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Abstract

Declarative debugging is a semi-automatic technique that starts from an incorrect computation and
locates a program fragment responsible for the error by building a tree representing this computation and
guiding the user through it to find the error. Membership equational logic (MEL) is an equational logic that
in addition to equations allows to state membership axioms characterizing the elements of a sort. Rewriting
logic is a logic of change that extends MEL by adding rewrite rules, which correspond to transitions between
states and can be nondeterministic. We propose here a calculus to infer reductions, sort inferences, normal
forms, and least sorts with the equational subset of rewriting logic, and rewrites and sets of reachable terms
through rules. We use an abbreviation of the proof trees computed with this calculus to build appropriate
debugging trees for both wrong (an incorrect result obtained from an initial result) and missing answers
(results that are erroneous because they are incomplete), whose adequacy for debugging is proved. Using
these trees we have implemented Maude DDebugger, a declarative debugger for Maude, a high-performance
system based on rewriting logic. We illustrate its use with an example.

Keywords: declarative debugging, rewriting logic, Maude, wrong answers, missing answers

1. Introduction

Declarative debugging [35], also known as declarative diagnosis or algorithmic debugging, is a debugging
technique that abstracts the execution details, which may be difficult to follow in declarative languages, to
focus on the results. We can distinguish between two different kinds of declarative debugging: debugging
of wrong answers, applied when a wrong result is obtained from an initial value, which has been widely
employed in the logic [38, 18], functional [26, 28], multi-paradigm [5, 20], and object-oriented [6] programming
languages; and debugging of missing answers [23, 38, 18, 10, 1], applied when a result is incomplete, which
has been less studied because the calculus involved is more complex than in the case of wrong answers.
Declarative debugging starts from an incorrect computation, the error symptom, and locates the code (or
the absence of code) responsible for the error. To find this error the debugger represents the computation
as a debugging tree [24], where each node stands for a computation step and must follow from the results
of its child nodes by some logical inference. This tree is traversed by asking questions to an external oracle
(generally the user) until a buggy node—a node containing an erroneous result, but whose children are all
correct—is found. Hence, we distinguish two phases in this scheme: the debugging tree generation and its
navigation following some suitable strategy [36].

IResearch supported by MICINN Spanish project DESAFIOS10 (TIN2009-14599-C03-01) and Comunidad de Madrid pro-
gram PROMETIDOS (S2009/TIC-1465).
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We present here Maude DDebugger, a declarative debugger for Maude specifications. Maude [12] is a
high-level language and high-performance system supporting both equational and rewriting logic computa-
tion. Maude modules correspond to specifications in rewriting logic [21], a logic that allows the representation
of many models of concurrent and distributed systems. This logic is an extension of membership equational
logic [2], an equational logic that, in addition to equations, allows to state membership axioms characterizing
the elements of a sort. Rewriting logic extends membership equational logic by adding rewrite rules, which
represent transitions in a concurrent system and can be nondeterministic. The Maude system supports sev-
eral approaches for debugging Maude programs: tracing, term coloring, and using an internal debugger [12,
Chap. 22]. The tracing facilities allow us to follow the execution of a specification, that is, the sequence of
applications of statements that take place. The same ideas have been applied to the functional paradigm by
the tracer Hat [11], where a graph constructed by graph rewriting is proposed as a suitable trace structure.
Term coloring uses different colors to print the operators used to build a term that does not fully reduce.
Finally, the Maude internal debugger allows the definition of break points in the execution by selecting some
operators or statements. When a break point is found the debugger is entered, where we can see the current
term and execute the next rewrite with tracing turned on. However, these tools have the disadvantage that,
since they are based on the trace, show the statements applied in the order in which they are executed, and
thus the user can lose the general view of the proof of the incorrect computation that produced the wrong
result.

Declarative debugging of wrong answers of membership equational logic specifications was studied
in [8, 7], and was later extended to debugging of wrong answers in rewriting logic specifications in [30],
while descriptions of the implemented system can be found in [34], where we present how to debug wrong
results due to errors in the statements of the specification. In [32] we investigated how to apply declarative
debugging of missing answers, traditionally associated with nondeterministic frameworks [10, 23], to mem-
bership equational logic specifications. We achieve this by broadening the concept of missing answers to deal
with erroneous normal forms and least sorts. Finally, we extended the calculus developed thus far in [31]
to debug missing answers in rewriting logic specifications, that is, expected results that the specification is
not able to compute. A description of the whole system is presented in [33].

One of the strong points of our approach is that, unlike other proposals like [10], it combines the treatment
of wrong and missing answers and thus it is able to detect missing answers due to both wrong and missing
statements. The state of the art can be found in [36], which contains a comparison among the algorithmic
debuggers B.i.O. [3] (Believe in Oracles), a debugger integrated in the Curry compiler KICS; Buddha [27, 28],
a debugger for Haskell 98; DDT [9], a debugger for TOY; Freja [26], a debugger for Haskell; Hat-Delta [14],
part of a set of tools to debug Haskell programs; Mercury’s Algorithmic Debugger [20], a debugger integrated
into the Mercury compiler; Münster Curry Debugger [19], a debugger integrated into the Münster Curry
compiler; and Nude [25], the NU-Prolog Debugging Environment. We extend this comparison by taking into
account the features in the latest updates of the debuggers and adding two new ones: DDJ [16], a debugger
for Java programs, and our own debugger, Maude DDebugger. This comparison is summarized in Tables 1
and 2, where each column shows a declarative debugger and each row a feature. More specifically:

• The implementation language indicates the language used to implement the debugger. In some cases
front- and back-ends are shown: they refer, respectively, to the language used to obtain the information
needed to compute the debugging tree and the language used to interact with the user.

• The target language states the language debugged by the tool.

• The strategies row indicates the different navigation strategies implemented by the debuggers. TD
stands for top-down, that starts from the root and selects a wrong child to continue with the navigation
until all the children are correct; DQ for divide and query, that selects in each case a node rooting a
subtree half the size of the whole tree; SS for single stepping, that performs a post-order traversal of the
execution tree; HF for heaviest first, a modification of top-down that selects the child with the biggest
subtree; MRF for more rules first, another variant of top-down that selects the child with the biggest
number of different statements in its subtree; DRQ for divide by rules and query, an improvement of
divide and query that selects the node whose subtree has half the number of associated statements of

2



the whole tree; MD for the divide and query strategy implemented by the Mercury Debugger; SD for
subterm dependency, a strategy that allows to track specific subterms that the user has pointed out as
erroneous; and HD for the Hat-Delta heuristics.

• Database indicates whether the tool keeps a database of answers to be used in future debugging
sessions, while memoization indicates whether this database is available for the current session.

• The front-end indicates whether it is integrated into the compiler or it is standalone.

• Interface shows the interface between the front-end and the back-end. Here, APT stands for the
Abbreviated Proof Tree generated by Maude; ART for Augmented Redex Trail, the tree generated by
Hat-Delta; ET is an abbreviation of Execution Tree; and step count refers to a specific method of the
B.i.O. debugger that keeps the information used thus far into a text file.

• Debugging tree presents how the debugging trees are managed.

• The missing answers row indicates whether the tool can debug missing answers.

• Accepted answers: the different answers that can be introduced into the debugger. yes; no; dk
(don’t know); tr (trust); in (inadmissible), used to indicate that some arguments should not have
been computed; and my and mn (maybe yes and maybe no), that behave as yes and no although the
questions can be repeated if needed. More details about these debugging techniques can be found
in [36, 37].

• Tracing subexpressions means that the user is able to point out a subterm as erroneous.

• ET exploration indicates whether the debugging tree can be freely traversed.

• Whether the debugging tree can be built following different strategies depending on the specific situ-
ation is shown in the Different trees? row.

• Tree compression indicates whether the tool implements tree compression [14], a technique to remove
redundant nodes from the execution tree.

• Undo states whether the tool provides an undo command.

• Trusting lists the trusting options provided by each debugger. MO stands for trusting modules; FU
for functions (statements); AR for arguments; and FN for final forms.

• GUI shows whether the tool provides a graphical user interface.

• Version displays the version of the tool used for the comparison.

The results shown in these tables can be interpreted as follows:

Navigation strategies. Several navigation strategies have been proposed for declarative debugging [36].
However, most of the debuggers (including Maude DDebugger) only implement the basic top-down
and divide and query techniques. On the other hand, DDJ implements most of the known navigation
techniques (some of them also developed by the same researchers), including an adaptation of the nav-
igation techniques developed for Hat-Delta. Among the basic techniques, only DDJ, DDT, and Maude
DDebugger provide the most efficient divide and query strategy, Hirunkitti’s divide and query [36].

Available answers. The declarative debugging scheme relies on an external oracle answering the questions
asked by the tool, and thus the bigger the set of available answers the easier the interaction. The
minimum set of answers accepted by all the debuggers is composed of the answers yes and no; Hat-
Delta, the Münster Curry Debugger, and Nude do not accept any more answers, but the remaining
debuggers allow some others. Other well-known answers are don’t know and trust ; the former, that
can introduce incompleteness, allows the user to skip the current question and is implemented by
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B.i.O., DDJ, DDT, Buddha, Mercury, and Maude DDebugger, while the latter prevents the debugger
from asking questions related to the current statement and is accepted by DDJ, DDT, Buddha, the
Mercury debugger, and Maude DDebugger. Buddha and the Mercury debugger have developed an
answer inadmissible to indicate that some arguments should not have been computed, redirecting the
debugging process in this direction; our debugger accepts a similar mechanism when debugging missing
answers in system modules with the answer the term n is not a solution/reachable, which indicates
that a term in a set is not a solution/reachable, leading the process in this direction. Finally, Freja
accepts the answers maybe yes and maybe not, that the debugger uses as yes and not, although it will
return to these questions if the bug is not found.

Database. A common feature in declarative debugging is the use of a database to prevent the tool from
asking the same question twice, which is implemented by DDJ, DDT, Hat-Delta, Buddha, the Mercury
debugger, Nude, and Maude DDebugger. Nude has improved this technique by allowing this database
to be used during the next sessions, which has also been adopted by DDJ.

Memory. The debuggers allocate the debugging tree in different ways. The Hat-Delta tree is stored in
the file system, DDJ uses a database, and the rest of the debuggers (including ours) keep it in main
memory. Most debuggers improve memory management by building the tree on demand, as B.i.O.,
Buddha, DDJ, the Mercury debugger, Nude, and Maude DDebugger.

Tracing subexpressions. The Mercury debugger is the only one able to indicate that a specific subex-
pression, and not the whole term, is wrong, improving both the answers no and inadmissible with
precise information about the subexpression. With this technique the navigation strategy can focus
on some nodes of the tree, enhancing the debugging process.

Construction strategies. A novelty of our approach is the possibility of building different trees depend-
ing on the complexity of the specification and the experience of the user: the trees for both wrong
and missing answers can be built following either a one-step or a many-step strategy (giving rise to
four combinations). While with the one-step strategy the tool asks more questions in general, these
questions are easier to answer than the ones presented with the many-steps strategy. An improvement
of this technique has been applied in DDJ in [17], allowing the system to balance the debugging trees
by combining so called chains, that is, sequences of statements where the final data of each step is the
initial data of the following one.

Tree compression. The Hat-Delta debugger has developed a new technique to remove redundant nodes
from the execution tree, called tree compression [14]. Roughly speaking, it consists in removing (in
some cases) from the debugging tree the children of nodes that are related to the same error as the
father, in such a way that the father will provide debugging information for both itself and these
children. This technique is very similar to the balancing technique implemented for DDJ in [17].

Tree exploration. Most of the debuggers allow the user to freely navigate the debugging tree, including
ours when using the graphical user interface. Only the Münster Curry Debugger and Nude do not
implement this feature.

Trusting. Although all the debuggers provide some trusting mechanisms, they differ on the target: all
the debuggers except Hat-Delta have mechanisms to trust specific statements, and all the debuggers
except DDJ, DDT, and Nude can trust complete modules. An original approach is to allow the user
to trust some arguments, which currently is only supported by B.i.O. In our case, and since we are
able to debug missing answers, a novel trusting mechanism has been developed: the user can identify
some sorts and some operators as final, that is, they cannot be further reduced; with this method all
nodes referring to “finalness” of these terms are removed from the debugging tree. Finally, a method
similar to trusting consists in using a correct specification as an oracle to answer the questions; this
approach is followed by B.i.O. and Maude DDebugger.
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Undo command. In a technique that relies on the user as oracle, it is usual to commit an error and thus an
undo command can be very useful. However, not all the debuggers have this command, with B.i.O.,
DDJ, Freja, the Mercury debugger, and Maude DDebugger being the only ones implementing this
feature.

Graphical interface. A graphical user interface eases the interaction between the user and the tool, allow-
ing him to freely navigate the debugging tree and showing all the features in a friendly way. In [36], only
one declarative debugger—DDT—implemented such an interface, while nowadays four tools—DDT,
DDJ, Münster Curry Debugger,1 and Maude DDebugger—have this feature.

Errors detected. It is worth noticing that only DDT and Maude DDebugger can debug missing answers,
while all the other debuggers are devoted exclusively to wrong answers. However, DDT only debugs
missing answers due to nondeterminism, while our approach uses this technique to debug erroneous
normal forms and least sorts.

Other remarks. An important subject in declarative debugging is scalability. The development of DDJ
has taken special care of this subject by using a complex architecture that manages the available
memory and uses a database to store the parts of the tree that do not fit in main memory. Moreover,
the navigation strategies have been modified to work with incomplete trees. Regarding reusability, the
latest version of B.i.O. provides a generic interface that allows other tools implementing it to use its
debugging features. Finally, the DDT debugger has been improved to deal with constraints.

Exploiting the fact that rewriting logic is reflective [13], a key distinguishing feature of Maude is its
systematic and efficient use of reflection through its predefined META-LEVEL module [12, Chap. 14], a feature
that makes Maude remarkably extensible and powerful, and that allows many advanced metaprogramming
and metalanguage applications. This powerful feature allows access to metalevel entities such as specifica-
tions or computations as usual data. Therefore, we are able to generate and navigate the debugging tree
of a Maude computation using operations in Maude itself. In addition, the Maude system provides another
module, LOOP-MODE [12, Chap. 17], which can be used to specify input/output interactions with the user.
However, instead of using this module directly, we extend Full Maude [12, Chap. 18], which includes features
for parsing, evaluating, and pretty-printing terms, improving the input/output interaction. Moreover, Full
Maude allows the specification of concurrent object-oriented systems, which can also be debugged. Thus,
our declarative debugger, including its user interactions, is implemented in Maude itself.

The rest of the paper is structured as follows. Section 2 presents the preliminaries of our debugging
approach. Section 3 describes our calculus while the next section explains how to transform the proof trees
built with this calculus into appropriate debugging trees. Section 5 shows how to use the debugger, while
Section 6 illustrates it with an example. Section 7 describes the implementation of our tool and Section 8
concludes and presents some future work. We present in Appendix A the detailed proofs of the results stated
throughout the paper.

Additional examples, the source code of the tool, and other papers on the subject, including the user
guide [29], where the graphical user interface for the debugger is presented, are all available from the webpage
http://maude.sip.ucm.es/debugging.

2. Preliminaries

In the following sections we present both membership equational logic and rewriting logic, and how
their specifications are represented as Maude modules. Then, we state the assumptions made on those
specifications.

1Only available for Mac OS X.
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2.1. Membership equational logic
A signature in membership equational logic is a triple (K,Σ, S) (just Σ in the following), with K a set

of kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K a pairwise disjoint
K-kinded family of sets of sorts. The kind of a sort s is denoted by [s]. We write TΣ,k and TΣ,k(X) to
denote respectively the set of ground Σ-terms with kind k and of Σ-terms with kind k over variables in X,
where X = {x1 : k1, . . . , xn : kn} is a set of K-kinded variables. Intuitively, terms with a kind but without
a sort represent undefined or error elements.

The atomic formulas of membership equational logic are equations t = t′, where t and t′ are Σ-terms of
the same kind, and membership axioms of the form t : s, where the term t has kind k and s ∈ Sk. Sentences
are universally-quantified Horn clauses of the form (∀X)A0 ⇐ A1 ∧ · · · ∧ An, where each Ai is either an
equation or a membership axiom, and X is a set of K-kinded variables containing all the variables in the
Ai. A specification is a pair (Σ, E), where E is a set of sentences in membership equational logic over the
signature Σ.

Models of membership equational logic specifications are Σ-algebras A consisting of a set Ak for each
kind k ∈ K, a function Af : Ak1 × · · · ×Akn

−→ Ak for each operator f ∈ Σk1...kn,k, and a subset As ⊆ Ak
for each sort s ∈ Sk. Given a Σ-algebra A and a valuation σ : X −→ A mapping variables to values in the
algebra, the meaning [[t]]σA of a term t is inductively defined as usual. Then, an algebra A satisfies, under a
valuation σ,

• an equation t = t′, denoted A, σ |= t = t′, if and only if both terms have the same meaning: [[t]]σA =
[[t′]]σA; we also say that the equation holds in the algebra under the valuation.

• a membership t : s, denoted A, σ |= t : s, if and only if [[t]]σA ∈ As.

Satisfaction of Horn clauses is defined in the standard way. Finally, when terms are ground, valuations play
no role and thus can be omitted. A membership equational logic specification (Σ, E) has an initial model
TΣ/E whose elements are E-equivalence classes of ground terms [t]E , and where an equation or membership
is satisfied if and only if it can be deduced from E by means of a sound and complete set of deduction
rules [2, 22].

Since the membership equational logic specifications that we consider are assumed to satisfy the exe-
cutability requirements of confluence, termination, and sort-decreasingness [12], their equations t = t′ can
be oriented from left to right, t→ t′. Such a statement holds in an algebra, denoted A, σ |= t→ t′, exactly
when A, σ |= t = t′, i.e., when [[t]]σA = [[t′]]σA. Moreover, under those assumptions an equational condition
u = v in a conditional equation can be checked by finding a common term t such that u → t and v → t;
the notation we will use in the inference rules and debugging trees studied in Section 3 for this situation is
u ↓ v. Also, the notation t =E t′ means that the equation t = t′ can be deduced from E, equivalently, that
[t]E = [t′]E .

2.2. Maude functional modules
Maude functional modules [12, Chapter 4], introduced with syntax fmod ... endfm, are executable

membership equational logic specifications and their semantics is given by the corresponding initial algebra
in the class of algebras satisfying the specification.

In a functional module we can declare sorts (by means of the keyword sorts); subsort relations between
sorts (subsort); operators (op) for building values of these sorts, giving the sorts of their arguments and
result, and which may have attributes such as being associative (assoc) or commutative (comm), for example;
memberships (mb) asserting that a term has a sort; and equations (eq) identifying terms. Both memberships
and equations can be conditional (cmb and ceq). Conditions, in addition to memberships and equations,
can also be matching equations t := t′, whose mathematical meaning is the same as that of an ordinary
equation t = t′ but that operationally are solved by matching the righthand side t′ against the pattern t in
the lefthand side, thus instantiating possibly new variables in t.

Maude does automatic kind inference from the sorts declared by the user and their subsort relations.
Kinds are not declared explicitly and correspond to the connected components of the subsort relation. The
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kind corresponding to a sort s is denoted [s]. For example, if we have sorts Nat for natural numbers and
NzNat for nonzero natural numbers with a subsort NzNat < Nat, then [NzNat] = [Nat].

An operator declaration like

op _div_ : Nat NzNat -> Nat .

is logically understood as a declaration at the kind level

op _div_ : [Nat] [Nat] -> [Nat] .

together with the conditional membership axiom

cmb N div M : Nat if N : Nat and M : NzNat .

A subsort declaration NzNat < Nat is logically understood as the conditional membership axiom

cmb N : Nat if N : NzNat .

2.3. Rewriting logic
Rewriting logic extends equational logic by introducing the notion of rewrites corresponding to transitions

between states; that is, while equations are interpreted as equalities and therefore they are symmetric,
rewrites denote changes which can be irreversible.

A rewriting logic specification, or rewrite theory, has the form R = (Σ, E,R), where (Σ, E) is an equa-
tional specification and R is a set of rules as described below. From this definition, one can see that rewriting
logic is built on top of equational logic, so that rewriting logic is parameterized with respect to the version
of the underlying equational logic; in our case, Maude uses membership equational logic, as described in the
previous sections. A rule q in R has the general conditional form2

q : (∀X) e⇒ e′ ⇐
n∧
i=1

ui = u′i ∧
m∧
j=1

vj : sj ∧
l∧

k=1

wk ⇒ w′k

where q is the rule label, the head is a rewrite and the conditions can be equations, memberships, and
rewrites; both sides of a rewrite must have the same kind. From these rewrite rules, one can deduce rewrites
of the form t⇒ t′ by means of general deduction rules introduced in [21] (see also [4]).

Models of rewrite theories are called R-systems in [21]. Such systems are defined as categories that
possess a (Σ, E)-algebra structure, together with a natural transformation for each rule in the set R. More
intuitively, the idea is that we have a (Σ, E)-algebra, as described in Section 2.1, with transitions between the
elements in each set Ak; moreover, these transitions must satisfy several additional requirements, including
that there are identity transitions for each element, that transitions can be sequentially composed, that the
operations in the signature Σ are also appropriately defined for the transitions, and that we have enough
transitions corresponding to the rules in R. The rewriting logic deduction rules introduced in [21] are sound
and complete with respect to this notion of model. Moreover, they can be used to build initial models.
Given a rewrite theory R = (Σ, E,R), the initial model TΣ/E,R for R has an underlying (Σ, E)-algebra
TΣ/E whose elements are equivalence classes [t]E of ground Σ-terms modulo E, and there is a transition
from [t]E to [t′]E when there exist terms t1 and t2 such that t =E t1 →∗R t2 =E t′, where t1 →∗R t2 means
that the term t1 can be rewritten into t2 in zero or more rewrite steps applying rules in R, also denoted
[t]E →∗R/E [t′]E when rewriting is considered on equivalence classes [21, 15].

However, for our purposes in this paper, we are interested in a subclass of rewriting logic models [21] that
we call term models, where the syntactic structure of terms is kept and associated notions such as variables,
substitutions, and term rewriting make sense. These models will be used in the next section to represent

2There is no need for the condition to list equations first, then memberships, and then rewrites; this is just a notational
abbreviation, since they can be listed in any order.
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the intended interpretation that the user had in mind while writing a specification. Since we want to find
the discrepancies between the intended model and the initial model of the specification as written, we need
to consider the relationship between a specification defined by a set of equations E and a set of rules R, and
a model defined by possibly different sets of equations E′ and of rules R′; in particular, when E′ = E and
R′ = R, the term model coincides with the initial model built in [21].

Given a rewrite theory R = (Σ, E,R), with Σ a signature, E a set of equations, and R a set of rules,
a Σ-term model has an underlying (Σ, E′)-algebra whose elements are equivalence classes [t]E′ of ground
Σ-terms modulo some set of equations and memberships E′ (which may be different from E), and there is a
transition from [t]E′ to [t′]E′ when [t]E′ →∗R′/E′ [t′]E′ , where rewriting is considered on equivalence classes
[21, 15]. The set of rules R′ may also be different from R, that is, the term model is TΣ/E′,R′ for some E′

and R′. In such term models, the notion of valuation coincides with that of (ground) substitution. A term
model TΣ/E′,R′ satisfies, under a substitution θ,

• an equation u = v, denoted TΣ/E′,R′ , θ |= u = v, when θ(u) =E′ θ(v), or equivalently, when [θ(u)]E′ =
[θ(v)]E′ ;

• a membership u : s, denoted TΣ/E′,R′ , θ |= u : s, when the Σ-term θ(u) has sort s according to the
information in the signature Σ and the equations and memberships E′;

• a rewrite u⇒ v, denoted TΣ/E′,R′ , θ |= u⇒ v, when there is a transition in TΣ/E′,R′ from [θ(u)]E′ to
[θ(v)]E′ , that is, when [θ(u)]E′ →∗R′/E′ [θ(v)]E′ .

Satisfaction is extended to conditional sentences as usual. A Σ-term model TΣ/E′,R′ satisfies a rewrite theory
R = (Σ, E,R) when TΣ/E′,R′ satisfies the equations and memberships in E and the rewrite rules in R in
this sense. For example, this is obviously the case when E ⊆ E′ and R ⊆ R′; as mentioned above, when
E′ = E and R′ = R the term model coincides with the initial model for R.

2.4. Maude system modules
Maude system modules [12, Chapter 6], introduced with syntax mod ... endm, are executable rewrite

theories and their semantics is given by the initial system in the class of systems corresponding to the rewrite
theory. A system module can contain all the declarations of a functional module and, in addition, decla-
rations for rules (rl) and conditional rules (crl), whose conditions can be equations, matching equations,
memberships, and rewrites.

The executability requirements for equations and memberships in a system module are the same as those
of functional modules, namely, confluence, termination, and sort-decreasingness. With respect to rules, the
satisfaction of all the conditions in a conditional rewrite rule is attempted sequentially from left to right,
solving rewrite conditions by means of search; for this reason, we can have new variables in such conditions
but they must become instantiated along this process of solving from left to right (see [12] for details).
Furthermore, the strategy followed by Maude in rewriting with rules is to compute the normal form of a
term with respect to the equations before applying a rule. This strategy is guaranteed not to miss any
rewrites when the rules are coherent with respect to the equations [39, 12]. In a way quite analogous to
confluence, this coherence requirement means that, given a term t, for each rewrite of it using a rule in R to
some term t′, if u is the normal form of t with respect to the equations and memberships in E, then there
is a rewrite of u with some rule in R to a term u′ such that u′ =E t′.

The following section describes an example of a Maude system module with both equations and rules.

2.5. An example of system module: A maze
Given a maze, we want to obtain all the possible paths to the exit. First, we define the sorts Pos, Pos?,

List, and State, that stand for positions in the labyrinth, incorrect positions (that we will use later to
indicate that terms with this sort must be rewritten to become a correct position) lists of positions, and the
path traversed so far, respectively:
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(mod MAZE is

pr NAT .

sorts Pos Pos? List State .

Terms of sort Pos have the form [X,Y], where X and Y are natural numbers, and lists are built with nil
and the juxtaposition operator __:

subsorts Pos < Pos? List .

op [_,_] : Nat Nat -> Pos [ctor] .

op nil : -> List [ctor] .

op __ : List List -> List [ctor assoc id: nil] .

Terms of sort State are lists enclosed by curly brackets, that is, {_} is an “encapsulation operator” that
ensures that the whole state is used:

op {_} : List -> State [ctor] .

The predicate isSol checks whether a list is a solution in a 8× 8 labyrinth:

vars X Y : Nat .

vars P Q : Pos .

var L : List .

op isSol : List -> Bool .

eq [is1] : isSol(L [8,8]) = true .

eq [is2] : isSol(L) = false [owise] .

The next position is computed with rule expand, that extends the solution with a new position by
rewriting next(L) to obtain a new position and then checking whether this list is correct with isOk. Note
that the choice of the next position, that could be initially wrong, produces an implicit backtracking:

crl [expand] : { L } => { L P } if next(L) => P /\ isOk(L P) .

The function next, that builds terms of the sort Pos?, is defined in a nondeterministic way with the
rules:

op next : List -> Pos? .

rl [n1] : next(L [X,Y]) => [X, Y + 1] .

rl [n2] : next(L [X,Y]) => [sd(X, 1), Y] .

rl [n3] : next(L [X,Y]) => [X, sd(Y, 1)] .

where sd denotes symmetric difference on natural numbers.
isOk(L P) checks that the position P is within the limits of the labyrinth, not repeated in L, and not

part of the wall by using an auxiliary function contains:

op isOk : List -> Bool .

eq isOk(L [X,Y]) = X >= 1 and Y >= 1 and X <= 8 and Y <= 8

and not(contains(L, [X,Y])) and not(contains(wall, [X,Y])) .

op contains : List Pos -> Bool .

eq [c1] : contains(nil, P) = false .

eq [c2] : contains(Q L, P) = if P == Q then true else contains(L, P) fi .

Finally, we define the wall of the labyrinth as a list of positions:
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op wall : -> List .

eq wall = [2,1] [4,1]

[2,2] [3,2] [6,2] [7,2]

[2,3] [4,3] [5,3] [6,3] [7,3]

[1,5] [2,5] [3,5] [4,5] [5,5] [6,5] [8,5]

[6,6] [8,6]

[6,7]

[6,8] [7,8] .

endm)

Now, we can use the module to search the labyrinth’s exit from the position [1,1] with the Maude
command search, but it cannot find any path to escape. We will see in Section 5 how to debug this
specification.

Maude> (search {[1,1]} =>* {L:List} s.t. isSol(L:List) .)

No solution.

2.6. Assumptions
Since we are debugging Maude modules, they are expected to satisfy the appropriate executability

requirements indicated in the previous sections. Namely, the specifications in functional modules have to
be terminating, confluent, sort decreasing and, given an equation t1 = t2 if C1 ∧ · · · ∧ Cn, all the variables
occurring in t2 and C1 . . . Cn must appear in t1 or become instantiated by matching [12, Section 4.6]. While
the equational part of system modules has to fulfill these requirements, rewrite rules must be coherent with
respect to the equations and, given a rule t1 ⇒ t2 if C1∧· · ·∧Cn, the variables occurring in t2 and C1 . . . Cn
must appear in t1 or become instantiated in matching or rewriting conditions [12, Section 6.3].

One interesting feature of our tool is that the user can trust some statements, by means of labels applied
to the suspicious statements. This means that the unlabeled statements are assumed to be correct, and
only their conditions will generate questions. In order to obtain a nonempty abbreviated proof tree, the
user must have labeled some statements (all with different labels); otherwise, everything is assumed to be
correct. In particular, the wrong statement must be labeled in order to be found. Likewise, when debugging
missing answers, constructed terms (terms built only with constructors, indicated with the attribute ctor,
and also known as data terms in other contexts) are considered to be in normal form, and some of these
constructed terms can be pointed out as “final” (they cannot be further rewritten). Thus, this information
has to be accurate in order to find the buggy node.

Although the user can introduce a module importing other modules, the debugging process takes place
in the flattened module. However, the debugger allows the user to trust a whole imported module.

Navigation of the debugging tree takes place by asking questions to an external oracle, which in our
case is either the user or another module introduced by the user. In both cases the answers are assumed
to be correct. If either the module is not really correct or the user provides an incorrect answer, the result
is unpredictable. Notice that the information provided by the correct module need not be complete, in
the sense that some functions can be only partially defined. In the same way, it is not required to use the
same signature in the correct and the debugged modules. If the correct module cannot help in answering a
question, the user may have to answer it.

Finally, all the information in the signature (sorts, subsorts, operators, and equational attributes such
as assoc, comm, etc.) is supposed to be correct and will not be considered during the debugging process.

3. A calculus for debugging

Now we will describe debugging trees for both wrong and missing answers. First, Section 3.1 presents
a calculus to deduce reductions, memberships, and rewrites. We will extend this calculus in Section 3.2 to
describe a calculus to compute normal forms, least sorts, and sets of reachable terms. From now on, we
assume a rewrite theory R = (Σ, E,R) satisfying the assumptions stated in the previous section.
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(Reflexivity)

e⇒ e
Rf⇒

e→ e
Rf→

(Transitivity)

e1 ⇒ e′ e′ ⇒ e2

e1 ⇒ e2
Tr⇒

e1 → e′ e′ → e2

e1 → e2
Tr→

(Congruence)

e1 ⇒ e′1 . . . en ⇒ e′n
f(e1, . . . , en)⇒ f(e′1, . . . , e

′
n)

Cong⇒
e1 → e′1 . . . en → e′n

f(e1, . . . , en)→ f(e′1, . . . , e
′
n)

Cong→

(Replacement)

{θ(ui) ↓ θ(u′i)}ni=1 {θ(vj) : sj}mj=1 {θ(wk)⇒ θ(w′k)}lk=1

θ(e)⇒ θ(e′)
Rep⇒

if e⇒ e′ ⇐
Vn
i=1 ui = u′i ∧

Vm
j=1 vj : sj ∧

Vl
k=1 wk ⇒ w′k

{θ(ui) ↓ θ(u′i)}ni=1 {θ(vj) : sj}mj=1

θ(e)→ θ(e′)
Rep→

if e→ e′ ⇐
Vn
i=1 ui = u′i ∧

Vm
j=1 vj : sj

(Equivalence Class) (Subject Reduction)

e→ e′ e′ ⇒ e′′ e′′ → e′′′

e⇒ e′′′
EC

e→ e′ e′ : s

e : s
SRed

(Membership)

{θ(ui) ↓ θ(u′i)}ni=1 {θ(vj) : sj}mj=1

θ(e) : s
Mb

if e : s⇐
Vn
i=1 ui = u′i ∧

Vm
j=1 vj : sj

Figure 1: Semantic calculus for Maude modules

3.1. A calculus for wrong answers
We show here a calculus to deduce judgments for reductions e → e′, memberships e : s, and rewrites

e ⇒ e′. The inference rules for this calculus, shown in Figure 1, are an adaptation of the rules presented
in [2, 22] for membership equational logic and in [21, 4] for rewriting logic. Remember that the notation
θ(ui) ↓ θ(u′i) is an abbreviation of ∃ti.θ(ui) → ti ∧ θ(u′i) → ti. As usual, we represent deductions in
the calculus as proof trees, where the premises are the child nodes of the conclusion at each inference
step. We assume that the inference labels Rep⇒, Rep→, and Mb decorating the inference steps contain
information about the particular rewrite rule, equation, and membership axiom, respectively, applied during
the inference. This information will be used by the debugger in order to present to the user the incorrect
fragment of code causing the error.

For example, we can try to build the proof tree for the following reduction:

Maude> (red isOk([1,1][1,2]) .)

result Bool : true

Figures 2 and 3 depict the proof tree associated to this reduction, where c stands for contains, t
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isOk([1,1][1,2])→ rhs
Rep→

5 5
1 >= 1→ t

Tr
. . .

5 5
2 <= 8→ t

Tr
�
�
A
A1

5
(•) rhs → t and ... and t

Cong
5 5

t and ... and t→ t
Tr

rhs → t
Tr

isOk([1,1][1,2])→ t
Tr

Figure 2: Tree for the reduction of isOk([1,1][1,2])

c([1,1],[1,2])→ t1
Rep→

[1,1] == [1,2]→ f
Rep→

t1 → t2
Cong

t2 → c(nil,[1,2])
Rep→

c(nil,[1,2])→ f
Rep→

t2 → f
Tr

t1 → t
Tr

c([1,1], [1,2])→ f
Tr

not(c([1,1],[1,2]))→ not(f)
Cong

not(f)→ t
Rep→

not(c([1,1],[1,2]))→ t
Tr

Figure 3: Tree ��AA1 for not(c([1,1],[1,2]))

for true, f for false, rhs for 1 >= 1 and 2 >= 1 and 1 <= 8 and 2 <= 8 and not(c([1,1],[1,2]))
and not(c(wall,[1,2])), t1 for if [1,1] == [1,2] then t else c(nil,[1,2]) fi, t2 for if f then
t else c(nil,[1,2]) fi, and each 5 abbreviates a computation not shown here. In order to obtain the
result we use the transitivity inference rule, whose left premise applies the replacement rule with the equation
for isOk, obtaining the term rhs, that will be further reduced in the right premise to obtain t by means of
another transitivity step. The left child of this last node reduces all the subterms in rhs to t, while the right
one just applies the usual equations for conjunctions to obtain the final result. While the first reductions in
the premises of the node (•) correspond to arithmetic computations and will not been shown here, the last
two are more complex. Figure 3 describes the tree ��AA1 , that proves how one of the subterms using equations
defined by the user is reduced to t, while the tree on its right is very similar and will not be studied in
depth. The tree ��AA1 reduces in its left child the inner subterm to f by traversing the list of positions (in this
case the only element in the list is [1,1]), reducing the if_then_else_fi term in t1 and then applying the
equation for the empty list nil. Then, the right child of the root applies the predefined equation for not to
obtain the final result.

In our debugging framework we assume the existence of an intended interpretation I of the given rewrite
theory R = (Σ, E,R). This intended interpretation is a Σ-term model corresponding to the model that
the user had in mind while writing the specification R. Therefore the user expects that I |= e ⇒ e′,
I |= e→ e′, and I |= e : s for each rewrite e⇒ e′, reduction e→ e′, and membership e : s computed w.r.t.
the specification R. As a term model, I must satisfy the following proposition:

Proposition 1. Let R = (Σ, E,R) be a rewrite theory and let T = TΣ/E′,R′ be any Σ-term model. If a
statement e ⇒ e′ (respectively e → e′, e : s) can be deduced using the semantic calculus rules reflexivity,
transitivity, congruence, equivalence class, or subject reduction using premises that hold in T , then T |=
e⇒ e′ (respectively T |= e→ e′, T |= e : s).

Observe that this proposition cannot be extended to the membership and replacement inference rules,
where the correctness of the conclusion depends not only on the calculus but also on the associated specifi-
cation statement, which could be wrong.

3.2. A calculus for missing answers
The calculus in this section, that extends the one shown in the previous section, will be used to infer the

normal form of a term, the least sort of a term, and, given a term and some constraints, the complete set of
reachable terms from this term that fulfill the requirements.3 The proof trees built with this calculus have

3The requirements of this last inference mimic the ones used in the Maude’s breadth-first search, which is usually used to
detect the existence of missing answers.
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nodes that justify the positive information (why the normal form is reached, the least sort is obtained, and
the terms are included in the corresponding sets) but also nodes that justify the negative information (why
the normal form is no further reduced, why no smaller sort can be obtained for the term, and why there are
no more terms in the sets). These latter nodes are then used in the debugging trees to localize as much as
possible the reasons responsible for missing answers. Throughout this paper we only consider a special kind
of conditions and substitutions that operate over them, called admissible, that we define as follows:

Definition 1. A condition C ≡ C1 ∧ · · · ∧ Cn is admissible if, for 1 ≤ i ≤ n,

• Ci is an equation ui = u′i or a membership ui : s and

vars(Ci) ⊆
i−1⋃
j=1

vars(Cj), or

• Ci is a matching condition ui := u′i, ui is a pattern and

vars(u′i) ⊆
i−1⋃
j=1

vars(Cj), or

• Ci is a rewrite condition ui ⇒ u′i, u
′
i is a pattern and

vars(ui) ⊆
i−1⋃
j=1

vars(Cj).

Definition 2. A condition C ≡ P := ~∧C1 ∧ · · · ∧Cn, where ~ denotes a special variable not occurring in
the rest of the condition, is admissible if P := t ∧ C1 ∧ · · · ∧ Cn is admissible for t any ground term.

Definition 3. A kind-substitution, denoted by κ, is a mapping from variables to terms of the form v1 7→
t1; . . . ; vn 7→ tn such that ∀1≤i≤n . kind(vi) = kind(ti), that is, each variable has the same kind as the
associated term.

Definition 4. A substitution, denoted by θ, is a mapping from variables to terms of the form v1 7→
t1; . . . ; vn 7→ tn such that ∀1≤i≤n . sort(vi) ≥ ls(ti), that is, the sort of each variable is greater than or
equal to the least sort of the associated term. Note that a substitution is a special type of kind-substitution
where each term has the sort appropriate to its variable.

Definition 5. Given an atomic condition C, we say that a substitution θ is admissible for C if

• C is an equation u = u′ or a membership u : s and vars(C) ⊆ dom(θ), or

• C is a matching condition u := u′ and vars(u′) ⊆ dom(θ), or

• C is a rewrite condition u⇒ u′ and vars(u) ⊆ dom(θ).

The calculus presented in this section (in Figures 4–7, and 12) will be used to deduce the following
judgments, that we introduce together with their meaning for a Σ-term model T ′ = TΣ/E′,R′ defined by
equations and memberships E′ and by rules R′:

• Given a term t and a kind-substitution κ, T ′ |= adequateSorts(κ)  Θ when either Θ = {κ} and
∀v ∈ dom(κ).T ′ |= κ[v] : sort(v), or Θ = ∅ and ∃v ∈ dom(κ).T ′ 6|= κ[v] : sort(v), where κ[v] denotes
the term bound by v in κ. That is, when all the terms bound in the kind-substitution κ have the
appropriate sort, then κ is a substitution and it is returned; otherwise (at least one of the terms has
an incorrect sort), the kind-substitution is not a substitution and the empty set is returned.4

4Do not confuse, in the judgments inferring sets of substitutions, the empty set of substitutions ∅, which indicates that no
substitutions fulfill the condition, with the set containing the empty substitution {∅}, which indicates that the condition is
fulfilled and the condition is ground.
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• Given an admissible substitution θ for an atomic condition C, T ′ |= [C, θ] Θ when

Θ = {θ′ | T ′, θ′ |= C and θ′ �dom(θ)= θ},

that is, Θ is the set of substitutions that fulfill the atomic condition C and extend θ by binding the
new variables appearing in C.

• Given a set of admissible substitutions Θ for an atomic condition C, T ′ |= 〈C,Θ〉 Θ′ when

Θ′ = {θ′ | T ′, θ′ |= C and θ′ �dom(θ)= θ for some θ ∈ Θ},

that is, Θ′ is the set of substitutions that fulfill the condition C and extend any of the admissible
substitutions in Θ.

• T ′ |= disabled(a, t) when the equation or membership a cannot be applied to t at the top.

• T ′ |= t→red t
′ when either T ′ |= t→1

E′ t
′ or T ′ |= ti →!

E′ t
′
i, with ti 6= t′i, for some subterm ti of t such

that t′ = t[ti 7→ t′i], that is, the term t is either reduced one step at the top or reduced by substituting
a subterm by its normal form.

• T ′ |= t→norm t′ when T ′ |= t→!
E′ t
′, that is, t′ is in normal form with respect to the equations E′.

• Given an admissible condition C ≡ P := ~ ∧ C1 ∧ · · · ∧ Cn, T ′ |= fulfilled(C, t) when there exists a
substitution θ such that T ′, θ |= P := t ∧ C1 ∧ · · · ∧ Cn, that is, C holds when ~ is substituted by t.

• Given an admissible condition C as before, T ′ |= fails(C, t) when there exists no substitution θ such
that T ′, θ |= P := t ∧ C1 ∧ · · · ∧ Cn, that is, C does not hold when ~ is substituted by t.

• T ′ |= t :ls s when T ′ |= t : s and moreover s is the least sort with this property (with respect to the
ordering on sorts obtained from the signature Σ and the equations and memberships E′ defining the
Σ-term model T ′).

• T ′ |= t⇒top S when S = {t′ | t→top
R′ t

′}, that is, the set S is formed by all the reachable terms from t
by exactly one rewrite at the top with the rules R′ defining T ′. Moreover, equality in S is modulo E′,
i.e., we are implicitly working with equivalence classes of ground terms modulo E′.

• T ′ |= t ⇒q S when S = {t′ | t →top
{q} t

′}, that is, the set S is the complete set of reachable terms
(modulo E′) obtained from t with one application of the rule q ∈ R′ at the top.

• T ′ |= t ⇒1 S when S = {t′ | t →1
R′ t

′}, that is, the set S is constituted by all the reachable terms
(modulo E′) from t in exactly one step, where the rewrite step can take place anywhere in t.

• T ′ |= t  Cn S when S = {t′ | t →≤nR′ t′ and T ′ |= fulfilled(C, t′)}, that is, S is the set of all the terms
(modulo E′) that satisfy the admissible condition C and are reachable from t in at most n steps.

• T ′ |= t +CnS as before, but with reachability from t in at least one step and in at most n steps.

• T ′ |= t  !CnS when S = {t′ | t →≤nR′ t′ and T ′ |= fulfilled(C, t′) and t′ 6→R′}, that is, now the terms
(modulo E′) in S are final, meaning that they cannot be further rewritten.

We first introduce in Figure 4 the inference rules defining the relations [C, θ]  Θ, 〈C,Θ〉  Θ′, and
adequateSorts(κ)  Θ. Intuitively, these judgments will provide positive information when they lead to
nonempty sets (indicating that the condition holds in the first two judgments or that the kind-substitution
is a substitution in the third one) and negative information when they lead to the empty set (indicating
respectively that the condition fails or the kind-substitution is not a substitution):
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θ(t2)→norm t′ adequateSorts(κ1) Θ1 . . . adequateSorts(κn) Θn

[t1 := t2, θ] 
Sn
i=1 Θi

PatC

if {κ1, . . . , κn} = {κθ | κ(θ(t1)) ≡A t′}

t1 : sort(v1) . . . tn : sort(vn)

adequateSorts(v1 7→ t1; . . . ; vn 7→ tn) {v1 7→ t1; . . . ; vn 7→ tn}
AS1

ti :ls si
adequateSorts(v1 7→ t1; . . . ; vn 7→ tn) ∅

AS2 if si 6≤sort(vi)

θ(t) : s

[t : s, θ] {θ}
MbC1

θ(t) :ls s
′

[t : s, θ] ∅ MbC2 if s′ 6≤ s

θ(t1) ↓ θ(t2)

[t1 = t2, θ] {θ}
EqC1

θ(t1)→norm t′1 θ(t2)→norm t′2

[t1 = t2, θ] ∅
EqC2 if t′1 6≡At

′
2

θ(t1) t2 := ~
n+1 S

[t1 ⇒ t2, θ] {θ′θ | θ′(θ(t2)) ∈ S}
RlC if n = min(x ∈ N : ∀i ≥ 0 (θ(t1) t2 := ~

x+i S))

[C, θ1] Θ1 · · · [C, θm] Θm

〈C, {θ1, . . . , θm}〉 
m[
i=1

Θi

SubsCond

Figure 4: Calculus for substitutions

• Rule PatC computes all the possible substitutions that extend θ and satisfy the matching of the term
t2 with the pattern t1 by first computing the normal form t′ of t2, obtaining then all the possible
kind-substitutions κ that make t′ and θ(t1) equal modulo axioms (indicated by ≡A), and finally
checking that the terms assigned to each variable in the kind-substitutions have the appropriate sort
with adequateSorts(κ). The union of the set of substitutions thus obtained constitutes the set of
substitutions that satisfy the matching.

• Rule AS1 checks whether the terms of the kind-substitution have the appropriate sort to match the
variables. In this case the kind-substitution is a substitution and it is returned.

• Rule AS2 indicates that, if any of the terms in the kind-substitution has a sort bigger than the required
one, then it is not a substitution and thus the empty set of substitutions is returned.

• Rule MbC1 returns the current substitution if a membership condition holds.

• Rule MbC2 is used when the membership condition is not satisfied. It checks that the least sort of
the term is not less than or equal to the required one, and thus the substitution does not satisfy the
condition and the empty set is returned.

• Rule EqC1 returns the current substitution when an equality condition holds, that is, when the two
terms can be joined.

• Rule EqC2 checks that an equality condition fails by obtaining the normal forms of both terms and
then examining that they are different.

• Rewrite conditions are handled by rule RlC. This rule extends the set of substitutions (where we use
the juxtaposition of substitutions to express composition) by computing all the reachable terms that
satisfy the pattern (using the relation t Cn S explained below) and then using these terms to obtain
the new substitutions.
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[l := t, ∅] Θ0 〈C1,Θ0〉 Θ1 . . . 〈Cn,Θn−1〉 ∅
disabled(a, t)

Dsb

if a ≡ l→ r ⇐ C1 ∧ . . . ∧ Cn ∈ E or
a ≡ l : s⇐ C1 ∧ . . . ∧ Cn ∈ E

{θ(ui) ↓ θ(u′i)}ni=1 {θ(vj) : sj}mj=1

θ(l)→red θ(r)
Rdc1 if l→r⇐

Vn
i=1 ui=u′i∧

Vm
j=1 vj :sj∈E

t→norm t′

f(t1, . . . , t, . . . , tn)→red f(t1, . . . , t
′, . . . , tn)

Rdc2 if t 6≡At
′

disabled(e1, f(t1, . . . , tn)) . . . disabled(el, f(t1, . . . , tn)) t1 →norm t1 . . . tn →norm tn

f(t1, . . . , tn)→norm f(t1, . . . , tn)
Norm

if {e1, . . . , el} = {e ∈ E | e�top
K f(t1, . . . , tn)}

t→red t1 t1 →norm t′

t→norm t′
NTr

t→norm t′ t′ : s disabled(m1, t
′) . . . disabled(ml, t

′)

t :ls s
Ls

if {m1, . . . ,ml} = {m ∈ E | m�top
K t′ ∧ sort(m) < s}

Figure 5: Calculus for normal forms and least sorts

• Finally, rule SubsCond computes the extensions of a set of admissible substitutions for C {θ1, . . . , θn}
by using the rules above with each of them.

We use these judgments to define the inference rules of Figure 5, that describe how the normal form and
the least sort of a term are computed:

• Rule Dsb indicates when an equation or membership a cannot be applied to a term t. It checks that
there are no substitutions that satisfy the matching of the term with the lefthand side of the statement
and that fulfill its condition. Note that we check the conditions from left to right, following the same
order as Maude and making all the substitutions admissible.

• Rule Rdc1 reduces a term by applying one equation when it checks that the conditions can be satisfied,
where the matching conditions are included in the equality conditions. While in the previous rule
we made explicit the evaluation from left to right of the condition to show that finally the set of
substitutions fulfilling it was empty, in this case we only need one substitution to fulfill the condition
and the order is unimportant.

• Rule Rdc2 reduces a term by reducing a subterm to normal form (checking in the side condition that
it is not already in normal form).

• Rule Norm states that the term is in normal form by checking that no equations can be applied at the
top considering the variables at the kind level (which is indicated by �top

K ) and that all its subterms
are already in normal form.

• Rule NTr describes the transitivity for the reduction to normal form. It reduces the term with the
relation →red and the term thus obtained then is reduced to normal form by using again →norm .

• Rule Ls computes the least sort of the term t. It computes a sort for its normal form (that has the
least sort of the terms in the equivalence class) and then checks that memberships deducing smaller
sorts cannot be applied.
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fulfilled(C, t)
t C0 {t}

Rf1
fails(C, t)
t C0 ∅

Rf2

θ(P ) ↓ t {θ(ui) ↓ θ(u′i)}ni=1 {θ(vj) : sj}mj=1 {θ(wk)⇒ θ(w′k)}lk=1

fulfilled(C, t)
Fulfill

if C ≡ P := ~ ∧
Vn
i=1 ui = u′i ∧

Vm
j=1 vj : sj ∧

Vl
k=1 wk ⇒ w′k

[P := t, ∅] Θ0 〈C1,Θ0〉 Θ1 · · · 〈Ck,Θk−1〉 ∅
fails(C, t)

Fail if C ≡ P := ~ ∧ C1 ∧ . . . ∧ Ck

Figure 6: Calculus for solutions

In these rules Dsb provides the negative information, proving why the statements (either equations or
membership axioms) cannot be applied, while the remaining rules provide the positive information indicating
why the normal form and the least sort are obtained.

Once these rules have been introduced, we can use them in the rules defining the relation t Cn S. First,
we present in Figure 6 the rules related to n = 0 steps:

• Rule Rf1 indicates that when only zero steps can be used and the current term fulfills the condition,
the set of reachable terms consists only of this term.

• Rule Rf2 complements Rf1 by defining the empty set as result when the condition does not hold.

• Rule Fulfill checks whether a term satisfies a condition. The premises of this rule check that all the
atomic conditions hold, taking into account that it starts with a matching condition with a hole that
must be filled with the current term and thus proved with the premise θ(P ) ↓ t (the rest of the
matching conditions are included in the equality conditions). Note that when the condition is satisfied
we do not need to check all the substitutions, but only to verify that there exists one substitution
that makes the condition true.

• To check that a term does not satisfy a condition, it is not enough to check that there exists a
substitution that makes it fail; we must make sure that there is no substitution that makes it true. This
is indicated by rule Fail, which uses the rules shown in Figure 4 to prove that the set of substitutions
that satisfy the condition (where the first set of substitutions is obtained from the first matching
condition filling the hole with the current term) is empty. Note that, while rule Fulfill provides the
positive information indicating that a condition is fulfilled, this one provides the negative information,
proving that the condition does not hold.

Now we introduce in Figure 7 the rules defining the relation t Cn S when the bound n is greater than 0,
which can be understood as searches in zero or more steps:

• Rules Tr1 and Tr2 show the behavior of the calculus when at least one step can be used. First, we check
whether the condition holds (rule Tr1) or not (rule Tr2) for the current term, in order to introduce
it in the result set. Then, we obtain all the terms reachable in one step with the relation ⇒1, and
finally we compute the reachable solutions from these terms constrained by the same condition and
the bound decreased by one step. The union of the sets obtained in this way and the initial term, if
needed, corresponds to the final result set.

• Rule Stp shows how the set for one step is computed. The result set is the union of the terms obtained
by applying each rule at the top (calculated with t ⇒top S) and the terms obtained by rewriting the
arguments of the term one step. This rule can be straightforwardly adapted to the more general case in
which the operator f has some frozen arguments (i.e., that cannot be rewritten); the implementation
of the debugger makes use of this more general rule.
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fulfilled(C, t) t⇒1 {t1, . . . , tk} t1  Cn S1 . . . tk  Cn Sk

t Cn+1

k[
i=1

Si ∪ {t}

Tr1

fails(C, t) t⇒1 {t1, . . . , tk} t1  Cn S1 . . . tk  Cn Sk

t Cn+1

k[
i=1

Si

Tr2

f(t1, . . . , tm)⇒top St t1 ⇒1 S1 · · · tm ⇒1 Sm

f(t1, . . . , tm)⇒1 St ∪
Sm
i=1{f(t1, . . . , ui, . . . , tm) | ui ∈ Si}

Stp

t⇒q1 Sq1 · · · t⇒ql Sql

t⇒top
l[
i=1

Sqi

Top if {q1, . . . , ql} = {q ∈ R | q �top
K t}

[l := t, ∅] Θ0 〈C1,Θ0〉 Θ1 · · · 〈Ck,Θk−1〉 Θk

t⇒q
[

θ∈Θk

{θ(r)}
Rl if q : l⇒ r ⇐ C1 ∧ . . . ∧ Ck ∈ R

t→norm t1 t1  Cn {t2} ∪ S t2 →norm t′

t Cn {t′} ∪ S
Red1

Figure 7: Calculus for missing answers

• How to obtain the terms by rewriting at the top is explained by rule Top, which specifies that the result
set is the union of the sets obtained with all the possible applications of each rule in the program.
We have restricted these rules to those whose lefthand side, with the variables considered at the kind
level, matches the term, represented with notation q �top

K t, where q is the label of the rule and t the
current term.

• Rule Rl uses the rules in Figure 4 to compute the set of terms obtained with the application of a
single rule. First, the set of substitutions obtained from matching with the lefthand side of the rule
is computed, and then it is used to find the set of substitutions that satisfy the condition. This final
set is used to instantiate the righthand side of the rule to obtain the set of reachable terms. The kind
of information provided by this rule corresponds to the information provided by the substitutions; if
the empty set of substitutions is obtained (negative information) then the rule computes the empty
set of terms, which also corresponds with negative information proving that no terms can be obtained
with this rewrite rule; analogously when the set of substitutions is nonempty (positive information).
This information is propagated through the rest of the inference rules justifying why some terms are
reachable while others are not.

• Finally, rule Red1 reduces the reachable terms in order to obtain their normal forms. We use this rule
to reproduce Maude behavior, first the normal form of the term is computed and then the rules are
applied.

Now we prove that this calculus is correct in the sense that the derived judgments with respect to the
rewrite theory R = (Σ, E,R) coincide with the ones satisfied by the corresponding initial model TΣ/E,R,
i.e., for any judgment ϕ, ϕ is derivable in the calculus if and only if TΣ/E,R |= ϕ.

Theorem 1. The calculus of Figures 4, 5, 6, and 7 is correct.

Once these rules are defined, we can build the tree corresponding to the search result shown in Section 2.5
for the maze example. We recall that we have defined a system to search a path out of a labyrinth but,
given a concrete labyrinth with an exit, the program is unable to find it:
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Maude> (search {[1,1]} =>* {L:List} s.t. isSol(L:List) .)

search in MAZE :{[1,1]} =>* {L:List}.

No solution.

First of all, we have to use a concrete bound to build the tree. It must suffice to compute all the reachable
terms, and in this case the least of these values is 4. We have depicted the tree in Figure 8, where we have
abbreviated the equational condition {L:List} := ~∧ isSol(L:List) = true by C and isSol(L:List) =
true by isSol(L). The leftmost tree justifies that the search condition does not hold for the initial term
(this is the reason why Tr2 has been used instead of Tr1) and thus it is not a solution. Note that first the
substitutions from the matching with the pattern are obtained (L 7→ [1,1] in this case), and then these
substitutions are used to instantiate the rest of the condition, that for this term does not hold, which is
proved by ��AA2 . The next tree shows the set of reachable terms in one step (the tree ��AA3 , explained below,
computes the terms obtained by rewrites at the top, while the tree on its right shows that the subterms
cannot be further rewritten) and finally the rightmost tree, that has a similar structure to this one and will
not be studied in depth, continues the search with the bound decreased in one step.

1→norm 1
Norm

[1,1]→norm [1,1]
Norm

{[1,1]}→norm {[1,1]}
Norm

[{L} := {[1,1]}, ∅] {L 7→ [1,1]}
PatC

�
�
A
A2

〈isSol(L), {L 7→ [1,1]}〉 ∅
SubsCond

fails(C, {[1,1]})
Fail

�
�
A
A3 [1,1]⇒top ∅

Top
1⇒top ∅

Top

1⇒1 ∅
Stp

[1,1]⇒1 ∅
Stp

{[1,1]}⇒1 {{[1,1][1,2]}}
Stp

5
{[1,1][1,2]} C3 ∅

Tr2

{[1,1]} C4 ∅
Tr2

Figure 8: Tree for the maze example

The tree ��AA2 shows why the current list is not a solution (i.e., the tree provides the negative information
proving that this fragment of the condition does not hold). The reason is that the function isSol is reduced
to false, when we needed it to be reduced to true.

isSol([1,1])→red false
Rdc1

false→norm false
Norm

isSol([1,1])→norm false
NTr

true→norm true Norm

[isSol(L) = true, L 7→ [1,1]] ∅
EqC2

Figure 9: Tree ��AA2 for the search condition

The tree labeled with ��AA3 is sketched in Figure 10. In this tree the applications of all the rules whose
lefthand side matches the current term ({[1,1]}) are tried. In this case only the rule expand (abbreviated
by e) can be used, and it generates a list with the new position [1,2]; the tree ��AA4 is used to justify
that the first condition of expand holds and extends the set of substitutions that fulfill the condition
thus far to the set {θ1, θ2, θ3}, where θ1 ≡ L 7→ [1,1]; P 7→ [1,2], θ2 ≡ L 7→ [1,1]; P 7→ [1,0], and
θ3 ≡ L 7→ [1,1]; P 7→ [0,1]. The substitution θ1 also fulfills the next condition, isOk(L P), which is
proved with the rule EqC1 in (♣) (where ��AA5 is the proof tree shown in Figure 2, proving that the condition
holds), while the substitutions θ2 and θ3 fail; the trees 5 proving it are analogous to the one shown in
Figure 9. This substitution θ1 is thus the only one inferred in the root of the tree, where the node (♣)
provides the positive information proving why the substitution is obtained and its siblings (5) the negative
information proving why the other substitutions are not in the set.

The tree ��AA4 , shown in Figure 11, is in charge of inferring the set of substitutions obtained when checking
the first condition of the rule expand, namely next(L) => P. The condition is instantiated with the substi-
tution obtained from matching the term with the lefthand side of the rule (in this case L 7→ [1,1]) and,
since it is a rewrite condition, the set of reachable terms is used to extend this substitution, obtaining a set
with three different substitutions (that we previously abbreviated as θ1, θ2, and θ3).
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1→norm 1
Norm

{[1,1]}→norm {[1,1]}
Norm

[{L} := {[1,1]}, ∅] {L 7→ [1,1]}
PatC

�
�
A
A4

�
�
A
A5

true→ true
Rf→

(♣) [isOk(L P), θ1] {θ1}
EqC1 5 5

〈isOk(L P), {θ1, θ2, θ3}〉 {θ1}
SubsCond

{[1,1]}⇒e {{[1,1][1,2]}}
Rl

{[1,1]}⇒top {{[1,1][1,2]}}
Top

Figure 10: Tree ��AA3 for the applications at the top

5
next([1,1]) P:=~

2 {[1,2], [1,0], [0,1]}
Tr2

[next(L)⇒ P, L 7→ [1,1]] {L 7→ [1,1]; P 7→ [1,2], L 7→ [1,1]; P 7→ [1,0], L 7→ [1,1]; P 7→ [0,1]}
RlC

〈next(L)⇒ P, {L 7→ [1,1]}〉 {L 7→ [1,1]; P 7→ [1,2], L 7→ [1,1]; P 7→ [1,0], L 7→ [1,1]; P 7→ [0,1]}
SubsCond

Figure 11: Tree ��AA4 for the first condition of expand

There are two additional kinds of search allowed in our framework: searches for final terms and searches
in one or more steps. Figure 12 presents the inference rules for these cases:

• Rules Rf3 and Rf4 are applied when the set of reachable terms in one step is empty (that is, when the
term is final). They check whether the term, in addition to being final, fulfills the condition in order
to insert it in the result set when appropriate.

• Rule Rf5 specifies that, if the term is not final but no more steps are allowed, then the set of reachable
final terms is empty.

• Rule Tr3 shows the transitivity for this kind of search. Since the term is not final, it is not necessary
to check whether it fulfills the condition.

• Rule Red2 reduces the reachable final terms in order to obtain their normal forms.

• If only zero steps are available in searches where at least one is required, the empty set is obtained,
which is indicated in rule Rf6.

• When at least one step can be used we apply rule Tr4, that indicates that one step is used, and then
the relation for zero or more steps is used with the results in order to obtain the final solutions.

The correctness of these inference rules with respect to the initial model TΣ/E,R is proved in the following
theorem:

Theorem 2. The calculus of Figure 12 is correct.

Following the approach shown in the previous section, we assume the existence of an intended interpre-
tation I of the given rewrite theory R = (Σ, E,R). As any Σ-term model, I must satisfy the following
soundness propositions:

Proposition 2. Let R = (Σ, E,R) be a rewrite theory, C an atomic condition, θ an admissible substitution,
and TΣ/E′,R′ any Σ-term model. If adequateSorts(κ) Θ, [C, θ] Θ, or 〈C,Θ〉 Θ′ can be deduced using
the rules from Figure 4 using premises that hold in TΣ/E′,R′ , then also TΣ/E′,R′ |= adequateSorts(κ) Θ,
TΣ/E′,R′ |= [C, θ] Θ, and TΣ/E′,R′ |= 〈C,Θ〉 Θ′, respectively.

Proposition 3. Let R = (Σ, E,R) be a rewrite theory and ϕ a judgment deduced with the inference rules
Dsb, Rdc2, or NTr from Figure 5 from premises that hold in TΣ/E′,R′ . Then also TΣ/E′,R′ |= ϕ.
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fulfilled(C, t) t⇒1 ∅
t !Cn {t}

Rf3

fails(C, t) t⇒1 ∅
t !Cn ∅

Rf4

t⇒1 S

t !C0 ∅
Rf5 S 6= ∅

t⇒1 {t1, . . . , tk} t1  !CnS1 . . . tk  !CnSk

t !Cn+1

k[
i=1

Si

Tr3 if k > 0

t→ t1 t1  !Cn{t2} ∪ S t2 → t′

t !Cn{t′} ∪ S
Red2

t +C0∅
Rf6

t→ t′ t′ ⇒1 {t1, . . . , tk} t1  Cn S1 . . . tk  Cn Sk

t +Cn+1

k[
i=1

Si

Tr4

Figure 12: Calculus for final and one or more steps searches

Proposition 4. Let R = (Σ, E,R) be a rewrite theory, C an admissible condition, and TΣ/E′,R′ any Σ-term
model. If t C0 S can be deduced using rules Rf1 or Rf2 from Figure 6 using premises that hold in TΣ/E′,R′ ,
then also TΣ/E′,R′ |= t C0 S.

Proposition 5. Let R = (Σ, E,R) be a rewrite theory, C an admissible condition, n a natural number, and
TΣ/E′,R′ any Σ-term model. If t  Cn S or t ⇒1 S can be deduced by means of the rules in Figure 7 using
premises that hold in TΣ/E′,R′ , then also TΣ/E′,R′ |= t Cn S or TΣ/E′,R′ |= t⇒1 S, respectively.

Proposition 6. Let R = (Σ, E,R) be a rewrite theory, C an admissible condition, n a natural number, and
TΣ/E′,R′ any Σ-term model. If a statement t  !Cn S or t  +Cn S can be deduced by means of the rules in
Figure 12 using premises that hold in TΣ/E′,R′ , then also TΣ/E′,R′ |= t  !Cn S or TΣ/E′,R′ |= t  +Cn S,
respectively.

Observe that these soundness propositions cannot be extended to the Ls, Fulfill, Fail, Top, and Rl inference
rules, where the soundness of the conclusion depends not only on the calculus but also on the specification,
which could be wrong.

4. Debugging trees

We describe in this section how to obtain appropriate debugging trees from the proof trees introduced
in the previous section. First, we describe the errors that can be found with these proof trees; then, we
describe how they can be abbreviated in such a way that soundness and completeness are kept while easing
the debugging sessions.
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4.1. Debugging with proof trees
As explained in the previous sections, we assume the existence of an intended interpretation I of the

given rewrite theory R = (Σ, E,R). This intended interpretation is a Σ-term model corresponding to the
model that the user had in mind while writing the specification R. We will say that a judgment is valid
when it holds in the intended interpretation I, and invalid otherwise. Our goal is to find a buggy node (an
invalid node with all its children correct) in any proof tree T rooted by the initial error symptom detected
by the user. This could be done simply by asking the user questions about the validity of the nodes in the
tree according to the following top-down strategy:

Input: A tree T with an invalid root.

Output: A buggy node in T .

Description: Consider the root N of T . There are two possibilities:

• If all the children of N are valid, then finish pointing out N as buggy.
• Otherwise, select the subtree rooted by any invalid child and recursively use the same

strategy to find the buggy node.

Proving that this strategy is complete is straightforward by using induction on the height of T . As an
easy consequence, the following result holds:

Proposition 7. Let T be a proof tree with an invalid root. Then there exists a buggy node N ∈ T such that
all the ancestors of N are invalid.

By using the proof trees computed with the calculus of the previous section as debugging trees we are
able to locate wrong statements, missing statements, and wrong search conditions, which are defined as
follows:

• Given a statement A ⇐ C1 ∧ · · · ∧ Cn (where A is either an equation l = r, a membership l : s, or a
rule l⇒ r) and a substitution θ, the statement instance θ(A)⇐ θ(C1)∧ · · · ∧ θ(Cn) is wrong when all
the atomic conditions θ(Ci) are valid in I but θ(A) is not.

• Given a rule l ⇒ r ⇐ C1 ∧ · · · ∧ Cn and a term t, the rule has a wrong instance if the judgments
[l := t, ∅]  Θ0, [C1,Θ0]  Θ1, . . ., [Cn,Θn−1]  Θn are valid in I but the application of Θn to the
righthand side does not provide all the results expected for this rule.

• Given a condition l := ~ ∧ C1 ∧ · · · ∧ Cn and a term t, if [l := t, ∅]  Θ0, [C1,Θ0]  Θ1, . . .,
[Cn,Θn−1] ∅ are valid in I (meaning that the condition does not hold for t) but the user expected
the condition to hold, then we have a wrong search condition instance.

• Given a condition l := ~ ∧ C1 ∧ · · · ∧ Cn and a term t, if there exists a substitution θ such that
θ(l) ≡A t and all the atomic conditions θ(Ci) are valid in I, but the condition is not expected to hold,
then we also have a wrong search condition instance.

• A statement or condition is wrong when it admits a wrong instance.

• Given a term t, there is a missing equation for t if t is not expected to be in normal form and none of
the equations in the specification are expected to be applied to it.

• A specification has a missing equation if there exists a term t such that there is a missing equation for
t.

• Given a term t, there is a missing membership for t if t is an expected normal form such that the
computed least sort of t is not the expected one and none of the membership axioms in the specification
are expected to be applied to it.
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Rep→ Wrong equation
Rep⇒ Wrong rule

Mb Wrong membership
Rdc1 Wrong equation
Norm Missing equation

Ls Missing membership
Fulfill Wrong search condition
Fail Wrong search condition
Top Missing rule
Rl Wrong rule

Table 3: Errors detected by the proof trees

• A specification has a missing membership if there exists a term t such that there is a missing mem-
bership for t.

• Given a term t, there is a missing rule for t if all the rules applied to t at the top lead to judgments
t ⇒qi Sqi

valid in I but the union
⋃
Sqi

does not contain all the reachable terms from t by using
rewrites at the top.

• A specification has a missing rule if there exists a term t such that there is a missing rule for t.

We relate these definitions with our calculus in the following proposition:

Proposition 8. Let N be a buggy node in some proof tree in the calculus of Figures 1, 4, 5, 6, 7, and 12
w.r.t. an intended interpretation I. Then:

1. N corresponds to the consequence of an inference rule in the first column of Table 3.
2. The error associated to N can be obtained from the inference rule as shown in the second column of

Table 3.

We assume that the nodes inferred with these inference rules are decorated with some extra information to
identify the error when they are pointed out as buggy. More specifically, nodes related to wrong statements
keep the label of the statement, nodes related to missing statements keep the operator at the top that
requires more statements to be defined, and nodes related to wrong conditions keep the condition. With
this information available, when a wrong statement is found this specific statement is pointed out; when
a missing statement is found, the debugger indicates the operator at the top of the term in the lefthand
side of the statement that is missing; and when a wrong condition is found, the specific condition is shown.
Actually, when a missing statement is found what the debugger reports is that a statement is missing or
the conditions in the remaining statements are not the intended ones (thus they are not applied when
expected and another one would be needed), but the error is not located in the statements used in the
conditions, since they are also checked during the debugging process. Finally, it is important not to confuse
missing answers with missing statements; the current calculus detects missing answers due to both wrong
and missing statements and wrong search conditions.

4.2. Abbreviated proof trees
We will not use the proof trees T computed in the previous sections directly as debugging trees, but a

suitable abbreviation which we denote by APT (T ) (from Abbreviated Proof Tree), or simply APT if the
proof tree T is clear from the context. The reason for preferring the APT to the original proof tree is
that it reduces and simplifies the questions that will be asked to the user while keeping the soundness and
completeness of the technique. This transformation relies on Proposition 8: only potential buggy nodes are
kept.
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The rules for deriving an APT can be seen in Figure 13. The abbreviation always starts by applying
(APT1). This rule simply duplicates the root of the tree and applies APT ′, which receives a proof tree
and returns a forest (i.e., a set of trees). Hence without this duplication the result of the abbreviation could
be a forest instead of a single tree. The rest of the APT rules correspond to the function APT ′ and are
assumed to be applied top-down: if several APT rules can be applied at the root of a proof tree, we must
choose the first one, that is, the rule with the lowest index. The following advantages are obtained with this
transformation:

• Questions associated to nodes with reductions are improved (rules (APT2), (APT3), (APT5),
(APT6), and (APT7)) by asking about normal forms instead of asking about intermediate states.
For example, in rule (APT2) the error associated to t1 → t2 is the one associated to t1 → t′, which is
not included in the APT . We have chosen to introduce t1 → t2 instead of simply t1 → t′ in the APT
as a pragmatic way of simplifying the structure of the APT s, since t2 is obtained from t′ and hence
likely simpler.

• The rule (APT4) deletes questions about rewrites at the top of a given term (that may be difficult to
answer due to matching modulo) and associates the information of those nodes to questions related
to the set of reachable terms in one step with rewrites in any position, that are in general easier to
answer.

• It creates, with the variants of the rules (APT8) and (APT9), two different kinds of tree, one that
contains judgments of rewrites with several steps and another that only contains rewrites in one step.
The one-step debugging tree strictly follows the idea of keeping only nodes corresponding to relevant
information. However, the many-steps debugging tree also keeps nodes corresponding to the transitivity
inference rules. The user will choose which debugging tree (one-step or many-steps) will be used for
the debugging session, taking into account that the many-steps debugging tree usually leads to shorter
debugging sessions (in terms of the number of questions) but with likely more complicated questions.
The number of questions is usually reduced because keeping the transitivity nodes for rewrites gives
some parts of the debugging tree the shape of a balanced binary tree (each transitivity inference has
two premises, i.e., two child subtrees), and this allows the debugger to efficiently use the divide and
query navigation strategy. On the contrary, removing the transitivity inferences for rewrites (as rules
(APTo

8) and (APTo
9) do) produces flattened trees where this strategy is no longer so efficient. On

the other hand, in rewrites t ⇒ t′ and searches t  Cn S appearing as the conclusion of a transitivity
inference rule, the judgment can be more complicated because it combines several inferences. The user
must balance the pros and cons of each option, and choose the best one for each debugging session.

• The rule (APT11) removes from the tree all the nodes which are not associated with relevant infor-
mation, since the rule (APT10) keeps the relevant information and the rules are applied in order.
We remove, for example, nodes related to judgments about sets of substitutions, disabled statements,
and rewrites with a concrete rule. Moreover, it removes trivial judgments, like the ones related to
reflexivity or congruence, from the tree.

• Since the APT is built without computing the associated proof tree, it reduces the time and space
needed to build the tree.

We can state the correctness and completeness of the debugging technique based on APT s:

Theorem 3. Let T be a finite proof tree representing an inference in the calculus of Figures 1, 4, 5, 6, 7,
and 12 w.r.t. some rewrite theory R. Let I be an intended interpretation of R such that the root of T is
invalid in I. Then:

• APT (T ) contains at least one buggy node (completeness).

• Any buggy node in APT (T ) has an associated wrong statement, missing statement, or wrong condition
in R according to Table 3 (correctness).
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(APT1) APT

„
T1 . . . Tn

ϕ
R1

«
=

APT ′
„

T1 . . . Tn
ϕ

R1

«
ϕ

(APT2) APT ′

0@ T1 . . . Tn
t1 → t′

Rep→
T ′

t1 → t2
Tr→

1A =


APT ′(T1) . . . APT ′(Tn) APT ′(T ′)

t1 → t2
Rep→

ff

(APT3) APT ′

0@ T1 . . . Tn
t→ t′′

Rdc1 T ′

t→ t′
NTr

1A =


APT ′ (T1) . . . APT ′ (Tn) APT ′ (T ′)

t→ t′
Rdc1

ff

(APT4) APT ′

0@ T1 . . . Tn
t⇒top S′

Top T ′1...T
′
m

t⇒1 S
Stp

1A =


APT ′ (T1) . . . APT ′ (Tn) APT ′

`
T ′1
´

. . . APT ′ (T ′m)
t⇒1 S

Top

ff

(APT5) APT ′

0@ T ′
T1 . . . Tn
t⇒ t′

Rep⇒
T ′′

t1 ⇒ t2
EC

1A =


APT ′(T ′) APT ′(T1) . . . APT ′(Tn) APT ′(T ′′)

t1 ⇒ t2
Rep⇒

ff

(APT6) APT ′

0@ T
T1 . . . Tn

ϕ′
R1 T ′

ϕ
Redi

1A =


APT ′ (T ) APT ′ (T1) . . . APT ′ (Tn) APT ′ (T )

ϕ
R1

ff

(APT7) APT ′
„

Tt→normt′ T1 . . . Tn
t :ls s

Ls

«
=


APT ′

`
Tt→normt′

´
APT ′ (T1) . . . APT ′ (Tn)
t ′ :ls s

Ls

ff

(APTo8) APT ′
„

T1 T2

t1 ⇒ t2
Tr⇒

«
= APT ′(T1)

S
APT ′(T2)

(APTm8 ) APT ′
„

T1 T2

t1 ⇒ t2
Tr⇒

«
=


APT ′(T1) APT ′(T2)

t1 ⇒ t2
Tr⇒

ff

(APTo9) APT ′
„

T1 . . . Tn
ϕ

Trj

«
= APT ′ (T1)

S
. . .

S
APT ′ (Tn)

(APTm9 ) APT ′
„

T1 . . . Tn
ϕ

Trj

«
=


APT ′ (T1) . . . APT ′ (Tn)

ϕ
Trj

ff

(APT10) APT ′
„

T1 . . . Tn
ϕ

R2

«
=


APT ′(T1) . . . APT ′(Tn)

ϕ
R2

ff

(APT11) APT ′
„

T1 . . . Tn
ϕ

R1

«
= APT ′(T1)

S
. . .

S
APT ′(Tn)

R1 any inference rule R2 either Mb, Rep→, Rep⇒, Rdc1, Norm, Fulfill, Fail, Ls, Rl, or Top

1 ≤ i ≤ 2 1 ≤ j ≤ 4 ϕ, ϕ′ any judgment

Figure 13: Transforming rules for obtaining abbreviated proof trees
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(♠) 1→norm 1
Norms

(♠) [1,1]→norm [1,1]
Norm[ , ]

(♠) {[1,1]}→norm {[1,1]}
Norm{ }

isSol(P1)→ f
Rdcis2

�
�
A
A6

5 . . . 5 �
�
A
A7

{[1,1]} C4 ∅
Tr2

Figure 14: Abbreviated proof tree for the maze example

(♠) 1→norm 1
Norms

(♠) [1,1]→norm [1,1]
Norm[ , ]

5 �
�
A
A8

(♦) isOk(L2)→ f
Rep⊥

(♦) isOk(L3)→ f
Rep⊥

{[1,1]}⇒e {{[1,1][1,2]}}
Rle

(♥) 1⇒1 ∅
Tops

(♥) [1,1]⇒1 ∅
Top[ , ]

{[1,1]}⇒1 {{[1,1][1,2]}}
Top{ }

Figure 15: Abbreviated tree ��AA6

The theorem states that we can safely employ the abbreviated proof tree as a basis for the declarative
debugging of Maude system and functional modules: the technique will find a buggy node starting from any
initial symptom detected by the user. Of course, these results assume that the user correctly answers all
the questions about the validity of the APT nodes asked by the debugger (see Section 2.6).

The trees in Figures 14–17 depict the (one-step) abbreviated proof tree for the maze example, where C
stands for {L:List}:= ~ ∧ isSol(L:List), P1 for [1,1], L1 for [1,1][1,2], L2 for [1,1][1,0], L3 for
[1,1][0,1], t for true, f for false, n for next, e for expand, and L for [1,1][1,2][1,3][1,4]. We have
also extended the information in the labels with the operator or statement associated to the inference. More
concretely, the tree in Figure 14 abbreviates the tree in Figure 8; the first two premises in the abbreviated
tree stand for the first premise in the proof tree (which includes the tree in Figure 9), keeping only the nodes
associated with relevant information according to Proposition 8: Norm, with the operator associated to the
reduction, and Rdc1, with the label of the associated equation. The tree ��AA6 , shown in Figure 15, abbreviates
the second premise of the tree in Figure 8 as well as the trees in Figures 10 and 11; it only keeps the
nodes referring to normal forms, searches in one step, that are now associated to the rule Top, each of them
referring to a different operator (the operator s_ is the successor constructor for natural numbers), and the
applications of rules (Rl) and equations (Rep→). Note that the equation describing the behavior of isOk has
not got any label, which is indicated with the symbol ⊥; we will show below how the debugger deals with
these nodes. The tree ��AA7 , presented in Figure 16, shares these characteristics and only keeps nodes related
to one-step searches and application of rules. The tree ��AA8 abbreviates the proof tree for the reduction shown
in Figure 2, where the important result of the abbreviation is that all replacement inferences are related
now to reductions to normal form, thus easing the questions that will be asked to the user.

These abbreviation rules are combined with trusting mechanisms that further reduce the proof tree:

• Statements can be trusted in several ways: non labelled statements, which include the predefined
functions, are always trusted (i.e., the nodes marked with (♦) in Figures 15 and 17 will be discarded
by the debugger); statements and modules can be trusted before starting the debugging process; and
statements can also be trusted on the fly.

5 . . . 5

5 . . . 5
n(L)⇒n1 {[1,5]}

Rln1
5 . . . 5

n(L)⇒n2 {[0,4]}
Rln2

5 . . . 5
n(L)⇒n3 {[1,3]}

Rln3

(‡) n(L)⇒1 {[1,5], [0,4], [1,3]}
Topn

(o) {[1,1][1,2][1,3][1,4]}⇒e ∅
Rle

(†) {[1,1][1,2][1,3][1,4]}⇒1 ∅
Top{ }

Figure 16: Abbreviated tree ��AA7
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5
(♦) 1 >= 1→ t

Rep⊥
. . .

5
(♦) 2 <= 8→ t

Rep⊥

c(nil,[1,2])→ f
Repc1

(♦) t2 → f
Rep⊥

(♦) t1 → t
Rep⊥

c([1,1], [1,2])→ f
Repc2 (♦) not(f)→ t

Rep⊥
5

(♦) t and ... and t→ t
Rep⊥

(♦) isOk([1,1][1,2])→ t
Rep⊥

Figure 17: Abbreviated proof tree ��AA8

• A correct module can be given before starting a debugging session. By checking the correctness of the
judgments against this module, correct nodes can be deleted from the tree.

• Constructed terms (that is, terms built only with constructors, defined by means of the ctor attribute)
of certain sorts or built with some operators can be considered final, which indicates that they cannot
be further rewritten. For example, we could consider terms of sorts Nat and List (and hence its
subsort Pos) to be final and thus the nodes marked with (♥) in Figure 15 would be removed from the
tree.

• Moreover, we consider that constructed terms are in normal form and thus they are automatically
removed from the tree. For example, the nodes marked with (♠) in Figures 14 and 15 will be removed
from the debugging tree.

5. Using the debugger

We introduce in this section how to create and navigate the debugging tree.

5.1. Creating the debugging tree
We describe in this section how to start the debugging process, describing the commands that must be

used before creating the debugging tree and the different commands to create it.
The debugger is initiated in Maude by loading the file dd.maude (available from http://maude.sip.

ucm.es/debugging), which starts an input/output loop that allows the user to interact with the tool. Then,
the user can enter Full Maude modules and commands, as well as commands for the debugger. Tables 4
and 5 present a summary of the commands explained below.

The user can choose between using all the labeled statements in the debugging process (by default) or
selecting some of them by means of the command

(set debug select on .)

Once this mode is activated, the user can select and deselect statements by using5

(debug select LABELS .)

(debug deselect LABELS .)

where LABELS is a list of statement labels separated by spaces.
Moreover, all the labels in statements of a flattened module can be selected or deselected with the

commands

(debug include MODULES .)

(debug exclude MODULES .)

5Although these labels, as well as the set of labels from a module and the final sorts below, can be selected and deselected
with the corresponding modes switched off, they will have effect only when the corresponding modes are activated.
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where MODULES is a list of module names separated by spaces.
The selection mode can be switched off by using the command

(set debug select off .)

In a similar way, it is also possible to indicate that some terms are final, that is, that they cannot be
further rewritten:

• By using the value final in the attribute metadata of an operator declaration, that indicates that the
terms built with this operator at the top are final.

• By selecting a set of final sorts. In this case, constructed terms having one of these sorts (or having a
subsort of these sorts) are considered final.

• On the fly, as will be explained below.

In the first two cases, the user must activate the final sorts mode with the command

(set final select on .)

While the attribute metadata must be written in the Maude file, final sorts can be selected/deselected
with the commands

(final select SORTS .)

(final deselect SORTS .)

where SORTS is a list of sort identifiers separated by spaces.
This option can be switched off with the command

(set final select off .)

A module with only correct definitions can be used to reduce the number of questions. In this case, it
must be indicated before starting the debugging process with the command

(correct module MODULE-NAME .)

and can be deselected with the command

(delete correct module .)

Since rewriting is not assumed to terminate, a bound, which is 42 by default, is used when searching in
the correct module and can be set with the command

(set bound BOUND .)

where BOUND is either a natural number or the constant unbounded. Note that if it is 0 the correct module
will not be used for rewrites, while if it is unbounded the correct module is assumed to be terminating.

When debugging wrong rewrites, two different trees can be built: one whose questions are related to
one-step rewrites and another whose questions are related to several steps. The user can switch between
these trees, before starting the debugging process, with the commands

(one-step tree .)

(many-steps tree .)

the first of which is the default one.
In the same way, when debugging missing answers we distinguish between trees whose nodes are related

to sets of terms obtained with one (the default case) or many steps. The user can select them with the
commands
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(one-step missing tree .)

(many-steps missing tree .)

When debugging missing answers, the user can prioritize questions related to the fulfillment of the search
condition from questions involving the statements defining it. This option, switched off by default, can be
activated with the command

(solutions prioritized on .)

and can be switched off again with

(solutions prioritized off .)

The debugging process for wrong answers is started with the commands

(debug [in MODULE-NAME :] INITIAL-TERM -> WRONG-TERM .)

(debug [in MODULE-NAME :] INITIAL-TERM : WRONG-SORT .)

(debug [in MODULE-NAME :] INITIAL-TERM =>* WRONG-TERM .)

for wrong reductions, memberships, and rewrites, respectively. MODULE-NAME is the module where the
computation took place; if no module name is given, the current module is used by default. Similarly, we
start the debugging of missing answers with the commands

(missing [in MODULE-NAME :] INITIAL-TERM -> ERR-NORMAL-FORM .)

(missing [in MODULE-NAME :] INITIAL-TERM : ERR-LEAST-SORT .)

(missing [[depth]] [in MODULE-NAME :] INITIAL-TERM =>* PATTERN [s.t. CONDITION] .)

(missing [[depth]] [in MODULE-NAME :] INITIAL-TERM =>+ PATTERN [s.t. CONDITION] .)

(missing [[depth]] [in MODULE-NAME :] INITIAL-TERM =>! PATTERN [s.t. CONDITION] .)

where the first command debugs erroneous normal forms, the second one erroneous least sorts, and the
remaining ones refer to incomplete sets found when using search. More specifically, the third command
specifies a search in zero or more steps, the fourth command in one or more steps, and the last one only
checks final terms. The depth argument indicates the bound in the number of steps allowed in the search,
and it is considered unbounded when omitted, while MODULE-NAME has the same behavior as in the commands
above.

5.2. Navigating the debugging tree
We describe in this section how the debugging tree created with the commands described in the previous

section is traversed. The debugging tree can be navigated by using two different strategies, namely, top-down
and divide and query, the latter being the default one. The user can switch between them at any moment
by using the commands

(top-down strategy .)

(divide-query strategy .)

In the divide and query strategy, each question refers to one judgment that can be either correct or
wrong. The different answers are transmitted to the debugger with the answers

(yes .)

(no .)

If the question asked is too difficult, the user can avoid answering with6

6Notice that in the current version of the debugger the question will not be asked again, thus this answer can lead to
incompleteness.
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(don’t know .)

To know the appropriate answer, we briefly describe the different kinds of questions asked by the debug-
ger, defining for each of them when they are considered correct and describing the additional answers that
can be used in each specific case. The possible questions are related to:

Reductions. When a term t has been reduced by using equations to another term t′, the debugger asks
questions of the form “Is this reduction correct? t → t′.” These judgments are correct if the user
expected t to be fully reduced to t′ by using the equational part (equations and memberships) of the
module.

In addition to the general answers, when the question corresponds to the application of a specific
statement (either a equation, like in this case, a membership, or a rule), instead of just answering
yes, we can also trust the statement on the fly if we decide the bug is not there. To trust the current
statement we answer (trust .).

Normal forms. When a term cannot be further reduced and it is not a constructed term, the debugger
asks “Is t in normal form?,” which is correct if the user expected t to be a normal form.

Memberships. When a sort s is inferred for a term t, the debugger prompts questions of the form “Is this
membership correct? t : s.” These judgments are correct if the expected least sort of t is a subsort of
s or s itself.

Least sorts. When the judgment refers to the least sort ls of a term t, the tool makes questions of the
form “Did you expect t to have least sort ls?.” In this case, the judgment is correct if the intended
least sort of t is exactly ls.

Rewrites in one step. When a term t is rewritten into another term t′ in only one step, the debugger
asks questions of the form “Is this rewrite correct? t ⇒1 t

′,” where t′ has already been fully reduced
by using equations. This judgment is correct if the user expected to obtain t′ from t modulo equations
with only one rewrite.

Rewrites in several steps. When a term t is rewritten into another one t′ after several rewrite steps,
the debugger shows the question “Is this rewrite correct? t ⇒+ t′,” where t′ is fully reduced. This
question is only prompted if the user selects the many-steps tree for wrong answers. This judgment is
correct if t′ is expected to be reachable from t.

Final terms. When a term t cannot be further rewritten, the debugger asks “Did you expect t to be final?.”
This judgment is correct if the user expected that no rules can be applied to t.

Additional information for this question can be given by answering (its sort is final .), that
indicates to the debugger that all the constructed terms with the same sort as this term are final.

Solutions. When a term t fulfills the search condition, the debugger shows questions of the form “Did you
expect t to be a solution?.” This judgment is correct if t is one of the intended solutions. In the same
way, if a term does not fulfill the search condition the debugger asks “Did you expect t not to be a
solution?,” that is correct if t is not one of the expected solutions.

Reachable terms in one step. When all the possible applications of each rule in the current specification
to a term t lead to a set of terms {t1, . . . , tn}, with n > 0, the debugger prompts the question “Are
the following terms all the reachable terms from t in one step? t1, . . . , tn.” This judgment is correct if
all the expected terms from t in one step constitute the set {t1, . . . , tn}.
In this case, if one of the terms is not reachable, the user can point it out with the answer (I is wrong .)
where I is the index of the wrong term in the set. With this answer the debugger focuses on debugging
this wrong judgment. This answer can also be used for reachable terms with one rule and in several
steps.
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Reachable terms with one rule. Given a term t and a rule r, when all the possible applications of r to
t produce a set of terms {t1, . . . , tn}, the debugger presents questions of the form “Are the following
terms all the reachable terms from t with one application of the rule r? t1, . . . , tn.” This judgment is
correct if all the expected reachable terms from t with one application of r form the set {t1, . . . , tn}.
When n = 0 the debugger prompts questions of the form “Did you expect that no terms can be
obtained from t by applying the rule r?,” that is correct if the rule r is not expected to be applied to
t.

Reachable terms in several steps. Given an initial term t, a condition c, and a bound in the number
of steps n, when all the terms reachable in at most n steps from t that fulfill c are t1, . . . , tm, with
m > 0, the debugger makes the following distinction:

• If the condition c defines the initial condition of the search, the tool asks questions of the form
“Are the following terms all the possible solutions from t in n steps? t1, . . . , tm,” where the bound
is omitted if it is unbounded. This judgment is correct if all the solutions that the user expected
to obtain from t in at most n steps constitute the set {t1, . . . , tm}. If m = 0 the debugger asks
questions of the form “Did you expect that no solutions are reachable from t in n steps?,” where
the bound is again omitted if it is unbounded. In this case, the judgment is correct if no solutions
were expected from t in at most n steps.
In this case, if one of the solutions is reachable but it should not fulfill the search condition, the
user can indicate it with (I is not a solution .), where I is the index of the term that should
not be in the set. With this answer the user indicates that the definition of the search condition
is erroneous and the debugger centers on it to continue the process.

• If the condition c has been obtained from a rewrite condition t′ ⇒ p, then c is just a matching
condition with the pattern p, and n is unbounded. In this case, the questions have the form
“Are the following terms all the reachable terms from t that match the pattern p? t1, . . . , tm.”
This judgment is correct if all the terms that should be obtained from t and match the pattern p
constitute the set {t1, . . . , tm}. When m = 0 the questions have the form “Did you expect that
no terms matching the pattern p can be obtained from t?,” that is correct if t is expected to be
final or all the terms reachable from t are not expected to match p.

These questions are only asked if the many-steps tree for missing answers is used.

In case the top-down strategy is selected, several questions will be displayed in each step. The user can
then introduce answers of the form (N : answer .), where N is the index of the question and answer is the
same answer that would be used in the divide and query strategy for this question. Moreover, as a shortcut
to answer (yes .) to all the questions, the debugger provides the answer

(all : yes .)

Finally, we can return to the previous state in both strategies by using the command

(undo .)

5.3. Recommendations
We recommend following some tips to ease the questions asked during the debugging process:

• It is usually more complicated to answer questions related to many steps (both in wrong and missing
answers) than questions related to one step. Thus, if a specification is complex it is better to debug it
with a one-step tree.

• There are some sorts that are usually final, such as Bool and Nat, so identifying them as final can
avoid several tedious questions.
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• If an error is found using a complex initial term, this error can probably be reproduced with a simpler
one. Using this simpler term leads to easier debugging sessions.

• When facing a problem with both wrong and missing answers, it is usually better to debug the wrong
answers first, because questions related to them are usually easier to answer and fixing them can also
solve the missing answers problem.

• When a question is related to a set of reachable terms that contains some wrong terms, it is recom-
mended to point out one of these terms as erroneous instead of indicating the whole set as wrong.

• When using the top-down navigation strategy, several questions are prompted. To point out one as
erroneous or all of them as valid will shorten the debugging process, while pointing out one question
as correct usually only eases the current set of questions. Thus, to indicate that a question is valid is
only recommended for extremely complicated or large sets of questions.

If the user follows these tips and uses the trusting mechanisms it is possible to debug very large specifi-
cations, because:

• Specifications are assumed to be structured, and usually the module being debugged imports several
other auxiliary modules. These modules should have been debugged before testing the current one,
and thus they can be trusted (maybe some complex functions from these auxiliary modules can be
suspicious).

• Specific reductions/sort inferences/rewrites usually do not apply every statement in the specification,
but a small subset of them. From this point of view, debugging a large specification should not be
harder than debugging a smaller one.

• The debugger assists the user through the computation, making the debugging process easier than
checking by hand thousands of statements and than traversing the trace without any guide.

6. A debugging session

We describe in this section how to debug the maze example shown in Section 2.5. We recall that we
have specified a module to search a path out of a labyrinth but, given a concrete labyrinth with an exit, the
program is unable to find it. We start the debugging process with the command:

Maude> (missing {[1,1]} =>* {L:List} s.t. isSol(L:List) .)

With this command the debugger builds a debugging tree for missing answers in zero or more steps with
the questions about solutions not prioritized, and navigated with the default divide and query strategy. The
first question is:

Did you expect {[1,1][1,2][1,3][1,4]} to be final?

Maude> (no .)

Since we expected to reach the position [2,4] from [1,4], this state should be rewritten and thus it is
not final. The next question is:

Is this reduction (associated with the equation c2) correct?

contains([2,1][4,1][2,2][3,2][6,2][7,2][2,3][4,3][5,3][6,3][7,3][1,5][2,5][3,5][4,5][5,5]

[6,5][8,5][6,6][8,6][6,7][6,8][7,8],[1,3]) -> false

Maude> (yes .)
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That is, the debugger asks whether it is correct that the position [1,3] is not included in the wall. We
answer that it is correct and the next question is:

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4]) in one step?

1 [1,5]

2 [1,3]

3 [0,4]

Maude> (no .)

The answer is no because the set of terms is incomplete: we expected to find the movement to the right
too. The debugger now asks:

Did you expect [1,4] to be final?

Maude> (yes .)

The answer is yes because we have not defined rules for positions, thus they cannot evolve. The following
series of questions are:

Did you expect [1,3] to be final?

Maude> (yes .)

Did you expect [1,2] to be final?

Maude> (yes .)

Did you expect [1,1][1,2][1,3][1,4] to be final?

Maude> (yes .)

We use the same reasoning about final terms to answer these questions. The next questions are:

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4])

with one application of the rule n2 ?

1 [0,4]

Maude> (yes .)

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4])

with one application of the rule n3 ?

1 [1,3]

Maude> (yes .)

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4])

with one application of the rule n1 ?

1 [1,5]

Maude> (yes .)
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All these questions are related to the appropriate application of certain rules; these rules move the last
position of the list to the left, up, and down, and thus they are correct. With this information, the debugger
is able to find the bug, prompting:

The buggy node is:

next([1,1][1,2][1,3][1,4]) =>1 {[1,5], [1,3], [0,4]}

Either the operator next needs more rules or the conditions of the current rules are not written

in the intended way.

In fact, if we check the code we realize that we forgot to define the rule that specifies movements to the
right. We must add the rule:

rl [next4] : next(L [X,Y]) => [X + 1, Y] .

However, we noticed that this session required us to answer a lot of similar questions. We can enhance
the behavior of the debugger by using features such as selection of final terms on the fly. For example, when
the fourth question is prompted:

Did you expect [1,4] to be final?

Maude> (its sort is final .)

Terms of sort Pos are final.

we can indicate that not only this term, but all the terms with its sort (not necessarily as least one, that is,
subsorts are also checked) are final. With this answer the debugging tree is pruned, and the next question
is:

Did you expect [1,1][1,2][1,3][1,4] to be final?

Maude> (its sort is final .)

Terms of sort List are final.

We use this answer again, although in this case it does not reduce the number of questions. As before,
the debugger finishes with the same three questions as above.

Although the number of questions has been reduced, we still face some questions that we would like to
avoid about final terms. To do this, we can activate the final selection mode before starting the debugging:

Maude> (set final select on .)

Final select is on.

Once this mode is active, we can point out the sorts of the terms that will not be rewritten. Note that
terms whose least sort is a subsort of the sorts selected will also be considered as final. For example, we
consider in our specification the sorts Nat and List as final, which implicitly indicates that the sort Pos,
subsort of List, is also final:

Maude> (final select Nat List .)

Sorts List Nat are now final.

Moreover, since we know that the rules next1, next2, and next3 are correct, we can avoid questions
about them by pointing out that the rest of the statements are suspicious with the commands:
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Maude> (set debug select on .)

Debug select is on.

Maude> (debug select is1 is2 c1 c2 expand .)

Labels c1 c2 expand is1 is2 are now suspicious.

Once these options are introduced, we can start the debugging process with the same command as before:

Maude> (missing {[1,1]} =>* {L:List} s.t. isSol(L:List) .)

Are the following terms all the reachable terms from {[1,1][1,2][1,3]} in one step?

1 {[1,1][1,2][1,3][1,4]}

Maude> (yes .)

Are the following terms all the reachable terms from {[1,1][1,2]} in one step?

1 {[1,1][1,2][1,3]}

Maude> (yes .)

Given the labyrinth’s limits and wall, we must go down in both cases to find the exit. The next question
selected by the debugger is:

Did you expect that no terms can be obtained from {[1,1][1,2][1,3][1,4]} by applying the rule

expand ?

Maude> (no .)

As we know, the list of positions should evolve to find the exit. The debugger asks now:

Is this reduction (associated with the equation c2) correct?

contains([2,1][4,1][2,2][3,2][6,2][7,2][2,3][4,3][5,3][6,3][7,3][1,5][2,5]

[3,5][4,5][5,5][6,5][8,5][6,6][8,6][6,7][6,8][7,8],[1,3]) -> false

Maude> (trust .)

We realize now that the equation c2 is simple enough to be trusted, although we pointed it out as
suspicious at the beginning of the session. We use the command trust and the following question is
prompted:

Is this reduction (associated with the equation c1) correct?

contains(nil,[1,5]) -> false

Maude> (trust .)

We consider that this equation can also be trusted. Finally, the debugger detects the problem with the
next answer:

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4]) in one step?

1 [1,5]
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2 [1,3]

3 [0,4]

Maude> (no .)

The buggy node is:

next([1,1][1,2][1,3]) =>1 {[1,4], [1,2], [0,3]}

Either the operator next needs more rules or the conditions of the current rules are not written

in the intended way.

Although in this example we have used the default divide and query navigation strategy, it is also possible
to use the top-down one by using:

Maude> (top-down strategy .)

Top-down strategy selected.

In this case we reduce the number of questions by considering that the sorts Nat and List are final and
that the suspicious statements are the equations defining the solution, is1 and is2:

Maude> (set final select on .)

Final select is on.

Maude> (final select Nat List .)

Sorts List Nat are now final.

Maude> (set debug select on .)

Debug select is on.

Maude> (debug select is1 is2 .)

Labels is1 is2 are now suspicious.

We can follow how this strategy proceeds with the trees in Figures 14 and 16. Once we introduce the
debugging command, the first series of questions, which refers to the premises of the root in Figure 14
(although without some nodes, as the second one, deleted by the trusting mechanisms), is prompted:

Maude> (missing { [1,1] } =>* { L:List } s.t. isSol(L:List) .)

Question 1 :

Did you expect {[1,1]} not to be a solution?

Question 2 :

Are the following terms all the reachable terms from {[1,1]} in one step?

1 {[1,1][1,2]}

Question 3 :

Did you expect {[1,1][1,2]} not to be a solution?

Question 4 :

Are the following terms all the reachable terms from {[1,1][1,2]} in one step?
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1 {[1,1][1,2][1,3]}

Question 5 :

Did you expect {[1,1][1,2][1,3]} not to be a solution?

Question 6 :

Are the following terms all the reachable terms from {[1,1][1,2][1,3]} in one step?

1 {[1,1][1,2][1,3][1,4]}

Question 7 :

Did you expect {[1,1][1,2][1,3][1,4]} not to be a solution?

Question 8 :

Did you expect {[1,1][1,2][1,3][1,4]} to be final?

Maude> (8 : no .)

The eighth question (corresponding to the root of the tree in Figure 16, marked with (†)) is erroneous
because position [2,4] is reachable from [1,4] and it is free of wall, so we do not expect this term to be
final. The following questions are:7

Question 1 :

Is next([1,1][1,2][1,3][1,4]) in normal form?

Question 2 :

Is Pos? the least sort of next([1,1][1,2][1,3][1,4]) ?

Question 3 :

Are the following terms all the reachable terms from next([1,1][1,2][1,3][1,4]) in one step?

1 [1,5]

2 [1,3]

3 [0,4]

Maude> (3 : no .)

With this answer we have pointed out the node marked (‡) in Figure 16 as wrong. Since all its chil-
dren correspond to applications of equations that were trusted (n1, n2, and n3, while the only suspicious
statements were is1 and is2), this node is now a leaf and thus it corresponds to a buggy node:

The buggy node is:

next([1,1][1,2][1,3][1,4]) =>1 {[1,5], [1,3], [0,4]}

Either the operator next needs more rules or the conditions of the current rules are not written

in the intended way.

Many more examples are available at http://maude.sip.ucm.es/debugging/.

7. Implementation

We show here how the ideas described in the previous sections are implemented. This implementation is
done in Maude itself by means of its reflective capabilities, which allow us to use Maude terms and modules

7Note that the child of this node, marked with (o), is skipped because the corresponding equation has been trusted.
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as data [12, Chapter 14]. Sections 7.1 and 7.2 describe the tree construction stage, where the abbreviated
proof trees are constructed. The interaction with the user is explained in Section 7.3.

The complete code of the tool is contained in the file dd.maude, available at http://maude.sip.ucm.
es/debugging/.

7.1. Debugging trees definition
In this section we show how to represent the debugging trees in Maude. First, we implement parametric

general trees with generic data in each node. Then, we instantiate them by defining the concrete data for
building our debugging trees.

The parameterized module that describes the behavior of the tree receives the theory TRIV (that simply
requires a sort Elt) as parameter. We use lists of natural numbers to identify (the position of) each node.
General trees are defined by means of the constructor tree, composed of some contents (received from the
theory), the size of the tree, and a Forest, which in turn is a list of trees:

fmod TREE{X :: TRIV} is

pr NAT-LIST .

sorts Tree Forest .

subsort Tree < Forest .

op tree(_,_,_) : X$Elt Nat Forest -> Tree [ctor format (ngi o d d d d ++i n--i d)] .

op mtForest : -> Forest [ctor format (ni d)] .

op __ : Forest Forest -> Forest [ctor assoc id: mtForest] .

...

endfm

We use the sort Judgment to define the values kept in the debugging trees. When keeping reductions
and memberships, we want to know the name of the statement associated with the node and the lefthand
and righthand sides of the computation, or the term and sort of a membership, respectively.

fmod DEBUGGING-TREE-NODE is

pr META-LEVEL .

sort Judgment .

op _:_->_ : Qid Term Term -> Judgment [ctor format (b o d b o d)] .

op _:_:_ : Qid Term Type -> Judgment [ctor format (b o d b o d)] .

If the inferred type is the least sort, we use the special notation below:

op _:ls_ : Term Type -> Judgment [ctor format (d b o d)] .

In the case of rewrites, we distinguish between nodes in the one-step tree and nodes in the many-steps
tree:

op _:_=>1_ : Qid Term Term -> Judgment [ctor format (b o d b o d)] .

op _=>+_ : Term Term -> Judgment [ctor format (d b o d)] .

Since the many-steps tree is computed on demand, its leaves corresponding to one-step rewrites are kept
as “frozen,” and will be evaluated only if needed:

op _=>f_ : Term Term -> Judgment [ctor format (d b o d)] .

The nodes for debugging missing answers in system modules keep the initial term and the list of possible
results. We distinguish between:
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• The set of reachable terms in one step:

op _=>1{_} : Term TermList -> Judgment [ctor format (d b o d d d)] .

• The set of reachable terms by applying one rule:

op _=>q[_]{_} : Term Qid TermList -> Judgment [ctor format (d b o d d d d d d)] .

• The set of reachable terms when many rewrite steps are used. In this case we also keep the bound, the
pattern, the condition and a Boolean value indicating whether this search corresponds to the initial
one, and thus these terms are the reachable solutions from the initial one, or corresponds to a search
due to a rewrite condition:

op _~>[_]{_}s.t._&_[_] : Term Bound TermList Term Condition Bool

-> Judgment [ctor format (d b o d d d d d d d d d d d d d)] .

We use the operator sol to indicate (the Boolean value in the fourth argument) whether a term (the first
argument) matches the pattern given as second argument and fulfills the condition given as third argument.
When the questions about solutions are prioritized these nodes are frozen and are expanded on demand, so
it has a Boolean value (the fifth argument) indicating whether the node has been already expanded. Finally,
the last Boolean value indicates whether this term is a solution of the initial search condition or it is a
solution of a rewrite condition:

op sol : Term Term Condition Bool Bool Bool -> Judgment [ctor format (b o)] .

The operator normal indicates that a term is in normal form with respect to the equational theory:

op normal : Term -> Judgment [ctor format (r o)] .

Finally, we define a constant unknown, that will be used when the user answers don’t know to any
question:

op unknown : -> Judgment [ctor] .

endfm

We use this module to create a view from the TRIV theory and we obtain our debugging trees by
instantiating the module TREE above with this view:

view DebuggingTreeNode from TRIV to DEBUGGING-TREE-NODE is

sort Elt to Judgment .

endv

fmod PROOF-TREE is

pr TREE{DebuggingTreeNode} .

...

endfm

7.2. Debugging trees construction
In this section we describe how the different debugging trees are built. First, we describe the construction

of debugging trees for wrong reductions, memberships, and rewrites and then we use them in the construction
of the trees for erroneous normal forms, least sorts, and sets of reachable terms. Instead of creating the
complete proof trees and then abbreviating them, we build the abbreviated proof trees directly.
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7.2.1. Debugging trees for wrong reductions and memberships
The function createTree builds debugging trees for wrong reductions and memberships. It exploits

the fact that the equations and membership axioms are both terminating and confluent. It receives the
module where a wrong inference took place, a correct module (or the constant undefMod when no such
module is provided) to prune the tree, the initial term, the (erroneous) result obtained, and the set of
suspicious statement labels. It keeps the initial reduction as the root of the tree and uses an auxiliary
function createForest that, in addition to the arguments received by createTree, receives the module
“cleaned” of suspicious statements (by using deleteSuspicious), and generates the forest of abbreviated
trees corresponding to the reduction between the two terms given as arguments. The transformed module
is used to improve the efficiency of the tree construction, because we can use it to check whether a term
reaches its final form by using only trusted statements, preventing the debugger from building a tree that
will be finally empty.

op createTree : Module Maybe{Module} Term Term QidSet -> Tree .

ceq createTree(M, CM, T, T’, QS) =

contract(tree(’root@#$% : T -> T’, getOffspring*(F) + 1, F))

if ST? := strat?(M) /\

M’ := deleteSuspicious(M, QS) /\

F := createForest(M, M’, CM, T, T’, QS) .

We use the function createForest to create a forest of abbreviated trees. It receives as parameters the
module where the computation took place, the transformed module (that only contains trusted statements),
a correct module (possibly undefMod) to check the inferences, two terms representing the inference whose
proof tree we want to generate, and a set of labels of suspicious equations and memberships. First, the
function checks if the terms are equal, the result can be reached by using only trusted statements, or the
correct module can calculate this inference; in such cases, there is no need to calculate the tree, so the empty
forest is returned. Otherwise, it applies the function createForest2:

op createForest : Module Module Maybe{Module} Term Term QidSet ~> Forest .

eq createForest(OM, TM, CM, T, T’, QS) =

if T == T’ or-else reduce(TM, T) == T’ or-else reduce(CM, T) == T’ then mtForest

else createForest2(OM, TM, CM, T, T’, QS)

fi .

The function createForest2 checks first whether the current term is of the form if T1 then T2 else T3 fi.
In this case, the debugger evaluates T1 and then, depending on the result, it evaluates either T2 or T3 fol-
lowing the same evaluation strategy as Maude:8

op createForest2 : Module Module Maybe{Module} Term Term QidSet ~> Forest .

eq createForest2(OM, TM, CM, ’if_then_else_fi[T1, T2, T3], T’, QS) =

createForest(OM, TM, CM, T1, reduce(OM, T1), QS)

if reduce(OM, T1) == ’true.Bool then

createForest(OM, TM, CM, T2, T’, QS)

else

if reduce(OM, T1) == ’false.Bool then

createForest(OM, TM, CM, T3, T’, QS)

else

createForest(OM, TM, CM, T2, reduce(OM, T2), QS)

createForest(OM, TM, CM, T3, reduce(OM, T3), QS)

fi

fi .

8Note that it is possible to obtain neither true nor false when evaluating the condition. In this case, both branches will
be evaluated and the term thus obtained (which is not fully evaluated) used in the rest of the computation, possibly leading
to a missing answer.
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Otherwise, the debugger follows the Maude innermost strategy: it first tries to fully reduce the subterms
(by means of the function reduceSubterms), and once all the subterms have been reduced, if the result is
not the final one, it tries to reduce at the top (by using the function applyEq), to reach the final result by
transitivity :

ceq createForest2(OM, TM, CM, T, T’, QS) =

if T’’ == T’ then F

else F applyEq(OM, TM, CM, T’’, T’, QS)

fi

if < T’’, F > := reduceSubterms(OM, TM, CM, T, QS) [owise] .

The function applyEq tries to apply (at the top) one equation,9 by using the replacement rule from
Figure 1, with the constraint that we cannot apply equations with the otherwise attribute if other equations
can be applied. To apply an equation we check whether the term we are trying to reduce matches the lefthand
side of the equation and its conditions are fulfilled. If this happens, we obtain a substitution (from both the
matching with the lefthand side and the conditions) that we can apply to the righthand side of the equation.
Note that, if we can obtain the transition in the correct module, the forest is not computed:

op applyEq : Module Module Maybe{Module} Term Term QidSet -> Maybe{Forest} .

op applyEq : Module Module Maybe{Module} Term Term QidSet EquationSet -> Maybe{Forest} .

eq applyEq(OM, TM, CM, T, T’, QS) =

if reduce(TM, T) == T’ or-else reduce(CM, T) == T’ then mtForest

else applyEq(OM, TM, CM, T, T’, QS, getEqs(OM))

fi .

For example, the equations without the otherwise attribute as applied as follows:

ceq applyEq(OM, TM, CM, T, T’, QS, Eq EqS) =

if in?(AtS, QS) then

tree(label(AtS) : T -> T’, getOffspring*(F) + 1, F)

else F

fi

if ceq L = R if C [AtS] . := generalEq(Eq) /\

not owise?(AtS) /\

sameKind(OM, type(OM, L), type(OM, T)) /\

SB := metaMatch(OM, L, T, C, 0) /\

R’ := substitute(OM, R, SB) /\

F := conditionForest(substitute(OM, C, SB), OM, TM, CM, QS)

createForest(OM, TM, CM, R’, T’, QS) .

where we distinguish with the function in?(AtS, QS) whether the equation is trusted (the attribute set
does not contain a label or the label is contained in the set QS of trusted labels) to generate the node.

7.2.2. Debugging trees for wrong rewrites
We use a different methodology in the construction of the debugging tree for incorrect rewrites. Since

these modules are not assumed to be confluent or terminating, we use the predefined breadth-first search
function metaSearchPath to, from the initial term, find the wrong term introduced by the user, and then
we use the returned trace to build the debugging tree. The trace returned by Maude when searching from
T to T’ is a list of steps of the form:

{T1, Ty1, R1} ... {Tn, Tyn, Rn}

9Since the module is assumed to be confluent, we can choose any equation and the final result should be the same.
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where Tyi is the type of Ti, T1 is the normal form of T, Ri is the rule applied to (possibly a subterm of) Ti
to obtain Ti+1 (which is already in normal form), and T’ is the result of applying Rn to Tn.

The function createRewTree, given the module where the rewrite took place, a module with correct
statements (possibly undefMod), the rewritten term, the result term, the set of suspicious labels, the type
of tree selected (many-steps or one-step, identified by constants ms and os in the module TREE-TYPE), and
the bound of the search in the correct module, creates the corresponding debugging tree:

op createRewTree : Module Maybe{Module} Term Term QidSet TreeType Bound -> Maybe{Tree} .

eq createRewTree(OM, CM, T, T’, QS, os, B) = oneStepTree(OM, CM, T, T’, QS, B) .

eq createRewTree(OM, CM, T, T’, QS, ms, B) = manyStepsTree(OM, CM, T, T’, QS, B) .

The function oneStepTree creates a complete debugging tree with only one-step rewrites in its nodes.
It puts the complete judgment as the root of the tree, computes the tree for the reduction from the initial
term to normal form with the function createForest from Section 7.2.1, and then computes the rest of the
tree with the function oneStepForest. This corresponds to a concrete application of the equivalence class
inference rule from Figure 1:

op oneStepTree : Module Maybe{Module} Term Term QidSet Bound -> Maybe{Tree} .

ceq oneStepTree(OM, CM, T, T’, QS, B) =

contract(tree(T =>+ T’, getOffspring*(F) + 1, F))

if TM := deleteSuspicious(OM, QS) /\

T1 := reduce(OM, T) /\

F := createForest(OM, TM, CM, T, T1, QS, strat?(OM))

oneStepForest(OM, TM, CM, T1, T’, QS, B) .

eq oneStepTree(OM, CM, T, T’, QS, B) = error [owise] .

oneStepForest computes the trace of a rewrite with the predefined function metaSearchPath and uses
it to generate a debugging tree by using trace2forest, which generates a forest of one-step rewrites by
extracting each step of the trace and creating its corresponding tree:

op oneStepForest : Module Module Maybe{Module} Term Term QidSet Bound -> Maybe{Forest} .

ceq oneStepForest(OM, TM, CM, T, T’, QS, B) = F

if TR := metaSearchPath(OM, T, T’, nil, ’*, unbounded, 0) /\

F := trace2forest(OM, TM, CM, TR, T’, QS, B) .

eq oneStepForest(OM, TM, CM, T, T’, QS, B) = noProof [owise] .

The many-steps debugging tree is built with the function manyStepsTree. This tree is computed on
demand, so that the debugging subtrees corresponding to one-step rewrites are only generated when they
are pointed out as wrong. It uses an auxiliary function manyStepsTree2, which also receives as a parameter
the module cleaned of suspicious statements with deleteSuspicious:

op manyStepsTree : Module Maybe{Module} Term Term QidSet Bound -> Maybe{Tree} .

ceq manyStepsTree(OM, CM, T, T’, QS, B) =

contract(tree(T =>+ T’, getOffspring*(F) + 1, F))

if F := manyStepsTree2(OM, deleteSuspicious(OM, QS), CM, T, T’, QS, B) .

eq manyStepsTree(OM, CM, T, T’, QS, B) = error [owise] .

This auxiliary function uses the function metaSearchPath to compute the trace. If it is not empty, the
forest for the reduction of the initial term to normal form is built with the function createForest and the
tree for the rewrites is appended to this forest. If the trace consists of only one step, it is expanded with the
function stepForest. Otherwise, the many-steps tree from the trace is built with the function trace2tree,
that traverses the trace and creates a balanced tree from the forest of leaves obtained from it:
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op manyStepsTree2 : Module Module Maybe{Module} Term Term QidSet Bound ~> Maybe{Forest} .

ceq manyStepsTree2(OM, TM, CM, T, T’, QS, B) = F

if {T’’, Ty, R} TR := metaSearchPath(OM, T, T’, nil, ’*, unbounded, 0) /\

F := createForest(OM, TM, CM, T, T’’, QS, strat?(OM))

if TR =/= nil

then trace2tree(OM, TM, CM, {T’’, Ty, R} TR, T’, QS, B, mtForest, 0)

else stepForest(OM, TM, CM, T’’, T’, R, QS, B, ms)

fi .

If the trace is empty, only the tree for the reduction is computed:

ceq manyStepsTree2(OM, TM, CM, T, T’, QS, B) = createForest(OM, TM, CM, T, T’, QS, strat?(OM))

if nil == metaSearchPath(OM, T, T’, nil, ’*, unbounded, 0) .

Finally, if the final term is not reachable from the initial term, an error is returned. Note that errors due
to non-termination cannot be detected:

eq manyStepsTree2(OM, TM, CM, T, T’, QS, B) = noProof [owise] .

7.2.3. Debugging trees for missing answers
The debugging tree for normal forms is built with the function createMissingTree. It receives the

module where the reduction took place, a correct module, the initial term, the reached normal form, and a
set of suspicious labels:

op createMissingTree : Module Maybe{Module} Term Term QidSet -> Tree .

ceq createMissingTree(M, CM, T, T’, QS) = tree(’root : T -> T’’, getOffspring*(F) + 1, F)

if TM := deleteSuspicious(M, QS) /\

T’’ := reduce(M, T’) /\

F := cleanTree*(M, false, none, createMissingForest(M, TM, CM, T, T’’, QS)) .

The function createMissingForest checks whether the result can be obtained in the trusted or correct
modules. When this happens, it only generates a forest proving the term is in normal form with proveNormal;
otherwise, it uses the auxiliary function createMissingForest2:

op createMissingForest : Module Module Maybe{Module} Term Term QidSet -> Forest .

ceq createMissingForest(OM, TM, CM, T, T’, QS) = F

if T == T’ or-else reduce(TM, T) == T’ or-else reduce(CM, T) == T’ /\

F := proveNormal(OM, TM, CM, T’, QS) .

eq createMissingForest(OM, TM, CM, T, T’, QS) =

createMissingForest2(OM, TM, CM, T, T’, QS) [owise] .

createMissingForest2 generates the forest for the subterms with reduceSubtermsMissing and then
distinguishes whether the final result has been reached, proving in that case whether the term is in normal
form with proveNormal, or not, then applying the next equation with applyEqMissing:

ceq createMissingForest2(OM, TM, CM, T, T’, QS) =

if T’’ == T’ then F proveNormal(OM, TM, CM, T’, QS)

else F applyEqMissing(OM, TM, CM, T’’, T’, QS)

fi

if < T’’, F > := reduceSubtermsMissing(OM, TM, CM, T, QS) [owise] .

The debugging tree for incomplete sets of reachable terms is built with the function createMissingTree,
that receives:

• the module where the terms should be found,

• a correct module (possibly undefMod),
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• the initial term, the pattern,

• the condition to be fulfilled,

• the bound in the number of rewrites for wrong rewrites,

• the number of steps that can be given in the search,

• the search type,

• the type of tree to be built (one-step or many-steps) for both wrong and missing answers,

• the set of suspicious labels,

• the set of final sorts,

• a Boolean value indicating whether the search introduced by the user was unbounded, and

• a Boolean value pointing out whether the questions about solutions are prioritized.

The forest is generated with an auxiliary function createMissingForest that receives, in addition to the
values above, a Boolean value indicating whether the forest currently built corresponds to the initial search
or to a search due to a rewrite condition, which is true in the first case. Once the tree has been built, the
questions associated with terms that the user has declared as final are pruned with cleanTree*:

op createMissingTree : Module Maybe{Module} Term Term Condition Bound Bound SearchType

TreeType TreeType QidSet Bool QidSet Bool Bool -> Tree .

ceq createMissingTree(M, CM, T, PAT, C, BW, BM, ST, TTW, TTM, QS, BFS, FS, UB?, SP) =

contract(tree(T ~>[B’] {clean(extractTerms(F))} s.t. PAT & C [true],

1 + getOffspring*(F), F))

if TM := deleteSuspicious(M, QS) /\

T’ := getTerm(metaReduce(M, T)) /\

F := cleanTree*(M, BFS, FS, createForest(M, TM, CM, T, T’, QS, strat?(M))

createMissingForest(labeling(M), TM, CM, T’, PAT,

C, BW, BM, ST, TTW, TTM, QS, FS, UB?, SP, true)) /\

B’ := if UB? then unbounded else BM fi .

If the tree to be built cannot evolve (the bound is 0) and zero or more steps can be used, then we use
the function solutionTree to create a tree that proves whether the condition is satisfied or not:

op createMissingForest : Module Module Maybe{Module} Term Term Condition Bound Bound SearchType

TreeType TreeType QidSet QidSet Bool Bool Bool -> Forest .

eq createMissingForest(OM, TM, CM, T, PAT, C, BW, 0, zeroOrMore, TTW, TTM, QS,

FS, UB?, SP, FST) =

solutionTree(OM, TM, CM, T, PAT, C, BW, zeroOrMore, TTW, TTM, QS, FS, SP, FST) .

When the terms can still evolve (the bound is greater than 0), we compute all the possible reach-
able terms in exactly one step with the function oneStepMissingTree and evolve each of them with
createMissingForest*. The solutions obtained are gathered with extractTerms, while we check whether
the current term is a valid solution with the function solveCondition. Finally, if the tree selected by the
user is for many-steps transitions we create a root for the generated forest specifying the number of steps,
while if we want one-step transitions only the forest is returned:

ceq createMissingForest(OM, TM, CM, T, PAT, C, BW, s(N’), zeroOrMore, TTW, TTM,

QS, FS, UB?, SP, FST) =

if TTM == os then RF

else tree(T ~>[B’] {TL’’} s.t. PAT & C [FST], 1 + getOffspring*(RF), RF)
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fi

if tree(T =>1 {TL}, N, F) := oneStepMissingTree(OM, TM, CM, T, QS, FS, BW, zeroOrMore,

TTW, TTM, SP) /\

F’ := createMissingForest*(OM, TM, CM, TL, PAT, C, BW, N’, zeroOrMore,

TTW, TTM, QS, FS, UB?, SP, FST) /\

TL’ := if solveCondition(OM, T, PAT, C) then T

else empty fi /\

TL’’ := clean((extractTerms(F’), TL’)) /\

CF := solutionTree(OM, TM, CM, T, PAT, C, BW, zeroOrMore, TTW, TTM, QS, FS, SP, FST) /\

RF := CF tree(T =>1 {TL}, N, F) F’ /\

B’ := if UB? then unbounded else s(N’) fi .

7.3. The debugger environment
We implement our system on top of Full Maude, a language that extends Maude with support for

object-oriented specification and advanced module operations [12, Part II]. The implementation of Full
Maude includes code for parsing user input and pretty-printing; storing modules, theories, and views; and
transforming object-oriented modules into system modules.

To parse some input using the built-in function metaParse, Full Maude needs the meta-representation
of the signature in which the input has to be parsed. Thus, we define the signature of the debugger in a
module that extends the Full Maude signature:

fmod DD-SIGNATURE is

including FULL-MAUDE-SIGN .

op debug_. : @Bubble@ -> @Command@ .

op missing_. : @Bubble@ -> @Command@ .

...

endfm

This signature is included in the meta-module GRAMMAR to obtain the grammar DD-GRAMMAR, that allows
us to parse both Full Maude modules and commands together with the debugger commands:

fmod META-DD-SIGN is

inc META-FULL-MAUDE-SIGN .

inc UNIT .

op DD-GRAMMAR : -> FModule [memo] .

eq DD-GRAMMAR = addImports((including ’DD-SIGNATURE .), GRAMMAR) .

...

endfm

The module DD-COMMAND-PROCESSING is in charge of processing the commands dealing with suspicious
statements, final sorts, and the debugging commands:

fmod DD-COMMAND-PROCESSING is

pr COMMAND-PROCESSING .

pr META-DD-SIGN .

pr MISSING-ANSWERS-TREE .

pr SEARCH-TYPE .

pr PRINT .

For example, the parsing of the debugging command for wrong answers returns a tuple containing the
generated tree, the module where the computation took place, the set of suspicious statements, and a list
of quoted identifiers indicating the errors that occurred during the parsing:

sort DebugTuple .

op <_,_,_,_> : Forest Maybe{Module} QidSet QidList -> DebugTuple .
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The parsing of the command is done in the GRAMMAR-DEB module, where the first bubble can contain
either a module or just the initial term:

op GRAMMAR-DEB : -> FModule [memo] .

eq GRAMMAR-DEB = addOps(op ’_->_. : ’@Bubble@ ’@Bubble@ -> ’@Judgment@ [none] .

op ’_:_. : ’@Bubble@ ’@Bubble@ -> ’@Judgment@ [none] .

op ’_=>*_. : ’@Bubble@ ’@Bubble@ -> ’@Judgment@ [none] .,

addSorts(’@Judgment@, GRAMMAR-RED)) .

The function procDebug processes a bubble and returns either a tree for the corresponding debug com-
mand or an error message. It receives the term to be parsed, a correct module (possibly undefMod), a
Boolean indicating whether debug-select is on or off, the set of suspicious labels, the selected type of tree,
the bound of the search in the correct module, the default module, and Full Maude’s database of modules.

After finding out the kind of the debugging command (reduction, membership, or rewrite) and if a
module name has been selected by the command, the function procDebug builds the appropriate tree by
using the functions createTree and createRewTree explained in Section 7.2:

op procDebug : Term Maybe{Module} Bool QidSet TreeType Bound ModuleExpression

Database -> DebugTuple .

...

endfm

The persistent state of Full Maude’s system is given by a single object of class DatabaseClass, which
maintains the database of the system. We extend the Full Maude system by defining a subclass of
DatabaseClass inheriting its behavior and adding new attributes to it:

mod DD-DATABASE-HANDLING is

inc DATABASE-HANDLING .

pr DD-COMMAND-PROCESSING .

pr TREE-PRUNING .

pr DIVIDE-QUERY-STRATEGY .

pr LIST{DDState} .

pr LIST{Answer} .

sort DDDatabaseClass .

subsort DDDatabaseClass < DatabaseClass .

op DDDatabase : -> DDDatabaseClass [ctor] .

The new attributes include, for example:

• the debugging tree, which initially is empty, and that will be traversed during the debugging process:

op tree :_ : Forest -> Attribute [ctor] .

• the strategy to traverse the tree. The top-down strategy is represented by the constant td, whereas
divide and query is represented by dq:

op strategy :_ : Strat -> Attribute [ctor] .

• the set of labels considered suspicious:

op suspicious :_ : QidSet -> Attribute [ctor gather(&)] .

• the set of final sorts:

op finalSorts :_ : QidSet -> Attribute [ctor gather(&)] .
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The behavior of the debugger commands is described by means of rewrite rules that change the state of
these attributes. Below we show some of the most interesting rules.

The rule debug starts the debugging process for wrong answers. It receives a term that will be processed
with the function procDebug explained above. If there is no error (that is, the returned list of quoted
identifiers is nil), the tree, the module, and the set of suspicious labels are updated with the appropriate
information, while the answers given by the user so far and the previous states are reset. However, if the
command was incorrect, the error is shown and the state is set to finished:

crl [debug] :

< O : DDDC | db : DB, input : (’debug_.[T]), output : nil,

default : ME, tree : F, module : MM, correction : MM’,

previousStates : LS, answers : LA, state : TS,

treeType : TT, currentTTW : CTTW, bound : BND, select : B,

suspicious : QS, currentSuspicious : QS’, AtS >

=> if QIL == nil then

< O : DDDC | db : DB, input : nilTermList, output : nil, default : ME,

tree : F’, module : MM’’, correction : MM’,

previousStates : nil, answers : nil, state : computing,

treeType : TT, currentTTW : TT, bound : BND, select : B,

suspicious : QS, currentSuspicious : QS’’, AtS >

else

< O : DDDC | db : DB, input : nilTermList, output : QIL, default : ME,

tree : mtForest, module : MM, correction : MM’,

previousStates : nil, answers : nil, state : finished,

treeType : TT, currentTTW : CTTW, bound : BND, select : B,

suspicious : QS, currentSuspicious : QS’, AtS >

fi

if < F’, MM’’, QS’’, QIL > := procDebug(T, MM’, B, QS, TT, BND, ME, DB) .

When a correct module expression is introduced, correct-module keeps the associated module if it
exists, and shows an error message otherwise:

crl [correct-module] :

< O : DDDC | db : DB, input : (’correct‘module_.[T]), output : nil, correction : MM, AtS >

=> if M? :: Module

then < O : DDDC | db : DB, input : nilTermList, output : (’\n add-spaceR(printME(ME)) ’\b

’selected ’as ’correct ’module. ’\o ’\n),

correction : M?, AtS >

else < O : DDDC | db : DB, input : nilTermList, output : (’\n ’\r ’Error: ’\o getMsg(M?)),

correction : MM, AtS >

fi

if ME := parseModExp(T) /\

M? := if compiledModule(ME, DB)

then getFlatModule(ME, DB)

else getFlatModule(modExp(evalModExp(ME, DB)), database(evalModExp(ME, DB)))

fi .

The rule top-down-strategy fixes the value of the navigation strategy to td, and changes the state to
computing if the debugging has not finished to show the appropriate question:

rl [top-down-strategy] :

< O : DDDC | input : (’top-down‘strategy‘..@Command@), output : nil,

strategy : STRAT, state : TS, AtS >

=> < O : DDDC | input : nilTermList, output : (’\n ’\b ’Top-down ’strategy

’selected. ’\o ’\n),

strategy : td, state : if TS == finished then TS

else computing fi, AtS > .
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In the top-down strategy, when the user introduces the identifier of a wrong question, the debugger
updates the list of answers and the previous states, and changes the current tree by the appropriate child
of the root:

crl [top-down-traversal-no] :

< O : DDDC | input : (’_:‘no‘.[’token[T]]), strategy : td, tree : PT,

previousStates : LS, answers : LA, state : waiting, AtS >

=> < O : DDDC | input : nilTermList, strategy : td, tree : PT’,

previousStates : LS < nil, PT, td >,

answers : LA getAnswer(PT’, wrong), state : computing, AtS >

if UPT := removeUnknownChildren(PT) /\

N := downNat*(T) /\

N > 0 /\

N <= size(getForest(UPT, nil)) /\

PT’ := getSubTree(UPT, sd(N, 1)) .

where the function getAnswer constructs an answer given the current node and the answer given by the
user.

The rule missing-wrong is used when, while debugging missing answers with the divide and query
strategy, the user points out that a certain term is not reachable. The rule checks that the current question
is related to an inference of a set of terms with setInference? and that the selected question points to one
of these terms, and then creates the debugging tree for wrong answers with createRewTree:

crl [missing-wrong] :

< O : DDDC | input : (’_is‘wrong‘.[’token[T]]), strategy : dq, tree : PT,

current : NL, previousStates : LS, answers : LA, state : waiting,

currentSuspicious : QS, bound : BND, module : M, correction : MM,

currentTTW : TT, AtS >

=> < O : DDDC | input : nilTermList, strategy : dq, tree : PT’,

current : NL, previousStates : LS < NL, PT, dq >,

answers : LA getAnswer(getSubTree(PT, NL), wrong),

state : computing, currentSuspicious : QS, bound : BND,

module : M, correction : MM, currentTTW : TT, AtS >

if N := downNat*(T) /\

setInference?(getContents(PT, NL)) /\

N > 0 /\

N <= numTermsInRootSet(getSubTree(PT, NL)) /\

T1 := getFirstTerm(getSubTree(PT, NL)) /\

T2 := getWrongTerm(getSubTree(PT, NL), N) /\

PT’ := createRewTree(labeling(M), MM, T1, T2, QS, TT, BND) .

When the divide and query strategy is selected and the user decides to trust a statement, the current
subtree is deleted and the resulting tree is pruned in order to delete the nodes associated with the trusted
statement:

crl [divide-query-traversal] :

< O : DDDC | input : (’trust‘..@Command@), strategy : dq, tree : PT,

current : NL, previousStates : LS, answers : LA,

state : waiting, AtS >

=> < O : DDDC | input : nilTermList, strategy : dq, tree : PT’, current : NL,

previousStates : LS < NL, PT, dq >,

answers : LA getAnswer(getSubTree(PT, NL), right),

state : computing, AtS >

if Q := getLabel(PT, NL) /\

PT’ := prune(deleteSubTree(PT, NL), Q) .
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In the divide and query strategy, when the user indicates that the sort of a certain term is final on the
fly the rule sort-final is applied. It checks that the question is related to final terms with the function
finalQuestion? and then prunes all the tree with the function pruneFinalSort:

crl [sort-final] :

< O : DDDC | input : (’its‘sort‘is‘final‘..@Command@), output : nil,

tree : PT, current : NL, module : M, state : waiting, AtS >

=> < O : DDDC | input : nilTermList, output : (’\n ’\b ’Terms ’of ’sort ’\o Ty

’\b ’are ’final. ’\o ’\n),

tree : PT’, current : NL, module : M, state : computing, AtS >

if finalQuestion?(getContents(PT, NL)) /\

T := getFirstTerm(getSubTree(PT, NL)) /\

Ty := getType(metaReduce(M, T)) /\

PT’ := pruneFinalSort(M, Ty, PT) .

When the user decides to switch the select mode on to use a subset of the labeled statements as suspicious,
the select attribute is set to true:

rl [select] :

< O : DDDC | input : (’set‘debug‘select‘on‘..@Command@), select : B,

output : nil, AtS >

=> < O : DDDC | input : nilTermList, select : true,

output : (’\n ’\b ’Debug ’select ’is ’on. ’\o ’\n), AtS > .

The module DD manages the introduction of data by the user and the output of the debugger’s answers.
Full Maude uses the input/output facility provided by the LOOP-MODE module [12, Chapter 17], which consists
of an operator [_,_,_] with an input stream (the first argument), an output stream (the third argument),
and a state (given by its second argument):

mod DD is

inc DD-DATABASE-HANDLING .

inc LOOP-MODE .

inc META-DD-SIGN .

op o : -> Oid .

--- State for LOOP mode:

subsort Object < State .

op init-debug : -> System .

rl [init] :

init-debug

=> [nil, < o : DDDatabase | input : nilTermList, output : nil, init-state >, dd-banner] .

The rule in below parses the data introduced by the user, which appears in the first argument of the
loop, in the module DD-GRAMMAR and introduces it in the input attribute if it is correctly built:

crl [in] :

[QIL, < O : X@Database | input : nilTermList, Atts >, QIL’]

=> [nil,

< O : X@Database | input : getTerm(metaParse(DD-GRAMMAR, QIL, ’@Input@)), Atts >,

QIL’]

if QIL =/= nil /\

metaParse(DD-GRAMMAR, QIL, ’@Input@) : ResultPair .

The rule out is in charge of printing the messages from the debugger by moving the data in the output
attribute to the third component of the loop:

rl [out] :

[QIL, < O : X@Database | output : (QI QIL’), Atts >, QIL’’]

=> [QIL, < O : X@Database | output : nil, Atts >, (QIL’’ QI QIL’)] .

endm
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8. Conclusions and future work

We have presented in this paper a declarative debugger for Maude specifications. The debugging trees
used in the debugging process are obtained from an abbreviation of a proper calculus whose adequacy
for debugging has been proved. This work comprises our previous work on wrong [30, 8, 34] and missing
answers [32, 31], and provides a powerful and complete debugger for Maude specifications. Moreover,
we also provide a graphical user interface that eases the interaction with the debugger and allows one to
traverse the debugging tree with more freedom [29, 33]. The tree construction, its navigation, and the
user interaction (excluding the GUI) have all been implemented in Maude itself. For more information, see
http://maude.sip.ucm.es/debugging.

We plan to add new navigation strategies like the ones shown in [36] that take into account the number
of different potential errors in the subtrees, instead of their size. Moreover, the current version of the tool
allows the user to introduce a correct but maybe incomplete module in order to shorten the debugging
session. We intend to add a new command to introduce complete modules, which would greatly reduce
the number of questions asked to the user. Finally, we also plan to create a test generator to test Maude
specifications and debug the erroneous tests with the debugger.
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Appendix A. Proofs

Proposition 1. Let R = (Σ, E,R) be a rewrite theory and let T = TΣ/E′,R′ be any Σ-term model. If a
statement e ⇒ e′ (respectively e → e′, e : s) can be deduced using the semantic calculus rules reflexivity,
transitivity, congruence, equivalence class, or subject reduction using premises that hold in T , then T |=
e⇒ e′ (respectively T |= e→ e′, T |= e : s).

Proof. The result is a direct consequence of the definition of satisfaction of rewrite theories. For instance
we check the result for the transitivity rules Tr⇒ and Tr→, and for the subject reduction rule SRed:

• Tr⇒. Suppose that T |= e1 ⇒ e′ and T |= e′ ⇒ e2. Then [[e1]]A →∗R′/E′ [[e′]]A, [[e′]]A →∗R′/E′ [[e2]]A.
Since →∗R′/E′ is compositional, [[e1]]A →∗R′/E′ [[e2]]A, i.e., T |= e1 ⇒ e2.

• Tr→. If T |= e1 → e′ and T |= e′ → e2 then [[e1]]A = [[e′]]A and [[e′]]A = [[e2]]A. Therefore [[e1]]A = [[e2]]A
and T |= e1 → e2.

• SRed. If T |= e→ e′ and T |= e′ : s, then [[e]]A = [[e′]]A and [[e′]]A ∈ As, and hence [[e]]A ∈ As.

The reflexivity, congruence, and equivalence class rules are checked analogously. ut

Theorem 1. The calculus of Figures 4, 5, 6, and 7 is correct.

Proof. By induction over proof trees; we distinguish cases over the different kinds of judgments:

• adequateSorts(κ)  Θ is correct. Given a kind-substitution κ, when it has the variables of the
appropriate sorts only the rule SubsCond can be applied and the set containing κ is returned. If the
matching fails, AS2 has to be applied and the empty substitution set is returned, being the judgment
correct.

• [C, θ] Θ is correct. We distinguish subcases over the different kinds of conditions:

– C ≡ t1 = t2. Since we work with admissible conditions, we know that θ(t1) and θ(t2) are ground,
and thus the only possible substitution that can be included in Θ is θ. If the condition is fulfilled
only rule EqC1 can be used, and {θ} is returned, which is correct. Otherwise, only EqC2 can be
used, returning now the empty set which is again correct.

– C ≡ t1 := t2. We assume that θ(t2)→norm t′ so, given the complete set of kind-substitutions, we
restrict them to those that are substitutions, thus returning the correct set.

– C ≡ t : s. Like in equational conditions, θ(t) is ground and the resulting set can only contain θ.
If the condition is fulfilled only MbC1 can be applied and the set obtained is correct. Analogously,
if the condition does not hold, only MbC2 can be used and the correct result is the empty set.

– C ≡ t1 ⇒ t2. We assume that the set of reachable terms from θ(t1) that match θ(t2) is correct,
and thus by definition the set computed by rule RlC, the only one applicable here, is correct.

• 〈C,Θ〉  Θ′ is correct. The only rule that deals with this judgment is SubsCond. Assuming the
premises correct, the conclusion is also correct.

• disabled(e, t) is correct. The only rule that deals with this judgment is Dsb. Assuming the premises
correct there are no substitutions satisfying the conditions and making the lefthand side of the equation
or membership match the term, so it cannot be applied and the judgment is correct.

• t→red t
′ is correct. In this case two rules can be used: Rdc1 and Rdc2. The first one covers reductions

at the top, while the second one covers reductions on the subterms, thus dealing with all possibilities.
Assuming the premises correct, in the first case we verify that one step is used because it corresponds
to the application of one equation, while in the second one we check with the side condition that at
least one step is used and thus the judgment is correct.
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• t →norm t′ is correct. The rules that deal with this case are Norm and NTr, that distinguish whether
the term is already in normal form or can be further reduced. In the first case if we assume the
premises correct then the term is in normal form and then the same term has to be returned. In the
second case, assuming the premises correct and a confluent specification, the conclusion is correct.

• fulfilled(C, t). This judgment is correct when there exists a substitution that makes C with the hole ~
filled by t hold. Rule Fulfill, the only one that can be used to prove this predicate, states this fact and
thus the judgment is correct.

• fails(C, t). This judgment is correct when C with t filling its hole ~ cannot be satisfied. Since the only
rule that can be used for this predicate is Fail and the premise indicates that the set of substitutions
that fulfill the condition is empty, the judgment is correct.

• t⇒q S. This judgment is only computed with rule Rl. By hypothesis, all the substitutions that fulfill
the conditions and make t match the lefthand side of the rule are in Θk, thus by definition the union
of the application of all the substitutions in Θk to the lefthand side of the rule generate the set we are
looking for and the judgment is correct.

• t⇒top S. This judgment is only computed with rule Top. First, we notice that the rules in {q1, . . . , ql}
are the only ones that can be applied to t (it does not match the lefthand side of the rest of the rules)
and thus the correctness is not affected by this selection. We know by hypothesis that each Si, the set
of reachable terms obtained from t with the rule qi, is correct and hence the union of all these sets is
by definition the set of reachable terms by rewriting at the top and the judgment is correct.

• t⇒1 S. This judgment is only computed with rule Stp. By hypothesis, we know that St contains the
set of reachable terms obtained by rewriting t at the top, while Si contains the reachable terms in one
step from ti. Since the set of reachable terms in one step from t is the union of the terms obtained by
one rewriting at the top and the set created by substituting each subterm by all the reachable terms
in one step from it, the judgment is correct.

• t  Cn S. For this judgment, rule Red1 can always be applied. Since we work with a coherent theory,
the set of reachable terms from both t and t1 are the same, while t2 and t′ are in the same equivalence
class and thus are equal modulo E.

When n = 0, rules Rf1 or Rf2 are used and the result is straightforward.

If n > 0 and the term fulfills the condition, rule Tr1 is applied. Since the condition holds, the result
set must contain t, that is added in the conclusion of the rule. Moreover, the terms t1, . . . , tk are the
reachable terms from t in exactly one step, while Si is the set of reachable terms from ti in zero or
more steps, that is, the union of the Si is the set of reachable terms in at least one step and at most
n, and thus the union of this set with the singleton set {t} creates a correct set for this judgment.
Analogously, when n > 0 and the condition does not hold, rule Tr2 is applied.

ut

Theorem 2. The calculus of Figure 12 is correct.

Proof.

• t  !Cn S. For this judgment, rule Red2 can always be applied. Since we work with a coherent theory,
the set of reachable terms from both t and t1 are the same, while t2 and t′ are equal modulo E.

When n = 0, rules Rf3, Rf4, and Rf5 can be used. If t is not final only Rf5 can be used and, since no
more steps are allowed, the empty set of results is returned, which is correct by definition. If t is final
we have to check whether the term fulfills the condition; if the condition holds only Rf3 can be used
and hence the singleton set consisting of the term is returned, while if the condition fails Rf4 is applied
and the empty set is returned. In both cases the result is correct by definition.
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When n > 0 rules Rf3, Rf4, and Tr3 can be used. If the term is final, Rf3 and Rf4 are applied and the
result holds as in the previous case. If the term is not final, then Tr3 is applied; the terms t1, . . . , tk are
the reachable terms from t in exactly one step, while Si is the set of reachable terms from ti in zero or
more steps, that is, the union of the Si is the set of reachable terms in at least one step and at most
n and, since the current term cannot be a solution because it is not final, the judgment is correct.

• t +Cn S. We distinguish cases over n:

When n = 0, only rule Rf6 can be applied; since the judgment requires at least one step, the set of
reachable terms is empty by definition.

When n > 0, rule Tr4 is applied. Since t → t′ and the specification is coherent, we know that the set
of reachable terms from both t and t′ is the same; the terms t1, . . . , tk are the reachable terms from t
in exactly one step, while Si is the set of reachable terms from ti in zero or more steps (note that the
judgments in the premises are different from the one in the conclusion), that is, the union of the Si is
the set of reachable terms in at least one step and at most n and hence the judgment is correct.

ut

Proposition 2. Let R = (Σ, E,R) be a rewrite theory, C an atomic condition, θ an admissible substitution,
and TΣ/E′,R′ any Σ-term model. If adequateSorts(κ) Θ, [C, θ] Θ, or 〈C,Θ〉 Θ′ can be deduced using
the rules from Figure 4 using premises that hold in TΣ/E′,R′ , then also TΣ/E′,R′ |= adequateSorts(κ) Θ,
TΣ/E′,R′ |= [C, θ] Θ, and TΣ/E′,R′ |= 〈C,Θ〉 Θ′, respectively.

Proof. We apply the definition of satisfaction for each rule:

EqC1 From the premises we deduce that [θ(t1)]E′ = [θ(t2)]E′ , that is, the condition is satisfied with the
current substitution θ. Since θ already binds all the variables in the condition, it cannot be extended
and θ itself is the result.

EqC2 From the premises we deduce that [θ(t1)]E′ 6= [θ(t2)]E′ , thus the condition fails and there is no
substitution that could satisfy it.

PatC We know that [θ(t2)]E′ = [t′]E′ and that matching conditions can have variables in its lefthand side
that are not bound in θ. Thus, the substitution is extended with all the substitutions θ′ that match
t′ and, since t′ is equal (modulo E′) to θ(t2) by hypothesis, these are all the substitutions that satisfy
the condition.

AS1 We know that the terms in the kind-substitution have the adequate sort, so it is a substitution.

AS2 When one term in the kind-substitution has an incorrect sort the match fails.

MbC1 We know that the condition is fulfilled and θ binds all the variables, therefore it cannot be extended
and the single substitution that verifies the condition is θ itself.

MbC2 Similarly to EqC2, we know by hypothesis that the condition does not hold, thus there is no substi-
tution able to satisfy it and the empty set of substitutions is computed.

RlC In this case θ can be extended because rewrite conditions can contain new variables in their righthand
side. We assume that S contains all the terms reachable from θ(t1) that match the pattern t2, and
then use it to extend θ with all the substitutions θ′ that bind the new variables in t2 to match the
terms in S, obtaining by definition all the substitutions that verify the condition.

SubsCond We assume that, for each θi, 1 ≤ i ≤ n, we obtain the set of substitutions Si that extend [C, θi].
By definition, 〈C, {θ1, . . . , θn}〉 computes the set of substitutions that extend any [C, θi], i.e., the union
of the Si, thus the inference is sound.
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ut

Proposition 3. Let R = (Σ, E,R) be a rewrite theory and ϕ a judgment deduced with the inference rules
Dsb, Rdc2, or NTr from Figure 5 from premises that hold in TΣ/E′,R′ . Then also TΣ/E′,R′ |= ϕ.

Proof. We apply the definition of satisfaction for each rule:

Dsb If the matching with the lefthand side and the conditions cannot be satisfied, then it is straightforward
to see that the statement cannot be applied.

Rdc2 The substitution of a subterm by its normal form is correct if the normal form is correct.

NTr Since the specification is confluent, we can use any equations to evolve a term and then compute the
normal form from this new term.

ut

Proposition 4. Let R = (Σ, E,R) be a rewrite theory, C an admissible condition, and TΣ/E′,R′ any Σ-term
model. If t C0 S can be deduced using rules Rf1 or Rf2 from Figure 6 using premises that hold in TΣ/E′,R′ ,
then also TΣ/E′,R′ |= t C0 S.

Proof. We apply the definition of satisfaction for each rule:

Rf1 We know by hypothesis that the term t fulfills the condition thus, by definition, the set of reachable
terms in zero steps is the singleton set with t as single element.

Rf2 In a similar way to the case above, if the condition does not hold with the term t, then the set of
reachable terms is empty.

ut

Proposition 5. Let R = (Σ, E,R) be a rewrite theory, C an admissible condition, n a natural number,
and TΣ/E′,R′ any Σ-term model. If t  Cn S or t ⇒1 S can be deduced by means of the rules in Figure 7
using premises that hold in TΣ/E′,R′ , then also TΣ/E′,R′ |= t Cn S or TΣ/E′,R′ |= t⇒1 S, respectively.

Proof. We apply the definition of satisfaction for each rule:

Tr1 We know that the condition is fulfilled by t, that t in exactly one step is rewritten to the set {t1, . . . , tk},
and that each of these terms is rewritten in at most n steps to S1, . . . , Sk. Since {t1, . . . , tk} have been
obtained in one step, the terms in S1, . . . , Sk have been computed in at most n+1 steps and in at least
1 step. Since we are looking for the solutions in zero or more steps, we have to compute the union of
these sets with the set of reachable terms in zero steps, that in this case is the singleton set containing
the term t itself, because we are assuming it fulfills the condition. Thus, the inference is sound.

Tr2 Analogous to the case above.

Stp We assume that all the possible rewrites in exactly one step at the top of f(ti), 0 ≤ i ≤ m, lead to
the set St and that all the reachable terms in exactly one step of each subterm ti form the set Si. By
definition, all the reachable terms in exactly one step is the union of the set of all the terms obtained
by rewrites at the top and the sets built by substituting each subterm by each reachable term from it
(only one subterm is substituted at the same time), so the inference is sound.

Red1 Since we know that t → t1, by coherence the same reachable terms are obtained from t and t1.
Moreover, since t2 =E′ t

′ we can substitute t2 by t′ and the set remains unchanged.
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ut

Proposition 6. Let R = (Σ, E,R) be a rewrite theory, C an admissible condition, n a natural number,
and TΣ/E′,R′ any Σ-term model. If a statement t  !Cn S or t  +Cn S can be deduced by means of the rules
in Figure 12 using premises that hold in TΣ/E′,R′ , then also TΣ/E′,R′ |= t  !Cn S or TΣ/E′,R′ |= t  +Cn S,
respectively.

Proof.

Rf3 In this case we know that the term fulfills the condition and that it is final, so by definition the set of
final reachable terms consists exactly of the term itself.

Rf4 If the term is final but it does not satisfy the condition, then the set of reachable states is empty by
definition.

Rf5 If no more steps can be used and the term is not final, the set of reachable terms is empty by definition.

Tr3 We know that the term is not final, so we can split the search into two different searches, one in one
step that leads to {t1, . . . , tk}, and another in n steps from these terms, that we know generate the
sets S1, . . . , Sk. Thus, the result is the union of these sets.

Red2 Analogous to Red1 in Proposition 5.

Rf6 By definition the relation requires at least one step, thus if only zero steps are available the result is the
empty set.

Tr4 First, we know that t → t′, hence, by coherence, the same reachable terms are obtained from t and t′.
Again, we distinguish the first step of the search, that leads to {t1, . . . , tk}, and the next n steps. Since
the terms in this second phase of the search have already evolved one step, the single requirement is
to fulfill the condition, and thus the union of the sets obtained with the relation for zero or more steps
has to be the result.

ut

Proposition 8. Let N be a buggy node in some proof tree in the calculus of Figures 1, 4, 5, 6, 7, and 12
w.r.t. an intended interpretation I. Then:

1. N corresponds to the consequence of an inference rule in the first column of Table 3.
2. The error associated to N can be obtained from the inference rule as shown in the second column of

Table 3.

Proof. The first item is a straightforward consequence of Propositions 1, 2, 3, 4, 5, and 6: N buggy means
N invalid with all its children valid, and these are the only possible inference rules at N .

For the second property we study each inference rule separately:

Rep→ In this case the associated equation is wrong as a direct consequence of having a wrong statement
instance: N is invalid in I, while the previous conditions, which state the validity of the statements in
the equation condition instance, correspond to the premises of the Rep→ inference rule (see Figure 1),
which are valid in I because N is buggy.

Rep⇒ and Mb Analogous to the case above.

Rdc1 In this case it is possible to have an erroneous result when the conditions hold. The reason is that the
equation can be wrong, and thus we would have a wrong equation instance.

Norm If the conclusion of this rule is erroneous but its premises hold this means that the specification does
not have all the required equations, that is, an error in this node is associated with a missing equation.
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Ls Similarly to the case above, if the conclusion of this rule is wrong while its premises hold this means that
the specification lacks some membership, that is, an error in this node is associated with a missing
membership.

Fulfill If this node is buggy then there exists a substitution that satisfies the condition but the condition
should not hold, thus we have a wrong condition. In this case the condition in the buggy node is
pointed out as the error in the specification.

Fail In this case the set of substitutions that fulfill the condition is empty but the condition should hold, so
the node is associated with a wrong condition. As in the case above, the error in the specification is
related to the condition in the buggy node.

Top When this node is buggy all the possible rules have been applied at the top and their results are correct,
but the union of these terms does not lead to all the intended reachable terms by rewriting the term
at the top, so this node is related to a missing rule. In this case, we will point to the operator at the
top of the term in the lefthand side of the buggy node as incompletely defined.

Rl The nodes computing the set of substitutions that fulfill the condition of the rule are correct, but once
the righthand side of the rule is instantiated with these substitutions there are reachable terms in the
intended interpretation that are not in this set. Thus, in this case the buggy node is associated with
a wrong rule and the rule applied in the node is pointed out as buggy.

ut

Lemma 1. Let T be a finite proof tree representing an inference in the calculus of Figures 1, 4, 5, 6, 7,
and 12 w.r.t. some rewrite theory R. Let I be an intended interpretation of R such that the root N of T is
invalid in I. Then:

(a) If T contains only one node, then APT ′(T ) = {T}.
(b) There is a T ′ ∈ APT ′(T ) such that T ′ has an invalid root.

Proof. If T contains only one node N then N is an invalid node without children and therefore buggy. By
Proposition 8 the inference step proving this node must be Rep→, Mb, Rep⇒, Rdc1, Norm, Fulfill, Fail, Ls,
Rl, or Top. In all these cases the rule (APT10) of Figure 13 must be applied and the result holds, since it
returns a singleton set with the same root.

The second item can be proved by induction on the number of nodes of T , which we denote as n(T ). If
n(T ) = 1 the property is straightforward from the part (a) above because T ∈ APT ′(T ). If n(T ) > 1 we
distinguish cases depending on the rule for APT ′ that can be applied at the root of T :

• If it is either (APT2), (APT3), (APT4), (APT5), (APT6), (APT7), (APTm
8 ), (APTm

9 ), or
(APT10) the result holds directly because the result is a singleton set with the same invalid root
(in the case of (APT7) an equivalent root).

• If it is (APTo
8), (APTo

9), or (APT11) by Proposition 8 N has some invalid child, which corresponds
to the root of some premise Ti. By the induction hypothesis, there is some T ′ ∈ APT ′(Ti) with invalid
root. And by observing the rules of Figure 13 it can be checked that every subtree Ti of the root of T
verifies APT ′(Ti) ⊆ APT ′(T ). Then T ′ ∈ APT ′(T ).

ut

Theorem 3. Let T be a finite proof tree representing an inference in the calculus of Figures 1, 4, 5, 6, 7,
and 12 w.r.t. some rewrite theory R. Let I be an intended interpretation of R such that the root of T is
invalid in I. Then:

• APT (T ) contains at least one buggy node (completeness).

• Any buggy node in APT (T ) has an associated wrong statement, missing statement, or wrong condition
in R according to Table 3 (correctness).
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Proof. We prove each item separately:

• APT (T ) contains at least one invalid node, since its root is the root of T , and any debugging tree
containing an invalid node contains a buggy node by Proposition 7.

• First we observe that the root of APT (T ) cannot be buggy, because if it is invalid then it has an invalid
child (Lemma 1(b)). Therefore any buggy node must be part of APT ′(T ) (the premise in (APT1)).

Let N be a buggy node occurring in APT ′(T ). Then N is the root of some tree TN , subtree of some
T ′ ∈ APT ′(T ). By the structure of the APT ′ rules this means that there is a subtree T ′ of T such
that TN ∈ APT ′(T ′). We prove that N has an associated wrong statement in S by induction on the
number of nodes of T ′, n(T ′).

If n(T ′) = 1 then T ′ contains only one node and APT ′(T ′) = {T ′} by Lemma 1(a). Then the only
possible buggy node is N , which means that N is also buggy in T and that the associated fragment
of code is wrong by Proposition 8.

If n(T ′) > 1 we examine the APT rule applied at the root of T ′:

(APT2) Then T ′ is of the form
T1 . . . Tn
e1 → e′

Rep→
T ′′

e1 → e2
Tr→

Hence N ≡ (e1 → e2) and TN is

APT ′(T1) . . .APT ′(Tn) APT ′(T ′′)
e1 → e2

Rep→

Since N is buggy in TN it is invalid w.r.t. I. By Proposition 8, e1 → e2 cannot be buggy in T ′, i.e.,
either T ′′ has an invalid root or e1 → e′ is invalid. But T ′′ cannot be invalid because APT ′(T ′′)
is a child subtree of N and by Lemma 1(b) it would contain a tree T ′′′ with invalid root, which
is not possible because T ′′′ is a child of the buggy node N in TN . Therefore e1 → e′ is invalid.
Moreover, the roots of T1, . . . , Tn are also valid by the same reason: APT ′(T1), . . . ,APT ′(Tn)
are child subtrees of N in TN and cannot have an invalid root. Therefore e1 → e′ is buggy in
T ′, i.e., is buggy in T and by Proposition 8 the equation associated to label Rep→ is wrong. And
this label is the same that can be found associated to N in the APT ′ TN . Therefore the buggy
node N of the APT ′ has an associated wrong equation.

(APT3) In this case T ′ has the form

T1 . . . Tn

t→red t
′′ Rdc1

T

t→norm t′
NTr

Thus t→norm t′ and TN is

APT ′(T1) . . . APT ′(Tn) APT ′(T )

t→norm t′
Rdc1

By Proposition 8 we know that N cannot be buggy in T ′, thus either t →red t′′ or the root of
T is invalid. However, if the root of T were invalid we know by Lemma 1 that the set obtained
with APT ′ would contain a tree with an invalid root and then N cannot be buggy. Therefore,
t →red t′′ is invalid but, for the same reason as before, T1 . . . Tn cannot be invalid, so it is also
buggy in T ′ and by Proposition 8 the rule label Rdc1 has associated a wrong equation. Since this
same label has been now assigned to N , the buggy node in the abbreviated proof tree has an
associated wrong equation.
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(APT4) In this case T ′ has the form

T1 . . . Tn

t⇒top S′
Top

T ′1 . . . T ′n
t⇒1 S

Stp

Thus N ≡ t⇒1 S and TN is

APT ′(T1) . . . APT ′(Tn) APT ′(T ′1) . . . APT ′(T ′n)

t⇒1 S
Top

By Proposition 5 we know that N cannot be buggy in T ′, thus either of t ⇒top S′ or the root
of one of T ′1 . . . T

′
n is invalid. However, if the root of one of the trees T ′1 . . . T

′
n were invalid we

know by Lemma 1 that the set obtained with APT ′ would contain a tree with an invalid root
and then N cannot be buggy. Therefore, t⇒top S′ is invalid but, for the same reason as before,
T1 . . . Tn cannot be invalid, so it is also buggy in T ′ and by Proposition 8 the rule label Top has
associated a missing rule. Since this same label has been now assigned to N , the buggy node in
the abbreviated proof tree has an associated missing rule.

(APT5) and (APT6) Analogous to the previous cases.

(APT7) T ′ has the form

Tt→normt′ T1 . . . Tn
t :ls s

Ls

Then N ≡ t :ls s and TN is

APT ′(Tt→normt′) APT ′(T1) . . . APT ′(Tn)
t′ :ls s

Ls

Since N is buggy in TN all the trees in APT ′(Tt→normt′) APT ′(T1) . . . APT ′(Tn) are valid and
by Lemma 1 the roots of Tt→normt′ T1 . . . Tn are also valid and N is buggy in T ′. By Proposition
8 it is associated with a missing membership in T ′ and, since we have the same label in TN , the
result holds.

(APTo
8), (APTo

9), (APT11) Then TN ∈ APT ′(Ti) for some child subtree Ti of the root of T ′ and
the result holds by the induction hypothesis.

(APTm
8 ) We check that actually this rule cannot be applied to produce a buggy node and therefore

must not be considered here. If (APTm
8 ) is applied then T ′ must be of the form

T1 T2

e1 ⇒ e2
Tr⇒

N is e1 ⇒ e2 and TN is
APT ′(T1) APT ′(T2)

e1 ⇒ e2
Tr⇒

And N can be invalid but not buggy in T ′ (and hence in T ) by Proposition 8, because it is
the conclusion of a transitivity inference, and thus either T1 or T2 has an invalid root. Then by
Lemma 1(b), either APT ′(T1) or APT ′(T2) have an invalid root and N is not buggy in TN .

(APTm
9 ) Analogous to the previous case.

(APT10) We present the proof for the inference rule Fulfill, with the other cases being analogous. T ′

has the form

T1 . . . Tn
fulfilled(C, t) Fulfill

63



Then N ≡ fulfilled(C, t) and TN is

APT ′(T1) . . . APT ′(Tn)
fulfilled(C, t) Fulfill

Since N is buggy in TN all the trees in APT ′(T1) . . . APT ′(Tn) are valid and by Lemma 1 the
roots of T1 . . . Tn are also valid and N is buggy in T ′. By Proposition 8 it is associated with a
wrong statement in T ′ and, since we have the same label in TN , the result holds.

ut
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