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Abstract

We describe a first proposal for a strategy language for Maude, to control the
rewriting process and to be used at the object level instead of at the metalevel. We
also describe a prototype implementation built over Full Maude using the metalevel
and the metalanguage facilities provided by Maude. Finally, we include a series of
examples that illustrate the main features of the proposed language.
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1 Introduction

The passage from equational logic to rewriting logic allows the specification of
systems by means of rules that need not be confluent or terminating, opening
up in this way a whole world of new applications. However, this theoreti-
cal generality needs some control when the specifications become executable,
because the user needs to make sure that the rewriting process does not go
in undesired directions. In some cases, given a specification and a starting
state term, an execution path is enough for testing executability; for this, the
Maude system provides rewrite and frewrite commands [4, Chapter 5]. In
other cases, the user might be interested in exploring all possible execution
paths from the starting term; this can be accomplished in Maude by means
of a search command, that looks for states satisfying some properties by
doing a breadth-first exploration of the conceptual computation tree 1 of pos-
sible rewrites. This search process is also triggered by Maude to check that
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y análisis integrado de sistemas móviles y distribuidos (TIC2003–01000), by ONR Grant
N00014-02-1-0715, by NSF Grant CCR-0234524, and by DARPA through Air Force Re-
search Laboratory Contract F30602-02-C-0130.
1 The nodes of such a tree are terms and its branches represent the one-step rewrites. We
refer to it as conceptual in the sense that we do not build the whole tree as a data structure,
even though we explore parts of it.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Mart́ı-Oliet, Meseguer, and Verdejo

rewrite conditions are satisfied in the application of conditional rewrite rules
[4, Chapter 5].

But there is a very general additional possibility of being interested in the
results of only some execution paths satisfying some constraints. For example,
in Real Time Maude modules there is a distinction between eager and lazy
rules, and only rewriting paths that satisfy the requirement that lazy rules
are only applied when no eager rule can be applied make sense for this kind
of modules [6]. Another simple example appears in the paper by Pita and
Mart́ı-Oliet on object-oriented network models, where at the object (in both
senses) level there is a set of rules that must be applied following a specific
order that is controlled by a metaobject [8].

The need to use strategies to control the rewriting process under these
conditions was recognized from the beginning in the development of rewriting
logic and the systems implementing rewriting logic computation. In particular,
strategies are an essential part of the ELAN system, that provides a basic set
of strategies that the user can use in writing rewrite rules, so that at the
specification level it is not enforced a separation between rules and strategies
[1,2].

In the Maude system, this need for providing strategies for controlling
the rewriting process has been satisfied by developing strategies at the met-

alevel. Taking advantage of the reflective properties of rewriting logic, the
META-LEVEL module in Maude provides basic operations (also called descent
functions) that reflect at the metalevel the processes of rule application and
rewriting. Using these operations as basic building blocks, it is possible to de-
fine at the metalevel a whole variety of internal strategy languages [5,3], that
is, the strategy language is defined inside the same rewriting logic framework,
instead of being defined as an add-on extralogical feature. Although reflection
allows a complete control of the rewriting of a given term using the rewrite
rules in a theory, for users unfamiliar with the metalevel there is a price to be
paid both conceptually and notationally.

Therefore, we have undertaken the project of providing a basic strategy
language for Maude, to be used at the object level instead of at the metalevel.
This language allows the definition of strategy expressions that control the
way a term is rewritten. Although ELAN provided a very good starting point
for the development of our language, including both ideas and examples, our
design is based on a strict separation between the rewrite rules and the strategy
expressions, that are provided in separate modules. Thus, in our proposal it
is not possible to use strategy expressions in the rewrite rules of a system
module.

Stratego [11,12] is another system that has provided much inspiration.
However, we have not taken up their ideas on strategies for term traversal.
We do not want to complicate the language for the sake of “completeness,” to
support, say, everything we have done before in previous examples of strategy
languages. We think that the strategy language should provide expressive and
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basic enough functionality. Since our language is extensible, allowing the user
to define new functionality in metalevel language extensions, anybody who
wants to do even more things can always use the basic functionality of our
language and define the extra functionality needed at the metalevel.

Our initial starting point was to design a language for expressing differ-
ent forms of search, including strategies for restricting it, but the interaction
between search and rewriting goes in both directions because, as mentioned
above, search is used when applying a conditional rewrite rule for checking the
corresponding rewrite conditions. Therefore, in our strategy+search language
there are two kinds of expressions: strategy expressions and search expressions;
both are mutually recursive, because a search expression can include a restric-
tion on the rewrite path being searched for by means of a strategy expression,
and a basic strategy expression saying that a conditional rule is applied can
be qualified with search expressions specifying which kind of search should be
used to check the rewrites in the rule’s condition.

As also mentioned above, a key modularity principle followed in our lan-
guage design is the strict separation between strategies and rules. The lan-
guage allows defining strategy modules that associate specific strategies with
system modules. In a system module (at the object level) there are no strategy
expressions at all. Moreover, we can have different strategy modules associ-
ated with the same system module.

The following section describes our proposed language design. Then, after
explaining how we have built a prototype implementation over Full Maude
using the metalevel and the metalanguage facilities provided by Maude, we
include a series of examples that illustrate the main features of the proposed
language in Section 5.

This paper assumes knowledge of the Maude language and system. We
refer to the Maude manual for detailed information about both [4]. Moreover,
there is a lot of work on strategies in the rewriting community that we do not
mention; we refer, among many others, to the survey by Eelco Visser [11].

The web page http://maude.sip.ucm.es/strategies/ contains the full
code for all the examples in this paper and some more, as well as the Maude
code of the prototype described in Section 4.

2 The strategy+search language

In this section we explain the design of the language, describing its syntax by
means of a Maude presentation of the language; that is, the metalanguage fa-
cilities provided by the Maude system allow defining a language inside Maude
in a very easy way so that the grammar of the language is given as a Maude
signature. Moreover, equations are used to define derived operations in terms
of the more basic ones. Since our prototype, described later in Section 4, is
implemented as an extension of Full Maude by means of the Maude metalevel,
we use the same ideas in the presentation of the syntax. However, we must
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point out that using the strategy language does not require any knowledge of
the metalevel, and that our idea is to implement the language in the future
as part of the Maude system.

2.1 Strategies syntax

A strategy is described as an operation that, when applied to a given term,
produces a set of terms as a result, given that the process is nondeterministic
in general. A simple set-theoretic semantics for the language will be described
in Section 3.

2.1.1 Idle and fail

The simplest strategies are the constants idle and fail. The first always
succeeds, but without modifying the term to which it is applied, while the
second always fails, that is, its set of results is empty.

2.1.2 Basic strategies

The basic strategies consist of the application of a rule (identified by the
corresponding rule label) to a given term.

subsort Label < BasicStrat < Strat .

In this case a rule is applied anywhere in the term where it matches satisfy-
ing its condition, with no further constraints on the substitution instantiation.
In case of conditional rules the default breadth-first search strategy is used
for checking the rewrites in the condition. A slightly more general variant
allows variables in a rule to be instantiated before its application by means
of a substitution, so that the user has more control on the way the rule is
applied.

op _[_] : Label Substitution -> BasicStrat .

The unconstrained case L can also be expressed as L[none], where none

denotes the identity (empty) substitution.

For conditional rules, rewrite conditions can be controlled by means of
search expressions (see Section 2.2). As before, the substitution can be omitted
if it is empty.

op _[_]{_} : Label Substitution List(Search) -> BasicStrat .

op _{_} : Label List(Search) -> BasicStrat .

A strategy expression of the form L[S]{B1 ... Bn} denotes a basic strat-
egy that applies anywhere in a given state term the rule L with variables
instantiated by means of the substitution S and using B1, . . . , Bn as search
expressions to check the rewrites in the condition of L. The number of such
rewrites must be n for the expression to be meaningful.
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2.1.3 Top

We consider that the most common case allows applying a rule anywhere in
a given term, as explained above, but we also provide an operation to restrict
the application of a rule just to the top of the term, because in some examples
like structural operational semantics, the only interesting or allowed rewrite
steps happen at the top (see Section 5.3).

op top : BasicStrat -> Strat .

top(BE) applies the basic strategy BE only at the top of a given state
term. Note however that even applying a rule at the top is nondeterministic
due to multiple matchings, which are possible because matching takes place
modulo the equational attributes of the operators, such as associativity or
commutativity.

2.1.4 Tests

Since matching is one of the basic steps that take place when applying a rule,
the strategies that test some property of a given state term are based on
matching. As in applying a rule, we distinguish between matching anywhere
and matching only at the top of a given term.

subsort Test < Strat .

op xmatch_s.t._ : Term EqCondition -> Test .

op match_s.t._ : Term EqCondition -> Test .

xmatch T s.t. C is a test that, when applied to a given state term T’,
is successful if there is a subterm of T’ that matches the pattern T (that is,
matching is allowed anywhere in the state term) and then the condition C is
satisfied with the substitution for the variables obtained in the matching, and
is false otherwise. match T s.t. C corresponds to matching only at the top.
When the condition C is simply true, it can be omitted.

Tests are seen as strategies that check a property on a state, so that the
test qua strategy is successful if true and fails if false. In the first case, the
state is not changed.

In particular, the strategy constants idle, that is the identity, and fail,
that always fails, correspond respectively to basic tests as follows. The idle

strategy can be represented by a match with a variable that always succeeds
and a condition that is trivially true, so that any state passes this test. On the
other hand, the fail strategy can be represented by a match with a variable
that always succeeds and a condition that is trivially false, and therefore is
never satisfied and thus no state can pass this test.

2.1.5 Regular expressions

Basic strategies are combined so that strategies are applied to execution paths.
The first strategy combinators we consider are the typical regular expression
constructions: concatenation, union, and iteration.
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op _;_ : Strat Strat -> Strat [assoc] . *** concatenation

op _|_ : Strat Strat -> Strat [assoc comm] . *** union

op _* : Strat -> Strat . *** iteration (0 or more)

op _+ : Strat -> Strat . *** iteration (1 or more)

Notice the attributes in the concatenation and union operators. In partic-
ular, the commutativity property of the union provides a form of nondeter-
minism in the way the solutions are found.

A strategy of the form E ; P (with P a test) filters out all those results
from E that do not satisfy a test P.

In order to avoid writing long expressions of the form L1 | ... | Ln

where Li are the labels of all rules in a module, we provide some abbreviations:

op all : ModuleName -> Strat .

op all# : ModuleName -> Strat .

all(M) denotes the strategy union of all the rule labels (understood as ba-
sic strategies) declared in module M, while all#(M) denotes the strategy union
of all the rule labels declared in module M and all its imported submodules.

2.1.6 If-then-else and its derived strategies

Our next strategy combinator is a typical if-then-else, but generalized so that
the first argument is also a strategy. We have borrowed this idea from Stratego
[12], but it also appears in ELAN [2, Example 5.2].

op if_then_else_fi : Strat Strat Strat -> Strat .

The behaviour of the strategy expression if E then E’ else E’’ fi is
as follows: in a given state term, the strategy E is evaluated; if E is successful,
the strategy E’ is evaluated in the resulting states, otherwise E’’ is evaluated
in the initial state.

Note that, as mentioned above, the first argument is also a strategy term
and not a test. Since Test is a subsort of Strat, we have the particular case
if P then E’ else E’’ fi for a test P where evaluation coincides with the
typical Boolean case distinction: E’ is evaluated when the test P is true and
E’’ when the test is false, taking into account that a test qua strategy fails
when false.

Using the if-then-else combinator, we can define many other useful strategy
combinators as derived operations. E orelse E’ evaluates E in a given state;
if such evaluation is successful, its results are the final ones, but if it fails, then
E’ is evaluated in the initial state.

op _orelse_ : Strat Strat -> Strat .

eq E orelse E’ = if E then idle else E’ fi .

not(E) reverses the result of evaluating E, so that not(E) fails when E is
successful and vice versa.

op not : Strat -> Strat .

eq not(E) = if E then fail else idle fi .
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An interesting use of not(E) is the following “normalization” (or “repeat
until the end”) operation:

op _! : Strat -> Strat .

eq E ! = E * ; not(E) .

try(E) evaluates E in a given state; if it is successful, the corresponding
result is given, but if it fails, the initial state is returned.

op try : Strat -> Strat .

eq try(E) = if E then idle else idle fi .

Evaluation of test(E) checks the success/failure result of E, but it does
not change the given initial state.

op test : Strat -> Strat .

eq test(E) = if not(E) then fail else idle fi .

2.1.7 Depth

In order to be able to require a depth bound, that is, a bound on the length
of the computation that corresponds to the depth in the computation tree, we
introduce the following operation:

sort DStrat . subsort Strat < DStrat .

op depth : Nat Strat -> DStrat .

Note that the depth operation can only be applied at the top of a strategy
expression, since the result is not again of sort Strat, but of sort DStrat

(strategy with depth).

2.1.8 Rewriting of subterms

With the previous combinators, we cannot force the application of a strategy
to a specific subterm of the given initial term. In particular the scope of the
substitution in the (x)match combinators is only the corresponding condition.
We can have more control over the way different subterms of a given state are
rewritten by means of the (x)matchrew combinators.

sort TermStrat .

op _using_ : Term Strat -> TermStrat .

op xmatchrew_s.t._by_ : Term EqCondition List(TermStrat) -> Strat .

op matchrew_s.t._by_ : Term EqCondition List(TermStrat) -> Strat .

When the strategy expression

xmatchrew T s.t. C by T1 using E1, ..., Tn using En

is applied to a state term T’, first a subterm of T’ that matches T and satisfies
C is selected. Then, the terms T1, . . . , Tn (which must be disjoint subterms
of T), instantiated appropriately, are rewritten as described by the strategy
expressions E1, . . . , En, respectively. The results are combined in T and then
substituted in T’, in the way illustrated in Figure 1.

The strategy expressions E1, . . . , En can make use of the variables instanti-
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T = g(...T1...Tn...) −→ g(... ... ...)

matching substitution

T’ = f(... g(... ...)... ...) −→ f(... g(... ...)... ...)

E1 En rewriting of subterms

Fig. 1. Behaviour of the xmatchrew combinator.

ated in the matching, thus taking care of information extracted from the state
term (see the examples in Sections 5.1 and 5.6).

The version matchrew works in the same way, but performing matching
only at the top. In both versions, when the condition is true it can be omitted.

In ELAN and Stratego there is a strategy combination mechanism called
congruence operators [2,12]. For each syntax constructor C there is a corre-
sponding congruence operator, also denoted by C. If C is an n-ary construc-
tor, then the corresponding congruence operator allows defining the strategy
C(E1,...,En). Such a strategy applies only to terms of the form C(T1,...,Tn),
and its results are the terms C(T1’,...,T2’), provided the application of each
strategy Ei to each term Ti succeeds with result Ti’. Congruence operators
can be simulated in our language by means of the matchrew combinator, since
the above strategy C(E1,...,En) can be represented as

matchrew C(X1,...,Xn) by X1 using E1, ..., Xn using En

where variables Xi of the appropriate sorts are used to match the arguments
of the term C(T1,...,Tn).

2.1.9 Recursion

Recursion is achieved by giving a name to a strategy expression and using this
name in the strategy expression itself or in other related strategies. This is
done in strategy+search modules (see Section 2.3). Concrete examples will be
shown in Section 5.

2.2 Search syntax

There are basic constructors for the most usual kinds of search: breadth-
first, depth-first, and iterated bounded depth-first. In all of them, the first
argument represents the number of requested solutions (with unbounded for
“all solutions”), while in the third case, the second argument is the increment
between iterations.

op bfs : Bound DStrat -> Search .

op dfs : Bound DStrat -> Search .

op ibdfs : Bound Nat DStrat -> Search .

The current (default) Maude search command [4, Section 17.4]

search in M : _ =>* T such that C
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is equivalent to the search expression

bfs(unbounded, all#(M)* ; match T s.t. C)

where the strategy expression given as second argument takes care of iteration
(remember that all#(M) denotes the strategy union of all the rule labels
declared in module M and all its imported submodules), final pattern matching
at the top, and condition checking.

2.3 Strategies and search modules and commands

Given a Maude module M, the user can write one or more strategy+search
modules to define strategies for M. In the current design, such strategy+search
modules have the following form:

stratdef STRAT is

including M .

including STRAT1 . ... including STRATp .

strat EI1 = E1 . ... strat EIn = En .

search BI1 = B1 . ... search BIm = Bm .

endsd

where STRAT1, . . . , STRATp are imported strategy+search modules, EI1, . . . ,
EIn, BI1, . . . , BIm are identifiers, E1, . . . , En are strategy expressions (over
the language of labels provided by M), and B1, . . . , Bm are search expressions
(over the same language). In the future, we plan to study parameterization
mechanisms for strategy+search modules.

Note that the identifiers EI1, . . . , EIn, BI1, . . . , BIm can appear in the
righthand expressions E1, . . . , En, B1, . . . , Bm, thus allowing (mutually) recur-
sive definitions.

The idea is that these strategy and search declarations provide useful ab-
breviations for strategy and search expressions that the user can then use in
commands over the module M. The two basic commands are srew T using E

(strategy rewrite), which rewrites a term T using a strategy expression E, and
search T using B, which performs a search starting from T according to the
search expression B.

3 Semantics

We propose the following simple set-theoretic semantics at an abstract level,
where we are only interested in the results of evaluating the strategy on a
given state term, and not in the way the results of such an evaluation have
been obtained. Everything that follows is said with respect to an implicit
system module M where rules have been declared.

A strategy expression denotes a function from terms (as states) to (pos-
sibly infinite) sets of terms, denoting the successful states. More specifically,
the resulting set of terms is a subset of the set of nodes of the computation
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tree in module M whose root is the given initial term for the strategy. If
the result set is empty, then the strategy has failed on the initial term. In
particular, independently of the term t, for the constants idle and fail we
have idle(t) = {t}, and fail(t) = {}, the empty set.

For a basic strategy BE and a term t, BE (t) is the set of terms obtained as
result of applying the basic strategy BE (that is, a rule possibly constrained
by a given substitution) to t anywhere. The set top(BE )(t) is the subset of
BE(t) obtained as result of applying the basic strategy BE to t at the top.
Note that the restriction of applying the strategy only at the top does not force
the resulting set to be either unitary or empty, because of multiple possible
matches due to equational attributes of the operators in the module M .

For the basic tests, (xmatch t′ s.t. C)(t) = {t} if there is a subterm of t

that matches the pattern t′ with resulting substitution σ such that σ(C) eval-
uates to true. Otherwise, either because no subterm of t matches t′ or because
the condition is not satisfied, (xmatch t′ s.t. C)(t) = {}. (match t′ s.t. C)(t)
is the special case in which the subterm must coincide with t because matching
is only allowed at the top.

The regular expression combinators have the expected semantics, where
En, for n ∈ Nat, is an auxiliary definition:

(E|E ′)(t)= E(t) ∪ E ′(t)

(E; E ′)(t)=
⋃

{E ′(t′) | t′ ∈ E(t)}

E0(t)= {t}

En+1(t)= (E; En)(t)

E∗(t)=
⋃

{En(t) | n ∈ Nat}

E+(t)=
⋃

{En(t) | n ∈ Nat , n 6= 0}

For the if-then-else combinator, we test the strategy in the first argument.
If E(t) is not empty, (if E then E ′ else E ′′ fi)(t) = (E; E ′)(t); otherwise,
(if E then E ′ else E ′′ fi)(t) = E ′′(t).

The semantics of subterm rewriting requires the notion of context. In
the strategy expression E = xmatchrew t s.t. C by t1 using E1, . . . , tn
using En, the terms ti, for 1 ≤ i ≤ n, must be disjoint subterms of the
pattern t, which is therefore of the form c[t1, . . . , tn] for some context c (modulo
structural axioms, like associativity or commutativity). When the strategy
expression E is applied to a term t′, we first match a subterm of t′ to t, (that
is, t′ = c′[σ(t)] for another context c′) and the resulting substitution σ must
satisfy the condition C, that is, σ(C) evaluates to true; otherwise, E fails. In
the former case, each strategy Ei is applied to σ(ti), so that the final result is
the set of terms of the form c′[σ(c)[t′1, . . . , t

′

n
]], for t′

i
∈ Ei(σ(ti)). Note that if

one of these sets is empty, that is, the corresponding strategy fails, then the
whole strategy E also fails. The strategy expression E = matchrew t s.t. C

by t1 using E1, . . . , tn using En is the special case in which matching can
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only happen at the top, that is, the context c′ is empty.

The semantics of recursive definitions is obtained in the usual way, as least
fixpoints of transformations over strategies.

depth(n, E)(t) is the subset of E(t) formed by those terms t′ ∈ E(t) whose
minimum path length from t to t′ is less than or equal to n.

The meaning of a search expression is less abstract than the meaning of a
strategy expression, because the requirement of doing the search in a concrete
way forces the results to be obtained in a concrete order. Therefore, a search
expression denotes a function from terms (as states) to (possibly infinite)
lists (sequences) of terms. Given a search expression B(n,DE ), its meaning
B(n,DE)(t) consists of elements in DE (t) ordered in the way the search B

takes place over the computation tree, and with size(B(n,DE )(t)) ≤ n.

4 Prototype implementation in Maude

Using the Maude metalevel, we have implemented a prototype of the strat-
egy+search language as an extension of Full Maude. It consists of several
functions that work with a labelled version of the conceptual computation
tree produced when applying a strategy E to a given state term T. Nodes in
this tree are tuples formed by a term, a strategy, and possibly other infor-
mation. The root is < T, E >, and the children of a node < T’, E’ > are
the terms obtained from T’ by rewriting as described by E’, paired with the
corresponding remainder of E’. In a successful path, the strategy at the leaf
node is empty, meaning that nothing is left to do, which corresponds to a
complete successful application of the strategy E.

Concretely, the functions implementing the language work on paths on this
kind of trees. Internal nodes are labelled with enough information to know
which is the next child to be explored. The specific information saved depends
on the top constructor in the strategy expression, and it is used to traverse
the conceptual tree by backtracking in a depth-first way (the only search we
have implemented for the time being). Part of the syntax used to build paths
is as follows:

sorts Node Path .

subsorts Term Node < Path .

op <_,_> : Term Strat -> Node .

op <_,_,_> : Term Strat Nat -> Node .

op <_,_,_> : Term Strat Path -> Node .

op emptyP : -> Path .

op p : Path Path -> Path [assoc id: emptyP] .

op fail : -> Path .

The two main functions are first and next. The combination of these
two functions serves to find (in a depth-first order) all the solutions for the
application of a strategy to a given state term.
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op first : Module SSModule Path -> Path .

op next : Module SSModule Path -> Path .

The function first receives a system module, a strategy+search module,
and a path (initially this path is formed only by the root of the tree), and
it returns the first successful path obtained from the given path. The func-
tion next receives initially a successful path and returns the path to the next
solution in the tree (or fail if there are no more solutions). They are im-
plemented in a mutually recursive way, distinguishing cases on the strategy
expression in the last node of the given path, and with the help of the met-
alevel descent functions metaApply, metaXapply, metaMatch, and metaXmatch

[4, Section 10.4].

We present below the handling of two cases: the application of a rule with
label L instantiated with substitution Sb, L[Sb], and the sequential composi-
tion of two strategies, E ; E’.

If we look for the first solution extending path p(PA, < T, L[Sb] >) then
we ask for the first solution (0) of the application of L using metaXapply.
If there is such a solution T’, then we are finished, and a successful path
terminating in T’ is returned. Note how the solution number is kept in the
internal node. Otherwise, we have to backtrack by looking for the next solution
of path PA. If we look for the next solution, we ask metaXapply for the next
solution.

ceq first(M, SSM, p(PA, < T, L[Sb] >)) =

p(p(PA, < T, L[Sb], 0 >), T’)

if { T’, Ty, Sb’, CX } :=

metaXapply(M, T, L, Sb, 0, unbounded, 0) .

eq first(M, SSM, p(PA, < T, L[Sb] >)) = next(M, SSM, PA) [owise] .

ceq next(M, SSM, p(PA, < T, L[Sb], N >)) =

p(p(PA, < T, L[Sb], N + 1 >), T’)

if { T’, Ty, Sb’, CX } :=

metaXapply(M, T, L, Sb, 0, unbounded, N + 1) .

eq next(M, SSM, p(PA, < T, L[Sb], N >)) = next(M, SSM, PA) [owise] .

In order to apply a strategy E ; E’ to a state term T, first E is applied to T.
If this application is successful and it returns T’ (as the first obtained solution),
then E’ is applied to T’. Note how the path p(PA’,T’) obtained when applying
E to T is saved in the node < T, E ; E’, p(PA’,T’) >, because it is needed
when more solutions are searched for (and all the solutions of < T’, E’ >

have been already explored), or when E’ fails. In both cases the next solution
of < T, E > is searched.

ceq first(M, SSM, p(PA, < T, E ; E’ >)) =

first(M, SSM, p(p(PA, < T, E ; E’, p(PA’,T’) >), < T’, E’ >))

if p(PA’, T’) := first(M, SSM, < T, E >) .

12
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eq first(M, SSM, p(PA, < T, E ; E’ >)) = next(M, SSM, PA) [owise] .

ceq next(M, SSM, p(PA, < T, E ; E’, PA’’ >)) =

first(M, SSM, p(p(PA, < T, E ; E’, p(PA’,T’)>), < T’, E’ >))

if p(PA’, T’) := next(M, SSM, PA’’) .

eq next(M, SSM, p(PA, < T, E ; E’, PA’’ >)) =

next(M, SSM, PA) [owise] .

The metalanguage features of Maude allow completing the prototype with
a user interface where strategy+search modules can be loaded, and commands
to rewrite a term using a strategy or to search according to a search expression
can be executed. These commands allow a step-by-step generation of all the
possible results of rewriting a term using a strategy.

The syntax definition for the strategy+search language is accomplished by
defining a data type StratDefModule, which can be done with very flexible
user-definable mixfix syntax, that can mirror the concrete syntax explained in
Section 2. Particularities at the lexical level can be accommodated by user-
definable bubble sorts, that tailor the adequate notions of token and identifier.
Parsing and pretty printing are accomplished by the functions metaParse and
metaPrettyPrint in META-LEVEL [4, Chapter 11].

Input/output of strategy+search modules and of commands for execution
is accomplished by the predefined module LOOP-MODE, that provides a generic
read-eval-print loop. This module has an operator [_,_,_] that can be seen
as a persistent object with an input and output channel (the first and third
arguments, respectively), and a state (given by its second argument). Our
prototype user interface has been implemented as an extension of Full Maude.
Full Maude maintains as the state of the loop object a database of modules
entered into the system. We have extended this state to maintain values of sort
Path to remember the last result found. Then, we defined rewrite rules that
describe the behaviour associated with the new commands. All the examples
in the following section have been executed using this extension of Full Maude.

5 Some examples

In this section we show some examples to illustrate the use of strategies.
The search+strategy modules and commands are written between parentheses
because they are used as input to the loop object of Full Maude.

5.1 Blackboard

The first example is a simple game. You have a blackboard on which several
natural numbers have been written. A legal move consists in selecting two
numbers in the blackboard, removing them, and writing their arithmetic mean.
The objective of the game is to get the greatest possible number written on

13
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the blackboard at the end. The specification of the game in Maude is also
quite simple.

(mod BLACKBOARD is

pr NAT .

sort BB .

subsort Nat < BB .

op __ : BB BB -> BB [assoc comm] .

vars M N : Nat .

rl [play] : M N => (M + N) quo 2 .

endm)

A player can choose the numbers randomly, or can follow some strategy.
Possible strategies consist in taking always the two greatest numbers, or the
two smallest, or taking the greatest and the smallest. The following module
extends the BLACKBOARD module with operations to get the maximum or mini-
mum number in a blackboard, and for removing an element in the blackboard.

(mod EXT-BB is

pr BLACKBOARD .

ops max min : BB -> Nat .

op remove : Nat BB -> BB .

vars M N X Y : Nat . var B : BB .

eq max(N) = N .

eq max(N B) = if N > max(B) then N else max(B) fi .

eq min(N) = N .

eq min(N B) = if N < min(B) then N else min(B) fi .

eq remove(X, X B) = B .

endm)

The module BB-STRAT below defines the three mentioned strategies. Note
how the matchrew strategies constructor is used to get information about the
state term that is then used in the definition of how the rule play has to be
applied.

(stratdef BB-STRAT is

including EXT-BB .

strat maxmin = (matchrew B s.t. X := max(B) /\

Y := min(B) by

B using play[M <- X ; N <- Y] ) ! .

strat maxmax = (matchrew B s.t. X := max(B) /\

Y := max(remove(X,B)) by

B using play[M <- X ; N <- Y] ) ! .

strat minmin = (matchrew B s.t. X := min(B) /\

Y := min(remove(X,B)) by

B using play[M <- X ; N <- Y] ) ! .

endsd)

Maude> (srew 2000 20 2 200 10 50 using maxmin .)

result NzNat : 178
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Maude> (srew 2000 20 2 200 10 50 using maxmax .)

result NzNat : 77

Maude> (srew 2000 20 2 200 10 50 using minmin .)

result NzNat : 1057

5.2 Map

This example illustrates how a strategy map(S), that applies a strategy S

once to every element in a list, can be defined in our language. First we define
a system module declaring lists of elements and a conditional rewrite rule
that decomposes a list in its head and tail and whose conditions rewrite these
components. This rule has been defined only for the purpose of defining the
strategy and, as we shall see below, can be avoided.

(mod MAP is

inc ELEM .

sort List . subsort Elem < List .

op nil : -> List .

op __ : List List -> List [assoc id: nil] .

vars E E’ : Elem . vars L L’ : List .

crl [list] : E L => E’ L’ if E => E’ /\ L => L’ .

endm)

The first possible implementation of map(S) (strategy map1 below) uses
an if-then-else to distinguish between the empty and nonempty lists. If the
state list matches the nil constructor then the constant idle strategy is used.
If the list is nonempty then the rule list is used and the strategy says how:
it has to be applied at the top and its first rewrite condition has to be solved
using the elements strategy S to rewrite the head of the list, and the second
rewrite condition has to be solved using recursively the list strategy map(S).

The problem with this kind of implementation is that a rewrite rule has
to be included for the only purpose of separating the components of the state
term that have to be rewritten in a controlled way. The matchrew constructor
can be used to solve this problem. It is used in the second implementation
(strategy map2 below). In this case the orelse constructor is used to dis-
tinguish cases (only for illustrating different possibilities). If the state list
matches the nil constructor, then it is trivially successful. Otherwise, the list
is decomposed with the pattern E L, and then E is rewritten using S and L is
rewritten using map(S).

(stratdef MAP-STRAT is

including MAP .

strat S = [...] . *** strategy for elements

strat map1 = if (match nil) then idle

else top(list{dfs(S) dfs(map1)}) fi .

strat map2 = (match nil) orelse

(matchrew E L by E using S, L using map2) .

endsd)

15



Mart́ı-Oliet, Meseguer, and Verdejo

5.3 CCS operational semantics

In this section we show how the rewrite rules implementing a structural op-
erational semantics can be controlled with our strategy+search language. We
have studied how Maude can be used to represent and implement the CCS op-
erational semantics elsewhere [10,9]. In [10] we showed which implementation
problems can be found with this kind of representations, and how they can
be solved in Maude 2.0 using some “tricks”, like the frozen attribute that
disallows rewriting of subterms, or dummy operators used to control what
rules can be used to solve a rewrite condition.

The module CCS-SEMANTICS below contains the CCS semantics representa-
tion without these tricks. 2 In this kind of representation, semantic transitions
are represented as rewrites, and semantic rules are represented as conditional
rewrite rules, where the main rewrite corresponds to the transition in the con-
clusion of the semantic rule, and the condition rewrites correspond to tran-
sitions in the premises. In CCS transitions are labelled with actions; in our
Maude representation this label is part of the righthand side term, built with
the {_}_ operator.

(mod CCS-SEMANTICS is

protecting CCS-CONTEXT .

sort ActProcess . subsort Process < ActProcess .

op {_}_ : Act ActProcess -> ActProcess .

var L : Label . var X : ProcessId . vars P P’ Q Q’ : Process .

var A : Act . var AP : ActProcess .

rl [prefix] : A . P => {A}P .

crl [sum] : P + Q => {A}P’ if P => {A}P’ .

crl [par1] : P | Q => {A}(P’ | Q) if P => {A}P’ .

crl [par2] : P | Q => {tau}(P’ | Q’)

if P => {L}P’ /\ Q => {~ L}Q’ .

crl [res] : P \ L => {A}(P’ \ L)

if P => {A}P’ /\ A =/= L /\ A =/= ~ L .

crl [def] : X => {A}P

if (X definedIn context) /\ def(X,context) => {A}P .

*** transitive closure

crl [more] : P => {A}AP if P => {A}Q /\ Q => AP .

endm)

The first six rules correspond to CCS semantic rules. These rules should be
applied only at the top of a process term. Rule more represents the transitive
closure of the CCS transition relation, defined in a mathematical way by

P → P ′ P ′ →∗ Q

P →∗ Q

Here we have two kinds of transitions, → and →∗, and when trying to solve

2 We have omitted the modules specifying the CCS syntax and contexts, and rules corre-
sponding to the relabelling operator. They can be found, for example, in [10].
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the first premise we know that the rules to be used are the ones defining CCS
“one-step” transitions. But when both kinds of transitions are represented in
Maude, the same rewrite relation is used (=>). That is the reason why we
need to control which rules are used when solving the rewrite conditions in
rule more above. The following module defines the strategies used to control
the rewriting process in the desired way.

(stratdef STRAT is

strat ccs = top(prefix) |

top(sum{dfs(ccs)}) |

top(par1{dfs(ccs)}) |

top(par2{dfs(ccs) dfs(ccs)}) |

top(res{dfs(ccs)}) |

top(def{dfs(ccs)}) .

strat trans = idle | top(more{dfs(ccs) dfs(trans)}) .

endsd)

A simple vending machine, where two kinds of coins can be inserted and
depending on the inserted coin a big or little cake can be collected, can be
defined in a CCS context in the following way:

eq context = (’Ven =def ’2p . ’VenB + ’1p . ’VenL) &

(’VenB =def ’big . ’collectB . ’Ven) &

(’VenL =def ’little . ’collectL . ’Ven) .

We can rewrite ’Ven with strategy trans to check if the trace

{’2p}{’big}{’collectB}

is possible in CCS.

Maude> (srew ’Ven using trans ; (match {’2p}{’big}{’collectB}AP) .)

result ActProcess :

{’2p}{’big}{’collectB}’Ven

This command succeeds because the trace {’2p}{’big}{’collectB} is in
the first path explored by the current implementation of the strategy language.
Since process ’Ven is infinite, the rewriting tree produced by strategy trans

has infinite branches. The depth-first search fails to find traces which are not
an extension of {’2p}. Although {’1p}{’little} is also a correct trace, it
will not be found. Here a (not implemented yet) breadth-first search should
be used:

(search ’Ven using bfs(trans ; (match {’1p}{’little}AP)) .)

5.4 Backtracking: labyrinth

In this section we show a generic strategy useful for solving a problem using
backtracking. It assumes that partial solutions are represented as lists of
decisions, and that there are predicates isOk, to check if a partial solution is
extensible to a (complete) solution, and isSolution, to check if we already
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have a solution. It also assumes a rule expand that extends a partial solution:

crl [expand] : L => L P if next(L) => P .

and possibly several rules next that specify how a term like next(L) can be
rewriten to a value that extends L. We give an example below.

With these ingredients we can define a generic strategy that defines how a
problem has to be solved by means of backtracking.

(stratdef BACKTRACKING-STRAT is

strat solve = if (match L s.t. isSolution(L))

then idle

else top(expand{dfs(next)}) ;

(match L s.t. isOk(L)) ;

solve

fi .

endsd)

This strategy first checks if it has already obtained a solution. If this is
the case, it finishes. Otherwise, it applies at the top the expand rule, using
rules next to solve the condition; then, it checks if the extension is right, and
continues recursively.

The following module instantiates the components described above for
solving a labyrinth.

(mod LABYRINTH is

pr NAT .

sorts Pos List . subsort Pos < List .

op [_,_] : Nat Nat -> Pos .

op nil : -> List .

op __ : List List -> List [assoc id: nil] .

op contains : List Pos -> Bool .

ops isSolution isOk : List -> Bool .

op next : List -> Pos .

op wall : -> List .

vars X Y : Nat . var P Q : Pos . var L : List .

eq isSolution(L [8,8]) = true .

eq isSolution(L) = false [owise] .

eq contains(nil, P) = false .

eq contains(Q L, P) = if P == Q then true else contains(L, P) fi .

eq isOk(L [X,Y]) = X >= 1 and Y >= 1 and X <= 8 and Y <= 8

and not(contains(L, [X,Y])) and

not(contains(wall, [X,Y])) .

crl [expand] : L => L P if next(L) => P .

rl [next] : next(L [X,Y]) => [X + 1, Y] .

rl [next] : next(L [X,Y]) => [X, Y + 1] .

rl [next] : next(L [X,Y]) => [sd(X, 1), Y] .

rl [next] : next(L [X,Y]) => [X, sd(Y, 1)] .

endm)
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The same strategy has been used to solve the ubiquitous queens problem
(see http://maude.sip.ucm.es/strategies/).

5.5 Network management

Strategies (at the metalevel) in Maude have also been studied in the context
of an object-oriented model for broadband telecommunication networks [8,7].
The basic objects of the model are nodes, links, and connections. Nodes
represent the network points where the communication signals are treated, and
a network is formed by a set of links together with the nodes that they join and
the corresponding connections between nodes. The system evolves by requests
(queries, modifications, deletions) that produce a chain of messages between
the objects, until a new stable configuration corresponding to the request is
reached. In [8] different specifications of these evolutions are studied. For
example, when a modification message is received by the network, a protocol
has to be followed. If this protocol cannot be followed, error messages have
to be generated. This can be specified at the object level by complicating
the specification of the protocol, or at the metalevel by specifying a Mediator

object that controls the network by using a concrete strategy language defined
for this case also at the metalevel [8].

By using the strategy language defined in this paper, we can define the
Mediator at the object level, and can control the rules specifying its behaviour
by means of strategies specified in a separate strategy module. The abstract
specification of the Mediator object is as follows:

(omod MEDIATOR is

including NETWORK .

class Mediator | Config : Configuration . [...]

crl [ChDemand-ok] : ChDemand(O, N, No1, No2, << S ; D >>)

< N : Mediator | Config : C >

=> < N : Mediator | Config : C’ >

(To O AckChDemand No1 and No2 in N)

if C MCom(O, N, No1, No2, << S ; D >>) => C’ .

rl [ChDemand-NoConn] : ChDemand(O, N, No1, No2, << S ; D >>)

< N : Mediator | Config : C >

=> < N : Mediator | >

(To O NoConnectionBetween No1 and No2 in N) .

rl [ChDemand-NoCap] : ChDemand(O, N, No1, No2, << S ; D >>)

< N : Mediator | Config : C >

=> < N : Mediator | > (To O ServiceCapacityNotSupported) .

endom)

Rule ChDemand-ok expresses a successful execution. If the rewrite condi-
tion can be solved in the desired way (following the correct protocol) then the
modification request ChDemand can be attended. Otherwise, error messages
will be generated depending on where the protocol fails. The two possible er-
rors are that there is no connection between the given nodes, and that there is
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no port of the needed capacity in one of the nodes traversed by the connection.

The strategies that describe how the protocol works and when the above
rules have to be applied are as follows:

(stratdef MEDIATOR-STRATEGIES is

strat iterate = if LinkListLoad then PortNode ; PortNode ; iterate

else idle fi .

strat Sconf = if MCom then iterate else MComNS ; iterate fi .

strat checkNoConn = xmatchrew ChDemand(O, N, No1, No2, << S ; D >>)

< N : Mediator | Config : C > by

C MCom(O, N, No1, No2, << S ; D >>) using not(MCom | MComNS) .

strat Smediator = ChDemand-ok{dfs(Sconf)}

orelse ((checkNoConn ; ChDemand-NoConn)

orelse ChDemand-NoCap) .

endsd)

Strategy Sconf describes the correct protocol. The rules Mcom, McomNS,
LinkListLoad, and PortNode (in the NETWORK module) describe the behaviour
of the network [8,7]. Strategy Smediator controls the mediator. First, it
tries to apply rule ChDemand-ok ensuring that Sconf is used to rewrite the
condition. If this is not possible, then there is an error. Strategy checkNoConn

checks that the rules Mcom or McomNS cannot be applied to the controlled
network. This means that the desired connection does not exist, and the rule
ChDemand-NoConn is applied. Otherwise, the problem is the lack of capacity,
and the rule ChDemand-NoCap is applied.

We point out that the use of the xmatchrew combinator in the strategy
checkNoConn above does not follow the general pattern explained in Sec-
tion 2.1.8, because the term that is “rewritten” after the matching test is
not a subterm of the pattern. However, the strategy works in the expected
way because it only checks whether a property is true or not, without really
rewriting the term. We think that this is not the most appropriate way of
using this combinator and thus we have not included this case in our general
explanation, leaving for future work a detailed study of the usefulness these
special cases.

5.6 Strategies with memory: insertion sort

Sometimes a strategy needs to remember some information about what it has
already done in order to know what it has to do next. In our current proposal,
this “memory” keeping auxiliary information can only be maintained as part
of the term being rewritten. We propose introducing a free constructor

op <_,_> : State Memory -> Conf .

where State is the sort of terms the strategy is intended for, and values of
sort Memory keep the extra information needed by the strategy. There must
also be rules describing the behaviour of this memory, whose application can
be controlled by a strategy, just as one controls the rules rewriting states.
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Y := 2
while Y ≤ N do

X := Y

while X > 1 ∧ V [X − 1] > V [X] do
switch V [X − 1] and V [X]
X := X − 1

Y := Y + 1

Fig. 2. Insertion sort.

The strategy that implements the insertion sort algorithm follows this
approach. First we have a module that defines arrays as sets of pairs and
a rule to switch the values in two positions of the array.

(mod SORTING is

pr NAT .

sorts Pair PairSet .

subsort Pair < PairSet .

op (_,_) : Nat Nat -> Pair .

op empty : -> PairSet .

op __ : PairSet PairSet -> PairSet [assoc comm id: empty] .

op length : PairSet -> Nat .

vars I J V W : Nat . var PS : PairSet .

eq length(empty) = 0 .

eq length((I, V) PS ) = length(PS) + 1 .

rl [switch] : (J, V) (I, W) => (J, W) (I, V) .

endm)

The imperative pseudocode for the insertion sort algorithm is shown in
Figure 2 (for sorting an array V [1..N ]).

The algorithm keeps two indices, one pointing to the next element to be
inserted between the already sorted elements, and another pointing to the
element which is being inserted. So in this case the memory needed by the
strategy consists of two natural numbers. The following module defines the
memory and the needed operations to change it as rewrite rules.

(mod EXT-SORTING is

pr SORTING .

sorts Memory Conf .

op [_|_] : Nat Nat -> Memory .

op <_,_> : PairSet Memory -> Conf .

vars X Y J I V W : Nat . var PS : PairSet .

rl [setY] : [ Y | X ] => [ 2 | X ] .

rl [setX] : [ Y | X ] => [ Y | Y ] .

rl [decX] : [ Y | X ] => [ Y | sd(X,1) ] .

rl [incY] : [ Y | X ] => [ Y + 1 | X ] .

endm)

The following module defines the strategy insort that rewrites terms of
sort Conf. The algorithm can be represented as a strategy in several different
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ways; this particular way is just one example that tries to mimic the pseu-
docode in Figure 2. Loops are represented by means of the “repeat while
possible” operator _! and they are broken when the strategy cannot be ap-
plied; the expression X − 1 is represented as sd(X, 1); and the condition in
the inner loop is separated in two matching conditions.

(stratdef INSERTION-SORT-STRAT is

strat insort =

setY ;

((match < PS , [ Y | X ] > s.t. Y <= length(PS)) ;

setX ;

(matchrew < PS , [ Y | X ] > s.t. X > 1 by

PS using ((xmatch (sd(X, 1), V) (X, W) s.t. (V > W)) ;

switch[J <- sd(X, 1) ; I <- X]),

[ Y | X ] using decX ) ! ;

incY

) ! .

endsd)

Maude> (srew < (1, 18) (2, 14) (3, 11)

(4, 15) (5, 12), [ 0 | 0 ] > using insort .)

result Conf :

< < (1, 11) (2, 12) (3, 14) (4, 15) (5, 18), [6 | 2] >, [6 | 2] >

6 Future work

We have described and illustrated by means of examples a first proposal for a
strategy+search language for Maude, to be used at the object level (as opposed
to the metalevel) to control the rewriting process. We have also presented a
prototype implementation built over Full Maude using the metalevel and the
metalanguage facilities provided by Maude. There is however much more work
to do. To begin with, the current prototype has to be extended in order to
implement the missing capabilities, such as breadth-first search and depth
bounds. Also more examples need to be developed in order to validate the
current proposal. Since this is still work in progress, it is now difficult to do a
full comparison with other languages such as ELAN and Stratego, which will
be considered in the future.

The current design of the strategy language could be extended by including
new combinators; for example, congruence operators could be made available
to the user, instead of having to simulate them by means of the matchrew com-
binator. Stratego also provides combinators for composing generic traversals.
The operator all(E) applies the strategy E to each of the direct subterms
Ti of a constructor application C(T1,...,Tn). By using the all combinator
generic traversals can be easily defined [12]:

bottomup(E) = all(bottomup(E)) ; E

topdown(E) = E ; all(topdown(E))
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innermost(E) = bottomup(try(E ; innermost(E)))

Our current language cannot simulate directly this combinator, since in
order to use the matchrew combinator we need to know how to build the
matching pattern. Once we know that the strategy all(E) is applied to term
C(T1,...,Tn), it is equivalent to the application of strategy

matchrew C(X1,...,Xn) by X1 using E, ..., Xn using E
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