
E-LOTOS: an OverviewGabriel Huecas1, Luis F. Llana-Díaz2, Tomas Robles1, and Alberto Verdejo21 Dpto. Ingeniería TelemáticaUniversidad Politécnica de Madrid. Spaingabriel@selva.dit.upm.estrobles@dit.upm.es2 Dpto. Sistemas Informáticos y ProgramaciónUniversidad Complutense de Madrid. Spainllana@sip.ucm.esjalberto@eucmos.sim.ucm.esAbstract E-LOTOS (Enhanced LOTOS) includes several new featuresaccording with the user's needs detected during the last years. Simpli�-cation of the language, inclusion of programming language features (es-pecially imperative features), modularity, new operators, and inclusionof formal support for time speci�cation and analysis, make the new lan-guage much more industrial applicable, extend their applicability �elds,and o�ers a powerful tool to cover Systems development cycle from re-quirements capture to implementation production.Keywords: E-LOTOS, LOTOS, Formal Description Techniques, FormalMethods.1 IntroductionAt the Internet age, things change faster than ever before. In this context,LOTOS [ISO88] (Language of Temporal Ordering Speci�cation), a Formal De-scription Technique developed within ISO for the formal speci�cation of opendistributed systems, is currently under revision in ISO [Que98], in the Work Item�Enhancements to LOTOS,� giving rise to a revised language called E-LOTOS(Enhanced LOTOS). Maintaining the strong formal basics of LOTOS(based onCCS [Mil89], CSP [Hoa85], and ACT ONE [EM85]), the new language intends toinclude most of the user's requirements related with expressive power and struc-turing capabilities, besides user-friendliness. User's requirements come from theindustrial environment, that wants to use a language closer to the actual highlevel programming languages, reducing the learning curve of the new engineers,and the availability of tools that produce e�ective implementations of the spec-i�ed products. Scienti�c community wants to increment the expressive powerof the language to deal with classical problems like time analysis, new oper-ators, and uni�cation of some language structures. Among the enhancementsintroduced in E-LOTOS, the most important ones are:� the notion of quantitative time: in E-LOTOS we can de�ne the exact timeat which events or behaviors may occur,

� the data part, both the de�nition of new data types and the construction ofvalues of prede�ned types, that provides data types similar to those of the(functional) programming languages, maintaining the formal support,� modularity, which allows the de�nition of types, functions, and processes inseparate modules, by controlling their visibility by means of module inter-faces, and the de�nition of generic modules, useful for code reuse,� some imperative sentences (loops, if-then-else, case, etc), that make the lan-guage useful for covering the last steps of the software life cycle, when im-plementations are developed, and make easier to the habitual user of thisprogramming paradigm the job of specifying systems. Besides these instruc-tions, the use of write-many variables (variables that can be assigned severaltimes) is another imperative feature introduced in E-LOTOS.This paper will explain the main implications of the inclusion of those ele-ments, and make some discussions about the alternatives discussed during thestandardization process, remarking the implications in the use of the language inSoftware engineering process, systems speci�cations, and standards body works.In the following sections, we describe each of the above points.2 TimeThe capability of measuring time is very interesting when specifying protocols,see [QMdL94,LL94]. This feature was not included in the de�nition of LOTOSbecause the study of introducing time in process algebras was just starting.Time can be introduced in the operational semantics of process algebrasin two equivalent ways: with time transitions and action transitions [LL94] orwith timed action transitions [QMdL94]. In the �rst one, there are two kind oftransitions: timed transitions and action transitions. An action transition standsfor a communication as in LOTOS, while a timed transition indicates passingof time: B t��! B0 indicates that behavior B0 is the behavior B after t units oftime. The idea of a timed action transition is to join an action transition and atime transition in just one transition. So B g t��! B0 indicates that behavior Bcommunicates throw gate g at time t. It is also necessary to indicate a functionof time passing: Age(B; t) is the behavior B after t units of time. The �rst oneis the approach chosen in E-LOTOS because it is compatible with LOTOS: it isonly necessary to introduce the timed transitions.The main characteristics of time in E-LOTOS are:� The time domain can be either discrete or continuous. The standard doesnot de�ne a type time but describes the features that this type has to ful�llin any implementation of E-LOTOS. These properties are:� the time domain is a commutative, cancellative monoid with addition +and unit 0. Thus, it satis�es the properties:� d1 + d2 = d2 + d1� if d1 + d = d2 + d then d1 = d2

� d1 + (d2 + d3) = (d1 + d2) + d3� d+ 0 = 0 + d = dwhere d1, d2, and d are variables over the time domain.� the order given by d1 � d2 if and only if 9d : d1+ d = d2 is a total order.At �rst glance, it seems that is better to have a continuous time domain.But it has several problems. First, one can specify a Zeno behavior:B1 1=2����! B2 1=4����! B3 � � �Bk 1=2k����! Bk+1 � � �This process will not leave time pass 1 unit of time, this is an undesirablebehavior. Another problem is more philosophical, can two processes commu-nicate at an exact instant?, for instance 13 . It seems more realistic to considera discrete time domain: the unit of time can be as small as one wants, butit is �xed.� Internal actions are urgent: a process cannot idle if it can execute an internalaction. It guarantees the progress of a system; if there were no urgent actionsthe systems could idle forever. Moreover, it is enough to consider as urgentonly internal actions. A complete system can be seen as a black box whereall actions are hidden. In E-LOTOS actions carry out on hidden gates areurgent.� Time is deterministic. If non determinism appears in a behavior is becauseit is doing something. It is not possible that a behavior B evolves to twodi�erent behaviors B1 and B2 only by time passing. The E-LOTOS staticsemantics, that checks which behaviours are semantically correct, ensurestime determinism, by rejecting behaviours that could be time nondetermin-istic.3 Data typesOne of the most criticized part of LOTOS is the data type de�nition language,ACT ONE [EM85], based on algebraic semantics, where equations are used tode�ne the data types semantics. This language is not too user-friendly and su�ersfrom several limitations such as the semi-decidability of equational speci�cations(tools cannot implement a procedure that checks equality between two valuesin a general way), the lack of modularity, and the inability to de�ne partialoperations.In E-LOTOS, ACT ONE has been substituted by a new language in whichdata types are declared in a similar way as they are in functional languages (ML,Haskell), by using more constructive type de�nitions, based on a syntactic andsemantic distinction between constructors and functions, which ease the com-putation of data values, de�ned in an operational way. In contrast to LOTOS,where there is a separation between processes and functions, E-LOTOS considersfunctions as a kind of processes. A function in E-LOTOS is any process with thefollowing characteristics: it is deterministic; it cannot communicate (i.e. it has nogates), and so its only capabilities are to return values and raise exceptions; and

has no real-time behaviour (i.e. a function is an immediately exiting process).Therefore, the expression (sub)language is very similar to that of behaviours,once the elements related to these characteristics are removed. This allows thatthe semantics used to evaluate expressions is the same operational semanticsused to describe the execution of a behaviour.E-LOTOS has a set of prede�ned, �built-in� data types (bool, nat, int, rational,oat, char, and string) with associated operations. These data types are availablewithin any speci�cation. The language allows record types to be easily de�nedand dealt with: it is possible to declare a record by giving the list of its �eldstogether with their types; for example, we can de�ne the record type(name => string, address => string, age => nat)and we can access to each �eld with the �dot� notation, for example rec.name,provided variable rec has the above type.There are also a set of type schemes that are translated to usual type andfunction declarations, and that are used to make easier the de�nition of typicaltypes (as suggested by the �rich term syntax� of [Pec94]). For example, we cande�ne enumerated data types, liketype color isenum Blue, Red, Green, Yellow, PinkendtypeIn E-LOTOS sets and lists of values of a given type, like sets of naturals, orlists of strings, may be de�ned, with (prede�ned) functions to manipulate theirvalues.Besides the prede�ned types, the user can de�ne two kinds of types: typesynonyms and new data types. A type synonym declaration simply declaresa new identi�er for an existing type, like type Complex to represent complexnumbers, type Complex is(real => oat, imag => oat)endtypeThe declaration of a new data type consists of the enumeration of all the con-structors for that type, each one with the types of its arguments; for example, thetype of messages, data messages or acknowledgment messages, may be de�nedas follows: type pdu issend(packet,bit) | ack(bit)endtypeThese new data types may be recursive, for example, a queue of integers,type intQueue isEmpty| Add(intQueue,int)endtype

and functions dealing with this type can be de�ned in a recursive way as weshow in the following section.Another feature regarding data types is what is called in E-LOTOS �exten-sible� record types. The record type(target => destination, etc)represents a type of records with at least one �eld called target of type destination.This, together with the built-in subtyping relation between record types (a recordtype is subtype of another record type, that must be extensible, if the former hasat least all the �elds the latter has) means that we have as values of the abovetype all the record values that have at least a �eld with that name and type.4 ModularityDue to the LOTOS limited form of modularity, whose modules only encapsulatetypes and operations but not processes, and do not support abstraction (everyobject declared in a module is exported outside)1, E-LOTOS has a new modular-ization system, which allows to de�ne a set of related objects (types, functions,and processes) inside a module and to control what objects the module exports(by means of interfaces), to include within a module the objects declared inother modules (by means of importation clauses), to hide the implementation ofsome objects (by means of opaque types, functions, and processes), and to buildgeneric modules.In order to facilitate this modularization, a separation between the concept ofmodule interface and de�nition module is done. An interface declares the visibleobjects of a module and what the user need to know about them (the name of adata type or a function pro�le, for example). A module gives the de�nition (orimplementation) of objects (visible or not).E-LOTOS allows to build generic modules, that is, modules with parame-ters. The features of these parameters are speci�ed by means of interfaces. Forexample, we can de�ne the data type of queues whose elements are of any typeby de�ning the requirements of these elements in an interface:interface Data istype elemendintand by de�ning a generic module whose parameters has to ful�ll the requirementsin the interface:generic GenQueue(D:Data) istype queue isEmpty| Add(queue,elem)1 A critical evaluation of LOTOS data types from the user point of view can be foundin [Mun91].

endtypefunction addQueue(q:queue,e:elem):queue isAdd(q,e)endfuncfunction front(q:queue):elem raises [EmptyQueue] iscase q inEmpty -> raise EmptyQueue| Add(Empty,?e) -> e| Add(Add(?q,?e),any:elem) -> front(Add(q,e))endcaseendfunc: : :endgenIn order to use a generic module we have to instantiate it, by providing actualparameters, which must be modules that match the corresponding interface. Amodule matches an interface whether it implements at least the objects declaredin the interface. We can instantiate the above generic queue to make a queue ofnatural numbers:module NatQueue isGenQueue(D => NaturalNumbers renaming(types nat := elem))endmod5 Imperative FeaturesThe need of imperative features was soon established in the �rst years of LOTOS.For example, the speci�cation of loops by means of recursion was counterintuitiveand syntactically heavy and uncomfortable.In E-LOTOS, the basic and common imperative constructors were included,such as conditionals (if � then� else, case) and loops (for, while, in�niteloop). Of course, behavior sequentialization was given an homogeneous treat-ment, by merging sequential composition (�;�) and behavior enabling (�>>�) injust one sequential operator (�;�).Write-once variables of LOTOS were a point of criticism: they �ts pretty wellin the operational semantics of LOTOS, but imposed a strong restriction on theuse of variables, besides their counterintuitive syntax. In E-LOTOS, write-manyvariables were introduced, but on a safe use assured by static semantics meanswas a must. The key problem was compositionality: behaviors are supposed tointeract explicitly, avoiding the always negative side-e�ects.The solution required to choose a model to which speci�ers were already ex-posed: the UNIX's �fork(1),� where a branching implies duplication of variablespace. With that, a operational semantics was still a�ordable. The remainingproblem is when branches join: B0;(B1||B2);B3. The static semantics assuredthat variables are modi�ed by just B1 or B2, but no both at the same time.Typed gates, functions, �in� and �out� parameters, abbreviated parameterslists were introduced as helpful shortcuts or useful constructors thanks to theindustry feedback to LOTOS community.

�out� parameters substitute the old �exit� functionality, improving �exibilityand readability. Functions and processes were uni�ed at the semantic level: afunction is a process which performs just a termination action upon termination.One of the most powerfull characteristic of LOTOS was the modelling ofsynchronization events: a gate name followed by an expression list. However,there was no way to specify globally which was the communication model for agate. In other words, each process communicating on certain gate should knowthe whole event structure. But there was no way to �x such structures. Twoimprovements have been included in E-LOTOS to help designers: the �rst oneis that gates can be typed. However, E-LOTOS allows the old LOTOS style, inwhich gates were not typed. In fact, that means that any type would appear inthe event structure. E-LOTOS implicitly types gates with the prede�ned typeany, which obviously matches every type in a speci�cation. The second one isthat partial synchronization is now allowed by means of record subtyping. Thatis of relevance for using a constraint oriented approach which can be performedin E-LOTOS in a much more concise way as each constraint is aware only of thepart of the event structure related to it.6 New OperatorsThe expressive power of LOTOS was one of its stronger points. But some im-provement were added in E-LOTOS.From di�erent �elds, the need for exceptions was clearly established. Theywere introduced, together with the �trap� operator that describes the exceptionhandlers. �raise,� �break,� and �signal� are the three di�erent ways to throwan exception, which particular meanings for several constructions. Exceptionscan be thrown outside a system (in JAVA, for example, all exceptions must becaptured by a program). There are no default exception manager, and there areno ��nally� clause (a ��nally� clause is always executed, whether an exceptionwas thrown or not and independently of the exception type).A more general parallel operator was introduced. It is n-ary and supportsthe synchronization of n out of m processes (n � m). The new operator is morereadable, as it explicitly identi�es the synchronizing gates for each composedbehavior. Another parallel operator, called parallel over values, was also intro-duced. It represents the interleaving of a series of instantiations of a common(template) behaviour, one for each value in a given list. This allows, for exam-ple, to put in parallel a series of nodes of a network, each one with a di�erentidenti�er, taken from a list of identi�ers.The Suspend/Resume operator generalizes the LOTOS disabling. With it,a behaviour may be suspended (as old disabling) and resumed explicitly. Thatallows the modeling of interruptions, immediate treatment, etc.A new, explicit renaming operator, applicable to gates and exceptions, wereintroduced. It allows not just name changing, but also structure modi�cation,as merging or splitting gates and adding or removing �elds from the structureof events.

The �let� constructor was superseded by a more common, intuitive �var�variable declaration sentence. Besides variable declaration and scope hiding, itallows initialization as well.A minor di�erence in E-LOTOS is the removal of precedences. All binaryoperators (||, |||, |[...]|, [..>) have the same precedence, which is less that�;� precedence (common sense). To mix several of these binary operators, explicitconstructors are provided (dis : : : enddis, fullsync : : : endfullsync, etc).7 ConclusionsE-LOTOS new language o�ers key characteristics to succeed both in the indus-trial and the academically environments. From the industrial point of view thenew language o�ers a simpli�ed syntax, more friendly data types (similar tohigh level language data types), imperative-like structures (loops, decisions, ex-ceptions, etc.), write-many variables, etc. From the academically point of view ito�ers formal support for time properties, new parallel operators, typed gates, andmany other minor modi�cations that increment the systems description powerof the language. Nevertheless, the language does not lose their stronger point: agood and solid formal support for veri�cation, validation, and system analysisin general. During the standardization process, inputs have been received andintegrated from research and industrial groups of Europe, America, and Asia.The new language re�ects new trends in the formal language de�nition within�uences from another formal languages and borrowing elements from commonhigh level language paradigms.References[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 1. Springer-Verlag, 1985.[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.[ISO88] ISO/IEC. LOTOS�A formal description technique based on the temporalordering of observational behaviour. International Standard 8807, Interna-tional Organization for standardization � Information Processing Systems� Open Systems Interconnection, Genève, September 1988.[LL94] G. Leduc and L. Lèonard. An enhanced version of timed LOTOS and itsapplication to a case study. In R. Tenney, P. Amer, and Ü. Uyar, editors,FORTE '93. North Holland, 1994.[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.[Mun91] Harold B. Munster. LOTOS speci�cation of the MAA standard, with anevaluation of LOTOS. NPL Report DITC 191/91, National Physical Labo-ratory, Teddington, Middlesex, UK, September 1991.[Pec94] Charles Pecheur. A proposal for data types for E-LOTOS. Technical report,University of Liège, October 1994. Annex H of ISO/IEC JTC1/SC21/WG1N1349 Working Draft on Enhancements to LOTOS.[QMdL94] J. Quemada, C. Miguel, D. de Frutos, and L. Llana. A timed LOTOS ex-tension. In T. Rus, editor, Theories and Experiencies for Real-Time System

Development, volume 2 of AMAST Series in Computing, pages 239�263.World Scienti�c, 1994.[Que98] Juan Quemada, editor. Final committee draft on Enhancements to LOTOS.ISO/IEC JTC1/SC21/WG7 Project 1.21.20.2.3., May 1998.

