
Declarative Debugging of Rewriting Logic
Specifications?

A. Riesco, A. Verdejo, R. Caballero, and N. Mart́ı-Oliet
Facultad de Informática, Universidad Complutense de Madrid, Spain

ariesco@fdi.ucm.es, {alberto, rafa, narciso}@sip.ucm.es

Abstract. Declarative debugging is a semi-automatic technique that
starts from an incorrect computation and locates a program fragment
responsible for the error by building a tree representing this computa-
tion and guiding the user through it to find the wrong statement. This
paper presents the fundamentals for the declarative debugging of rewrit-
ing logic specifications, realized in the Maude language, where a wrong
computation can be a reduction, a type inference, or a rewrite. We define
appropriate debugging trees obtained as the result of collapsing in proof
trees all those nodes whose correctness does not need any justification.
Since these trees are obtained from a suitable semantic calculus, the cor-
rectness and completeness of the debugging technique can be formally
proved. We illustrate how to use the debugger by means of an example
and succinctly describe its implementation in Maude itself thanks to its
reflective and metalanguage features.

1 Introduction

In this paper we present a declarative debugger for Maude specifications, includ-
ing equational functional specifications and concurrent systems specifications.
Maude [10] is a high-level language and high-performance system supporting
both equational and rewriting logic computation for a wide range of applications.
Maude modules correspond to specifications in rewriting logic [14], a simple and
expressive logic which allows the representation of many models of concurrent
and distributed systems. This logic is an extension of equational logic; in par-
ticular, Maude functional modules correspond to specifications in membership
equational logic [1, 15], which, in addition to equations, allows the statement of
membership axioms characterizing the elements of a sort. In this way, Maude
makes possible the faithful specification of data types (like sorted lists or search
trees) whose data are not only defined by means of constructors, but also by the
satisfaction of additional properties. Rewriting logic extends membership equa-
tional logic by adding rewrite rules, that represent transitions in a concurrent
system. Maude system modules are used to define specifications in this logic.

? Research supported by MEC Spanish projects DESAFIOS (TIN2006-15660-C02-01)
and MERIT-FORMS (TIN2005-09027-C03-03), and Comunidad de Madrid program
PROMESAS (S-0505/TIC/0407).

The Maude system supports several approaches for debugging Maude pro-
grams: tracing, term coloring, and using an internal debugger [10, Chap. 22].
The tracing facilities allow us to follow the execution of a specification, that is,
the sequence of applications of statements that take place. The same ideas have
been applied to the functional paradigm by the tracer Hat [9], where a graph
constructed by graph rewriting is proposed as suitable trace structure. Term col-
oring consists in printing with different colors the operators used to build a term
that does not fully reduce. The Maude debugger allows to define break points in
the execution by selecting some operators or statements. When a break point is
found the debugger is entered. There, we can see the current term and execute
the next rewrite with tracing turned on. The Maude debugger has as a disad-
vantage that, since it is based on the trace, it shows to the user every small step
obtained by using a single statement. Thus the user can lose the general view
of the proof of the incorrect inference that produced the wrong result. That is,
when the user detects an unexpected statement application it is difficult to know
where the incorrect inference started. Here we present a different approach based
on declarative debugging that solves this problem for Maude specifications.

Declarative debugging, also known as algorithmic debugging, was first in-
troduced by E. Y. Shapiro [23]. It has been widely employed in the logic [12,
16, 25], functional [19, 18, 20], multi-paradigm [7, 3, 13], and object-oriented [4]
programming languages. Declarative debugging starts from a computation con-
sidered incorrect by the user (error symptom) and locates a program fragment
responsible for the error. The declarative debugging scheme [17] uses a debug-
ging tree as logical representation of the computation. Each node in the tree
represents the result of a computation step, which must follow from the results
of its child nodes by some logical inference. Diagnosis proceeds by traversing
the debugging tree, asking questions to an external oracle (generally the user)
until a so-called buggy node is found. A buggy node is a node containing an er-
roneous result, but whose children have all correct results. Hence, a buggy node
has produced an erroneous output from correct inputs and corresponds to an
erroneous fragment of code, which is pointed out as an error. From an explana-
tory point of view, declarative debugging can be described as consisting of two
stages, namely the debugging tree generation and its navigation following some
suitable strategy [24].

The application of declarative debugging to Maude functional modules was
already studied in our previous papers [5, 6]. The executability requirements of
Maude functional modules mean that they are assumed to be confluent, termi-
nating, and sort-decreasing1 [10]. These requirements are assumed in the form of
the questions appearing in the debugging tree. In this paper, we considerably ex-
tend that work by also considering system modules. Now, since the specifications
described in this kind of modules can be non-terminating and non-confluent,
their handling must be quite different.

1 All these requirements must be understood modulo some axioms such as associativity
and commutativity that are associated to some binary operations.

The debugging process starts with an incorrect computation from the initial
term to an unexpected one. The debugger then builds an appropriate debugging
tree which is an abbreviation of the corresponding proof tree obtained by apply-
ing the inference rules of membership equational logic and rewriting logic. The
abbreviation consists in collapsing those nodes whose correctness does not need
any justification, such as those related with transitivity or congruence. Since the
questions are located in the debugging tree, the answers allow the debugger to
discard a subset of the questions, leading and shortening the debugging process.
In the case of functional modules, the questions have the form “Is it correct that
T fully reduces to T ′?”, which in general are easier to answer. However, in the
absence of confluence and termination, these questions do not make sense; thus,
in the case of system modules, we have decided to develop two different trees
whose nodes produce questions of the form “Is it correct that T is rewritten to
T ′?” where the difference consists in the number of steps involved in the rewrite.
While one of the trees refers only to one-step rewrites, which are often easier
to answer, the other one can also refer to many-steps rewrites that, although
may be harder to answer, in general discard a bigger subset of nodes. The user,
depending on the debugged specification or his “ability” to answer questions
involving several rewrite steps, can choose between these two kinds of trees.

Moreover, exploiting the fact that rewriting logic is reflective [11], a key
distinguishing feature of Maude is its systematic and efficient use of reflection
through its predefined META-LEVEL module [10, Chap. 14], a feature that makes
Maude remarkably extensible and powerful, and that allows many advanced
metaprogramming and metalanguage applications. This powerful feature allows
access to metalevel entities such as specifications or computations as usual data.
Therefore, we are able to generate and navigate the debugging tree of a Maude
computation using operations in Maude itself. In addition, the Maude system
provides another module, LOOP-MODE [10, Chap. 17], which can be used to specify
input/output interactions with the user. However, instead of using this module
directly, we extend Full Maude [10, Chap. 18], that includes features for parsing,
evaluating, and pretty-printing terms, improving the input/output interaction.
Moreover, Full Maude allows the specification of concurrent object-oriented sys-
tems, that can also be debugged. Thus, our declarative debugger, including its
user interactions, is implemented in Maude itself.

The rest of the paper is structured as follows. Sect. 2 provides a summary of
the main concepts of both membership equational logic and rewriting logic, and
how their specifications are realized in Maude functional and system modules,
respectively. Sect. 3 describes the theoretical foundations of the debugging trees
for inferences in both logics. Sect. 4 shows how to use the debugger by means of
an example, while Sect. 5 comments some aspects of the Maude implementation.
Finally, Sect. 6 concludes and mentions some future work.

Detailed proofs of the results, additional examples, and much more informa-
tion about the implementation can be found in the technical report [21], which,
together with the Maude source files for the debugger, is available from the
webpage http://maude.sip.ucm.es/debugging.

2 Rewriting Logic and Maude

As mentioned in the introduction, Maude modules are executable rewriting logic
specifications. Rewriting logic [14] is a logic of change very suitable for the speci-
fication of concurrent systems that is parameterized by an underlying equational
logic, for which Maude uses membership equational logic (MEL) [1, 15], which, in
addition to equations, allows the statement of membership axioms characterizing
the elements of a sort.

2.1 Membership Equational Logic

A signature in MEL is a triple (K,Σ, S) (just Σ in the following), with K
a set of kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and
S = {Sk}k∈K a pairwise disjoint K-kinded family of sets of sorts. The kind of a
sort s is denoted by [s]. We write TΣ,k and TΣ,k(X) to denote respectively the
set of ground Σ-terms with kind k and of Σ-terms with kind k over variables in
X, where X = {x1 : k1, . . . , xn : kn} is a set of K-kinded variables. Intuitively,
terms with a kind but without a sort represent undefined or error elements.

The atomic formulas of MEL are either equations t = t′, where t and t′ are
Σ-terms of the same kind, or membership axioms of the form t : s, where the
term t has kind k and s ∈ Sk. Sentences are universally-quantified Horn clauses
of the form (∀X)A0 ⇐ A1 ∧ . . . ∧ An, where each Ai is either an equation or
a membership axiom, and X is a set of K-kinded variables containing all the
variables in the Ai. A specification is a pair (Σ,E), where E is a set of sentences
in MEL over the signature Σ.

Models of MEL specifications are Σ-algebras A consisting of a set Ak for
each kind k ∈ K, a function Af : Ak1 × · · · × Akn

−→ Ak for each operator
f ∈ Σk1...kn,k, and a subset As ⊆ Ak for each sort s ∈ Sk. The meaning [[t]]A
of a term t in an algebra A is inductively defined as usual. Then, an algebra
A satisfies an equation t = t′ (or the equation holds in the algebra), denoted
A |= t = t′, when both terms have the same meaning: [[t]]A = [[t′]]A. In the same
way, satisfaction of a membership is defined as: A |= t : s when [[t]]A ∈ As.

A MEL specification (Σ,E) has an initial model TΣ/E whose elements are
E-equivalence classes of terms [t]. We refer to [1, 15] for a detailed presentation
of (Σ,E)-algebras, sound and complete deduction rules (that we adapt to our
purposes in Fig. 1 in Sect. 3.1), as well as the construction of initial and free al-
gebras. Since the MEL specifications that we consider are assumed to satisfy the
executability requirements of confluence, termination, and sort-decreasingness,
their equations t = t′ can be oriented from left to right, t→ t′. Such a statement
holds in an algebra, denoted A |= t → t′, exactly when A |= t = t′, i.e., when
[[t]]A = [[t′]]A. Moreover, under those assumptions an equational condition u = v
in a conditional equation can be checked by finding a common term t such that
u → t and v → t. The notation we will use in the inference rules studied in
Sect. 3 for this situation is u ↓ v.

2.2 Rewriting Logic

Rewriting logic extends equational logic by introducing the notion of rewrites
corresponding to transitions between states; that is, while equations are inter-
preted as equalities and therefore they are symmetric, rewrites denote changes
which can be irreversible. A rewriting logic specification, or rewrite theory, has
the form R = (Σ,E,R), where (Σ,E) is an equational specification and R is a
set of rules as described below. From this definition, one can see that rewriting
logic is built on top of equational logic, so that rewriting logic is parameter-
ized with respect to the version of the underlying equational logic; in our case,
Maude uses MEL, as described in the previous section. A rule in R has the
general conditional form2

(∀X) t⇒ t′ ⇐
n∧
i=1

ui = u′i ∧
m∧
j=1

vj : sj ∧
l∧

k=1

wk ⇒ w′k

where the head is a rewrite and the conditions can be equations, memberships,
and rewrites; both sides of a rewrite must have the same kind. From these rewrite
rules, one can deduce rewrites of the form t⇒ t′ by means of general deduction
rules introduced in [14, 2], that we have adapted to our purposes.

Models of rewrite theories are called R-systems in [14]. Such systems are
defined as categories that possess a (Σ,E)-algebra structure, together with a
natural transformation for each rule in the set R. More intuitively, the idea
is that we have a (Σ,E)-algebra, as described in Sect. 2.1, with transitions
between the elements in each set Ak; moreover, these transitions must satisfy
several additional requirements, including that there are identity transitions for
each element, that transitions can be sequentially composed, that the operations
in the signature Σ are also appropriately defined for the transitions, and that
we have enough transitions corresponding to the rules in R. Then, if we keep in
this context the notation A to denote an R-system, a rewrite t⇒ t′ is satisfied
by A, denoted A |= t ⇒ t′, when there is a transition [[t]]A ⇒A [[t′]]A in the
system between the corresponding meanings of both sides of the rewrite, where
⇒A will be our notation for such transitions. The rewriting logic deduction rules
introduced in [14] are sound and complete with respect to this notion of model.
Moreover, they can be used to build initial and free models; see [14] for details.

2.3 Maude Modules

Maude functional modules [10, Chap. 4], introduced with syntax fmod ...
endfm, are executable membership equational specifications and their seman-
tics is given by the corresponding initial membership algebra in the class of
algebras satisfying the specification. In a functional module we can declare sorts

2 Note that we use the notation ⇒ for rewrites (as in Maude) and → for oriented
equations and reductions using such equations. Other papers on rewriting logic use
instead the notation → for rewrites.

(by means of keyword sort(s)); subsort relations between sorts (subsort); op-
erators (op) for building values of these sorts, giving the sorts of their arguments
and result, and which may have attributes such as being associative (assoc) or
commutative (comm), for example; memberships (mb) asserting that a term has
a sort; and equations (eq) identifying terms. Both memberships and equations
can be conditional (cmb and ceq).

Maude system modules [10, Chap. 6], introduced with syntax mod ... endm,
are executable rewrite theories and their semantics is given by the initial system
in the class of systems corresponding to the rewrite theory. A system module can
contain all the declarations of a functional module and, in addition, declarations
for rules (rl) and conditional rules (crl).

The executability requirements for equations and memberships are conflu-
ence, termination, and sort-decreasingness. With respect to rules, the satisfac-
tion of all the conditions in a conditional rewrite rule is attempted sequentially
from left to right, solving rewrite conditions by means of search; for this reason,
we can have new variables in such conditions but they must become instantiated
along this process of solving from left to right (see [10] for details). Furthermore,
the strategy followed by Maude in rewriting with rules is to compute the normal
form of a term with respect to the equations before applying a rule. This strategy
is guaranteed not to miss any rewrites when the rules are coherent with respect
to the equations [26, 10].

The following section describes an example of a Maude system module with
both equations and rules.

2.4 An Example: Knight’s Tour Problem

A knight’s tour is a journey around the chessboard in such a way that the
knight lands on each square exactly once. The legal move for a knight is two
spaces in one direction, then one in a perpendicular direction. We want to solve
the problem for a 3×4 chessboard with the knight initially located in one corner.

We represent positions in the chessboard as pairs of integers and journeys as
lists of positions.

(mod KNIGHT is

protecting INT .

sorts Position Movement Journey Problem .

subsort Position < Movement .

subsorts Position < Journey < Problem .

op [_,_] : Int Int -> Position .

op nil : -> Journey .

op __ : Journey Journey -> Journey [assoc id: nil] .

vars N X Y : Int . vars P Q : Position . var J : Journey .

The term move P represents a position reachable from position P. Since the
reachable positions are not unique, this operation is defined by means of rewrite
rules, instead of equations. The reachable positions can be outside the chess-
board, so we define the operation legal, that checks if a position is inside the
3× 4 chessboard.

op move_ : Position -> Movement .

rl [mv1] : move [X, Y] => [X + 2, Y + 1] .

...

rl [mv8] : move [X, Y] => [X - 1, Y - 2] .

op legal : Position -> Bool .

eq [leg] : legal([X, Y]) = X >= 1 and Y >= 1 and X <= 3 and Y <= 4 .

The function contains(J, P) checks if position P occurs in the journey J.

op contains : Journey Position -> Bool .

eq [con1] : contains(P J, P) = true .

eq [con2] : contains(J, P) = false [otherwise] .

knight(N) represents a journey where the knight has performed N hops.
When no hops are taken, the knight remains at the first position [1, 1]. When
N > 0 the problem is recursively solved (using backtracking in an implicit way)
as follows: first a legal journey of N - 1 steps is found, then a new hop from the
last position of that journey is performed, and finally it is checked that this last
hop is legal and compatible with the other ones.

op knight : Nat -> Problem .

rl [k1] : knight(0) => [1, 1] .

crl [k2] : knight(N) => J P Q

if N > 0

/\ knight(N - 1) => J P

/\ move P => Q

/\ legal(Q)

/\ not(contains(J P, Q)) .

endm)

The solution to the 3 × 4 chessboard can be found by looking for a journey
with 11 hops, but we obtain the following unexpected, wrong result, where the
journey contains repeated positions. We will show how to debug it in Sect. 4.

Maude> (rew knight(11) .)

result Journey :

[1,1][2,3][3,1][2,3][3,1][2,3][3,1][2,3][3,1][2,3][3,1][2,3]

3 Debugging Trees for Maude Specifications

Now we will describe debugging trees for both MEL specifications and rewriting
logic specifications. Since a MEL specification coincides with a rewrite theory
with an empty set of rules, our treatment will simply be at the level of rewrite
theories. Our proof and debugging trees will include statements for reductions
t → t′, memberships t : s, and rewrites t ⇒ t′, and in the following sections we
will describe how to build the debugging trees from the proof trees taking into
account each kind of statement.

3.1 Proof Trees

Before defining the debugging trees employed in our declarative debugging frame-
work we introduce the semantic rules defining the semantics of a rewrite theory
R. The inference rules of the calculus can be found in Fig. 1, where θ denotes a
substitution. The rules allow to deduce statements of the three kinds and are an
adaptation of the rules presented in [1, 15] for MEL and in [14, 2] for rewriting
logic. With respect to MEL, because of the executability assumptions, we have
a more operational interpretation of the equations, which are oriented from left
to right. With respect to rewriting logic, we work with terms (as in [2]) instead
of equivalence classes of terms (as in [14]); moreover, unlike [2], replacement is
not nested. Both changes make the logical representation closer to the way the
Maude system operates. As usual, we represent deductions in the calculus as
proof trees, where the premises are the child nodes of the conclusion at each
inference step. We assume that the inference labels (Rep⇒), (Rep→), and (Mb)
decorating the inference steps contain information about the particular rewrite
rule, equation, and membership axiom, respectively, applied during the infer-
ence. This information will be used by the debugger in order to present to the
user the incorrect fragment of code causing the error.

In our debugging framework we assume the existence of an intended interpre-
tation I of the given rewrite theory R = (Σ,E,R). The intended interpretation
must be an R-system corresponding to the model that the user had in mind
while writing the specification R. Therefore the user expects that I |= t ⇒ t′,
I |= t → t′, and I |= t : s for each rewrite t ⇒ t′, reduction t → t′, and mem-
bership t : s computed w.r.t. the specification R. We will say that a statement
t ⇒ t′ (respectively t → t′, t : s) is valid when it holds in I, and invalid other-
wise. Declarative debuggers rely on some external oracle, normally the user, in
order to obtain information about the validity of some nodes in the debugging
tree. The concept of validity can be extended to distinguish wrong rules, wrong
equations, and wrong membership axioms, which are those specification pieces
that can deduce something invalid from valid information.

Definition 1. Let r ≡ (af ⇐
∧n
i=1 ui = u′i∧

∧m
j=1 vj : sj∧

∧l
k=1 wk ⇒ w′k) where

af denotes an atomic formula, that is, r is either a rewrite rule, an oriented
equation, or a membership axiom (in the last two cases l = 0) in some rewrite
theory R. Then:

– θ(r) is a wrong rewrite rule instance (respectively wrong equation instance
and wrong membership axiom instance) w.r.t. an intended interpretation I
when
1. There exist terms t1, . . . , tn such that I |= θ(ui) → ti, I |= θ(u′i) → ti

for i = 1 . . . n.
2. I |= θ(vj) : sj for j = 1 . . .m.
3. I |= θ(wk)⇒ θ(w′k) for k = 1 . . . l.
4. θ(af) does not hold in I.

– r is a wrong rewrite rule (respectively, wrong equation and wrong member-
ship axiom) if it admits some wrong instance.

(Reflexivity)

t⇒ t
(Rf⇒)

t→ t
(Rf→)

(Transitivity)
t1 ⇒ t′ t′ ⇒ t2

t1 ⇒ t2
(Tr⇒)

t1 → t′ t′ → t2
t1 → t2

(Tr→)

(Congruence)
t1 ⇒ t′1 . . . tn ⇒ t′n

f(t1, . . . , tn) ⇒ f(t′1, . . . , t
′
n)

(Cong⇒)
t1 → t′1 . . . tn → t′n

f(t1, . . . , tn) → f(t′1, . . . , t
′
n)

(Cong→)

(Replacement)

{θ(ui) ↓ θ(u′
i)}n

i=1 {θ(vj) : sj}m
j=1 {θ(wk) ⇒ θ(w′

k)}l
k=1

θ(t) ⇒ θ(t′)
(Rep⇒)

if t⇒ t′ ⇐
Vn

i=1 ui = u′
i ∧
Vm

j=1 vj : sj ∧
Vl

k=1 wk ⇒ w′
k

{θ(ui) ↓ θ(u′
i)}n

i=1 {θ(vj) : sj}m
j=1

θ(t) → θ(t′)
(Rep→) if t→ t′ ⇐

Vn
i=1 ui = u′

i ∧
Vm

j=1 vj : sj

(Equivalence Class)
t→ t′ t′ ⇒ t′′ t′′ → t′′′

t⇒ t′′′
(EC)

(Subject Reduction)
t→ t′ t′ : s

t : s
(SRed)

(Membership)
{θ(ui) ↓ θ(u′

i)}n
i=1 {θ(vj) : sj}m

j=1

θ(t) : s
(Mb) if t : s⇐

Vn
i=1 ui = u′

i ∧
Vm

j=1 vj : sj

Fig. 1. Semantic calculus for Maude modules

The general schema of [17] presents declarative debugging as the search of
buggy nodes (invalid nodes with all children valid) in a debugging tree repre-
senting an erroneous computation. In our scheme instance, the proof trees con-
structed by the inferences of Fig. 1 seem natural candidates for debugging trees.
Although this is a possible option, we will use instead a suitable abbreviation of
these trees. This is motivated by the following result:

Proposition 1. Let N be a buggy node in some proof tree in the calculus of
Fig. 1 w.r.t. an intended interpretation I. Then:

1. N is the result of either a membership or a replacement inference step.
2. The statement associated to N is either a wrong rewrite rule, a wrong equa-

tion, or a wrong membership axiom.

Both points are a consequence of the definition of the semantic calculus. The
first result states that all the inference steps different from membership and re-
placement are logically sound w.r.t. the definition of R-system, i.e., they always

produce valid results from valid premises. The second result can be checked by
observing that any membership or replacement buggy node satisfies the require-
ments of Def. 1: the valid premises correspond to the points 1-3 of the definition,
while the invalid conclusion fulfills the last point.

3.2 Abbreviated Proof Trees

Our goal is to find a buggy node in any proof tree T rooted by the initial error
symptom detected by the user. This could be done simply by asking questions
to the user about the validity of the nodes in the tree according to the following
top-down strategy:

Input: A tree T with an invalid root.
Output: A buggy node in T .
Description: Consider the root N of T . There are two possibilities: if all the

children of N are valid, then finish pointing out at N as buggy; otherwise,
select the subtree rooted by any invalid child and use recursively the same
strategy to find the buggy node.

Proving that this strategy is complete is straightforward by using induction on
the height of T .

However, we will not use the proof tree T as debugging tree, but a suit-
able abbreviation which we denote by APT (T) (from Abbreviated Proof Tree),
or simply APT if the proof tree T is clear from the context. The reason for
preferring the APT to the original proof tree is that it reduces and simplifies
the questions that will be asked to the user while keeping the soundness and
completeness of the technique. In particular the APT essentially contains only
nodes related to the replacement and membership inferences using statements
included in the specification, which are the only possible buggy nodes as Prop. 1
indicates. Thus, in order to minimize the number of questions asked to the user
the debugger should consider the validity of (Rep⇒), (Rep→), or (Mb). The
APT rules can be seen in Fig. 2.

The rules are assumed to be applied top-down: if several APT rules can
be applied at the root of a proof tree, we must choose the first one, that is,
the rule of least number. As a matter of fact, the figure includes rules for two
different possible APTs, which we call one-step abbreviated proof tree (in short
APT o(T)), defined by all the rules in the figure excluding (APTm

4), and many-
steps abbreviated proof tree (in short APTm(T)), defined by all the rules in the
figure excluding (APTo

4). Analogously, we will use the notation APT ′o(T) (resp.
APT ′m(T)) for the subset of rules of APT ′ excluding (APTm

4) (resp. (APTo
4)).

The one-step debugging tree follows strictly the idea of keeping only nodes
corresponding to the replacement and membership inference rules. However, the
many-steps debugging tree also keeps nodes corresponding to the transitivity
inference rule for rewrites. The user will choose which debugging tree (one-step
or many-steps) will be used for the declarative debugging session, taking into
account that the many-steps debugging tree usually leads to shorter debugging

(APT1) APT

„
T1 . . . Tn

af
(R)

«
=

APT ′
„
T1 . . . Tn

af
(R)

«
af

(APT2) APT ′
„
t V t

(RfV)

«
= ∅

(APT3) APT ′

0@ T1 . . . Tn

t1 → t′
(Rep→)

T ′

t1 → t2
(Tr→)

1A =

APT ′(T1) . . .APT ′(Tn) APT ′(T ′)

t1 → t2
(Rep→)

ff

(APTo
4) APT ′

„
T1 T2

t1 ⇒ t2
(Tr⇒)

«
= APT ′(T1)

S
APT ′(T2)

(APTm
4) APT ′

„
T1 T2

t1 ⇒ t2
(Tr⇒)

«
=

APT ′(T1) APT ′(T2)

t1 ⇒ t2
(Tr⇒)

ff

(APT5) APT ′
„
T1 . . . Tn

t1 V t2
(CongV)

«
= APT ′(T1)

S
. . .

S
APT ′(Tn)

(APT6) APT ′
„
T1 T2

t : s
(SRed)

«
= APT ′(T1)

S
APT ′(T2)

(APT7) APT ′
„
T1 . . . Tn

t : s
(Mb)

«
=

APT ′(T1) . . .APT ′(Tn)

t : s
(Mb)

ff

(APT8) APT ′
„
T1 . . . Tn

t1 V t2
(RepV)

«
=

APT ′(T1) . . .APT ′(Tn)

t1 V t2
(RepV)

ff

(APT9) APT ′

0@T ′
T1 . . . Tn

t⇒ t′
(Rep⇒)

T ′′

t1 ⇒ t2
(EC)

1A =

APT ′(T ′) APT ′(T1) . . .APT ′(Tn) APT ′(T ′′)

t1 ⇒ t2
(Rep⇒)

ff

(APT10) APT ′
„
T1 . . . Tn

t1 ⇒ t2
(EC)

«
= APT ′(T1)

S
. . .

S
APT ′(Tn)

(R) any inference rule V either → or ⇒
af either t1 → t2, t : s or t1 ⇒ t2

Fig. 2. Transforming rules for obtaining abbreviated proof trees

sessions (in terms of the number of questions) but with likely more complicated
questions. The number of questions is usually reduced because keeping the tran-
sitivity nodes for rewrites shapes some parts of the debugging tree as a balanced
binary tree (each transitivity inference has two premises, i.e., two child sub-
trees), and this allows the debugger to use very efficient navigation strategies
[23, 24]. On the contrary, removing the transitivity inferences for rewrites (as rule
(APTo

4) does) produces flattened trees where this strategy is no longer efficient.
On the other hand, in rewrites t⇒ t′ appearing as conclusion of the transitivity
inference rule, the term t′ can contain the result of rewriting several subterms of
t, and determining the validity of such nodes can be complicated, while in the
one-step debugging tree each rewrite node t⇒ t′ corresponds to a single rewrite
applied at t and checking its validity is usually easier. The user must balance
the pros and cons of each option, and choose the best one for each debugging
session.

The rules (APT3) and (APT9) deserve a more detailed explanation. They
keep the corresponding label (RepV) but changing the conclusion of the replace-
ment inference in the lefthand side. For instance, (APT3) replaces t1 → t′ by the
conclusion of the next transitivity inference t1 → t2. We do this as a pragmatic
way of simplifying the structure of the APT s, since t2 is obtained from t′ and
hence likely simpler (the root of the tree T ′ in (APT3) must be necessarily of
the form t′ → t2 by the structure of the inference rule for transitivity in Fig. 1).
A similar reasoning explains the form of (APT9). We will formally state now
that these changes are safe from the point of view of the debugger.

Theorem 1. Let T be a finite proof tree representing an inference in the calculus
of Fig. 1 w.r.t. some rewrite theory R. Let I be an intended interpretation of R
such that the root of T is invalid in I. Then:

– Both APT o(T) and APTm(T) contain at least one buggy node (complete-
ness).

– Any buggy node in APT o(T), APTm(T) has an associated wrong statement
in R (correctness).

The theorem states that we can safely employ the abbreviated proof tree as
a basis for the declarative debugging of Maude system and functional modules:
the technique will find a buggy node starting from any initial symptom detected
by the user. Of course, these results assume that the user answers correctly all
the questions about the validity of the APT nodes asked by the debugger.

4 A Debugging Session

The debugger is initiated in Maude by loading the file dd.maude (available from
http://maude.sip.ucm.es/debugging). This starts an input/output loop that
allows the user to interact with the tool. Then, the user can enter Full Maude
modules and commands, as well as commands for the debugger. The current
version supports all kinds of modules. When debugging a rewrite computation,

two different debugging trees can be built: one whose questions are related to
one-step rewrites and another whose questions are related to several steps. The
latter tree is partially built so that any node corresponding to a one-step rewrite
is expanded only when the navigation process reaches it.

The debugger provides two strategies to traverse the debugging tree: top-
down, that traverses the tree from the root asking each time for the correctness
of all the children of the current node, and then continues with one of the in-
correct children; and divide and query, that each time selects the node whose
subtree’s size is the closest one to half the size of the whole tree, keeping only
this subtree if its root is incorrect, and deleting the whole subtree otherwise.
Note that, although the navigation strategy can be changed during the debug-
ging session, the construction strategy is selected before the tree is built and
cannot be changed.

The user can select a module containing only correct statements. By check-
ing the correctness of the inferences with respect to this module (i.e., using this
module as oracle) the debugger can reduce the number of questions. The debug-
ger allows us to debug specifications where some statements are suspicious and
have been labeled. Only these labeled statements generate nodes in the proof
tree, being the user in charge of this labeling. The user can decide to use all the
labeled statements as suspicious or can use only a subset by trusting labels and
modules. Moreover, the user can answer that he trusts the statement associated
with the currently questioned inference; that is, statements can be trusted “on
the fly.” The user can also give the answer “don’t know,” that postpones the
answer to that question by asking alternative questions. An undo command, al-
lowing the user to return to the previous state, is also provided. We refer the
reader to [22, 21] for further information.

In Sect. 2.4 we described a system module that simulates a knight’s tour.
However, this system module contains a bug and the knight repeats some posi-
tions in its tour. This error is also obtained when looking for a 3 steps journey:

Maude> (rew knight(3) .)

result List : [1,1][2,3][3,1][2,3]

Thus, we debug this smaller computation. Moreover, after inspecting the rewrite
rules describing the eight possible moves, we are sure that they are not respon-
sible for the error; therefore, we trust them by using commands that allow us to
select the suspicious statements.

Maude> (set debug select on .)

Maude> (debug select con1 con2 leg k1 k2 .)

Maude> (debug knight(3) =>* [1,1][2,3][3,1][2,3] .)

The default one-step tree construction strategy is used and the tree shown
below is built, where every operation has been abbreviated with its first letter.

k(0)⇒1 [1,1]
k1

l([2,3])→ t
leg

c([1,1],[2,3])→ f
con2

k(1)⇒1 J2

k2

l([3,1])→ t
leg

c(J2,[3,1])→ f
con2

k(2)⇒1 J1

k2

l([2,3])→ t
leg

c(J1,[2,3])→ f
con2

k(3)⇒1 [1,1][2,3][3,1][2,3]
k2

where J1 denotes the journey [1,1][2,3][3,1] and J2 denotes [1,1][2,3].
Since the tree is navigated by using the default divide and query strategy,

the first two questions asked by the debugger are

Is this rewrite (associated with the rule k2) correct?

knight(1) =>1 [1,1][2,3]

Maude> (yes .)

Is this rewrite (associated with the rule k2) correct?

knight(2) =>1 [1,1][2,3][3,1]

Maude> (yes .)

Notice the form =>1 of the arrow in the rewrites appearing in the questions,
to emphasize that they are one-step rewrites.

In both cases the answer is yes because these paths are possible, legal be-
haviors of the knight when it can do one or two hops. These two subtrees are
removed and the current tree looks as follows:

l([2,3])→ t
leg

c(J1,[2,3])→ f
con2

k(3)⇒1 [1,1][2,3][3,1][2,3]
k2

The next question is

Is this reduction (associated with the equation con2) correct?

contains([1,1][2,3][3,1],[2,3]) -> false

Maude> (no .)

Clearly, this is not a correct reduction, since position [2,3] is already in the
path [1,1][2,3][3,1]. With this answer this subtree is selected and, since it
is a single node, the bug is located:

The buggy node is:

contains([1,1][2,3][3,1],[2,3]) -> false

with the associated equation: con2

Looking at the definition of the contains operation, we realize that it de-
fines the membership operation for sets, not for lists. A correct definition of the
contains operation is as follows:

eq [con1] : contains(nil, P) = false .

eq [con2] : contains(Q J, P) = P == Q or contains(J, P) .

5 The Implementation

As mentioned in the introduction, a key distinguishing feature of Maude is its
systematic and efficient use of reflection through its predefined META-LEVEL mod-
ule [10, Chap. 14]. This powerful feature allows access to metalevel entities such
as specifications or computations as usual data. Therefore, we are able to gen-
erate and navigate the debugging tree of a Maude computation using opera-
tions in Maude itself. In addition, the Maude system provides another module,
LOOP-MODE [10, Chap. 17], which can be used to specify input/output interac-
tions with the user. Thus, our declarative debugger, including its user interface,
is implemented in Maude itself, as an extension of Full Maude [10, Chap. 18].
Instead of creating the complete proof tree and then abbreviating it, we build
the abbreviated proof tree directly. Since navigation is done by asking questions
to the user, this stage has to handle the navigation strategy together with the
input/output interaction with the user. The technical report [21] provides a full
explanation of this implementation, including the user interaction.

The way in which the debugging trees for reductions and memberships or
rewrites are built is completely different. In the first case, we use the facts that
equations and membership axioms are both terminating and confluent, which
allow us to build the debugging tree in a “greedy” way, selecting at each moment
the first equation applicable to the current term. However, we have to use a
different methodology in the construction of the debugging tree for incorrect
rewrites. We use breadth-first search to find from the initial term the wrong term
introduced by the user, and then we use the found path to build the debugging
tree in the two possible ways described in previous sections.

The functions in charge of building the debugging trees, that correspond to
the APT function from Fig. 2, have a common initial behavior. They receive
the module where the wrong inference took place, a correct module (or a special
constant when no such module is provided) to prune the tree, the initial term,
the (erroneous) result obtained, and the set of suspicious statements labels. They
keep the initial inference as the root of the tree and generate the forest of abbre-
viated trees corresponding to the inference with functions that, in addition to the
arguments above, receive the initial module “cleaned” of suspicious statements
and correspond to the APT ′ function from Fig. 2. This transformed module is
used to improve the efficiency of the tree construction, because we can use it
to check if an inference can be obtained by using only trusted statements, thus
avoiding to build a tree that will be finally empty.

The function that builds debugging trees for wrong reductions works with
the same innermost strategy as the Maude interpreter: it first fully reduces the
subterms recursively building their debugging trees (it mimics a specific behavior
of the congruence rule in Fig. 1), and once all the subterms have been reduced,
if the result is not the final one, it tries to reduce at the top to reach the fi-
nal result by transitivity. Reduction at the top tries to apply one equation,3 by

3 Since the module is assumed to be confluent, we can choose any equation and the
final result should be the same.

using the replacement rule from Fig. 1. Debugging trees for the conditions of
the equation are also built and placed as children of the replacement rule. The
construction of debugging trees for wrong memberships mimics the subject re-
duction rule from Fig. 1 by computing the tree for the full reduction of the term
and then computing the tree for the membership inference of its least sort by
using the operator declarations and the membership axioms, which corresponds
to a concrete application of the membership inference rule.

The one-step tree for wrong rewrites computes the tree for the reduction
from the initial term to normal form and then computes the rest of the tree,
that corresponds to a rewrite from a fully reduced term (this corresponds to
a concrete application of the equivalence class inference rule from Fig. 1). The
debugging tree for this rewrite is computed from the trace, that is obtained with
the predefined function metaSearchPath. Each step of the trace corresponds to
the application of one rule, that generates a tree, with the trees correspond-
ing to the conditions of the rule as its children (reproducing the replacement
rule). Note that although the information in the trace is related to the whole
rewritten term, the application of a rule can be in a subterm, which corresponds
with the congruence inference rule, so only the rewritten subterms appear in
the debugging tree. Other children are generated for the reduction to normal
form due to the equivalence class inference rule. Finally, all the steps are put
together as children of the same root by using the transitivity inference rule. The
many-steps debugging tree is built by demand, so that the debugging subtrees
corresponding to one-step rewrites are only generated when they are pointed
out as wrong. These one-step nodes are used to create a balanced binary tree,
by dividing them into two forests of approximately the same size, recursively
creating their trees, and then using them as children of a new binary tree that
has as root the combination by transitivity of the rewrites in their roots.

6 Concluding Remarks

In this paper we have developed the foundations of declarative debugging of
executable rewriting logic specifications, and we have applied them to implement
a debugger for Maude modules. The work encompasses and extends previous
presentations [5, 6] on the declarative debugging of Maude functional modules,
which constitute now a particular case of a more general setting.

We have formally described how debugging trees can be obtained from Maude
proof trees, proving the correctness and completeness of the debugging technique.
The tool based on these ideas allows the user to concentrate on the logic of the
program disregarding the operational details. In order to deal with the possibly
complex questions associated to rewrite statements, the tool offers the possibil-
ity of choosing between two different debugging trees: the one-step trees, with
simpler questions and likely longer debugging sessions, and the many-steps trees,
which in general require fewer but more complex questions before finding the
bug. The experience will show the user which one must be chosen in each case
depending on the complexity of the specification.

In our opinion, this debugger provides a complement to existing debugging
techniques for Maude, such as tracing and term coloring. An important advan-
tage of our debugger is the help provided by the tool in locating the buggy
statements, assuming the user answers correctly the corresponding questions.

As future work we want to provide a graphical interface, that allows the user
to navigate the tree with more freedom. We are also investigating how to improve
the questions done in the presence of the strat operator attribute, that allows
the specifier to define an evaluation strategy. This can be used to represent some
kind of laziness. Finally, we plan to study how to debug missing answers [8, 16]
in addition to the wrong answers we have treated thus far.

References

1. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236:35–132, 2000.

2. R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite theories.
Theoretical Computer Science, 360(1):386–414, 2006.

3. R. Caballero. A declarative debugger of incorrect answers for constraint functional-
logic programs. In Proceedings of the 2005 ACM SIGPLAN Workshop on Curry
and Functional Logic Programming (WCFLP’05), Tallinn, Estonia, pages 8–13.
ACM Press, 2005.

4. R. Caballero, C. Hermanns, and H. Kuchen. Algorithmic debugging of Java pro-
grams. In F. J. López-Fraguas, editor, 15th Workshop on Functional and (Con-
straint) Logic Programming, WFLP 2006, Madrid, Spain, volume 177 of Electronic
Notes in Theoretical Computer Science, pages 75–89. Elsevier, 2007.

5. R. Caballero, N. Mart́ı-Oliet, A. Riesco, and A. Verdejo. Declarative debugging
of membership equational logic specifications. In P. Degano, R. De Nicola, and
J. Meseguer, editors, Concurrency, Graphs and Models. Essays Dedicated to Ugo
Montanari on the Occasion of His 65th Birthday, volume 5065 of Lecture Notes for
Computer Science, pages 174–193. Springer, 2008.

6. R. Caballero, N. Mart́ı-Oliet, A. Riesco, and A. Verdejo. A declarative debugger
for Maude functional modules. In G. Roşu, editor, Proceedings Seventh Interna-
tional Workshop on Rewriting Logic and its Applications, WRLA 2008, Budapest,
Hungary. Elsevier, 2009. To appear.

7. R. Caballero and M. Rodŕıguez-Artalejo. DDT: A declarative debugging tool for
functional-logic languages. In Y. Kameyama and P. J. Stuckey, editors, Proceedings
7th International Symposium on Functional and Logic Programming (FLOPS’04),
Nara, Japan, volume 2998 of Lecture Notes in Computer Science, pages 70–84.
Springer, 2004.

8. R. Caballero, M. Rodŕıguez-Artalejo, and R. del Vado Vı́rseda. Declarative diag-
nosis of missing answers in constraint functional-logic programming. In J. Garrigue
and M. V. Hermenegildo, editors, Proceedings of 9th International Symposium on
Functional and Logic Programming, FLOPS 2008, Ise, Japan, volume 4989 of Lec-
ture Notes in Computer Science, pages 305–321. Springer, 2008.

9. O. Chitil and Y. Luo. Structure and properties of traces for functional programs. In
I. Mackie, editor, Proceedings of the Third International Workshop on Term Graph
Rewriting (TERMGRAPH 2006), volume 176 of Electronic Notes in Theoretical
Computer Science, pages 39–63, Amsterdam, The Netherlands, The Netherlands,
2007. Elsevier.

10. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude: A High-Performance Logical Framework, volume 4350 of
Lecture Notes in Computer Science. Springer, 2007.

11. M. Clavel, J. Meseguer, and M. Palomino. Reflection in membership equational
logic, many-sorted equational logic, Horn logic with equality, and rewriting logic.
Theoretical Computer Science, 373(1-2):70–91, 2007.

12. J. W. Lloyd. Declarative error diagnosis. New Generation Computing, 5(2):133–
154, 1987.

13. I. MacLarty. Practical declarative debugging of Mercury programs. Master’s thesis,
University of Melbourne, 2005.

14. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992.

15. J. Meseguer. Membership algebra as a logical framework for equational speci-
fication. In F. Parisi-Presicce, editor, Recent Trends in Algebraic Development
Techniques, 12th International Workshop, WADT’97, Tarquinia, Italy, June 3–7,
1997, Selected Papers, volume 1376 of Lecture Notes in Computer Science, pages
18–61. Springer, 1998.

16. L. Naish. Declarative diagnosis of missing answers. New Generation Computing,
10(3):255–286, 1992.

17. L. Naish. A declarative debugging scheme. Journal of Functional and Logic Pro-
gramming, 1997(3), 1997.

18. H. Nilsson. How to look busy while being as lazy as ever: the implementation of
a lazy functional debugger. Journal of Functional Programming, 11(6):629–671,
2001.

19. H. Nilsson and P. Fritzson. Algorithmic debugging of lazy functional languages.
Journal of Functional Programming, 4(3):337–370, 1994.

20. B. Pope. A Declarative Debugger for Haskell. PhD thesis, The University of
Melbourne, Australia, 2006.

21. A. Riesco, A. Verdejo, R. Caballero, and N. Mart́ı-Oliet. Declarative debugging
of Maude modules. Technical Report SIC-6/08, Dpto. Sistemas Informáticos y
Computación, Universidad Complutense de Madrid, 2008. http://maude.sip.

ucm.es/debugging.
22. A. Riesco, A. Verdejo, N. Mart́ı-Oliet, and R. Caballero. A declarative debugger for

Maude. In J. Meseguer and G. Roşu, editors, Algebraic Methodology and Software
Technology — 12th International Conference, AMAST 2008 Urbana, IL, USA,
July 28-31, 2008 Proceedings, volume 5140 of Lecture Notes in Computer Science,
pages 116–121. Springer, 2008.

23. E. Y. Shapiro. Algorithmic Program Debugging. ACM Distinguished Dissertation.
MIT Press, 1983.

24. J. Silva. A comparative study of algorithmic debugging strategies. In G. Puebla,
editor, Logic-Based Program Synthesis and Transformation, volume 4407 of Lecture
Notes in Computer Science, pages 143–159. Springer, 2007.

25. A. Tessier and G. Ferrand. Declarative diagnosis in the CLP scheme. In P. Der-
ansart, M. V. Hermenegildo, and J. Maluszynski, editors, Analysis and Visualiza-
tion Tools for Constraint Programming, Constraint Debugging (DiSCiPl project),
volume 1870 of Lecture Notes in Computer Science, pages 151–174. Springer, 2000.

26. P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285(2):487–517, 2002.

