 => N));B′
2

(8.20)

where the exception raised is annotated in order to be raised again.

We have to note that there are no rules dealing with the case where B1 or B2 finishes (by offering
a communication on gate δ). It is because the behaviour B1 [] B2 has passed the static semantics,
and, therefore, both behaviours are guarded, that is, they cannot finish without performing an action or
raising an exception.

The following rule establishes that the behaviour B1 [] B2 can idle a period of time d, if both B1 and
B2 can idle the same period d.

144 8. Dynamic Semantics of Base Language

E ⊢ B1

ǫ〈d〉
−−−−→ B′

1 E ⊢ B2

ǫ〈d〉
−−−−→ B′

2

E ⊢ B1 [] B2

ǫ〈d〉
−−−−→ B′

1 [] B′
2

(8.21)

Example 8.5 Let us see which transitions the behaviour

in2(?x2 : data); out1(!5)
[]

out1(!5); in2(?x2 : data)

can make, assuming that data is a synonymous of int. It is translated to

selection1 [] selection2

where

selection1 ≡ in2($1 => ?x2 : data) . . . ; out1($1 => !exit($1 => 5)) . . .
selection2 ≡ out1($1 => !exit($1 => 5)) . . . ; in2($1 => ?x2 : data) . . .

The whole behaviour can offer a communication on gate in2 of any value of type data (any integer).

E ⊢ selection1
in2($1=>n)
−−−−−−−−−→ exit(x2 => n); out1($1 => !exit($1 => 5)) . . .

E ⊢ selection1 [] selection2
in2($1=>n)
−−−−−−−−−→ exit(x2 => n); out1($1 => !exit($1 => 5)) . . .

(8.15)

where n is a constant of type data.

It can also offer a communication on gate out1 of the value 5.

E ⊢ selection2
out1($1=>5)

−−−−−−−−−−→ exit(); in2($1 => ?x2 : data) . . .

E ⊢ selection1 [] selection2
out1($1=>5)

−−−−−−−−−−→ exit(); in2($1 => ?x2 : data) . . .

(8.16)

Finally, selection1 [] selection2 can idle any time d (assuming that it is not in the scope of a hide
operator that hides out1 or in2).

E ⊢ selection1
ǫ〈d〉

−−−−→ in2($1 => ?x2 : data) . . . start〈d〉; out1($1 => !exit($1 => 5)) . . .

E ⊢ selection2
ǫ〈d〉

−−−−→ out1($1 => !exit($1 => 5)) . . . start〈d〉; in2($1 => ?x2 : data) . . .

E ⊢ selection1 [] selection2
ǫ〈d〉

−−−−→ in2($1 => ?x2 : data) . . . start〈d〉; out1($1 => !exit($1 => 5)) . . .
[] out1($1 => !exit($1 => 5)) . . . start〈d〉; in2($1 => ?x2 : data) . . .

(8.21)

Note how the time d in annotated in both parts of the selection.

8.5 Internal action

The internal action i has only the transition
i

−−→ and immediately finishes.

E ⊢ i
i

−−→ exit()
(8.22)

Since we want the internal action to be urgent, it cannot delay any time, so there is no rule dealing
with time transitions.

8.6. Successful termination with values 145

Example 8.6 Let us see what transitions the behaviour out2(!5) [] i can perform. It is translated to
out2($1 => !exit($1 => 5)) @any : time exit($1 => true) start〈0〉 [] i.

First, it can offer a communication on gate out2, due to the following proof:

E ⊢ (($1 => !exit($1 => 5)) →PM
($1 => 5)) 7→ 〈| |〉

E ⊢ (any : time →PM 0) 7→ 〈| |〉

E ⊢ exit($1 => true)
δ($1=>true)

−−−−−−−−−−→ block

E ⊢ out2($1 => !exit($1 => 5)) @any : time exit($1 => true) start〈0〉
out2($1=>5)

−−−−−−−−−−→ exit()

(8.8)

E ⊢ out2($1 => !exit($1 => 5)) @any : time exit($1 => true) start〈0〉 [] i
out2($1=>5)

−−−−−−−−−−→ exit()

(8.15)

Second, it can perform an internal action:

E ⊢ i
i

−−→ exit()

E ⊢ out2($1 => !exit($1 => 5)) @any : time exit($1 => true) start〈0〉 [] i
i

−−→ exit()
(8.18)

There are no more transitions for this behaviour. So, out2(!5) [] i cannot delay, because of the
urgency of the internal action. Here, we see that the urgency of the internal action does not mean that
internal action has to be performed, but it means that if the internal action is performed, it has to be
without delay.

8.6 Successful termination with values

exit(RN) is a behaviour that finishes immediately (it has no time transition) and communicates bindings
RN through the special gate δ.

E ⊢ exit(RN)
δ(RN)
−−−−−→ block

(8.23)

Example 8.7 The behaviour exit(RN) is used to propagate (through gate δ) bindings produced by a
behaviour. Let us see how these bindings are propagated when the behaviour is inP(?x : int), which is
translated to

inP($1 => ?x : int) @any : time exit($1 => true) start〈0〉.

As we saw in Example 8.3, this behaviour has the following transition

inP($1 => ?x : int) . . .
inP($1=>n)
−−−−−−−−−→ exit(x => n)

where n may be any constant of type int. Now the binding x => n is propagated because exit(x => n)
has the following transition

E ⊢ exit(x => n)
δ(x=>n)

−−−−−−−→ block

(8.23)

Example 8.8 The behaviour exit(RN) is also used to propagate values returned by an expression. For
example, the value expression 3 is translated into exit($1 => 3) which returns the integer value 3.

E ⊢ exit($1 => 3)
δ($1=>3)
−−−−−−−→ block

(8.23)

146 8. Dynamic Semantics of Base Language

8.7 Inaction

The behaviour stop can do nothing, but wait. Therefore, the only transitions it has are time transitions.

E ⊢ stop
ǫ〈d〉

−−−−→ stop
(8.24)

8.8 Time block

The behaviour block cannot do anything, neither delay. Hence, there is no inference rule dealing with
this behaviour.

This is a quite strange behaviour because, as we have said, time is considered foreign to the process.
For example, the behaviour

block ||| wait(1);G

cannot do anything because time is blocked, which does not seem reasonable.

8.9 Parallel operator

In a parallel composition B1 |[G1, . . . ,Gn]| B2, if B1 or B2 offers a communication on a gate G not in
the list G1, . . . ,Gn, then the parallel composition offers that communication:

E ⊢ B1
G(RN)

−−−−−−−→ B′
1

E ⊢ B1 |[G1, . . . ,Gn]| B2
G(RN)

−−−−−−−→ B′
1 |[G1, . . . ,Gn]| B2

[G 6∈ {G1, . . . , Gn}] (8.25)

E ⊢ B2
G(RN)

−−−−−−−→ B′
2

E ⊢ B1 |[G1, . . . ,Gn]| B2
G(RN)

−−−−−−−→ B1 |[G1, . . . ,Gn]| B′
2

[G 6∈ {G1, . . . , Gn}] (8.26)

However, in order to offer a communication on a gate Gi in the given synchronization list G1, . . . ,Gn,
both B1 and B2 have to offer the same communication on that gate:

E ⊢ B1

Gi($1=>N)
−−−−−−−−−→ B′

1 E ⊢ B2

Gi($1=>N)
−−−−−−−−−→ B′

2

E ⊢ B1 |[G1, . . . ,Gn]| B2

Gi($1=>N)
−−−−−−−−−→ B′

1 |[G1, . . . ,Gn]| B′
2

(8.27)

Internal actions can be made by both B1 or B2 without the knowledge of the other one. That is,
B1 |[G1, . . .,Gn]| B2 may perform the following transitions:

E ⊢ B1
i

−−→ B′
1

E ⊢ B1 |[G1, . . . ,Gn]| B2
i

−−→ B′
1 |[G1, . . . ,Gn]| B2

(8.28)

E ⊢ B2
i

−−→ B′
2

E ⊢ B1 |[G1, . . . ,Gn]| B2
i

−−→ B1 |[G1, . . . ,Gn]| B′
2

(8.29)

In order to preserve the urgency of internal actions, when B1 or B2 raises an exception, the parallel
behaviour performs an internal action, and the exception raised is annotated outside the parallel behaviour
in order to be raised again.

8.9. Parallel operator 147

E ⊢ B1
X(RN)

−−−−−−−→ B′
1

E ⊢ B1 |[G1, . . . ,Gn]| B2
i

−−→ signal X(exit(RN));(B′
1 |[G1, . . . ,Gn]| B2)

(8.30)

E ⊢ B2
X(RN)

−−−−−−−→ B′
2

E ⊢ B1 |[G1, . . . ,Gn]| B2
i

−−→ signal X(exit(RN));(B1 |[G1, . . . ,Gn]| B′
2)

(8.31)

The parallel composition B1 |[G1, . . . ,Gn]| B2 finishes when B1 and B2 have finished, and it
produces the bindings produced by both, which have to be disjoint bindings, as required by the static
semantics.

E ⊢ B1

δ(RN1)
−−−−−−−→ B′

1 E ⊢ B2

δ(RN2)
−−−−−−−→ B′

2

E ⊢ B1 |[G1, . . . ,Gn]| B2

δ(RN1,RN2)
−−−−−−−−−−→ block

(8.32)

If both B1 and B2 can idle a period of time d, then the parallel composition can also idle d.

E ⊢ B1

ǫ〈d〉
−−−−→ B′

1 E ⊢ B2

ǫ〈d〉
−−−−→ B′

2

E ⊢ B1 |[G1, . . . ,Gn]| B2

ǫ〈d〉
−−−−→ B′

1 |[G1, . . . ,Gn]| B′
2

(8.33)

But if one of them, say B1, can finish after d units of time, and B2 can idle a time greater than d,
then the parallel composition can idle this greater time. It is said that termination is urgent except when
it is in the scope of a parallel operator, where both behaviours have to finish at the same time.

E ⊢ B1
δ(RN)@d
−−−−−−−→ B′

1 E ⊢ B2

ǫ〈d+d′〉
−−−−−−−→ B′

2

E ⊢ B1 |[G1, . . . ,Gn]| B2

ǫ〈d+d′〉
−−−−−−−→ exit(RN) |[G1, . . . ,Gn]| B′

2

[0 < d′] (8.34)

E ⊢ B1

ǫ〈d+d′〉
−−−−−−−→ B′

1 E ⊢ B2
δ(RN)@d
−−−−−−−→ B′

2

E ⊢ B1 |[G1, . . . ,Gn]| B2

ǫ〈d+d′〉
−−−−−−−→ B′

1 |[G1, . . . ,Gn]| exit(RN)

[0 < d′] (8.35)

Here exit(RN) is used to annotate the bindings produced by the behaviour which finishes first.

Example 8.9 Let us see that the behaviour in2(?x2:data) ||| out1(!3), which is translated to

in2($1 => ?x2:data) . . . |[]| out1($1 => !exit($1 => 3)) . . .

has the following evolution

in2($1 => ?x2:data) . . . |[]| out1($1 => !exit($1 => 3)) . . .
in2($1=>8)

−−−−−−−−−→

exit(x2 => 8) |[]| out1($1 => !exit($1 => 3)) . . .
ǫ〈1〉

−−−−→

exit(x2 => 8) |[]| out1($1 => !exit($1 => 3)) . . . start〈1〉
out1($1=>3)

−−−−−−−−−−→

exit(x2 => 8) |[]| exit()
δ(x2=>8)
−−−−−−−→ block

The first transition is proved as follows:

E ⊢ in2($1 => ?x2:data) . . .
in2($1=>8)

−−−−−−−−−→ exit(x2 => 8)

E ⊢ in2($1 => ?x2:data) . . . |[]| out1($1 => !exit($1 => 3)) . . .
in2($1=>8)

−−−−−−−−−→ exit(x2 => 8) |[]| out1($1 => !exit($1 => 3)) . . .

(8.25)

148 8. Dynamic Semantics of Base Language

since gate in2 6∈ [].

The transition
ǫ〈1〉

−−−−→ is proved by using rule 8.34

E ⊢ exit(x2 => 8)
δ(x2=>8)@0
−−−−−−−−−→ block

E ⊢ out1($1 => !exit($1 => 3)) . . .
ǫ〈1〉

−−−−→ out1($1 => !exit($1 => 3)) . . . start〈1〉

E ⊢ exit(x2 => 8) |[]| out1($1 => !exit($1 => 3)) . . .
ǫ〈1〉

−−−−→ exit(x2 => 8) |[]| out1($1 => !exit($1 => 3)) . . . start〈1〉

(8.34)

The third transition is correct due to the following rule:

E ⊢ out1($1 => !exit($1 => 3)) . . . start〈1〉
out1($1=>3)

−−−−−−−−−−→ exit()

E ⊢ exit(x2 => 8) |[]| out1($1 => !exit($1 => 3)) . . . start〈1〉
out1($1=>3)

−−−−−−−−−−→ exit(x2 => 8) |[]| exit()

(8.26)

And, finally, the fourth transition is proved as follows:

E ⊢ exit(x2 => 8)
δ(x2=>8)
−−−−−−−→ block

E ⊢ exit()
δ()

−−−−→ block

E ⊢ exit(x2 => 8) |[]| exit()
δ(x2=>8)
−−−−−−−→ block

(8.32)

8.10 Synchronization operator

The synchronization operator is similar to the previous one. Communication offers on any gate G have
to be offered by both B1 and B2:

E ⊢ B1
G($1=>N)

−−−−−−−−−→ B′
1 E ⊢ B2

G($1=>N)
−−−−−−−−−→ B′

2

E ⊢ B1 || B2
G($1=>N)

−−−−−−−−−→ B′
1 || B′

2

(8.36)

and internal actions can be made separately by B1 and B2:

E ⊢ B1
i

−−→ B′
1

E ⊢ B1 || B2
i

−−→ B′
1 || B2

(8.37)

E ⊢ B2
i

−−→ B′
2

E ⊢ B1 || B2
i

−−→ B1 || B′
2

(8.38)

If an exception is raised by one of the components, an internal action is performed, and the exception
is raised again:

E ⊢ B1
X($1=>N)

−−−−−−−−−→ B′
1

E ⊢ B1 || B2
i

−−→ signal X(exit($1 => N));(B′
1 || B2)

(8.39)

E ⊢ B2
X($1=>N)

−−−−−−−−−→ B′
2

E ⊢ B1 || B2
i

−−→ signal X(exit($1 => N));(B1 || B′
2)

(8.40)

8.11. General parallel operator 149

B1 || B2 finishes when its two components finish, and it propagates bindings produced by them,
which are disjoint because B1 || B2 has passed the static semantics:

E ⊢ B1

δ(RN1)
−−−−−−−→ B′

1 E ⊢ B2

δ(RN2)
−−−−−−−→ B′

2

E ⊢ B1 || B2

δ(RN1,RN2)
−−−−−−−−−−→ block

(8.41)

Regarding time, the synchronization operator behaves as the parallel one. If both components can
idle a period d then the whole behaviour idles this time:

E ⊢ B1

ǫ〈d〉
−−−−→ B′

1 E ⊢ B2

ǫ〈d〉
−−−−→ B′

2

E ⊢ B1 || B2

ǫ〈d〉
−−−−→ B′

1 || B′
2

(8.42)

If one can finish after d units of time, and the other can idle a greater time, the whole behaviour idles
that time:

E ⊢ B1
δ(RN)@d
−−−−−−−→ B′

1 E ⊢ B2

ǫ〈d+d′〉
−−−−−−−→ B′

2

E ⊢ B1 || B2

ǫ〈d+d′〉
−−−−−−−→ exit(RN) || B′

2

[0 < d′] (8.43)

E ⊢ B1

ǫ〈d+d′〉
−−−−−−−→ B′

1 E ⊢ B2
δ(RN)@d
−−−−−−−→ B′

2

E ⊢ B1 || B2

ǫ〈d+d′〉
−−−−−−−→ B′

1 || exit(RN)

[0 < d′] (8.44)

8.11 General parallel operator

As in the static semantics, we use the notation ~Gi to abbreviate the gate list Gi1, . . .,Giri
.

A general parallel behaviour can offer a communication on a gate Gj which is in the list of degrees
(G1#n1, . . . ,Gp#np) with degree nj , if nj subcomponents Bi, having Gj in their synchronization list,
can offer the same communication.

∀ i ∈ Σ . E ⊢ Bi

Gj(RN)

−−−−−−−→ B′
i

E ⊢ (par G1#n1, . . . ,Gp#np in

[~G1] → B1 · · · ||[~Gm] → Bm)
Gj(RN)

−−−−−−−→ (par G1#n1, . . . ,Gp#np in

[~G1] → B′
1 · · · ||[~Gm] → B′

m)

[Gj ∈ {G1, . . . , Gp}]

(8.45)

with the side conditions that Σ represents a subset of nj subcomponents having Gj in their synchro-

nization list, that is, Σ ⊆ {1, . . . , m} ∧ |Σ| = nj ∧ Gj ∈
⋂

i∈Σ
~Gi; and that the behaviours that do not

participate in the communication, do not change, ∀ i 6∈ Σ . Bi = B′
i.

A general parallel composition can also offer a communication on a gate G which is not in the list of
degrees, if all the subcomponents having G in their synchronization list offer the same communication.

∀i ∈ Σ.E ⊢ Bi
G(RN)

−−−−−−−→ B′
i

E ⊢ (par G1#n1, . . . ,Gp#np in

[~G1] → B1 · · · ||[~Gm] → Bm)
G(RN)

−−−−−−−→ (par G1#n1, . . . ,Gp#np in

[~G1] → B′
1 · · · ||[~Gm] → B′

m)

[G 6∈ {G1, . . . , Gp}]

(8.46)

150 8. Dynamic Semantics of Base Language

here Σ is the nonempty subset of behaviours having G in their synchronization list, Σ = {i | G ∈ ~Gi, 1 ≤
i ≤ m} ∧ Σ 6= ∅; and ∀i 6∈ Σ.Bi = B′

i.

Any subcomponent Bj can offer a communication on a gate which is not in its synchronization list,
and this communication is offered by the whole general parallel behaviour.

E ⊢ Bj
G(RN)

−−−−−−−→ B′
j

E ⊢ (par G1#n1, . . . ,Gp#np in

[~G1] → B1 · · · ||[~Gj] → Bj · · · ||[~Gm] → Bm)
G(RN)

−−−−−−−→ (par G1#N1, . . . ,Gp#Np in

[~G1] → B1 · · · ||[~Gj] → B′
j · · · ||[~Gm] → Bm)

h

G 6∈ ~Gj

i

(8.47)

Internal actions can be performed by any of the subcomponents.

E ⊢ Bj
i

−−→ B′
j

E ⊢ (par G1#n1, . . . ,Gp#np in

[~G1] → B1 · · · ||[~Gj] → Bj · · · ||[~Gm] → Bm)
i

−−→ (par G1#N1, . . . ,Gp#Np in

[~G1] → B1 · · · ||[~Gj] → B′
j · · · ||[~Gm] → Bm)

(8.48)

Exceptions can also be performed by any of the subcomponents, by performing an internal action
first.

E ⊢ Bj
X($1=>N)

−−−−−−−−−→ B′
j

E ⊢ (par G1#n1, . . . ,Gp#np in

[~G1] → B1 · · · ||[~Gj] → Bj · · · ||[~Gm] → Bm)
i

−−→ signal X(exit($1 => N));(par G1#n1, . . . ,Gp#np in

||[~G1] → B1 · · · ||[~Gj] → B′
j · · · ||[~Gm] → Bm)

(8.49)

The general parallel composition finishes when all its subcomponent behaviours finish, and it produces
all disjoint bindings produced by them.

E ⊢ B1

δ(RN1)
−−−−−−−→ B′

1 · · · E ⊢ Bm

δ(RNm)
−−−−−−−→ B′

m

E ⊢ (par G1#n1, . . . ,Gp#np in [~G1] → B1 · · · ||[~Gm] → Bm)
δ(RN1,...,RNm)

−−−−−−−−−−−−−−→ block

(8.50)

If all the subcomponents can idle a period of time d, then the whole general parallel behaviour can
idle that time.

E ⊢ B1

ǫ〈d〉
−−−−→ B′

1 · · · E ⊢ Bm

ǫ〈d〉
−−−−→ B′

m

E ⊢ (par G1#n1, . . . ,Gp#np in [~G1] → B1 · · · ||[~Gm] → Bm)
ǫ〈d〉

−−−−→ (par G1#n1, . . . ,Gp#np in [~G1] → B′
1 · · · ||[~Gm] → B′

m)

(8.51)

In [Que98] there is one more rule dealing with the case when one subcomponent has finished and the
others can idle a time d. But that rule is not enough general. We need a rule dealing with the case when
some subcomponents (but not all) have finished (possibly at different times) before time d and the others
can idle a time d. In this case the whole behaviour can idle d.

8.12. Parallel over values 151

∀ i ∈ Σ1 . E ⊢ Bi

ǫ〈d〉
−−−−→ B′

i

∀ i ∈ Σ2 . E ⊢ Bi

δ(RN)@di
−−−−−−−−−→ B′

i

E ⊢ (par G1#n1, . . . ,Gp#np in

[~G1] → B1 · · · ||[~Gj] → Bj · · · ||[~Gm] → Bm)
ǫ〈d〉

−−−−→ (par G1#n1, . . . ,Gp#np in

[~G1] → B1 · · · ||[~Gj] → exit(RN) · · · ||[~Gm] → Bm)

(8.52)

with the side conditions that Σ1 ∩ Σ2 = ∅, Σ1 6= ∅, Σ1 ∪ Σ2 = {1, 2, ..., m}, and ∀ i ∈ Σ2 . di < d.

8.12 Parallel over values

A parallel over values behaviour par P in N ||| B has the same transitions that the interleaving of a
series of instantiations of B, one for each value of the list N . If the list N has elements, then we have

E ⊢ (P →PM N1) 7→ 〈|RN |〉

E ⊢ B [[RN]] |[]| par P in N2 ||| B
µ(RN′)

−−−−−−−→ B′

E ⊢ par P in cons(N1,N2) ||| B
µ(RN′)

−−−−−−−→ B′

(8.53)

where, in this case, µ(RN ′) abbreviates G(RN ′), i, or δ(RN ′).

In [Que98] there is also a rule dealing with the case when the interleaving of the instantiations of B
raises an exception,

E ⊢ (P →PM N1) 7→ 〈|RN |〉

E ⊢ B [[RN]] |[]| par P in N2 ||| B
X(RN′)

−−−−−−−→ B′

E ⊢ par P in cons(N1,N2) ||| B
i

−−→ signal X(exit(RN ′));B′

but this case will never occur because an interleaving behaviour cannot raise exceptions itself (see Sec-
tion 8.9).

There are no more rules dealing with transitions other than time transitions in [Que98], because when
the list N is empty, then the parallel over values behaviour does not do anything. But this is an error,
which makes that the previous unfolding does not finish. The behaviour

par ?x in cons(1,cons(2,nil)) ||| B

is unfolded as
B [[x => 1]] |[]| B [[x => 2]] |[]| par ?x in nil ||| B

and the parallel operator rules states that this behaviour finishes if all the subbehaviours finish. So, we
need a rule which says that par ?x in nil ||| B can finish:

E ⊢ par P in nil ||| B
δ()

−−−−→ block
(8.54)

Regarding time, the behaviour par P in N ||| B can idle d units of time if its unfolding can idle
the same time.

E ⊢ (P →PM N1) 7→ 〈|RN |〉

E ⊢ B [[RN]] |[]| par P in N2 ||| B
ǫ〈d〉

−−−−→ B′

E ⊢ par P in cons(N1,N2) ||| B
ǫ〈d〉

−−−−→ B′

(8.55)

152 8. Dynamic Semantics of Base Language

Example 8.10 Let us see how the behaviour

par ?x in [1,2,3] |||

inP(!x)
endpar

can communicate the values in the list [1,2,3] through gate inP. It is translated to

par ?x in cons(1,cons(2,cons(3,nil()))) |||

inP(!exit($1 => x)) @any : time exit($1 => true) start〈0〉

and a possible execution would be:

par ?x in cons(1,cons(2,cons(3,nil()))) ||| inP(!x)
inP($1=>1)
−−−−−−−−−→

exit() |[]| par ?x in cons(2,cons(3,nil())) ||| inP(!x)
inP($1=>3)
−−−−−−−−−→

exit() |[]| inP(!2) |[]| exit() |[]| par ?x in nil() ||| inP(!x)
inP($1=>2)
−−−−−−−−−→

exit() |[]| exit() |[]| exit() |[]| par ?x in nil() ||| inP(!x)
δ()

−−−−→

block

where we write inP(!x) instead of inP(!exit($1 => x)) @any : time exit($1 => true) start〈0〉, in order
to do the behaviours shorter.

The first transition is possible due to the following proof:

E ⊢ (?x →PM 1) 7→ 〈|x => 1 |〉

E ⊢ inP(!1) |[]| par ?x in cons(2,cons(3,nil()))|||inP(!x)
inP($1=>1)
−−−−−−−−−→ exit() |[]| par ?x in cons(2,cons(3,nil()))|||inP(!x)

E ⊢ par ?x in cons(1,cons(2,cons(3,nil())))|||inP(!x)
inP($1=>1)
−−−−−−−−−→ exit() |[]| par ?x in cons(2,cons(3,nil()))|||inP(!x)

(8.53)

where, in order to proof second premise, we have to use rule 8.25.

Second transition is possible due to the following transition:

E ⊢ (?x →PM 2) 7→ 〈|x => 2 |〉

E ⊢ (?x →PM 3) 7→ 〈| x => 3 |〉

E ⊢ inP(!3)
inP($1=>3)
−−−−−−−−−→ exit()

E ⊢ inP(!3) |[]| par ?x in nil()|||inP(!x)
inP($1=>3)
−−−−−−−−−→ exit()|[]| par ?x in nil()|||inP(!x)

(8.25)

E ⊢ par ?x in cons(3,nil())|||inP(!x)
inP($1=>3)
−−−−−−−−−→ exit() |[]| par ?x in nil()|||inP(!x)

(8.53)

E ⊢ inP(!2) |[]| par ?x in cons(3,nil())|||inP(!x)
inP($1=>3)
−−−−−−−−−→ inP(!2) |[]| exit() |[]| par ?x in nil()|||inP(!x)

(8.26)

E ⊢ par ?x in cons(2,cons(3,nil()))|||inP(!x)
inP($1=>3)
−−−−−−−−−→ inP(!2) |[]| exit() |[]| par ?x in nil()|||inP(!x)

(8.53)

E ⊢ exit() |[]| par ?x in cons(2,cons(3,nil()))|||inP(!x)
inP($1=>3)
−−−−−−−−−→ exit() |[]| inP(!2) |[]| exit() |[]| par ?x in nil()|||inP(!x)

(8.26)

The third transition is easily proved by using rules 8.26 and 8.25. The fourth transition is proved by
using rules 8.23, 8.32, and 8.54.

8.13. Disabling operator 153

8.13 Disabling operator

The behaviour B1 [> B2 offers a communication on a gate if B1 offers it:

E ⊢ B1
G(RN)

−−−−−−−→ B′
1

E ⊢ B1 [> B2
G(RN)

−−−−−−−→ B′
1 [> B2

(8.56)

Note that the disabling operator continues in the resulting behaviour. The same occurs with internal
actions made by B1:

E ⊢ B1
i

−−→ B′
1

E ⊢ B1 [> B2
i

−−→ B′
1 [> B2

(8.57)

If B1 finishes and produces bindings RN , then the behaviour B1 [> B2 performs an internal action,
and these bindings are noted in the behaviour exit (RN), which will propagate them.

E ⊢ B1
δ(RN)
−−−−−→ B′

1

E ⊢ B1 [> B2
i

−−→ exit(RN)

(8.58)

In order to preserve the urgency of internal actions, when B1 raises an exception, an internal action
is performed before the exception is raised again.

E ⊢ B1
X(RN)

−−−−−−−→ B′
1

E ⊢ B1 [> B2
i

−−→ signal X(exit(RN));(B′
1 [> B2)

(8.59)

If B2 offers a communication (or performs an internal action), then B1 [> B2 offers the same com-
munication (or performs an internal action), and the disabling operator disappears.

E ⊢ B2
G(RN)

−−−−−−−→ B′
2

E ⊢ B1 [> B2
G(RN)

−−−−−−−→ B′
2

(8.60)

E ⊢ B2
i

−−→ B′
2

E ⊢ B1 [> B2
i

−−→ B′
2

(8.61)

When B2 raises an exception, an internal action is performed and the exception will be raised again.

E ⊢ B2
X(RN)

−−−−−−−→ B′
2

E ⊢ B1 [> B2
i

−−→ signal X(exit(RN));B′
2

(8.62)

Note that there is no rule dealing with the termination of B2 because B2 is a guarded behaviour.

B1 [> B2 can idle a period of time d if B1 and B2 do.

E ⊢ B1

ǫ〈d〉
−−−−→ B′

1 E ⊢ B2

ǫ〈d〉
−−−−→ B′

2

E ⊢ B1 [> B2

ǫ〈d〉
−−−−→ B′

1 [> B′
2

(8.63)

154 8. Dynamic Semantics of Base Language

8.14 Suspend/Resume operator

The suspend/resume operator is similar to the previous one when the first behaviour, B1, performs an
action or raises an exception.

E ⊢ B1
G(RN)

−−−−−−−→ B′
1

E ⊢ B1 [X> B2
G(RN)

−−−−−−−→ B′
1 [X> B2

(8.64)

E ⊢ B1
i

−−→ B′
1

E ⊢ B1 [X> B2
i

−−→ B′
1 [X> B2

(8.65)

E ⊢ B1
δ(RN)
−−−−−→ B′

1

E ⊢ B1 [X> B2
i

−−→ exit(RN)

(8.66)

E ⊢ B1
X′(RN)

−−−−−−−→ B′
1

E ⊢ B1 [X> B2
i

−−→ signal X ′ (RN);(B′
1 [X> B2)

(8.67)

Things are different when the second (disabling) behaviour, B2, performs an action or raises an
exception. In these cases we have to remember the disabled behaviour B1 because when B2 raises the
exception X , B1 has to be resumed. This is done by means of a trap behaviour that catches exception
X , and handles it with B1 [X> B2.

E ⊢ B2
G(RN)

−−−−−−−→ B′
2

E ⊢ B1 [X> B2
G(RN)

−−−−−−−→ trap exception X($1 => ()):() is B1 [X> B2

in B′
2

(8.68)

E ⊢ B2
i

−−→ B′
2

E ⊢ B1 [X> B2
i

−−→ trap exception X($1 => ()):() is B1 [X> B2

in B′
2

(8.69)

E ⊢ B2
X′($1=>N)
−−−−−−−−−→ B′

2

E ⊢ B1 [X> B2
i

−−→ signal X ′
($1 => N);

trap exception X($1 => ()):() is B1 [X> B2

in B′
2

[X ′ 6= X]
(8.70)

Regarding time, the suspend/resume operator behaves like the disabling operator: the behavior
B1 [X> B2 can idle time d if both behaviours can idle that time.

E ⊢ B1

ǫ〈d〉
−−−−→ B′

1 E ⊢ B2

ǫ〈d〉
−−−−→ B′

2

E ⊢ B1 [X> B2

ǫ〈d〉
−−−−→ B′

1 [X> B′
2

(8.71)

8.15 Hiding operator

The hiding operator transforms actions on hidden gates in internal actions. Thus, if the behaviour B
performs an action not in {G1, . . . , Gn} (including the internal action), raises an exception, or finishes,
then hide G1:T1, . . . ,Gn:Tn in B behaves in the same way.

8.15. Hiding operator 155

E ⊢ B
µ(RN)
−−−−−→ B′

E ⊢ hide G1:T1, . . . ,Gn:Tn in B
µ(RN)
−−−−−→ hide G1:T1, . . . ,Gn:Tn in B′

[µ 6∈ {G1, . . . , Gn}] (8.72)

But if B performs a communication on a hidden gate, then the whole behaviour performs an internal
action.

E ⊢ ($1 => N) →T
($1 => Ti)

E ⊢ B
Gi($1=>N)
−−−−−−−−−→ B′

E ⊢ hide G1:T1, . . . ,Gn:Tn in B
i

−−→ hide G1:T1, . . . ,Gn:Tn in B′

(8.73)

Note how in this rule the value N is invented in the sense that it appears in the premises but not in
the conclusion. Although the value N is invented, it is checked that it has the correct type, so it is not
needed to be checked when the second premise is proved (see Section 8.2).

Since the hiding operator transforms hidden actions in internal actions, and these ones are urgent, the
behaviour hide G1:T1, . . . ,Gn:Tn in B can idle a period of time d only if B cannot perform an action
on a hidden gate before d. This is expressed in the following rule by means of the predicate refusing,
which is defined in the following way:

E ⊢ B refusing (G1:T1, . . . ,Gn:Tn, d)

if there is no N and d′ < d such that E ⊢ ($1 => N) →T ($1 => Ti) and E ⊢ B
Gi(RN)@d′

−−−−−−−−−→ B′.

E ⊢ B
ǫ〈d〉

−−−−→ B′

E ⊢ B refusing (G1:T1, . . . ,Gn:Tn, d)

E ⊢ hide G1:T1, . . . ,Gn:Tn in B
ǫ〈d〉

−−−−→ hide G1:T1, . . . ,Gn:Tn in B′

(8.74)

Note that we use a negative premise to define the timed dynamic semantics. This represents no
problem because the behaviour in the premise is simpler that the behaviour in the conclusion of the
inference rule, so a stratification [Gro93] may be defined in order to prove that the semantics is well
defined.

Example 8.11 Let us see which transitions the behaviour

hide sync in

pd(!1); sync |[sync]| sync; pd(!2)
endhide

can perform. It is translated into abstract syntax as

hidding ≡
hide sync:any in

pd($1 => !1) . . . ; sync($1 => ()) . . . |[sync]| sync($1 => ()) . . . ; pd($1 => !2)

First, it can idle (because pd is not urgent in this context and it does not belong to the list of
gates of the parallel operator) or it can perform a communication on gate pd. Thus, the first possible
transitions are

156 8. Dynamic Semantics of Base Language

hidding
ǫ〈d〉

−−−−→ hide sync:any in

pd($1 => !1) . . . start〈d〉; sync($1 => ()) . . .
|[sync]|

sync($1 => ()) . . . start〈d〉; pd($1 => !2) . . .

or

hidding
pd($1=>1)

−−−−−−−−−→ hide sync:any in

exit(); sync($1 => ()) . . . |[sync]| sync($1 => ()) . . . ; pd($1 => !2) . . .

In this latter case, no time transition is possible, because the negative premise in rule 8.74 is not
fulfilled, the body of the hide can perform a communication on a hidden gate, so the hide behaviour
performs an internal action.

hide sync:any in exit(); sync($1 => ()) . . . |[sync]| sync($1 => ()) . . . ; pd($1 => !2)
i

−−→ hide sync:any in exit(); exit() |[sync]| exit(); pd($1 => !2)

Now, a time transition is possible

hide sync:any in exit(); exit() |[sync]| exit(); pd($1 => !2) . . .
ǫ〈d′〉
−−−−→ hide sync:any in exit(); exit() |[sync]| exit(); pd($1 => !2) . . . start〈d′〉

and also a communication on gate pd.

hide sync:any in exit(); exit() |[sync]| exit(); pd($1 => !2) . . .
pd($1=>2)

−−−−−−−−−→ hide sync:any in exit(); exit() |[sync]| exit(); exit()

Finally, in this latter case, the behaviour can only finish.

8.16 Exception handling

A trap behaviour has the transitions of its body if they are not related with trapped exceptions.

E ⊢ B
µ(RN)
−−−−−→ B′

E ⊢ trap

exception X1($1 => P1):T1 is B1

· · ·
exception Xn($1 => Pn):Tn is Bn

exit Pn+1 is Bn+1

in B

µ(RN)
−−−−−→ trap

exception X1($1 => P1):T1 is B1

· · ·
exception Xn($1 => Pn):Tn is Bn

exit Pn+1 is Bn+1

in B′

(8.75)

with the side condition µ 6∈ {X1, . . . , Xn}.

However, if the body B raises a trapped exception Xi together with value N , this value can be
matched against the corresponding pattern Pi and has type Ti, and the handler of the exception Xi, Bi,

has the transition
µ(RN ′)

−−−−−−−→ becoming B′
i, then the trap behaviour has this transition becoming also B′

i.

8.16. Exception handling 157

E ⊢ B
Xi($1=>N)
−−−−−−−−−→ B′

E ⊢ (($1 => Pi:Ti) →PM
($1 => N)) 7→ 〈|RN |〉

E ⊢ Bi [[RN]]
µ(RN′)

−−−−−−−→ B′
i

E ⊢ trap

exception X1($1 => P1):T1 is B1

· · ·
exception Xn($1 => Pn):Tn is Bn

exit Pn+1 is Bn+1

in B
µ(RN′)

−−−−−−−→ B′
i

[Xi ∈ {X1, . . . , Xn}]

(8.76)

Finally, if behaviour B finishes returning bindings RN1, RN2, pattern Pn+1 can be matched against

part of the binding returned, RN1, and the handler Bn+1 has the transition
µ(RN ′′

)
−−−−−−−→ becoming B′

n+1,
then the trap behaviour has this transition, becoming exit(RN2);B

′
n+1. Note how exit(RN2) is used

to propagate those bindings produced by B not trapped by Pn+1.

E ⊢ B
δ(RN1,RN2)
−−−−−−−−−−→ B′

E ⊢ (Pn+1 →PM
(RN1)) 7→ 〈|RN ′ |〉

E ⊢ Bn+1 [[RN ′]]
µ(RN′′)

−−−−−−−→ B′
n+1

E ⊢ trap

exception X1($1 => P1):T1 is B1

· · ·
exception Xn($1 => Pn):Tn is Bn

exit Pn+1 is Bn+1

in B
µ(RN′′)

−−−−−−−→ exit(RN2);B
′
n+1

(8.77)

Regarding time, a trap behaviour has the same time transitions than its main behaviour.

E ⊢ B
ǫ〈d〉

−−−−→ B′

E ⊢ trap

exception X1($1 => P1):T1 is B1

· · ·
exception Xn($1 => Pn):Tn is Bn

exit Pn+1 is Bn+1

in B

ǫ〈d〉
−−−−→ trap

exception X1($1 => P1):T1 is B1

· · ·
exception Xn($1 => Pn):Tn is Bn

exit Pn+1 is Bn+1

in B′

(8.78)

Example 8.12 Let us check now that the behaviour

trap

exception X is wait(1) endexn

in (i [] signal X)

endtrap

cannot do time transitions, that is, that the internal action is urgent. It is translated to

exnHandling ≡
trap exception X($1 => ()):() is wait(exit($1 => 1))
in i [] signal X($1 => ())

158 8. Dynamic Semantics of Base Language

If we try to use rule 8.78 we cannot because the selection behaviour has no time transitions, since
internal action and exception signaling are urgent. Another possibility is to try rule 8.76 in order to reach
the wait behaviour, but we cannot because the selection cannot raise the exception directly. Therefore,
the only possible transitions are to perform an internal action.

exnHandling
i

−−→ trap exception X($1 => ()):() is wait(exit($1 => 1))
in exit()

(using rules 8.17 and 8.75), or

exnHandling
i

−−→ trap exception X($1 => ()):() is wait(exit($1 => 1))
in signal(exit($1 => ()));exit()

(using rules 8.20 and 8.75).

8.17 Exception signaling

The behaviour signal X(E) raises exception X together with bindings RN if expression E finishes
producing these bindings.

E ⊢ E
δ($1=>N)

−−−−−−−−−→ E′

E ⊢ signal X(E)
X($1=>N)

−−−−−−−−−→ exit()

(8.79)

If the evaluation of expression E raises an exception X ′, then the behaviour signal X(E) raises this
exception.

E ⊢ E
X′(RN)

−−−−−−−→ E′

E ⊢ signal X(E)
X′(RN)

−−−−−−−→ signal X(E′
)

(8.80)

Exception signaling is urgent, that is, exceptions are raised as soon as possible. Thus, the behaviour
signal X(E) cannot idle any time.

8.18 Delay instruction

The behaviour wait(E) finishes when expression E evaluates to 0 (returns 0), and informs of its termi-
nation with a communication on gate δ.

E ⊢ E
δ($1=>0)
−−−−−−−→ E′

E ⊢ wait(E)
δ()

−−−−→ block

(8.81)

If the evaluation of wait(E) raises an exception, then wait(E) raises the same exception.

E ⊢ E
X(RN)

−−−−−−−→ E′

E ⊢ wait(E)
X(RN)

−−−−−−−→ wait (E′
)

(8.82)

The behaviour wait(E) can idle any time d > 0 less than or equal to the value d + d′ to which E
evaluates, and becomes a behaviour that can idle the remaining time, wait(d′).

8.19. Renaming operator 159

E ⊢ E
δ($1=>d+d′)

−−−−−−−−−−→ E′

E ⊢ wait(E)
ǫ〈d〉

−−−−→ wait(exit($1 => d′
))

[0 < d] (8.83)

We have to write wait(exit($1 => d′)) instead of wait(d′) because exit($1 => d′) is an abstract syntax
expression but d′ is not.

8.19 Renaming operator

A renaming behaviour has the transition
µ(RN)
−−−−−→ if the renamed behaviour B has the same transition

and µ is not a renamed gate or exception.

E ⊢ B
µ(RN)
−−−−−→ B′

E ⊢ rename

gate G1($1 => P1):T1 is G′
1($1 => P ′

1)

· · ·
gate Gm($1 => Pm):Tm is G′

m($1 => P ′
m)

signal X1($1 => P ′′
1):T

′
1 is X ′

1(E1)

· · ·
signal Xn($1 => P ′′

n):T
′
n is X ′

n(En)

in B

µ(RN)
−−−−−→ rename

gate G1($1 => P1):T1 is G′
1($1 => P ′

1)

· · ·
gate Gm($1 => Pm):Tm is G′

m($1 => P ′
m)

signal X1($1 => P ′′
1):T

′
1 is X ′

1(E1)

· · ·
signal Xn($1 => P ′′

n):T
′
n is X ′

n(En)

in B′

(8.84)

with the side condition µ 6∈ {G1, . . . , Gm, X1, . . . , Xm}.

If B can perform an action on a renamed gate Gi, the value communicated through gate Gi has the
correct type and can be pattern-matched against the pattern defining the capture of Gi (note that both
conditions are checked by the first premise, see Section 8.31.6), and the action performed instead of Gi

has the transition
G′

i(RN ′
)

−−−−−−−→ , then the renaming behaviour has the same transition
G′

i(RN ′
)

−−−−−−−→ .

E ⊢ (($1 => Pi:Ti) →PM
($1 => N)) 7→ 〈|RN |〉

E ⊢ B
Gi($1=>N)
−−−−−−−−−→ B′

E ⊢ (G′
i($1 => P ′

1) @any : time exit($1 => true) start〈0〉) [[RN]]
G′

i(RN′)
−−−−−−−→ B′

i

E ⊢ rename

gate G1($1 => P1):T1 is G′
1($1 => P ′

1)

· · ·
gate Gm($1 => Pm):Tm is G′

m($1 => P ′
m)

signal X1($1 => P ′′
1):T

′
1 is X ′

1(E1)

· · ·
signal Xn($1 => P ′′

n):T
′
n is X ′

n(En)

in B

G′

i(RN′)
−−−−−−−→ rename

gate G1($1 => P1):T1 is G′
1($1 => P ′

1)

· · ·
gate Gm($1 => Pm):Tm is G′

m($1 => P ′
m)

signal X1($1 => P ′′
1):T

′
1 is X ′

1(E1)

· · ·
signal Xn($1 => P ′′

n):T
′
n is X ′

n(En)

in B′

(8.85)

Finally, if B can raise a renamed exception Xi, the value raised together with the exception can
be pattern-matched against the pattern defining the capture of Xi, and the behaviour which raises the

exception renaming X ′
i has the transition

X′

i(RN ′
)

−−−−−−−→ , then the renaming behaviour has the same transition
X′

i(RN ′
)

−−−−−−−→ .

160 8. Dynamic Semantics of Base Language

E ⊢ B
Xi($1=>N)
−−−−−−−−−→ B′

E ⊢ (($1 => P ′′
i) →PM ($1 => N)) 7→ 〈|RN |〉

E ⊢ (signal X ′
i(Ei)) [[RN]]

X′

i(RN′)
−−−−−−−→ B′

i

E ⊢ rename

gate G1($1 => P1):T1 is G′
1($1 => P ′

1)

· · ·
gate Gm($1 => Pm):Tm is G′

m($1 => P ′
m)

signal X1($1 => P ′′
1):T

′
1 is X ′

1(E1)

· · ·
signal Xn($1 => P ′′

n):T
′
n is X ′

n(En)

in B

X′

i(RN′)
−−−−−−−→ rename

gate G1($1 => P1):T1 is G′
1($1 => P ′

1)

· · ·
gate Gm($1 => Pm):Tm is G′

m($1 => P ′
m)

signal X1($1 => P ′′
1):T

′
1 is X ′

1(E1)

· · ·
signal Xn($1 => P ′′

n):T
′
n is X ′

n(En)

in B′

(8.86)

Regarding time, a renaming behaviour has the same time transitions than the renamed behaviour.

E ⊢ B
ǫ〈d〉

−−−−→ B′

E ⊢ (rename

gate G1($1 => P1):T1 is G′
1($1 => P ′

1)

· · ·
gate Gm($1 => Pm):Tm is G′

m($1 => P ′
m)

signal X1($1 => P ′′
1):T

′
1 is X ′

1(E1)

· · ·
signal Xn($1 => P ′′

n):T
′
n is X ′

n(En)

in B

ǫ〈d〉
−−−−→ (rename

gate G1($1 => P1):T1 is G′
1($1 => P ′

1)

· · ·
gate Gm($1 => Pm):Tm is G′

m($1 => P ′
m)

signal X1($1 => P ′′
1):T

′
1 is X ′

1(E1)

· · ·
signal Xn($1 => P ′′

n):T
′
n is X ′

n(En)

in B
(8.87)

Example 8.13 Let us see how the behaviour

rename

gate inP (?a):int is intro (!a)
in

inP(!3)
endren

can perform a communication on gate intro.

It is translated to:

renaming ≡
rename

gate inP ($1 => ?a):int is intro ($1 => !exit($1 => a))
in

inP(!exit($1 => 3)) . . .

We can use rule 8.85 and deduce the following:

8.20. Assignment 161

E ⊢ (($1 => ?a:int) →PM
($1 => 3)) 7→ 〈| a => 3 |〉

E ⊢ inP(!exit($1 => 3)) . . .
inP($1=>3)
−−−−−−−−−→ exit()

E ⊢ intro ($1 => !exit($1 => 3)) @any : time exit($1 => true) start〈0〉
intro($1=>3)

−−−−−−−−−−→ exit()

E ⊢ renaming
intro($1=>3)

−−−−−−−−−−→ rename gate inP ($1 => ?a):int is intro ($1 => !exit($1 => a))
in exit()

8.20 Assignment

The assignment P := E finishes immediately if expression E returns the value N and pattern P can be
matched against N by producing bindings RN . These bindings are returned by the assignment.

E ⊢ E
δ($1=>N)

−−−−−−−−−→ E′

E ⊢ (P →PM N) 7→ 〈|RN |〉

E ⊢ P := E
δ(RN)
−−−−−→ block

(8.88)

If expression E raises an exception when it is being evaluated, then the assignment raises this excep-
tion.

E ⊢ E
X〈RN〉

−−−−−−−→ E′

E ⊢ P:=E
X〈RN〉

−−−−−−−→ P:=E′

(8.89)

There are no rules dealing with time transitions, that is, assignments are urgent.

Example 8.14 Let us see which bindings the assignment (?x,?y) := (5,true) produces, and how they
are propagated through gate δ. It is translated to

($1 => ?x,$2 => ?y) := exit($1 => ($1 => 5,$2 => true))

and we can use rule 8.88 to deduce

E ⊢ exit($1 => ($1 => 5,$2 => true))
δ($1=>($1=>5,$2=>true))

−−−−−−−−−−−−−−−−−−−−→ block

E ⊢ (($1 => ?x,$2 => ?y) →PM
($1 => 5,$2 => true)) 7→ 〈|x => 5, y => true |〉

E ⊢ ($1 => ?x,$2 => ?y) := exit($1 => ($1 => 5,$2 => true))
δ(x=>5,y=>true)

−−−−−−−−−−−−−−→ block

(8.88)

8.21 Nondeterministic assignment

The nondeterministic assignment P := any T [E] performs an internal action if there is a value N of
type T that can be pattern-matched against pattern P by producing bindings RN , and the expression
E with these bindings substituted, returns true. The nondeterministic assignment becomes exit(RN)

that will return the produced bindings.

E ⊢ N →T T

E ⊢ (P →PM N) 7→ 〈|RN |〉

E ⊢ E [[RN]]
δ($1=>true)

−−−−−−−−−−→ E′

E ⊢ P := any T [E]
i

−−→ exit(RN)

(8.90)

162 8. Dynamic Semantics of Base Language

Nondeterministic assignment is also urgent, so there is no rule defining time transitions.

8.22 Variable declaration

The variable declaration var V1:T1[:=E1], . . . , Vn:Tn[:=En] in B has the transition
a(RN ′

)
−−−−−−−→ if all the

assignments to the initialized variables finish and behaviour B after substituting the bindings produced
by the assignments has the same transition.

∀ ji ∈ {k | Vk:Tk:=Ek} . E ⊢ ?Vji
:=Eji

δ(RNji
)

−−−−−−−→ block

E ⊢ B [[RNj1 , . . . , RNjm]]
a(RN′)

−−−−−−−→ B′

E ⊢ var V1:T1[:=E1], . . . , Vn:Tn[:=En] in B
a(RN′)

−−−−−−−→ var V1:T1, . . . , Vn:Tn in B′

(8.91)

with the side condition that {j1, . . . , jm} = {k | Vk:Tk:=Ek}. Note that the expressions assigned to
initialized variables are removed from the resulting behaviour var V1:T1, . . . , Vn:Tn in B′, so they are
only evaluated once.

If the assignments to the initialized variables finish and the behaviour B after substituting the bindings
produced by the assignments finishes producing bindings RN , then the variable declaration finishes
producing bindings RN − {V1, . . . , Vn}, that is, all the bindings produced by B minus bindings related
to declared variables.

∀ ji ∈ {k | Vk:Tk:=Ek} . E ⊢ ?Vji
:=Eji

δ(RNji
)

−−−−−−−→ block

E ⊢ B [[RNj1 , . . . , RNjm]]
δ(RN′)

−−−−−−−→ B′

E ⊢ var V1:T1[:=E1], . . . , Vn:Tn[:=En] in B
δ(RN′−{V1,...,Vn})

−−−−−−−−−−−−−−−−−→ block

(8.92)

with the same side condition as above.

The variable declaration var V1:T1[:=E1], . . . , Vn:Tn[:=En] in B has the same time transitions
than B.

E ⊢ B
ǫ〈d〉

−−−−→ B′

E ⊢ var V1:T1, . . . , Vn:Tn in B
ǫ〈d〉

−−−−→ var V1:T1, . . . , Vn:Tn in B′

(8.93)

8.23 Case operator

The behaviour case E:T is BM has the transition
µ(RN)
−−−−−→ if expression E finishes and returns a value

N , and BM can be behaviour pattern-matched against this value producing transition
µ(RN)
−−−−−→ .

E ⊢ E
δ($1=>N)

−−−−−−−−−→ E′

E ⊢ (BM →PM N)
µ(RN)
−−−−−→ B

E ⊢ case E:T is BM
µ(RN)
−−−−−→ B

(8.94)

If expression E raises an exception X when it is being evaluated, then the whole case behaviour raises
the same exception X .

8.23. Case operator 163

E ⊢ E
X(RN)

−−−−−−−→ E′

E ⊢ case E:T is BM
X(RN)

−−−−−−−→ case E′
:T is BM

(8.95)

Where there is more than one expression, then all the expressions have to be evaluated and BM has
to be behaviour pattern-matched against the record built from the values returned by the expressions.

E ⊢ E1

δ($1=>N1)
−−−−−−−−−→ E′

1 · · · E ⊢ En

δ($1=>Nn)
−−−−−−−−−→ E′

n

E ⊢ (BM →PM ($1 => N1, . . . ,$n => Nn))
µ(RN′)

−−−−−−−→ B

E ⊢ case (E1:T1, . . . , En:Tn) is BM
µ(RN′)

−−−−−−−→ B

(8.96)

If some expression Ej raises an exception, then the whole behaviour raises the same exception.

E ⊢ Ej
X(RN)

−−−−−−−→ E′
j

E ⊢ case (E1:T1, . . . , Ej : Tj , . . . , En:Tn)

is BM

X(RN)
−−−−−−−→ case (E1:T1, . . . , E

′
j : Tj , . . . , En:Tn)

is BM

(8.97)

If the expression E finishes (respectively E1, . . . , En finish) and the behaviour pattern-matching can
idle a time d, then the case behaviour can idle that time.

E ⊢ E
δ($1=>N)

−−−−−−−−−→ E′

E ⊢ (BM →PM N)
ǫ〈d〉

−−−−→ B

E ⊢ case E:T is BM
ǫ〈d〉

−−−−→ B

(8.98)

E ⊢ E1

δ($1=>N1)
−−−−−−−−−→ E′

1 · · · E ⊢ En

δ($1=>Nn)
−−−−−−−−−→ E′

n

E ⊢ (BM →PM ($1 => N1, . . . ,$n => Nn))
ǫ〈d〉

−−−−→ B

E ⊢ case (E1:T1, . . . , En:Tn) is BM
ǫ〈d〉

−−−−→ B

(8.99)

Example 8.15 Let us see how the behaviour

case ys:List is

nil -> signal Hd

| cons(?x,?xs) -> outP(!x)
endcase

communicates through gate outP the value 8 when ys = cons(8, nil). It is translated to

case exit($1 => cons($1 => 8, $2 => nil())):List is BM1 | (BM2 | BM3)

where

BM1 ≡ Nil() [exit($1 => true)]-> signal Hd(exit($1 => ()))

BM2 ≡ Cons($1 => ?x,$2 => ?xs) [exit($1 => true)]-> outP($1 => !exit($1 => x)) . . .

BM3 ≡ any:List [exit($1 => true)] -> signal Match(exit($1 => ()))

By using rule 8.94 we deduce

164 8. Dynamic Semantics of Base Language

E ⊢ exit($1 => cons($1 => 8, $2 => nil()))
δ($1=>cons($1=>8,$2=>nil()))

−−−−−−−−−−−−−−−−−−−−−−−→ block

E ⊢ (BM1 | (BM2 | BM3) →PM cons($1 => 8, $2 => nil()))
outP($1=>8)

−−−−−−−−−−→ exit()

E ⊢ case exit($1 => cons($1 => 8, $2 => nil())):List is BM1 | (BM2 | BM3)
outP($1=>8)

−−−−−−−−−−→ exit()

(8.94)

where the second premise is proved as follows:

E ⊢ (BM1 →PM cons($1 => 8, $2 => nil())) 7→ fail

E ⊢ (BM2 | BM3 →PM cons($1 => 8, $2 => nil()))
outP($1=>8)

−−−−−−−−−−→ exit()

E ⊢ (BM1 | (BM2 | BM3) →PM cons($1 => 8, $2 => nil()))
outP($1=>8)

−−−−−−−−−−→ exit()

(8.106)

where now, the first premise is proved using rule 8.100:

E ⊢ (nil() →PM cons($1 => 8, $2 => nil())) 7→ fail
(8.145)

E ⊢ (BM1 →PM cons($1 => 8, $2 => nil())) 7→ fail
(8.100)

and second premise is proved using rule 8.105:

E ⊢ (cons($1 => ?x,$2 => ?xs) →PM cons($1 => 8, $2 => nil())) 7→ 〈|x => 8, xs => nil() |〉

E ⊢ exit($1 => true)
δ($1=>true)

−−−−−−−−−−→ block

E ⊢ outP($1 => !exit($1 => 8)) . . .
outP($1=>8)

−−−−−−−−−−→ exit()

E ⊢ (BM2 →PM cons($1 => 8, $2 => nil()))
outP($1=>8)

−−−−−−−−−−→ exit()

(8.103)

E ⊢ (BM2|BM3 →PM cons($1 => 8, $2 => nil()))
outP($1=>8)

−−−−−−−−−−→ exit()

(8.105)

8.24 Behaviour pattern-matching

We define now how the different branches of a case behaviour, BM , are matched against a value expres-
sion N . A branch of the case can fail either because the pattern does not match against the value, or
because the boolean expression is evaluated to false. The different possibilities are proved in sequence,
that is, a branch is checked if all the previous ones have failed.

8.24.1 Single match

First, we define how the clause P [E] -> B is behaviour pattern-matched against value N . If the pattern
P cannot be matched against value N , then the clause fails.

E ⊢ (P →PM N) 7→ fail

E ⊢ ((P [E] -> B) →PM N) 7→ fail
(8.100)

If the pattern P can be matched against value N by producing bindings RN , but expression E with
the bindings RN substituted returns false, then the clause P [E] -> B fails.

E ⊢ (P →PM N) 7→ 〈|RN |〉

E ⊢ E [[RN]]
δ($1=>false)

−−−−−−−−−−→ E′

E ⊢ ((P [E] -> B) →PM N) 7→ fail

(8.101)

8.24.2 Multiple match 165

The clause also fails if the expression raises an exception when it is being evaluated. Note that the
exception makes that the behaviour pattern-matching fails, but it is not propagated, that is, it is lost.

E ⊢ (P →PM N) 7→ 〈|RN |〉

E ⊢ E [[RN]]
X(RN)

−−−−−−−→ E′

E ⊢ ((P [E] -> B) →PM N) 7→ fail

(8.102)

Finally, if the pattern P can be matched against value N by producing bindings RN , the expression
E returns true, and the behaviour B where the bindings RN have been substituted can evolve, then the
clause P [E] -> B evolves as B does.

E ⊢ (P →PM N) 7→ 〈|RN |〉

E ⊢ E [[RN]]
δ($1=>true)

−−−−−−−−−−→ E′

E ⊢ B [[RN]]
µ(RN′)

−−−−−−−→ B′

E ⊢ ((P [E] -> B) →PM N)
µ(RN′)

−−−−−−−→ B′

(8.103)

Regarding time transitions, the clause P [E] -> B can idle d units of time if it does not fail, and B
can idle d.

E ⊢ (P →PM N) 7→ 〈|RN |〉

E ⊢ E [[RN]]
δ($1=>true)

−−−−−−−−−−→ E′

E ⊢ B [[RN]]
ǫ〈d〉

−−−−→ B′

E ⊢ ((P [E] -> B) →PM N)
ǫ〈d〉

−−−−→ B′

(8.104)

8.24.2 Multiple match

When there are several branches BM1 | BM2 they are behaviour pattern-matched in sequence. If the
first branch BM1 can evolve, then BM1 | BM2 evolves in the same way.

E ⊢ (BM1 →PM N)
µ(RN)
−−−−−→ B

E ⊢ ((BM1 | BM2) →PM N)
µ(RN)
−−−−−→ B

(8.105)

If the first part BM1 fails, but the second part BM2 can evolve, then BM1 | BM2 evolves in the
same way as BM2 does.

E ⊢ (BM1 →PM N) 7→ fail

E ⊢ (BM2 →PM N)
µ(RN)
−−−−−→ B

E ⊢ ((BM1 | BM2) →PM N)
µ(RN)
−−−−−→ B

(8.106)

Finally, if both parts fail, then BM1 | BM2 also fails.

E ⊢ (BM1 →PM N) 7→ fail

E ⊢ (BM2 →PM N) 7→ fail

E ⊢ ((BM1 | BM2) →PM N) 7→ fail

(8.107)

The composition BM1 | BM2 can idle d units of time if the first branch that does not fail can idle
that time.

166 8. Dynamic Semantics of Base Language

E ⊢ (BM1 →PM N)
ǫ〈d〉

−−−−→ B

E ⊢ ((BM1 | BM2) →PM N)
ǫ〈d〉

−−−−→ B

(8.108)

E ⊢ (BM1 →PM N) 7→ fail

E ⊢ (BM2 →PM N)
ǫ〈d〉

−−−−→ B

E ⊢ ((BM1 | BM2) ⇒ N)
ǫ〈d〉

−−−−→ B

(8.109)

8.25 Iteration loop

The infinite loop loop B can evolve if its unfolding B;loop B evolves, and loop B evolves in the same
way as its unfolding.

E ⊢ B;loop B
µ(RN)
−−−−−→ B′

E ⊢ loop B
µ(RN)
−−−−−→ B′

(8.110)

The same occurs with time transitions. The behaviour loop B has the same time transitions as its
unfolding B;loop B.

E ⊢ B; loop B
ǫ〈d〉

−−−−→ B′

E ⊢ loop B
ǫ〈d〉

−−−−→ B′

(8.111)

8.26 Process instantiation

A process instantiation Π[G1, . . . ,Gm](E1, . . . ,Ep)[X1, . . . ,Xn] can evolve if the body of the pro-
cess Π where actual gates and exceptions have been substituted for the formal ones, and values re-
turned by the actual parameters have been substituted for the corresponding input parameter vari-
ables, can evolve. The evaluation of the parameters and how they are “introduced” in the body is
expressed in the following rule by means of a case behaviour that pattern-matches the input variables
against the values returned by the expressions. Gates and exceptions are syntactically substituted:
B[G1/G′

1, . . . , Gm/G′
m, X1/X ′

1, . . . , Xn/X ′
n] represents the behaviour B where gates Gi and exceptions

Xi have been simultaneously substituted for G′
i and X ′

i. The inference rule for process instantiation is
as follows:

E ⊢ Π ⇒ λ[G′
1:T1, . . . , G

′
m:Tm](V1:T

′
1, . . . , Vp:T

′
p)[X ′

1:T
′′
1 , . . . , X ′

n:T
′′
n]→ B

E ⊢ (case (E1:T
′
1, . . . , Ep:T

′
p) is

($1 => ?V1, . . . , $p => ?Vp) ->

B[G1/G′
1, . . . , Gm/G′

m, X1/X ′
1, . . . , Xn/X ′

n])
µ(RN)
−−−−−→ B′

E ⊢ Π[G1, . . . ,Gm](E1, . . . ,Ep)[X1, . . . ,Xn]
µ(RN)
−−−−−→ B′

(8.112)

And there is a analogous rule dealing with time transitions:

8.27. Type expressions 167

E ⊢ Π ⇒ λ[G′
1:T1, . . . , G

′
m:Tm](V1:T

′
1, . . . , Vp:T

′
p)[X ′

1:T
′′
1 , . . . , X ′

n:T
′′
n]→ B

E ⊢ (case (E1:T
′
1, . . . , Ep:T

′
p) is

($1 => ?V1, . . . , $p => ?Vp) ->

B[G1/G′
1, . . . , Gm/G′

m, X1/X ′
1, . . . , Xn/X ′

n])
ǫ〈d〉

−−−−→ B′

E ⊢ Π[G1, . . . ,Gm](E1, . . . ,Ep)[X1, . . . ,Xn]
ǫ〈d〉

−−−−→ B′

(8.113)

8.27 Type expressions

Regarding type expressions, in the dynamic semantics we need inference rules that establish the subtyping
relationship, because they are used in the general rule 8.125.

8.27.1 Type identifier

The information we can deduce about a type identifier S is what is included in the context.

E , S ≡ T ⊢ S ≡ T (8.114)

8.27.2 Empty type

The type none is subtype of any type T ,

E ⊢ none ⊑ T (8.115)

and it is equivalent to any record type with a field V of type none,

E ⊢ none ≡ (V => none,RT) (8.116)

8.27.3 Universal type

The type any is a supertype of any type T ,

E ⊢ T ⊑ any (8.117)

8.27.4 Record type

A record type (RT) is a subtype of another record type (RT ′) whenever RT is a subtype of RT ′ (see
next section).

E ⊢ RT ⊑ RT ′

E ⊢ (RT) ⊑ (RT ′
)

(8.118)

168 8. Dynamic Semantics of Base Language

8.28 Record type expressions

8.28.1 Singleton record

If T is a subtype of T ′, then the record type expression V => T is a subtype of V => T ′.

E ⊢ T ⊑ T ′

E ⊢ V => T ⊑ V => T ′
(8.119)

8.28.2 Record disjoint union

The disjoint union RT1,RT2 is a subtype of RT ′
1,RT ′

2 if it can be proved that RT1 ⊑ RT ′
1 and RT2 ⊑ RT ′

2.

E ⊢ RT1 ⊑ RT ′
1 E ⊢ RT2 ⊑ RT ′

2

E ⊢ RT1,RT2 ⊑ RT ′
1,RT ′

2

(8.120)

The binary operator “,” between records is commutative, associative, and it has the empty record as
identity.

E ⊢ RT1,RT2 ≡ RT2,RT1
(8.121)

E ⊢ (RT1,RT2),RT3 ≡ RT1,(RT2,RT3) (8.122)

E ⊢ (),RT ≡ RT (8.123)

8.28.3 Universal record

etc is a supertype of any record type expression RT

E ⊢ RT ⊑ etc (8.124)

8.29 Value Expressions

The information about which is the type T of a value N , N →T T , is needed in the dynamic semantics in
the inference rules that invent values, in the sense that these values appear in the premises of the rule but
not in the conclusion. The sole places where this occurs are in the dynamic semantics of the hide (Sec-
tion 8.15) and rename (Section 8.19) operators (where values of the type of the corresponding declared
gate are invented), and in the dynamic semantics of the nondeterministic assignment, P := any T [E]

(Section 8.21) (where a value of type T is invented).

As in the static semantics, we have the following general rule:

E ⊢ N →T T

E ⊢ T ⊑ T ′

E ⊢ N →T T ′

(8.125)

The inference rules are as in the static semantics, so we do not explain it again.

8.29.1 Primitive constants 169

8.29.1 Primitive constants

E ⊢ K ⇒ T

E ⊢ K →T T
(8.126)

8.29.2 Variables

We do not need to know the type of a variable because when values are invented variables are not used.

8.29.3 Constructor application

E ⊢ C ⇒ ((RT)→ S)

E ⊢ N →T (RT)

E ⊢ C N →T S

(8.127)

8.29.4 Record values

E ⊢ RN →T RT

E ⊢ (RN) →T
(RT)

(8.128)

8.30 Record value expressions

As in the static semantics, we have the following general rule:

E ⊢ RN →T RT

E ⊢ RT ⊑ RT ′

E ⊢ RN →T RT ′

(8.129)

8.30.1 Empty record

E ⊢ () →T () (8.130)

8.30.2 Singleton record

E ⊢ N →T T

E ⊢ (V => N) →T (V => T)
(8.131)

8.30.3 Record disjoint union

E ⊢ RN1 →T RT1 E ⊢ RN2 →T RT2

E ⊢ RN1, RN2 →T RT1, RT2

(8.132)

with the side condition that RN1 and RN2 have disjoint fields.

170 8. Dynamic Semantics of Base Language

8.31 Patterns

We define in the following sections how the different patterns of E-LOTOS can be matched against values,
and what bindings this pattern-matching produces. In the static semantics, patterns are matched against
types, and the rules define only the successful pattern-matching, that is, a pattern cannot be matched
against a type if there is not a proof which proves that the pattern-matching can be done. In the dynamic
semantics it is important to have rules for proving that a pattern cannot be matched against a value. This
is useful when a case behaviour is being executed and a value is matched against the different branches
of the case, as we saw in Section 8.24.

In [Que98] type checking, →T , is used in the pattern-matching inference rules in some places where
we think that it is not needed. Intuitively, when the pattern-matching judgement

E ⊢ (P →PM N) 7→ 〈|RN |〉

is used as a premise in an inference rule IR, first the corresponding static semantics rules had proved

C ⊢ (P →PM T) 7→ 〈|RT |〉

and IR checks that N →T T or it is true due to the following general result: if E =⇒ exit 〈| $1=>T, RT |〉

and E
δ($1=>N,RN)
−−−−−−−−−−→ E′, then N →T T ; and when RT is the empty record type, RN is the empty record

value (which can be easily proved by induction on the length of the proofs). Thus, we do not need to
check it again in the inference rule of the pattern-matching. The sole place where type checking is needed
is in those patterns with an explicit type, wildcard pattern and explicit typing pattern, as we see below.

8.31.1 Variable pattern

Pattern ?V can be always pattern-matched against value N .

E ⊢ (?V →PM N) 7→ 〈|V ⇒ N |〉 (8.133)

8.31.2 Expression pattern

The pattern !E can be matched against value N if expression E returns the value N , that is, E commu-
nicates through δ the bindings $1 => N .

E ⊢ E
δ($1=>N)

−−−−−−−−−→ E′

E ⊢ (!E →PM N) 7→ 〈| |〉
(8.134)

If expression E returns a value N ′ different to N , then the pattern !E cannot be matched against
value N .

E ⊢ E
δ〈$1=>N′〉

−−−−−−−−−→ E′

E ⊢ (!E →PM N) 7→ fail
[N 6= N ′] (8.135)

And if the expression E raises an exception when it is being executed, the pattern-matching also fails.

E ⊢ E
X(RN)

−−−−−−−→ E′

E ⊢ (!E →PM N) 7→ fail
(8.136)

8.31.3 Wildcard pattern 171

8.31.3 Wildcard pattern

As we saw in Section 7.31.3, we have modified the static semantics of the wildcard pattern any:T .
Therefore, we have to modify also the dynamic semantics. When we try to pattern-match the pattern
any:T against value N , we have to check the type of the value N because although it has passed the static
semantics, perhaps there it was pattern-matched against a supertype of T . For example, the behaviour

case E:int is

any:nat -> B1

| any:int -> B2

endcase

is semantically correct (assuming nat ⊑ int), but we want that if E evaluates to −2, the first branch fails.

Thus, the pattern any:T can be matched against value N if N has type T .

E ⊢ N →T T

E ⊢ (any:T →PM N) 7→ 〈| |〉
(8.137)

and if N has not type T , the pattern any:T fails

E ⊢ N 6→T T

E ⊢ (any:T →PM N) 7→ fail
(8.138)

If we follow the notation used in [Que98] in the explicit typing pattern, we should write

E ⊢ N →T T ′

E ⊢ T ⊓ T ′ ⇒ none

E ⊢ (any:T →PM N) 7→ fail

(8.139)

where T ⊓ T ′ represents the greatest lower bound of T and T ′ with respect to the subtyping relation ⊑.
T ⊓ T ′ ⇒ none implies that T 6⊑ T ′ and T ′ 6⊑ T , and, therefore, N →T T ′ and T ⊓ T ′ ⇒ none implies
N 6→T T .

8.31.4 Record pattern

The record pattern (RP) can be matched against record value (RN) if RP can be matched against RN
(see next section) and it produces the same bindings.

E ⊢ (RP →PM RN ′) 7→ 〈|RN |〉

E ⊢ ((RP) →PM
(RN ′

)) 7→ 〈|RN |〉
(8.140)

But it the pattern-matching between RP and RN fails, then the pattern-matching between (RP)

and (RN) also fails.

E ⊢ (RP →PM RN ′) 7→ fail

E ⊢ ((RP) →PM
(RN ′

)) 7→ fail
(8.141)

Finally, if (RP) is pattern-matched against a value N which is not a record value (RN ′) then the
pattern-matching fails.

E ⊢ ((RP) →PM N) ⇒ fail
[6 ∃ RN ′ | N = (RN ′

)] (8.142)

172 8. Dynamic Semantics of Base Language

Example 8.16 Let us see how the pattern ($1 => ?x : int) can be matched against the value ($1 => 8).

E ⊢ 8 →T int E ⊢ (?x →PM 8) 7→ 〈| x => 8 |〉
(8.133)

E ⊢ (?x : int →PM 8) 7→ 〈|x => 8 |〉
(8.146)

E ⊢ ($1 => ?x : int →PM $1 => 8) 7→ 〈|x => 8 |〉
(8.150)

E ⊢ (($1 => ?x : int) →PM ($1 => 8)) 7→ 〈|x => 8 |〉
(8.140)

8.31.5 Constructor pattern

The pattern C P can be pattern-matched against value C(RN) if pattern P can be pattern-matched
against value (RN), producing the same bindings.

E ⊢ (P →PM (RN)) 7→ 〈|RN ′ |〉

E ⊢ (C P →PM C(RN)) 7→ 〈|RN ′ |〉
(8.143)

If P cannot be pattern-matched against (RN) then the pattern-matching between C P and C(RN)

fails.

E ⊢ (P →PM (RN)) 7→ fail

E ⊢ (C P →PM C(RN)) 7→ fail
(8.144)

The pattern C P cannot be pattern-matched against value N if N is not of the form C N ′, that is, if N
is not a value beginning with the constructor C.

E ⊢ (C P →PM N) 7→ fail
[6 ∃ C N ′ | N = C N ′] (8.145)

8.31.6 Explicit typing pattern

As in the case of the wilcard patter, when we try to pattern-match the explicit typing pattern P:T
against value N , we have to check the type of the value N . For example, the behaviour

case E:int is

?x:nat -> B1

| any:int -> B2

endcase

is semantically correct (assuming nat ⊑ int), but, as before, we want that if E evaluates to −2, the first
branch fails.

Hence, the pattern P:T can be pattern-matched against value N if N has type T and pattern P can
be pattern-matched against value N .

E ⊢ N →T T

E ⊢ (P →PM N) 7→ 〈|RN |〉

E ⊢ (P:T →PM N) 7→ 〈|RN |〉

(8.146)

If the pattern-matching between P and N fails, then the pattern P:T cannot be pattern-matched
against value N .

8.32. Record of patterns 173

E ⊢ N →T T

E ⊢ (P →PM N) 7→ fail

E ⊢ (P:T →PM N) 7→ fail

(8.147)

Finally, if N has not type T then the pattern-matching between P:T and N fails.

E ⊢ N →T T ′

E ⊢ T ⊓ T ′ ⇒ none

E ⊢ (P:T →PM N) 7→ fail

(8.148)

8.32 Record of patterns

8.32.1 Empty record pattern

The empty record of patterns (which has no syntax, and is represented here by “()”) can be only pattern-
matched against the empty record value (also represented by “()”) producing no bindings.

E ⊢ (() →PM ()) 7→ 〈| |〉 (8.149)

8.32.2 Singleton record pattern

The singleton record pattern V => P can be pattern-matched against the record value V => N if P can
be pattern-matched against N .

E ⊢ (P →PM N) 7→ 〈|RN |〉

E ⊢ (V => P →PM V => N) 7→ 〈|RN |〉
(8.150)

And if the pattern-matching between P and N fails then V =>P cannot be pattern-matched against the
record value V => N .

E ⊢ (P →PM N) 7→ fail

E ⊢ (V => P →PM V => N) 7→ fail
(8.151)

8.32.3 Record disjoint union

The record of patterns RP1, RP2 can be pattern-matched against value RN1, RN2 if RP1 can be
pattern-matched against value RN1 and RP2 can be pattern-matched against value RN2.

E ⊢ (RP1 →PM RN1) 7→ 〈|RN ′
1 |〉 E ⊢ (RP2 →PM RN2) 7→ 〈|RN ′

2 |〉

E ⊢ (RP1, RP2 →PM RN1, RN2) 7→ 〈|RN ′
1, RN ′

2 |〉
(8.152)

If RP1 or RP2 cannot be pattern-matched against the corresponding pattern, then the record patter-
matching fails.

E ⊢ (RP1 →PM RN1) 7→ fail

E ⊢ (RP1, RP2 →PM RN1, RN2) 7→ fail
(8.153)

174 8. Dynamic Semantics of Base Language

E ⊢ (RP2 →PM RN2) 7→ fail

E ⊢ (RP1, RP2 →PM RN1, RN2) 7→ fail
(8.154)

8.32.4 Wildcard record pattern

The wildcard record pattern etc can be pattern-matched against any record of values producing no
bindings.

E ⊢ (etc →PM RN) 7→ 〈| |〉 (8.155)

9 Semantics of Module Language

We are going to define in this chapter the semantics of a very simple (but complete) E-LOTOS specifica-
tion which will help us to understand how the context used in the previous chapters are built. The kind
of specification we describe is like the following:

specification ≡
module mod-id is

m-body
endmod

specification Σ import mod-id is

gates G1:T1, . . . ,Gm:Tm

exceptions X1:T
′
1, . . . ,Xn:T

′
n

behaviour B
endspec

where m-body is a sequence of type (Section 3.1) and process (Section 2.20) declarations.

9.1 Static Semantics

A specification is semantically correct if we can prove the following judgement

⊢ specification =⇒ ok

using the following rule

C0 ⊢ m-body =⇒ C

C0, C,

G1 ⇒ gate〈($1 => T1)〉, . . . , Gm ⇒ gate〈($1 => Tm)〉,

X1 ⇒ exn〈($1 => T ′
1)〉, . . . , Xn ⇒ exn〈($1 => T ′

n)〉 ⊢ B =⇒ exit 〈|RT |〉

⊢ specification =⇒ ok

(9.1)

where C0 is the initial context that includes the constants, types, and functions defined in the predefined
library of E-LOTOS.

The first premise states that the module body m-body can be semantically checked (with the inference
rules we will see in the following sections) returning a context C which represents the type of the module
body.

The second premise states that the behaviour B is semantically correct (and we have to use the
inference rules in Chapter 7 in order to prove it) in a context which includes C0 (the initial context), all
the declarations from m-body, C, and the declared gates and exceptions that B can use.

In the following sections we define how the different declarations in m-body are semantically checked,
and what contexts each one returns. The judgements are of the form

C ⊢ D =⇒ C′

176 9. Semantics of Module Language

meaning that in context C declaration D is semantically correct and it produces context C′.

9.1.1 Synonymous type

The synonymous type declaration type S renames T is semantically correct in the context C if T is a
declared type in this context.

C ⊢ T ⇒ type

C ⊢ type S renames T =⇒ (S ⇒ type, S ≡ T)
(9.2)

9.1.2 Named record type

The named record type declaration type S is (RT) is semantically correct in the context C if the record
type (RT) is correct in that context.

C ⊢ (RT)⇒ type

C ⊢ type S is (RT) =⇒ (S ⇒ type, S ≡ (RT))
(9.3)

9.1.3 New data type

The user defined new data type

type S is

C1(RT1) | . . . | Cn(RTn)

is semantically correct in the context C if the type of the arguments given to the constructors are correct
in the context C where the type S which is being declared is included. This is done to allow recursive
types, that is, type S can be used in the argument types RTi.

∀ i . 1 ≤ i ≤ n . C, S ⇒ type ⊢ (RTi)⇒ type

C ⊢ type S is C1(RT1) | . . . | Cn(RTn)

=⇒ (S ⇒ type, C1 ⇒ (RT1)→ S, . . . , Cn ⇒ (RTn)→ S)

(9.4)

9.1.4 Process declaration

A process declaration

processDecl ≡
process Π [G1:T1, . . . ,Gn:Tn] (V1:T

′
1, . . . ,Vp:T

′
p) :(RT)

raises [X1:T
′′
1 , . . . ,Xn:T

′′
n]

is B

is semantically correct if the types given to gates, parameters, and exceptions are correct types declared
in the context; and the body of the process B is semantically correct in a context where we have include
the declared gates, parameters, exceptions, and the information related to the process declaration, in
order to allow recursive instantiations in B.

If the body B is a guarded behaviour the inference rule is as follows:

9.1.4 Process declaration 177

∀ i . 1 ≤ i ≤ m. C ⊢ Ti ⇒ type

∀ i . 1 ≤ i ≤ p . C ⊢ T ′
i ⇒ type

∀ i . 1 ≤ i ≤ n . C ⊢ T ′′
i ⇒ type

C ⊢ (RT)⇒ type

C, G1 ⇒ gate〈($1 => T1)〉, . . . , Gm ⇒ gate〈($1 => Tm)〉,

V1 => T ′
1, . . . , Vp => T ′

p,

X1 ⇒ gate〈($1 => T ′′
1)〉, . . . , Xn ⇒ gate〈($1 => T ′′

n)〉,

proc ⊢ B =⇒ guarded 〈|RT |〉

C ⊢ processDecl =⇒ Π ⇒ [gate〈($1 => T1)〉, . . . ,gate〈($1 => Tm)〉]
(V1:T

′
1, . . . , Vp:T

′
p)

[exn〈($1 => T ′′
1)〉, . . . ,exn〈($1 => T ′′

n)〉]→ guarded 〈|RT |〉

(9.5)

where

proc ≡ Π ⇒ [gate〈($1 => T1)〉, . . . ,gate〈($1 => Tm)〉]
(V1:T

′
1, . . . , Vp:T

′
p)

[exn〈($1 => T ′′
1)〉, . . . ,exn〈($1 => T ′′

n)〉]→ exit 〈|RT |〉

Note that the type (RT) is part of the process declaration, that is, the rule states that the body of the
process has to produce (only) those bindings related to out parameters, those in (RT).

And if the body B is an exit behaviour the inference rule is:

∀ i . 1 ≤ i ≤ m . C ⊢ Ti ⇒ type

∀ i . 1 ≤ i ≤ p . C ⊢ T ′
i ⇒ type

∀ i . 1 ≤ i ≤ n . C ⊢ T ′′
i ⇒ type

C ⊢ (RT)⇒ type

C, G1 ⇒ gate〈($1 => T1)〉, . . . , Gm ⇒ gate〈($1 => Tm)〉,

V1 => T ′
1, . . . , Vp => T ′

p,

X1 ⇒ gate〈($1 => T ′′
1)〉, . . . , Xn ⇒ gate〈($1 => T ′′

n)〉,

proc ⊢ B =⇒ exit 〈|RT |〉

C ⊢ processDecl =⇒ Π ⇒ [gate〈($1 => T1)〉, . . . ,gate〈($1 => Tm)〉]
(V1:T

′
1, . . . , Vp:T

′
p)

[exn〈($1 => T ′′
1)〉, . . . ,exn〈($1 => T ′′

n)〉]→ exit 〈|RT |〉

(9.6)

with the same proc included in the context.

Example 9.1 Let us see that the process declaration

process User2 [acc:id,abd:id](myid:id) is

acc(!myid);
abd(!myid);
User2 [acc,abd](myid)

endproc

is semantically correct in a context where the type id is defined, and what context it returns. The process
declaration is translated to

processDecl ≡
process User2 [acc:id,abd:id](myid:id):() raises[] is

acc($1 => !exit($1 => myid)) . . . ;abd($1 => !exit($1 => myid));
User2 [acc,abd](exit($1 => myid))[]

178 9. Semantics of Module Language

We use rule 9.5 as follows:

C ⊢ id ⇒ type

C ⊢ ()⇒ type

C, acc ⇒ gate〈($1 => id)〉,

abd ⇒ gate〈($1 => id)〉,

myid => id,

User2 ⇒ [gate〈($1 => id)〉,gate〈($1 => id)〉]

(myid:id)[]→ exit 〈| |〉 ⊢ acc($1 => !exit($1 => myid)) . . . ;

abd($1 => !exit($1 => myid)) . . . ;

User2 [acc,abd](exit($1 => myid))[] =⇒ guarded 〈| |〉

C ⊢ processDecl =⇒ (User2 ⇒ [gate〈($1 => id)〉,gate〈($1 => id)〉](myid:id)[]→ guarded 〈| |〉)

The last premise is checked using the inference rules of actions, sequential composition, and Exam-
ple 7.26 in Section 7.26.

9.1.5 Sequential declarations

A sequential declaration D1 D2 is semantically correct in the context C if D1 is correct in this context,
and D2 is correct in a context where the declarations in D1 has been included. The sequential declaration
returns the information produce by both declarations which has to be disjoint.

C ⊢ D1 =⇒ C′

C,C′ ⊢ D2 =⇒ C′′

C ⊢ D1 D2 =⇒ C′, C′′

(9.7)

9.2 Dynamic Semantics

A specification starts to be executed by using the following rule

⊢ m-body −−→ E

E0, E ⊢ rename

gate G1($1 => ?$arg):T1 is G1($1 => !$arg)

· · ·

gate Gm($1 => ?$arg):Tm is G′
m($1 => !$arg)

in B
µ(RN)
−−−−−→ B′

⊢ specification
µ(RN)
−−−−−→ B′

(9.8)

where E0 is the initial dynamic context including the constants, types, and functions declared in the
predefined library of E-LOTOS.

The first premise states that the “execution” of the declarations in m-body produces the context E
that consists of the information needed to execute the behaviour B.

The second premise states that the behaviour B has as first possible transition the transition
µ(RN)
−−−−−→

becoming B′. The rename is used in order to provide the type of the values that can go through the
gates declared by the specification. Writing this rename here allows to do not write it in the process

9.2.1 Synonymous type 179

instantiation as is done in [Que98]. Now all gates are declared in a rename or hide, and, therefore, the
values that go through gates are always of the correct type.

In the following sections we define how the different declarations in m-body are “executed,” and the
contexts that these declarations returns. The judgements are of the form

⊢ D −−→ E

meaning that declaration D returns context E when it is executed. E includes the information needed
when a behaviour using the declaration D is executed.

9.2.1 Synonymous type

The synonymous type declaration type S renames T returns S ≡ T , that is, T is the definition of type
S.

⊢ type S renames T −−→ (S ≡ T) (9.9)

9.2.2 Named record type

The named record type declaration type S is (RT) returns that (RT) is the definition of type S.

⊢ type S is (RT) −−→ (S ≡ (RT)) (9.10)

9.2.3 New data type

The user defined new data type

type S is

C1(RT1) | . . . | Cn(RTn)

returns the type of the constructors, needed to know the type of values of type S.

⊢ type S is C1(RT1) | . . . | Cn(RTn) −−→ (C1 ⇒ (RT1)→ S, . . . , Cn ⇒ (RTn)→ S) (9.11)

9.2.4 Process declaration

A process declaration

processDecl ≡
process Π [G1:T1, . . . ,Gn:Tn] (V1:T

′
1, . . . ,Vp:T

′
p) :(RT)

raises [X1:T
′′
1 , . . . ,Xn:T

′′
n]

is B

returns the information related to the type and name of formal gates, parameters, and exceptions; and
the body of the process.

⊢ processDecl −−→ Π ⇒ λ[G1:T1, . . . , Gm:Tm](V1:T
′
1, . . . , Vp:T

′
p)[X1:T

′′
1 , . . . , Xn:T

′′
n]→ B (9.12)

180 9. Semantics of Module Language

9.2.5 Sequential declarations

A sequential declaration D1 D2 returns the information returned by both D1 and D2.

⊢ D1 −−→ E

⊢ D2 −−→ E ′

⊢ D1 D2 −−→ E ,E ′

(9.13)

Bibliography

[BB93] J. C. M. Baeten and J. A. Bergstra. Real time process algebra. Formal Aspects of Computing,
3:142–188, 1993.

[Ber93] Gérard Berry. Preemption in concurrent systems. In Proceedings of FSTTCS 93, volume 761 of
Lecture Notes in Computer Science, pages 72–93, Berlin, 1993. Springer Verlag.

[BL93] Rezki Boumezbeur and Luigi Logrippo. Specifying telephone systems in Lotos. IEEE Communica-
tions Magazine, pages 38–45, August 1993.

[Bri88] Ed Brinksma. On the Design of Extended LOTOS, a Specification Language for Open Distributed
Systems. PhD thesis, University of Twente, November 1988.

[dFLL+95] D. de Frutos, G. Leduc, L. Léonard, L. Llana, C. Miguel, J. Quemada, and G. Rabay. Time extended
LOTOS. In Working draft on Enhancements to LOTOS. ISO/IEC JTC1/SC21/WG1, 1995.

[Dij65] E. W. Dijkstra. Cooperating sequential processes. Technical Report EWD-123, Technological Uni-
versity Eindhoven, 1965.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Springer-Verlag, 1985.

[Flo94] Thomas L. Floyd. Digital Fundamentals. Macmillan Publishing Company, 1994.

[Gam90] Mark Gamble. The CCSDS protocol validation programme inter-agency testing using LOTOS. In
Juan Quemada, Jose A. Mañas, and Enrique Vázquez, editors, Proc. Formal Description Techniques
III. North-Holland, Amsterdam, Netherlands, November 1990.

[GH93] Hubert Garavel and Rene-Pierre Hautbois. Experimenting with LOTOS in the aerospace industry.
In Teodor Rus and Charles Rattray, editors, Theories and Experiences for Real-Time System Devel-
opment, Computing: Vol 2. World Scientific, 1993.

[Gro93] J. F. Groote. Transition system specifications with negative premises. Theoretical Computer Science,
118:263–299, 1993.

[GS96] Hubert Garavel and Mihaela Sighireanu. On the introduction of exceptions in LOTOS. In Reinhard
Gotzhein and Jan Bredereke, editors, Proceedings of the Joint International Conference on Formal
Description Techniques for Distributed Systems and Communication Protocols, and Protocol Spec-
ification, Testing, and Verification FORTE/PSTV’96 (Kaiserslautern, Germany), pages 469–484.
Chapman & Hall, October 1996.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[ISO88] ISO/IEC. LOTOS—A formal description technique based on the temporal ordering of observational
behaviour. International Standard 8807, International Organization for standardization — Information
Processing Systems — Open Systems Interconnection, Genève, September 1988.

[JT97] He Ji and Kenneth J. Turner. Extended DILL: Digital logic in LOTOS. Technical Report CSM-142,
Department of Computing Science and Mathematics, University of Stirling, UK, November 1997.

[LDV99] Luis Llana-Dı́az and Alberto Verdejo. Time and urgency in E-LOTOS. Submitted for publication,
March 1999.

[LFHH] L. Logrippo, M. Faci, and M. Haj-Hussein. An introduction to LOTOS: learning by examples. Uni-
versity of Ottawa.

182 BIBLIOGRAPHY

[LL94] Guy Leduc and Luc Léonard. A formal definition of time in LOTOS. ISO/IEC, 1994. Source:
JTC1/SC21/WG1/Q48.6.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mun91] Harold B. Munster. LOTOS specification of the MAA standard, with an evaluation of LOTOS. NPL
Report DITC 191/91, National Physical Laboratory, Teddington, Middlesex, UK, September 1991.

[NS91] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In Computer Aided
Design, volume 575 of Lecture Notes in Computer Science, pages 376–398, 1991.

[NS94] X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: Theory and application. Information
and Computation, 114:131–178, 1994.

[Pec92] Charles Pecheur. Using LOTOS for specifying the CHORUS distributed operating system kernel.
Computer Communications, 15(2):93–102, March 1992.

[Pec94] Charles Pecheur. A proposal for data types for E-LOTOS. Technical report, University of Liège,
October 1994. Annex H of ISO/IEC JTC1/SC21/WG1 N1349 Working Draft on Enhancements to
LOTOS.

[Que98] Juan Quemada, editor. Final committee draft on Enhancements to LOTOS. ISO/IEC
JTC1/SC21/WG7 Project 1.21.20.2.3., May 1998.

[RR86] G. M. Reed and A. W. Roscoe. A timed model for communicating sequential processes. In
Proc. ICALP 86, pages 314–323. Springer-Verlag, 1986. LNCS 226.

[Sch95] S. A. Schneider. An operational semantics for timed CSP. Information and Computation, 116(2):193–
213, 1995.

[TS94] Kenneth J. Turner and Richard O. Sinnott. DILL: Specifying digital logic in LOTOS. In Richard L.
Tenney, Paul D. Amer, and M. Ümit Uyar, editors, Proc. Formal Description Techniques VI, pages
71–86. North-Holland, Amsterdam, Netherlands, 1994.

[vEVD89] Peter H. J. van Eijk, Chris A. Vissers, and Michel Diaz. The Formal Description Technique LOTOS:
Results of the ESPRIT/SEDOS Project. North-Holland, New York, 1989.

[Yi91] Wang Yi. CCS + time = an interleaving model for real time systems. In J. Leach Albert, B. Monien,
and M. Rodŕıguez, editors, Proc. ICALP 91, pages 217–228. Springer-Verlag, 1991. LNCS 510.

