
A tutorial on specifying data structures in

Maude?

Narciso Mart́ı-Oliet, Miguel Palomino, and Alberto Verdejo

Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid

narciso,miguelpt,alberto@sip.ucm.es

Abstract. This tutorial describes the equational specification of a se-
ries of typical data structures in Maude. We start with the well-known
stacks, queues, and lists, to continue with binary and search trees. Not
only are the simple versions considered but also advanced ones such as
AVL and 2-3-4 trees. The operator attributes available in Maude allow
the specification of data based on constructors that satisfy some equa-
tional properties, like concatenation of lists which is associative and has
the empty list as identity, as opposed to the free constructors available in
other functional programming languages. Moreover, the expressive ver-
sion of equational logic in which Maude is based, namely membership
equational logic, allows the faithful specification of types whose data are
defined not only by means of constructors, but also by the satisfaction
of additional properties, like sorted lists or search trees. In the second
part of the paper we describe the use of an inductive theorem prover,
ITP, which itself is developed and integrated in Maude by means of the
powerful metalevel and metalanguage features offered by the latter, to
prove properties of the data structures. This is work in progress because
the ITP is still under development and, as soon as the data gets a bit
complex, the proof of their properties gets even more complex.

Keywords: Data structures, algebraic specification, membership equa-
tional logic, Maude, inductive theorem proving.

1 Introduction

Maude is a declarative language and system based on rewriting logic [6, 5]. Even
though both the language and the system keep being improved, they reached
maturity with the public release of version 2 in the summer of 2003. Since then,
Maude is being used throughout the world in teaching and research, being spe-
cially useful for the specification and prototyping of logical systems, program-
ming languages, and computational systems in general. However, there is still a
lack of common libraries that could be shared and reused.

This tutorial tries to contribute to fill this gap by providing a library of
typical data structures specified in Maude. This is accomplished by updating

? Research partially supported by MCyT Spanish projects MIDAS (TIC2003–01000)
and MELODIAS (TIC2002–01167).

and considerably extending the set of specifications that were available in the
tutorial distributed with version 1 of Maude [4]. More specifically, we start by
describing well-known versions of basic datatypes such as stacks, queues, and
lists; we then continue with several versions of trees, including binary, general,
and search trees; we do not consider only the simple versions, but also advanced
ones such as AVL, 2-3-4, and red-black trees; finally, we describe an abstract
version of priority queues and a more concrete one based on leftist trees.

For all of these specifications we do not need to consider rewriting logic in its
full generality, but just its equational sublogic, namely, membership equational
logic [11] (from the Maude language point of view, all of our specifications are
functional modules). A very important point is that the expressivity of this
equational logic allows the faithful specification of types whose data are defined
not only by means of constructors, but also by the satisfaction of additional
properties, like sorted lists, search trees, balanced trees, etc. We will see along
the paper how this is accomplished by means of membership assertions that
equationally characterize the properties satisfied by the corresponding data.

All the datatypes that we consider are generic, that is, they are construc-
tions on top of other datatypes that appear as parameters in the construction.
Therefore, our specifications are parameterized and, for this reason, we use Full
Maude [6], which provides powerful mechanisms for parameterization based on
theories that describe the requirements that a data type must satisfy for the
construction to make sense. For example, lists can be constructed on top of any
data whatsoever, but sorted lists only make sense for data that have a total
order; for a binary operation to be a total order, several properties have to be
satisfied, which are written in the corresponding parameter theory as equations.

We assume some knowledge about the data structures that are specified.
There are many textbooks that describe well-known imperative and object-
oriented implementations [9, 2, 16]. Less known, but very useful for our purposes,
are implementations in functional programming languages such as ML or Haskell
[12, 15, 14]; in some cases, our equations are very similar to the ones given in such
texts. On the other hand, we do not assume much knowledge about Maude and
thus we describe the main features as they come out along with the specifications.

As mentioned before, here we do not consider at all rule-based programming
in Maude. For an introduction to those features, we refer the interested reader
to the paper [13].

All the code in this paper and more can be found in the web page [10].

2 Review of main features

2.1 Functional modules

A functional module in Maude corresponds to an equational theory in member-
ship equational logic.

Both the logic and the language are typed, and types are declared by means
of the keywords sort or sorts. Then each operator, introduced by means of the

keyword op, has to be declared together with the sorts of its arguments and the
sort of its result. There is an inclusion relation between types, which is described
by means of subsort declarations. Operators can be overloaded.

With typed variables (that can either be declared separately, or used on-the-
fly annotated with the corresponding sort) and operators, we can build terms
in the usual way. A given term can have many different sorts, because of the
subsorting and overloading. Under some easy-to-satisfy requirements, a term
has a least sort. Terms are used to form

– membership assertions t : s (introduced with keyword mb), stating that the
term t has sort s, and

– equations t = t′ (introduced with keyword eq), stating that the meaning of
terms t and t′ is the same.

Both memberships and equations can be conditional, with respective keywords
cmb and ceq. Conditions are formed by a conjunction (written /\) of equations
and memberships.

Computation in a functional module is done by using the equations as sim-
plification rules from left to right until a canonical form is found. For this to
be meaningful, the variables in the righthand side of an equation have to be in-
cluded among those in the lefthand side (a generalization is provided by means
of matching equations in conditions, as we will see later); moreover, the set of
equations must be terminating and confluent. This guarantees that all terms will
simplify to a unique canonical form [1].

Some equations, like commutativity, are not terminating, but nonetheless
they are supported by means of operator attributes, so that Maude performs
simplification modulo the equational theories provided by such attributes, that
can be associativity, commutativity, identity, and idempotence. Properties such
as termination and confluence shoud be understood in this more general context
of simplification modulo some equational theories.

Modules can be imported in different modes. The most important one is
protecting that asserts that all the information in the imported module does
not change because of the importation; more specifically, different data in the
imported module are not identified in the importing module, and no new data
are added to the imported sorts. When this is not case, the importation mode
can be including.

2.2 Parameterization

As we have already mentioned, parameterized datatypes use theories to specify
the requirements that the parameter must satisfy. A (functional) theory is also
a membership equational specification but since its equations are not used for
equational simplication, they need not satisfy any requirement about variables
in the righthand side, confluence, or termination.

The simplest theory is the one requiring just the existence of a sort, as follows:

(fth TRIV is

sort Elt .

endfth)

This theory is used as requirement for the parameter of parameterized data
types such as stacks, queues, lists, multisets, sets, and binary trees.

A more complex theory is the following, requiring a (strict) total order over
elements of a given sort. Notice the new variable E2 in the righthand side of the
first conditional equation. This makes this equation non-executable, as stated
by the attribute nonexec next to the equation.

(fth TOSET< is

protecting BOOL .

sort Elt .

ops _<_ _>_ : Elt Elt -> Bool .

vars E1 E2 E3 : Elt .

eq E1 < E1 = false .

ceq E1 < E3 = true if E1 < E2 and E2 < E3 [nonexec] .

ceq E1 < E2 or E2 < E1 = true if E1 =/= E2 .

eq E1 > E2 = E2 < E1 .

endfth)

This theory imports in protecting mode the predefined module BOOL of
Boolean values, meaning that the Boolean values are not disturbed in any way.

Theories are used in a parameterized module as in the following example:

(fmod LIST(X :: TRIV) is ... endfm)

where X :: TRIV denotes that X is the label of the formal parameter, and that
it must be instantiated with modules satisfying the requirement expressed by
the theory TRIV. The way to express this instantiation is by means of views. A
view shows how a particular module satisfies a theory, by mapping sorts and
operations in the theory to sorts and operations (or, more generally, terms) in
the target module, in such a way that the induced translations on equations
and membership axioms are provable in the module. In general, this requires
theorem proving that is not done by the system, but is instead delegated to the
ITP tool (see Section 4). However, in many simple cases the proof of obligations
associated to views are completely obvious, as for example in the following view
from the theory TRIV to the predefined module NAT of natural numbers, where,
since TRIV has no equations, no proof obligations are generated.

(view Nat from TRIV to NAT is

sort Elt to Nat .

endv)

Then, the module expression LIST(Nat) denotes the instantiation of the
parameterized module LIST(X :: TRIV) by means of the above view Nat. Views
can also go from theories to theories, as we will see later in Section 3.4. For
more information on parameterization and how it is implemented in the Maude
system, the reader is referred to [7, 6].

3 Data Structures

3.1 Stacks

We begin our series of datatype specifications with stacks. Since stacks can
be built over any datatype, the requirement theory is TRIV. The main sort is
Stack(X); notice that its name makes explicit the label of the parameter. In this
way, when the module is instantiated with a view, like for example Nat above
(from TRIV to NAT), the sort name is also instantiated becoming Stack(Nat),
which makes clear that the data are stacks of natural numbers.

The sorts and operations of the theory are used in the body of the parameter-
ized module, but sorts are qualified with the label of the formal parameter; thus
in this case the parameter sort Elt becomes X@Elt in the STACK parameterized
module. In this way, although not needed in our examples, one can have several
different parameters satisfying the same parameter theory.

The only subtle point in a stack specification is that the top operation is
partial, because it is not defined on the empty stack. In our specification, we
use a subsort NeStack(X) of non-empty stacks to handle this situation. Then,
push becomes a constructor of non-empty stacks, while both empty and push

(the latter via subsorting) are constructors of stacks; notice the ctor attribute
of those operators, indicating that they are constructors. Now, the top and pop

operations are defined as total with domain NeStack(X).
Finally, all modules import implicitly the predefined BOOL module, and there-

fore we can use the sort Bool and the Boolean values true and false when
necessary.

(fmod STACK(X :: TRIV) is

sorts NeStack(X) Stack(X) .

subsort NeStack(X) < Stack(X) .

op empty : -> Stack(X) [ctor] .

op push : X@Elt Stack(X) -> NeStack(X) [ctor] .

op pop : NeStack(X) -> Stack(X) .

op top : NeStack(X) -> X@Elt .

op isEmpty : Stack(X) -> Bool .

var S : Stack(X) . var E : X@Elt .

eq pop(push(E,S)) = S .

eq top(push(E,S)) = E .

eq isEmpty(empty) = true .

eq isEmpty(push(E,S)) = false .

endfm)

The following view maps the theory TRIV to the predefined module INT of
integers, and is then used in an example of term reduction, invoked with the
Maude command red.

(view Int from TRIV to INT is

sort Elt to Int .

endv)

Maude> (red in STACK(Int) : top(push(4,push(5,empty))) .)

result NzNat : 4

Notice that Maude computes the least sort of the result. In the following
sections, for lack of space, we do not show reduction examples, but they can be
found in [10].

3.2 Queues

The specification for queues is very similar to the one for stacks and therefore it
is not included here. It is available in [10].

3.3 Lists

We are going to specify lists in two ways, by using different sets of constructors
in each case. In both cases, lists are parameterized with respect to the TRIV

theory.
The first version uses the two standard free constructors that can be found in

many functional programming languages: the empty list nil, here denoted [], and
the cons operation that adds an element to the beginning of a list, here denoted
with the mixfix syntax _:_. As usual, head and tail are the selectors associated
to this constructor. Since they are not defined on the empty list, we avoid their
partiality in the same way as we have done for stacks (see Section 3.1) by means
of a subsort NeList of non-empty lists. The remaining operations on lists (defined
as usual by structural induction on the two constructors) concatenate two lists,
calculate the length of a list, and reverse a list; the second one of those has a result
of sort Nat that comes from the imported (in protecting mode) predefined
module NAT.

Due to parsing restrictions, some characters ([] { } ,) have to be preceded
by a backquote “escape” character ‘ when declaring them in Full Maude.

(fmod LIST(X :: TRIV) is

protecting NAT .

sorts NeList(X) List(X) .

subsort NeList(X) < List(X) .

op ‘[‘] : -> List(X) [ctor] .

op _:_ : X@Elt List(X) -> NeList(X) [ctor] .

op tail : NeList(X) -> List(X) .

op head : NeList(X) -> X@Elt .

op _++_ : List(X) List(X) -> List(X) .

op length : List(X) -> Nat .

op rev : List(X) -> List(X) .

var E : X@Elt . var N : Nat . vars L L’ : List(X) .

eq tail(E : L) = L .

eq head(E : L) = E .

eq [] ++ L = L .

eq (E : L) ++ L’ = E : (L ++ L’) .

eq length([]) = 0 .

eq length(E : L) = 1 + length(L) .

eq rev([]) = [] .

eq rev(E : L) = rev(L) ++ (E : []) .

endfm)

Another way to generate lists is to begin with the empty list and the single-
ton lists, and then use the concatenation operation to get bigger lists. However,
concatenation cannot be a free list constructor, because it satisfies an associativ-
ity equation. This equation is not declared directly as such, but as an operator
attribute assoc. Moreover, there is also an identity relationship of concatena-
tion with respect to the empty list, which is expressed by means of the attribute
id: []. It is very convenient here to use empty juxtaposition syntax (declared
as __ in the following module) for the concatenation operator as constructor;
in this way, the list of integers 1 : 2 : 3 : [] in the previous notation now
becomes simply 1 2 3.

Notice how the singleton lists are identified with the corresponding elements
(by means of a subsort declaration X@Elt < NeList(X)) and also how the con-
catenation operator is subsort overloaded, having one declaration for non-empty
lists and another one for lists, both with the same attributes. There are two
more possibilities of concatenation overloading (NeList List -> NeList and
List NeList -> NeList) but they are unnecessary in this case because of the
attribute for identity. Finally, notice that operator attributes in overloaded op-
erations have to coincide, even though, by reading alone the second declaration
for concatenation, it may sound a bit strange to say that the empty list is an
identity for an operation only defined on non-empty lists. When there are many
overloaded declarations for an operator, it is possible to use the operator at-
tribute ditto to implicitly repeat the attributes without having to write all of
them explicitly again.

Because of the operator attributes, congruence classes over which simplifica-
tion takes place are computed modulo associativity and identity. Therefore, we
only need two equations to completely specify the behavior of defined operations
like length and rev; the singleton case is included in the E L case by instantiat-
ing the variable L with the constant nil and applying the equational attribute
for identity. Notice that in this way, even though we have changed the set of list
constructors, we are not changing so much (except for the notation) the style of
the definitions by structural induction of the remaining operations; the case E L

corresponds to the cons case in the previous specification.

(fmod LIST-CONCAT(X :: TRIV) is

protecting NAT .

sorts NeList(X) List(X) .

subsorts X@Elt < NeList(X) < List(X) .

op ‘[‘] : -> List(X) [ctor] .

op __ : List(X) List(X) -> List(X) [ctor assoc id: ‘[‘]] .

op __ : NeList(X) NeList(X) -> NeList(X) [ctor assoc id: ‘[‘]] .

op tail : NeList(X) -> List(X) .

op head : NeList(X) -> X@Elt .

op length : List(X) -> Nat .

op rev : List(X) -> List(X) .

var E : X@Elt . var L : List(X) .

eq tail(E L) = L .

eq head(E L) = E .

eq length(nil) = 0 .

eq length(E L) = 1 + length(L) .

eq rev(nil) = nil .

eq rev(E L) = rev(L) E .

endfm)

3.4 Ordered lists

In order-sorted equational specifications, subsorts must be defined by means of
constructors, but it is not possible to have a subsort of ordered lists, for example,
defined by a property over lists; a more expressive formalism is needed. Member-
ship equational logic allows subsort definition by means of conditions involving
equations and/or sort predicates. In this example we use this technique to define
a subsort OrdList, containing ordered lists,1 of the sort List of lists, which is
imported from the module LIST in Section 3.3. Notice the three (conditional)
membership axioms defining the sort OrdList: the empty and singleton lists are
always ordered, and a longer list is ordered when the first element is less than
or equal to the second, and the list without the first element is also ordered.

Parameterized ordered lists need a stronger requirement than TRIV, because
we need a total order over the elements to be ordered. The theory TOSET< that we
saw in Section 2.2 requires a strict total order on the elements; since repetitions
do not give any trouble for sorting a list, we can have a _<=_ operation in the
requirement. We can also import theories (in including mode), and thus we
can define our theory as follows:

(fth TOSET<= is

including TOSET< .

op _<=_ : Elt Elt -> Bool .

vars X Y : Elt .

eq X <= Y = X < Y or X == Y .

endfth)

The parameterized module for ordered lists is going to import the parame-
terized list module. However, note that we want lists for a totally ordered set,
instead of lists over any set; therefore, we partially instantiate LIST with a view
from the theory TRIV to the theory TOSET<=

(view Toset from TRIV to TOSET<= is

sort Elt to Elt .

endv)

1 We prefer “ordered list” over “sorted list” because “sort” is already used to refer to
types in this context.

and we are still left with a parameterized module and corresponding dependent
sorts, but now with respect to the TOSET<= requirement. This is the reason
justifying the notation LIST(Toset)(X) in the protecting importation below,
as well as NeList(Toset)(X) and List(Toset)(X) in the names of the imported
sorts.

As part of this module for ordered lists, we also define several well-known
sorting operations: insertion-sort, quicksort, and mergesort (the following
code only includes the first one, while the other two can be found in the more
complete version available in [10]). Each of them uses appropriate auxiliary op-
erations whose behavior is the expected one; for example, insertion-sort re-
cursively sorts the list without the first element, and then calls insert-list,
which inserts the missing element in the correct position.

The important point is that we are able to give finer typing to all these sort-
ing operations than the usual typing in other algebraic specification frameworks
or functional programming languages. Thus, insertion-sort is declared as an
operation from List(Toset)(X) to OrdList(X), instead of the much less infor-
mative typing from List(Toset)(X) to List(Toset)(X). The same applies to
each of the auxiliary operations. Also, a function that requires its input argu-
ment to be an ordered list can now be defined as a total function, whereas in less
expressive typing formalisms it would have to be either partial, or to be defined
with exceptional behavior on the erroneous arguments.

(fmod ORD-LIST(X :: TOSET<=) is

protecting LIST(Toset)(X) .

sorts OrdList(X) NeOrdList(X) .

subsorts NeOrdList(X) < OrdList(X) NeList(Toset)(X) < List(Toset)(X) .

op insertion-sort : List(Toset)(X) -> OrdList(X) .

op insert-list : OrdList(X) X@Elt -> OrdList(X) .

vars N M : X@Elt . vars L L’ : List(Toset)(X) .

vars OL OL’ : OrdList(X) . var NEOL : NeOrdList(X) .

mb [] : OrdList(X) .

mb (N : []) : NeOrdList(X) .

cmb (N : NEOL) : NeOrdList(X) if N <= head(NEOL) .

eq insertion-sort([]) = [] .

eq insertion-sort(N : L) = insert-list(insertion-sort(L), N) .

eq insert-list([], M) = M : [] .

ceq insert-list(N : OL, M) = M : N : OL if M <= N .

ceq insert-list(N : OL, M) = N : insert-list(OL, M) if M > N .

endfm)

3.5 Multisets

In the same way as associativity and identity for concatenation provide struc-
tural axioms for lists (or strings), we can specify multisets by considering a union
constructor (written again with empty juxtaposition syntax) that satisfies asso-
ciativity, commutativity (because now order between elements does not matter),
and identity structural axioms, all declared as attributes. Singleton multisets are

identified with elements, as we also did for lists, by declaring X@Elt as a subsort
of Mset(X).

(fmod MULTISET(X :: TRIV) is

protecting NAT .

sort Mset(X) .

subsort X@Elt < Mset(X) .

op empty : -> Mset(X) [ctor] .

op __ : Mset(X) Mset(X) -> Mset(X) [ctor assoc comm id: empty] .

op size : Mset(X) -> Nat .

op mult : X@Elt Mset(X) -> Nat .

op delete : X@Elt Mset(X) -> Mset(X) .

op is-in : X@Elt Mset(X) -> Bool .

vars E E’ : X@Elt . var S : Mset(X) .

eq size(empty) = 0 .

eq size(E S) = 1 + size(S) .

eq mult(E, empty) = 0 .

eq mult(E, E S) = 1 + mult(E, S) .

ceq mult(E, E’ S) = mult(E, S) if E =/= E’ .

eq delete(E, empty) = empty .

eq delete(E, E S) = delete(E, S) .

ceq delete(E, E’ S) = E’ delete(E, S) if E =/= E’ .

eq is-in(E, S) = mult(E, S) > 0 .

endfm)

3.6 Sets

Analogously to obtaining multisets from lists by adding commutativity, one can
get sets from multisets by adding idempotence. In the current version of Maude,
the operator attributes for associativity and idempotence are not compatible,
but this is easily solved by adding an operator attribute for associativity and an
explicit equation for idempotence. Since the specification of sets is very similar
to the previous one for multisets, we refer to [10].

3.7 Binary trees

Binary trees (parameterized with respect to TRIV) are built with two free con-
structors: the empty tree, denoted empty, and an operation that puts an element
as root above two given trees, its left and right children, denoted _[_]_. The
three selectors associated to this constructor (root,left, and right) only make
sense for non-empty trees, that belong to the corresponding subsort.

The operation that calculates the depth (or height) of a binary tree calls a
max operation on natural numbers in the recursive non-empty case to obtain
the maximum of two such numbers. Since this operation is not provided in the
predefined module NAT, we import a module NAT-MAX that has previously added
the max operation to NAT.

Finally, we also have three operations that calculate the standard binary tree
traversals, with List(X) as value sort (this is the reason this module imports the

LIST module). Since all of them have the same rank, they are declared together
by means of the keyword ops.

(fmod BIN-TREE(X :: TRIV) is

protecting LIST(X) . protecting NAT-MAX .

sorts NeBinTree(X) BinTree(X) .

subsort NeBinTree(X) < BinTree(X) .

op empty : -> BinTree(X) [ctor] .

op _‘[_‘]_ : BinTree(X) X@Elt BinTree(X) -> NeBinTree(X) [ctor] .

ops left right : NeBinTree(X) -> BinTree(X) .

op root : NeBinTree(X) -> X@Elt .

op depth : BinTree(X) -> Nat .

ops preorder inorder postorder : BinTree(X) -> List(X) .

var E : X@Elt . vars L R : BinTree(X) . vars NEL NER : NeBinTree(X) .

eq left(L [E] R) = L .

eq right(L [E] R) = R .

eq root(L [E] R) = E .

eq depth(empty) = 0 .

eq depth(L [E] R) = 1 + max(depth(L), depth(R)) .

eq preorder(empty) = [] .

eq preorder(L [E] R) = E : (preorder(L) ++ preorder(R)) .

eq inorder(empty) = [] .

eq inorder(L [E] R) = inorder(L) ++ (E : inorder(R)) .

eq postorder(empty) = [] .

eq postorder(L [E] R) = postorder(L) ++ (postorder(R) ++ (E : [])) .

endfm)

3.8 General trees

General trees can have a variable number of children for each node. One can
specify them by using an auxiliary datatype of forests that behave like lists of
trees. Since otherwise the parameterization and specification techniques do not
differ from the ones we have already described before, we do not include the
specification here, and instead refer again to [10].

3.9 Binary search trees

This example is similar in philosophy to the one for ordered lists, but is more
complex. We specify a subsort of (binary) search trees by using several (condi-
tional) membership axioms over terms of the sort BinTree of binary trees defined
in Section 3.7.

Although we allowed repeated elements in an ordered list, this should not
be the case in a search tree, where all nodes must contain different values. A
binary search tree is either the empty binary tree or a non-empty binary tree
such that all elements in the left child are smaller than the element in the root,
all elements in the right child are bigger than it, and both the left and right
children are also binary search trees. This is checked by means of auxiliary
operations that calculate the minimum and maximum element in a non-empty

search tree, and that are also useful when deleting an element. Again, the most
important point is that membership equational logic allows us both to define
the corresponding subsort by means of membership assertions (we consider five
cases in the specification below) and to assign typings in the best possible way
to all the operations defined for this datatype.

Although we could parameterize binary search trees just with respect to a
total order given by the theory TOSET<, we specify here the version of search
trees containing in the nodes pairs formed by a key and its associated contents,
so that we think of search trees as dictionaries. The search tree structure is with
respect to a strict total order on keys, but contents can be over an arbitrary
sort. When we insert a pair 〈K, C〉 and the key K already appears in the tree
in a pair 〈K, C′〉, insertion takes place by combining the contents C′ and C.
This combination can be replacing the first with the second, just forgetting the
second, addition if the trees are used to implement multisets and the Cs represent
multiplicities, etc. Therefore, as part of the requirement parameter theory for
the contents we will have an associative binary operation combine on the sort
Contents. Notice how the two parameter theories on which the specification
depends are separated by |.

In principle, a pair construction should be enough to put together the infor-
mation that we have just described, but we will import the module for search
trees in the specifications of more complex data structures that happen to be
particular cases of search trees, such as AVL and red-black trees. In those cases,
it is important to add new information in the nodes: for the AVL trees, one needs
the depth of the tree hanging in each node, while for red-black trees one needs
the appropriate node color. Therefore, taking this into account, it is important
to define a datatype that is extensible, and we have considered records for this,
defined in the module RECORD. A record is defined as a collection (with an asso-
ciative and commutative union operator denoted by _,_) of pairs consisting of a
field name and an associated value. After importing the binary trees instantiated
with a Record view, we define the fields for keys (with syntax key:_) and for
contents (with syntax contents:_), together with corresponding projection op-
erations that extract the appropriate values from the record. Notice how these
operations, as well as the operations on trees, can be applied to records that
have more fields, unknown yet at this time, by using a variable Rec that takes
care of “the rest of the record.”

This construction of adding fields to records is modifying the data in the
sort Record, which are the data in the nodes of the trees, and thus the trees
themselves. For this reason, we have imported the module BIN-TREE (after in-
stantiating it with the view Record) in including mode.

In addition to operations for insertion and deletion, we have a lookup opera-
tion that returns the contents associated to a given key, when the key appears in
the tree. However, this last operation is partial,f because it is not defined when
the key does not appear in the tree; this error state cannot be handled by means
of a subsort, because the partiality condition depends on the concrete values
of the arguments. We have used a partial operator declaration by stating that

the result of the lookup operator is in the kind [Y@Contents] associated to the
sort Y@Contents (notice the square brackets around the sort name to denote the
corresponding kind). One can think of a kind as an error “supersort” where, in
addition to correct well-formed terms, there are undefined or error terms. In-
stead of having at the level of kinds just a term that does not reduce, we have
declared a special value not-found of kind [Y@Contents] which is returned by
the lookup operation when the key does not appear in the tree.

These operations are specified as usual, by structural induction, and in the
non-empty case by comparing the given key K with the key in the root of the
tree and distinguishing the three cases according to whether K is smaller than,
equal to, or bigger than the root key.

(fth CONTENTS is

sort Contents .

op combine : Contents Contents -> Contents [assoc] .

endfth)

(fmod RECORD is

sorts Record .

op null : -> Record [ctor] .

op _‘,_ : Record Record -> Record [ctor assoc comm id: null] .

endfm)

(view Record from TRIV to RECORD is

sort Elt to Record .

endv)

(fmod SEARCH-TREE(X :: TOSET< | Y :: CONTENTS) is

including BIN-TREE(Record) .

sorts SearchTree(X | Y) NeSearchTree(X | Y) .

subsorts NeSearchTree(X | Y) < SearchTree(X | Y) < BinTree(Record) .

subsort NeSearchTree(X | Y) < NeBinTree(Record) .

--- Construction of the record used as node in binary search trees.

op key:_ : X@Elt -> Record [ctor] .

op contents:_ : Y@Contents -> Record [ctor] .

op not-found : -> [Y@Contents] .

op key : Record -> X@Elt .

op contents : Record -> Y@Contents .

var Rec : Record . var K : X@Elt . var C : Y@Contents .

eq key(Rec,key: K) = K .

eq contents(Rec,contents: C) = C .

--- Operations for binary search trees.

op insert : SearchTree(X | Y) X@Elt Y@Contents -> SearchTree(X | Y) .

op lookup : SearchTree(X | Y) X@Elt -> [Y@Contents] .

op delete : SearchTree(X | Y) X@Elt -> SearchTree(X | Y) .

ops min max : NeSearchTree(X | Y) -> Record .

var Rec’ : Record . vars L R : SearchTree(X | Y) .

vars L’ R’ : NeSearchTree(X | Y) . var C’ : Y@Contents .

mb empty : SearchTree(X | Y) .

mb empty [Rec] empty : NeSearchTree(X | Y) .

cmb L’ [Rec] empty : NeSearchTree(X | Y) if key(max(L’)) < key(Rec) .

cmb empty [Rec] R’ : NeSearchTree(X | Y) if key(Rec) < key(min(R’)) .

cmb L’ [Rec] R’ : NeSearchTree(X | Y)

if key(max(L’)) < key(Rec) and key(Rec) < key(min(R’)) .

eq insert(empty, K, C) = empty [key: K,contents: C] empty .

eq insert(L [Rec,key: K,contents: C] R, K, C’) =

L [Rec,key: K, contents: combine(C, C’)] R .

ceq insert(L [Rec] R, K, C) = insert(L, K, C) [Rec] R if K < key(Rec) .

ceq insert(L [Rec] R, K, C) = L [Rec] insert(R, K, C) if key(Rec) < K .

eq lookup(empty, K) = not-found .

eq lookup(L [Rec,key: K,contents: C] R, K) = C .

ceq lookup(L [Rec] R, K) = lookup(L, K) if K < key(Rec) .

ceq lookup(L [Rec] R, K) = lookup(R, K) if key(Rec) < K .

eq delete(empty, K) = empty .

ceq delete(L [Rec] R, K) = delete(L, K) [Rec] R if K < key(Rec) .

ceq delete(L [Rec] R, K) = L [Rec] delete(R, K) if key(Rec) < K .

eq delete(empty [Rec,key: K,contents: C] R, K) = R .

eq delete(L [Rec,key: K,contents: C] empty, K) = L .

eq delete(L’ [Rec,key: K,contents: C] R’, K) =

L’ [min(R’)] delete(R’, key(min(R’))) .

eq min(empty [Rec] R) = Rec .

eq min(L’ [Rec] R) = min(L’) .

eq max(L [Rec] empty) = Rec .

eq max(L [Rec] R’) = max(R’) .

endfm)

3.10 AVL trees

It is well-known that in order to have better efficiency on search trees one has
to keep them balanced. One nice solution to this problem is provided by AVL
trees; these are binary search trees satisfying the additional constraint in each
node that the difference between the depth of both children is at most one.
This constraint guarantees that the depth of the tree is always logarithmic with
respect to the number of nodes, thus obtaining a logarithmic cost for the op-
erations of search, lookup, insertion and deletion, assuming that the last two
are implemented in such a way that they keep the properties of the balanced
tree. As we have already anticipated in Section 3.9, it is convenient to have in
each node as additional data the depth of the tree having this node as root,
so that comparing the depths of children to check the balance property of the
AVL trees becomes very quick. This is accomplished by importing the module

Rec’

Rec

L

Rec’’

RL RR

T2

LR

Rec’’

Rec

L RL

Rec’

RR T2

Fig. 1. Left-right rotation in an AVL tree.

SEARCH-TREE of search trees and adding a depth field to the record, together
with the corresponding projection.

The sort AVL of AVL trees is a subsort of the sort SearchTree of search
trees, defined by means of additional membership assertions (recall that we have
already used this technique to define SearchTree as a subsort of BinTree in
Section 3.9); in the specification below, just two memberships are enough, one
for the empty tree and the other for non-empty AVL trees. Notice the use of the
symmetric difference operator sd on natural numbers; the result of this operation
applied to two natural numbers is the result of subtracting the smallest from the
biggest of the two.

For lookup we use the same operation as for search trees, imported from the
module SEARCH-TREE; on the other hand, insertion and deletion have to be re-
defined so that they keep the AVL properties. They work as in the general case,
by comparing the given key with the one in the root, but the final result is built
by means of an auxiliary join operation that checks that the difference between
the depths of the two children is less than one, using again the symmetric dif-
ference operator sd; when this is not the case, appropriate rotation operations
are invoked. It is enough to have a left rotation lRotate and a right rotation
rRotate. This is quite similar to the typical imperative or object-oriented ver-
sions of these operations [9, 2, 16]. For example, the second equation for lRotate
is illustrated in Figure 1. In the specification below we do not show the equations
for deleteAVL and rRotate, which can be found in [10].

(fmod AVL(X :: TOSET< | Y :: CONTENTS) is

including SEARCH-TREE(X | Y) .

--- We add a new field to the node’s record.

op depth:_ : Nat -> Record [ctor] .

op depth : Record -> Nat .

var N : Nat . vars Rec Rec’ Rec’’ : Record .

eq depth(Rec,depth: N) = N .

--- AVL trees memberships and operations.

sorts NeAVL(X | Y) AVL(X | Y) .

subsorts NeAVL(X | Y) < AVL(X | Y) < SearchTree(X | Y) .

subsorts NeAVL(X | Y) < NeSearchTree(X | Y) .

vars L R RL RR T1 T2 : AVL(X | Y) .

mb empty : AVL(X | Y) .

cmb L [Rec] R : NeAVL(X | Y) if L [Rec] R : SearchTree(X | Y) /\

sd(depth(L),depth(R)) <= 1 /\

1 + max(depth(L),depth(R)) = depth(Rec) .

op insertAVL : X@Elt Y@Contents AVL(X | Y) -> NeAVL(X | Y) .

op deleteAVL : X@Elt AVL(X | Y) -> AVL(X | Y) .

op depthAVL : AVL(X | Y) -> Nat .

op buildAVL : AVL(X | Y) Record AVL(X | Y) -> AVL(X | Y) .

op join : AVL(X | Y) Record AVL(X | Y) -> AVL(X | Y) .

op lRotate : AVL(X | Y) Record AVL(X | Y) -> AVL(X | Y) .

op rRotate : AVL(X | Y) Record AVL(X | Y) -> AVL(X | Y) .

vars K K’ : X@Elt . vars C C’ : Y@Contents .

eq insertAVL(K, C, empty) =

buildAVL(empty,(depth: 0,key: K, contents: C),empty) .

eq insertAVL(K, C, L [Rec,key: K, contents: C’] R) =

L [Rec,key: K, contents: combine(C,C’)] R .

ceq insertAVL(K, C, L [Rec] R) = join(insertAVL(K,C,L), Rec, R)

if K < key(Rec) .

ceq insertAVL(K, C, L [Rec] R) = join(L, Rec, insertAVL(K,C,R))

if key(Rec) < K .

eq depthAVL(empty) = 0 .

eq depthAVL(L [Rec,depth: N] R) = N .

eq buildAVL(T1, (Rec’,depth: N), T2) =

T1 [Rec’,depth: (max(depthAVL(T1),depthAVL(T2)) + 1)] T2 .

ceq join(T1, Rec, T2) = buildAVL(T1, Rec, T2)

if sd(depthAVL(T1),depthAVL(T2)) <= 1 .

ceq join(T1, Rec, T2) = lRotate(T1, Rec, T2)

if depthAVL(T1) = depthAVL(T2) + 2 .

ceq join(T1, Rec, T2) = rRotate(T1, Rec, T2)

if depthAVL(T1) + 2 = depthAVL(T2) .

ceq lRotate(L [Rec] R,Rec’,T2) = buildAVL(L,Rec,buildAVL(R,Rec’,T2))

if depthAVL(L) >= depthAVL(R) .

ceq lRotate(L [Rec] (RL [Rec’’] RR), Rec’, T2) =

buildAVL(buildAVL(L, Rec, RL), Rec’’, buildAVL(RR, Rec’, T2))

if depthAVL(L) < depthAVL(RL [Rec’’] RR) .

endfm)

3.11 2-3-4 trees

Other solutions to the problem of keeping balanced search trees are provided
by 2-3 trees, which are not treated here, and 2-3-4 trees, whose specification we
consider in this section. This kind of search trees generalizes binary search trees
to a version of general trees of degree 4, so that a non-leaf node can have 2, 3 or 4
children. The number of values in the node depends on the number of children;
for example, there are two different values (let us call N1 the smallest of the
two, and N2 the greatest) in the node when it has three children. Moreover, the
values in the children are well organized with respect to the values in the node;
in the same example, all the values in the first child must be smaller than N1,
all the values in the second child must be bigger than N1 and smaller than N2,
and all the values in the third child must be bigger than N2. Furthermore, the
children must have exactly the same depth, and recursively they have to satisfy
the same properties. As expected, all of these properties can be stated by means
of memberships assertions.

Since these trees need a different set of constructors, they have no direct
relationship to binary search trees. Also, in order to simplify the presentation
we just parameterize the specification with respect to the theory TOSET<, that
is, we consider only values in the nodes, instead of keys and associated values as
we did in previous sections.

The specification of the search operation is immediate. Although the main
ideas of insertion are quite simple, the details of the implementation become
much lengthier than expected, requiring several auxiliary operations and several
equations to treat the different cases arising from combining the different con-
structors. Even worse is the implementation of deletion, which needs a zillion
of equations to deal with all possible cases. No wonder most textbooks avoid
presenting these details and leave them as a challenging programming project!

Here we only show the memberships that specify 2-3-4 trees; the remaining
details are available in [10].

sort Ne234Tree?(T) 234Tree?(T) Ne234Tree(T) 234Tree(T) .

subsort Ne234Tree?(T) < 234Tree?(T) .

subsort Ne234Tree(T) < 234Tree(T) < 234Tree?(T) .

subsort Ne234Tree(T) < Ne234Tree?(T) .

op empty234 : -> 234Tree?(T) [ctor] .

op _‘[_‘]_ : 234Tree?(T) T@Elt 234Tree?(T) -> Ne234Tree?(T) [ctor] .

op _<_>_<_>_ : 234Tree?(T) T@Elt ... -> Ne234Tree?(T) [ctor] .

op _‘{_‘}_‘{_‘}_‘{_‘}_ : 234Tree?(T) T@Elt ... -> Ne234Tree?(T) [ctor] .

vars N N1 N2 N3 : T@Elt .

var 234TL 234TLM 234TC 234TRM 234TR : 234Tree(T) .

mb empty234 : 234Tree(T) .

cmb 234TL [N] 234TR : Ne234Tree(T) if greaterKey(N,234TL) /\

smallerKey(N,234TR) /\ depth(234TL) = depth(234TR) .

cmb 234TL < N1 > 234TC < N2 > 234TR : Ne234Tree(T)

if N1 < N2 /\ greaterKey(N1,234TL) /\ smallerKey(N1,234TC) /\

greaterKey(N2,234TC) /\ smallerKey(N2,234TR) /\

depth(234TL) = depth(234TC) /\ depth(234TC) = depth(234TR) .

cmb 234TL { N1 } 234TLM { N2 } 234TRM { N3 } 234TR : Ne234Tree(T)

if N1 < N2 /\ N2 < N3 /\ greaterKey(N1,234TL) /\

smallerKey(N1,234TLM) /\ greaterKey(N2,234TLM) /\

smallerKey(N2,234TRM) /\ greaterKey(N3,234TRM) /\

smallerKey(N3,234TR) /\ depth(234TL) = depth(234TLM) /\

depth(234TL) = depth(234TRM) /\ depth(234TL) = depth(234TR) .

3.12 Red-black trees

Yet another solution to the problem of keeping search trees balanced are red-
black search trees. These are standard binary search trees that satisfy several
additional constraints that are related to a color (hence the name!) that can be
associated to each node (in some presentations, to the edges). One can think of
red-black trees as a binary representation of 2-3-4 search trees, and this provides
helpful intuition.

Since the color is additional information in each node, we make again use of
the record construction described in Section 3.9. Once more, memberships allow
a faithful specification of all the constraints. All details can be found in [10].

3.13 Priority queues

The abstract specification of priority queues is very simple. It is parameterized
with respect to the theory TOSET<=, because we allow repetitions and the pri-
ority is identified with each value. We have as constructors the constant empty
and insert, that adds a new element to the priority queue. However, these
constructors are not free because the order of insertion does not matter, the
priority being the information that determines the actual order in the queue.
This is made explicit in a “commutativity” equation for the insert operator,
but this is not a standard commutativity equation for a binary operator with
both arguments of the same sort, and thus it cannot be expressed as a comm

attribute; in any case, it is not terminating, and therefore it has been stated as
non-executable by means of the nonexec attribute (which is associated to the
equation, and not to the operator).

We consider the version of priority queues in which the first element is the
minimum. Both findMin and deleteMin are easily specified as total operations
on non-empty priority queues by structural induction and in the second case by
comparing the priorities of two elements.

Even though this is a very abstract specification, it is directly executable
after instantiating appropriately the parameter.

(fmod PRIORITY-QUEUE(X :: TOSET<=) is

sort NePQueue(X) PQueue(X) .

subsort NePQueue(X) < PQueue(X) .

op empty : -> PQueue(X) [ctor] .

op insert : PQueue(X) X@Elt -> NePQueue(X) [ctor] .

op deleteMin : NePQueue(X) -> PQueue(X) .

op findMin : NePQueue(X) -> X@Elt .

op isEmpty : PQueue(X) -> Bool .

var PQ : PQueue(X) . vars E F : X@Elt .

eq insert(insert(PQ,E),F) = insert(insert(PQ,F),E) [nonexec] .

eq deleteMin(insert(empty,E)) = empty .

ceq deleteMin(insert(insert(PQ,E),F)) =

insert(deleteMin(insert(PQ,E)),F) if findMin(insert(PQ,E)) <= F .

ceq deleteMin(insert(insert(PQ,E),F)) =

insert(PQ,E) if findMin(insert(PQ,E)) > F .

eq findMin(insert(empty,E)) = E .

ceq findMin(insert(insert(PQ,E),F)) =

findMin(insert(PQ,E)) if findMin(insert(PQ,E)) <= F .

ceq findMin(insert(insert(PQ,E),F)) =

F if findMin(insert(PQ,E)) > F .

eq isEmpty(empty) = true .

eq isEmpty(insert(PQ,E)) = false .

endfm)

3.14 Leftist trees

Among the many different data structures implementing priority queues the
most efficient are heaps, which can be defined (in the case of min heaps) as
binary trees satisfying the additional constraints that the value in each node is
smaller than (or equal to) the values in its children and moreover the tree is
complete. If we forget the latter requirement and instead assign to each node
a rank (also known as minimum depth) defined as the length of the rightmost
path to a leaf, and require that the root of each left child has a rank bigger than
or equal to the rank of the corresponding right child (that can be empty), we get
the trees known as leftist trees. These trees implement priority queues with the
same efficiency as standard heaps, and have the additional property that two
leftist trees can be merged to obtain a leftist tree containing all elements in the
two given trees in logarithmic time with respect to the total number of nodes.

As usual, the sort of leftist trees can be defined as a subsort of binary trees
by means of appropriate membership assertions. In order to compare quickly the
ranks of two nodes, we need to save in each node its rank (in the same way that
we saved the depth in each node in AVL trees). Since we are importing binary
trees, which are parameterized with respect to the theory TRIV, we first define
in the module TREE-NODE the construction of pairs formed by an element and
a natural number, and then instantiate the module BIN-TREE of binary trees
with the parameterized view Node(T). The view is parameterized because it still
keeps as a parameter, as expected, the sort of the elements with a total order
on top of which we are building the leftist trees.

The most important operation on this data structure is merge because both
insert and deleteMin are easily defined from it. The operation merge is speci-
fied by structural induction on its arguments, with the help in the recursive case
(when both arguments are non-empty) of an auxiliary operation make that takes

care of putting the tree with bigger rank at its root to the left of the tree being
built.

(fmod TREE-NODE(T :: TOSET<=) is

protecting NAT .

sort Node(T) .

op n : Nat T@Elt -> Node(T) [ctor] .

endfm)

(view Node(T :: TOSET<=) from TRIV to TREE-NODE(T) is

sort Elt to Node(T) .

endv)

(fmod LEFTIST-TREES(T :: TOSET<=) is

protecting BIN-TREE(Node(T)) .

sorts NeLTree(T) LTree(T) .

subsorts NeLTree(T) < LTree(T) < BinTree(Node(T)) .

subsorts NeLTree(T) < NeBinTree(Node(T)) .

op rank : BinTree(Node(T)) -> Nat .

op rankL : LTree(T) -> Nat .

op insert : T@Elt LTree(T) -> NeLTree(T) .

op deleteMin : NeLTree(T) -> LTree(T) .

op findMin : NeLTree(T) -> T@Elt .

op make : T@Elt LTree(T) LTree(T) -> LTree(T) .

op merge : LTree(T) LTree(T) -> LTree(T) .

vars NeTL NeTR : NeLTree(T) . vars M N N1 N2 : Nat .

vars T TL TR TL1 TR1 TL2 TR2 : LTree(T) . vars X X1 X2 : T@Elt .

mb empty : LTree(T) .

mb empty [n(1, X)] empty : NeLTree(T) .

cmb NeTL [n(1, X)] empty : NeLTree(T) if X < findMin(NeTL) .

cmb NeTL [n(N, X)] NeTR : NeLTree(T) if rank(NeTL) >= rank(NeTR) /\

X < findMin(NeTL) /\ X < findMin(NeTR) /\ N = 1 + rank(NeTR) .

eq rank(empty) = 0 .

eq rank(TL [n(N, X)] TR) = 1 + rank(TR) .

eq rankL(empty) = 0 .

eq rankL(TL [n(N,X)] TR) = N .

eq merge(empty, T) = T .

eq merge(T, empty) = T .

eq merge(TL1 [n(N1, X1)] TR1, TL2 [n(N2, X2)] TR2) =

if X1 < X2 then make(X1,TL1,merge(TR1, TL2 [n(N2,X2)] TR2))

else make(X2,TL2,merge(TL1 [n(N1,X1)] TR1,TR2)) fi .

eq make(X, TL, TR) = if rankL(TL) >= rankL(TR)

then TL [n(rankL(TR) + 1,X)] TR

else TR [n(rankL(TL) + 1,X)] TL fi .

eq insert(X,T) = merge(empty [n(1,X)] empty, T) .

eq findMin(TL [n(N,X)] TR) = X .

eq deleteMin(TL [n(N,X)] TR) = merge(TL,TR) .

endfm)

4 Proving Properties

Mechanical reasoning about specifications in Maude is supported by the experi-
mental ITP tool [3], a rewriting-based theorem prover that can be used to prove
inductive properties of equational specifications. It is written in Maude, and it
is itself an executable specification. A key feature of the ITP is its reflective de-
sign, that allows the definition of customized rewriting strategies different from
Maude’s default one; currently, this capability is being used to extend the ITP
with decision procedures for arithmetic, lists, and combinations of theories.

The ITP is still very much work in progress: it can work with any module
present in Maude’s database but not with those introduced in Full Maude; in
particular, at present it offers no support for parameterized specifications. There-
fore, in the examples that follow we illustrate its use with the concrete modules
LIST and ORD-LIST of lists of natural numbers, obtained from the specifications
in Sections 3.3 and 3.4 by removing the parameter X and renaming the sort
X@Elt as Nat.

4.1 Concatenation is associative

The most basic property the LIST specification should satisfy is that concate-
nation of lists is associative. After loading the ITP with the instruction in

xitp-tool and initializing its database with loop init-itp ., the property
can be proved with the following commands enclosed in parentheses:

(goal list-assoc : LIST |- A{L1:List ; L2:List ; L3:List}

(((L1:List ++ L2:List) ++ L3:List) = (L1:List ++ (L2:List ++ L3:List))) .)

(ind on L1:List .)

(auto* .) --- base case []

(auto* .) --- inductive step E : L

The first two lines introduce the desired goal: list-assoc is its name, LIST
the module in which the goal is to be proved, and the symbol A (representing ∀)
precedes a list of universally quantified variables. Notice that variables are always
annotated with their types. Then we try to prove the property by structural
induction on the first variable and the ITP generates a corresponding subgoal
for each operator of range List that has been declared with the attribute ctor; in
this case one for the empty list [] and another one for the constructor : (with
its corresponding inductive hypothesis). Finally, both cases can be automatically
proved with the command auto* that first transforms all variables into fresh
constants and then rewrites the terms in both sides of the equation as much as
possible.

4.2 Reverse is self-inverse

As another example we show that the result of applying the operation rev twice
in a row to a list leaves it unchanged. Again, we try to prove the property by
induction but this time the second auto* does not succeed and leaves us with
the following subgoal to prove:

|- rev(rev(V0#1*List)++ V0#0*Elem :[])= V0#0*Elem : V0#1*List

This suggests proving the auxiliary lemma conc-rev below, which in turn
requires a lemma to show that [] is the identity for concatenation and another
one for associativity as above. Lemmas are introduced like goals but using the
keyword lem and without the module’s name; all three are straightforwardly
proved by structural induction, and then the pending subgoal can be discharged
with a final auto*.

(goal list-rev : LIST |- A{L:List}((rev(rev(L:List))) = (L:List)) .)

(ind on L:List .)

(auto* .) --- []

(auto* .) --- E : L

(lem conc-id : A{L:List} ((L:List ++ []) = (L:List)) .)

(ind on L:List .)

(auto* .)

(auto* .)

(lem conc-assoc : A{L1:List ; L2:List ; L3:List}

(((L1:List ++ L2:List) ++ L3:List) = (L1:List ++ (L2:List ++ L3:List))) .)

(ind on L1:List .)

(auto* .)

(auto* .)

(lem conc-rev : A{L1:List ; L2:List}

((rev(L1:List ++ L2:List)) = (rev(L2:List) ++ rev(L1:List))) .)

(ind on L1:List .)

(auto* .)

(auto* .)

(auto* .)

4.3 Ordered lists

The final example we consider is showing that the typing assigned to the oper-
ation insert-list in ORD-LIST is indeed correct; that is, that inserting a new
element to an ordered list returns an ordered list. Note that in doing so we use
an equationally defined predicate sorted instead of a membership assertion :

OrdList; again, this is due to the ITP’s current restrictions.
The proof proceeds as usual by structural induction and, as in the previous

example, we cannot discharge the second case, corresponding to a list of the form
E : L, with a simple auto*. Note that this time, before proving the auxiliary
lemma it is also necessary to distinguish the case in which the value N being
inserted is less than or equal to E, from that in which it is not. This is done
in the ITP with the split command: N* and V0#0*Nat are the constants to
which auto* has transformed the original variables N and E. The rest of the
proof follows the same pattern as the previous ones.

(goal SORTED : ORD-LIST |- A{L:List ; N:Nat}

(((sorted(L:List)) = (true)) =>

((sorted(insert-list(L:List, N:Nat))) = (true))) .)

(ind on L:List .)

(auto* .)

(auto* .)

(split on (N*Nat <= V0#0*Nat) .)

(auto* .)

(auto* .)

(lem SORTED2 : A{N:Nat ; M:Nat ; L:List}

(((sorted(N:Nat : L:List)) = (true) & (N:Nat <= M:Nat) = (true)) =>

((sorted(N:Nat : insert-list(L:List, M:Nat))) = (true))) .)

(ind on L:List .)

(auto* .)

(auto* .)

(split on (M*Nat <= V1#0*Nat) .)

(auto* .)

(auto* .)

(auto* .)

5 Ongoing and future work

As mentioned in the introduction, we consider this work as a first step to develop
a set of basic data structures that could eventually lead to a shared library; now,
other users’ feedback will be necessary to improve this contribution. For such
a library, one would expect an implementation as efficient as possible; however,
there is a clear tension between this goal and that of using the specifications to
illustrate programming in Maude.

There are a number of techniques to improve the efficiency in Maude, like the
systematic use of unconditional equations with the help of the if then else fi

operator and the owise attribute. We have rewritten several of our examples us-
ing these techniques and obtaining a considerable gain in efficiency, as expected.
They have the drawback of making formal reasoning about the specifications
much more difficult or even impossible with the current version of the ITP.
There is also the tradeoff between efficiency and very precise typing by means
of memberships; these require typechecking during execution. If one is willing
to work with less refined types, as is the case with other functional languages,
one can forget about most of the memberships that appear in our specifications,
thus obtaining another considerable speedup. Finally, one must distinguish also
between the efficiency in the Full Maude prototype that works at the metalevel
and the one in the Core Maude system implemented in C++; the transfer of
parameterization techniques to the core level will help in this respect. In par-
ticular, according to the limited set of tests that we have run, Core Maude’s
performance in executing non-parametric specifications is close to that of GHCi
for Haskell 98 [8], whereas Full Maude can be as much as three times slower.

Concerning the proof of properties, in collaboration with Manuel Clavel we
have managed to prove more complex ones, including the correctness of the
sorting operations mergesort and quicksort. However, we are still finding our
way with proofs of basic properties about search trees. In the future, we would

like to consider more complex relationships such as those between 2-3-4 and
red-black trees.

Acknowledgments. We warmly thank Ricardo Peña for our discussions on
functional implementations of data structures, Manuel Clavel for his work on
the ITP and his help in understanding its idiosyncrasies, José Meseguer for his
encouragement, and the referees for their detailed and helpful comments.

References

1. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236:35–132, 2000.

2. F. M. Carrano and J. J. Prichard. Data Abstraction and Problem Solving with
C++. Third Edition. Addison-Wesley, 2002.

3. M. Clavel. The ITP Tool. http://geminis.sip.ucm.es/~clavel/itp, 2004.
4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-

sada. A Maude Tutorial. Computer Science Laboratory, SRI International, 2000.
http://maude.cs.uiuc.edu/papers.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 system. In R. Nieuwenhuis, editor, Rewriting Techniques
and Applications, 14th International Conference, RTA 2003, Valencia, Spain, June
2003, Proceedings, LNCS 2706, pages 76–87. Springer, 2003.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude Manual (Version 2.1), March 2004. http://maude.cs.uiuc.edu/

manual.
7. F. Durán. A Reflective Module Algebra with Applications to the Maude Language.

PhD thesis, Universidad de Málaga, 1999.
8. The GHC team. The Glasgow Haskell Compiler, March 2004. http://www.

haskell.org/ghc.
9. E. Horowitz and S. Sahni. Fundamentals of Data Structures in Pascal. Fourth

Edition. Computer Science Press, 1994.
10. N. Mart́ı-Oliet, M. Palomino, and A. Verdejo. Data structures in Maude. http:

//maude.sip.ucm.es/datastructures, 2004.
11. J. Meseguer. Membership algebra as a logical framework for equational speci-

fication. In F. Parisi-Presicce, editor, Recent Trends in Algebraic Development
Techniques, 12th International Workshop, WADT’97, Tarquinia, Italy, June 3–7,
1997, Selected Papers, LNCS 1376, pages 18–61. Springer, 1998.

12. C. Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.
13. M. Palomino, N. Mart́ı-Oliet, and A. Verdejo. Playing with Maude. In RULE’04

Fifth International Workshop on Rule-Based Programming. Proceedings, Electronic
Notes in Theoretical Computer Science, pages 4–19. Elsevier, 2004.

14. R. Peña. Diseño de Programas. Formalismo y Abstracción. Segunda Edición. Pren-
tice Hall, 1998.

15. F. Rabhi and G. Lapalme. Algorithms. A Functional Programming Approach.
Addison-Wesley, 1999.

16. M. A. Weiss. Data Structures and Problem Solving Using Java. Addison-Wesley,
1998.

