
Principles of Mobile Maude�

Francisco Durán, Steven Eker, Patrick Lincoln, and José Meseguer

SRI International
Menlo Park, CA 94025, USA

Abstract. Mobile Maude is a mobile agent language extending the
rewriting logic language Maude and supporting mobile computation. Mo-
bile Maude uses reflection to obtain a simple and general declarative
mobile language design and makes possible strong assurances of mobile
agent behavior. The two key notions are processes and mobile objects.
Processes are located computational environments where mobile objects
can reside. Mobile objects have their own code, can move between differ-
ent processes in different locations, and can communicate asynchronously
with each other by means of messages. Mobile Maude’s key novel charac-
teristics include: (1) reflection as a way of endowing mobile objects with
“higher-order” capabilities; (2) object-orientation and asynchronous mes-
sage passing; (3) a high-performance implementation of the underlying
Maude basis; (4) a simple semantics without loss in the expressive power
of application code; and (5) security mechanisms supporting authentica-
tion, secure message passing, and secure object mobility. Mobile Maude
has been specified and prototyped in Maude. Here we present the Mobile
Maude language for the first time, and illustrate its use in applications
by means of Milner’s cell-phone example. We also discuss security and
implementation issues.

1 Introduction

Use of the Internet has exploded in recent years, and current technological trends
may lead to new systems and business models based substantially on mobile
code and mobile agents [11,9]. It seems likely that within a few years most
major Internet sites will be hosting some form of mobile code or mobile agents.
As more and more applications come to depend on mobile code, new risks for
unintentional or malicious failures and for compromises of vital information must
be avoided. Declarative mobile languages seem particularly promising to achieve
high levels of confidence and security in mobile computing. This is because, by
being directly based on formalisms with a precise semantics, there is a much
shorter conceptual distance between the formal properties that must be ensured
and the code. Furthermore, such formalisms can be intrinsically concurrent,
further facilitating the programming and reasoning tasks.

One approach recently favored in declarative mobile language design is us-
ing mobile calculi that extend or modify the π-calculus [15] with new features,
� Supported by DARPA through Rome Laboratories Contract F30602-97-C-0312, by
ONR Contract N00014-99-C-0198, and by NSF Grant CCR-9505960.

D. Kotz and F. Mattern (Eds.): ASA/MA 2000, LNCS 1882, pp. 73–85, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

74 Francisco Durán et al.

including mechanisms for encryption and security. Calculi of this kind include,
among others, the Spi Calculus [1], the Join Calculus [7], and the Ambient
Calculus [2]. In addition, there is a broader body of work favoring declarative
approaches, including work in the related field of coordination languages [3] and
UNITY-based mobility [16]. There has also been a great expansion of the capa-
bilities and security of agent-based languages such as Ajanta [17], OAA [12] and
D’Agents [8].

Mobile Maude is an extension of Maude [4] supporting mobile computation
that uses reflection in a systematic way to obtain a simple and general declarative
mobile language design. The formal semantics of Mobile Maude is given by a
rewrite theory in rewriting logic. However, the fact that such a rewrite theory is
executable (as exploited in the current simulator) does not overly constrain later
implementation choices for a Mobile Maude system. We comment on such choices
in Section 6. The two key notions of Mobile Maude are processes and mobile
objects. Processes are located computational environments where mobile objects
can reside. Mobile objects have their own code, can move between different
processes in different locations, and can communicate asynchronously with each
other by means of messages. Mobile Maude’s key novel characteristics include:

– Based on rewriting logic, a simple first-order formalism that is intrinsically
concurrent and has a clear mathematical semantics [14].

– Extends Maude, a high performance interpreter and compiler implementation
of rewriting logic.

– Object-oriented and asynchronous, with (mobile) objects as first-class entities
in the language, and with direct support for asynchronous message-passing
communication.

– Reflective: using rewriting logic reflection, the application code in a mobile
object (a rewrite theory R) is metarepresented as data, as a term R. This
endows mobile objects with powerful “higher-order” capabilities within a
simple first-order framework.

– Simple rewriting semantics without loss in expressiveness: the semantics of
mobility is defined in an application-independent way by a small set of
rewrite rules axiomatizing Mobile Maude’s system code; however, applica-
tion code inside mobile objects can be defined in Maude with great freedom
and expressiveness.

– Secure, with underlying encryption primitives supporting authentication, se-
cure message passing, and secure object mobility.

The above characteristics distinguish Mobile Maude from mobility calculi
and from the other languages described above, and offer some novel advantages
not available in such languages. In this paper, after briefly introducing rewriting
logic, Maude, and reflection (Section 2) we give an overview of Mobile Maude and
its rewriting semantics based on the current Mobile Maude simulator (Section
3) and discuss a simple mobile phone application (Section 4). Section 5 then
discusses the design of Mobile Maude’s security infrastructure; and Section 6
outlines our implementation plans. We end with some concluding remarks.

Principles of Mobile Maude 75

2 Rewriting Logic, Maude and Reflection

Rewriting logic [14] is a very simple logic in which the state space of a distributed
system is formally specified as an algebraic data type by means of an equational
specification consisting of a signature of types and operations Σ and a collection
of conditional equations E. The dynamics of such a distributed system is then
specified by rewrite rules of the form t → t′, where t, t′ are Σ-terms, that describe
the local, concurrent transitions possible in the system, namely, when a part of
the distributed state fits the pattern t, then it can change to a new local state
fitting the pattern t′. A rewrite theory is a triple (Σ, E, R), with (Σ, E) an
equational specification axiomatizing a system’s distributed state space, and R
a collection of rewrite rules axiomatizing the system’s local transitions.

Maude [4] is a high-level reflective language and high-performance interpreter
and compiler supporting rewriting logic specification and programming for a
wide range of applications. Maude integrates an equational style of functional
programming with an object-oriented programming style for highly concurrent
object systems. Modules are rewrite theories whose basic axioms are rewrite
rules.

2.1 Object-Oriented Modules

In Maude, object-oriented systems are specified by object-oriented modules in
which classes and subclasses are declared. Each class is declared with the syntax

class C | a1: S1, . . ., an: Sn

where C is the name of the class, and for each ai : Si, ai is an attribute identifier,
and Si is the sort (type or domain) over which the values of such an attribute
identifier must range. Objects of a class are then record-like structures of the
form

< O : C | a1: v1, . . . , an: vn >

with O the name of the object, v1, . . . , vn the current values of its attributes, and
with vi of sort Si for 1 ≤ i ≤ n. Objects can interact with each other in a variety
of ways, including the sending of messages. The state of a concurrent object sys-
tem is called a configuration. Typically, a configuration is a multiset of objects
and messages. The multiset union operator for configurations is denoted with
empty syntax (juxtaposition). It is associative and commutative so that order
and parentheses do not matter, and so that rewriting is multiset rewriting sup-
ported directly in Maude. The dynamic behavior of a concurrent object system
is then axiomatized by specifying each of its basic concurrent transition patterns
by a corresponding labeled rewrite rule that rewrites a multiset of objects and
messages into a new multiset of objects and messages, perhaps including new
object identifiers and new messages.

76 Francisco Durán et al.

2.2 Reflection and the META-LEVEL

Rewriting logic is reflective in the precise sense that there is a finitely presented
rewrite theory U which is universal, that is, for any finitely presented rewrite
theory R (including U itself) we have the following equivalence:

R � t −→ t′ ⇐⇒ U � 〈R, t〉 −→ 〈R, t′〉

where R, t, and t′ are terms representing, respectively, R, t, and t′ as data
elements of U .

Reflection is systematically exploited in the Maude design and implementa-
tion [4], providing key features of the universal theory U in a built-in module
called META-LEVEL. In particular, META-LEVEL has sorts Term and Module, so that
the representations t and R of a term t and a module R have sorts Term and
Module, respectively.1 Furthermore, META-LEVEL provides key metalevel func-
tions for rewriting and evaluating terms at the metalevel, namely, meta-apply,
meta-reduce, and meta-rewrite [4].

3 Mobile Maude

We explain below the design of processes and mobile objects and their rewriting
semantics, based on a formal specification of Mobile Maude written in Maude.
Note that this specification is executable.

3.1 Processes and Mobile Objects

The key entities in Mobile Maude are processes and mobile objects; both are
modeled as distributed objects in classes P and MO, respectively. Processes are
located computational environments inside which mobile objects can reside, can
execute, and can send and receive messages to and from other mobile objects
located in different processes. Mobile objects carry their own internal state and
code (rewrite rules) with them, can move from one process to another, and can
communicate with each other by asynchronous message passing. Figure 1 shows
several processes in two locations, with (mobile) object o3 moving from one
process to another, and with object o1 sending a message to o2. The names of
processes range over the sort Pid, whereas the names of mobile objects range
over the sort Mid and have the form o(PI,N) with PI the name of the object’s
parent process, in which it was created, and N a number.

The class P of Mobile Maude processes is declared as follows,

class P | cnt: MachineInt, cf: Configuration, guests: Set[Mid],

forward: PFun[MachineInt, Tuple[Pid, MachineInt]].

1 The key operator for the sort Term is of the form []: Qid TermList -> Term where
the sort Qid of quoted identifiers is used to metarepresent operator names. Then a
term such as, for example, X + Y is metarepresented as ’ + [’X,’Y] .

Principles of Mobile Maude 77

o1

o3

o2

o3

o3

Fig. 1. Object and message mobility

Note the interesting fact that the attribute cf is itself a configuration, that is,
a multiset of objects and messages. This means that processes exist as objects of
an outer configuration of processes (plus messages and possibly mobile objects
in transit) but also contain “in their belly” an inner configuration consisting
of mobile objects and messages currently residing inside the process. Mobile
objects can move from one process to another. For this reason, each process
keeps information about the mobile objects currently in its belly in the guests
attribute.

Since mobile objects may move from one process to another, reaching them
by messages is nontrivial. The solution adopted in Mobile Maude is that, when
a message’s addressee is not in the current process, the message is forwarded to
the mobile object’s parent process. Each process stores forwarding information
about the whereabouts of its children in its forward attribute, a partial function
in PFun[MachineInt, Tuple[Pid, MachineInt]] that maps child number n to
a pair consisting of the name of the process in which the object currently resides,
and the number of “hops” to different processes that the mobile object has taken
so far. The number of hops is important in disambiguating situations when
old messages (containing old location information) arrive after newer messages
containing current location. The most current location is that associated with
the largest number of hops. Whenever a mobile object moves to a new process,
the object’s parent process is always notified. Note that this system does not
guarantee message delivery in the case that objects move more rapidly than
messages.

Mobile objects are specified as objects of the following class MO,

class MO | mod: Module, s: Term, p: Pid, hops: MachineInt, mode: Mode.

Note that the sorts Module and Term, associated to the attributes mod and
s, respectively, are sorts in the module META-LEVEL, that is imported by the
specification of Mobile Maude. They metarepresent Maude modules and terms
in such modules. The mobile object’s module must be object-oriented, and the

78 Francisco Durán et al.

mobile object’s state must be the metarepresentation of a pair of configurations
meaningful for that module and having the form C & C’, with C’ a multiset
of outgoing messages that must be pulled out, and C containing unprocessed
incoming messages and an inner object, with the same identity as that of the
mobile object containing it. Therefore, we can think of a mobile object as a
wrapper that encapsulates the state and code of its inner object and mediates
its communication with other objects and its mobility. For this reason, Figure 1
depicts mobile objects by two concentric circles, with the inner object and its
incoming and outgoing messages contained in the inner circle. The process where
the object currently resides is stored in the p attribute. The number of “hops”
from one process to another is stored in the hops attribute. Finally, an object’s
mode is only active inside the belly of a process: moving objects are idle.

3.2 Mobile Maude’s Rewriting Semantics

The entire semantics of Mobile Maude can be defined by a relatively small num-
ber of rewrite rules written in Maude. Such a specification is executable and
can be used as a Mobile Maude simulator. We should think of such rules as a
specification of the system code of Mobile Maude, that operates in an application-
independent way providing all the object and process creation, message passing,
and object mobility primitives (for our design of the actual system code see Sec-
tion 6). By contrast, all application code is encapsulated in a metarepresented
form within mobile objects and is executed at the metalevel inside such objects.

We give the flavor of Mobile Maude’s rewriting semantics by commenting on
four rules: three for object mobility, and one for mobile object execution. Other
rules in the same style deal with message communication, mobile object and
process creation, and so on. (See http://maude.csl.sri.com.)

The three rules below govern object mobility. Such mobility is initiated by
the mobile object’s inner object, which puts the metarepresentation ’go[T’]
in the second component (i.e., as an outgoing message) of the state. The term
T’ metarepresents the name of the process where the object wants to go. The
rule message-out-move indicates how such a name is decoded by the downPid
function, and shows in its righthand side the mobile object ready to go—which
is indicated by being enclosed inside a go operator. Here and in what follows,
mathematical variables (M, T, T’, C, SMO etc.) are written in capitals, but
their sort declarations are omitted. SMO, for example, stands for a set of mobile
object ids.

rl [message-out-move]: < M: MO | s: ’_&_[T, ’go[T’]], mode: active >

=> go(downPid(T’),< M: MO | s: ’_&_[T, {’none}’MsgSet], mode: idle >).

rl [go-proc]: < PI: P | cf: C go(PI’, < M: MO | >), guests: M . SMO >

=> if PI =/= PI’

then < PI: P | cf: C, guests: SMO > go(PI’,< M: MO | >)

else

< PI: P | cf: C < M: MO | p: PI, mode: active >, guests: SMO >

fi.

http://maude.csl.sri.com

Principles of Mobile Maude 79

rl [arrive-proc]: go(PI,< o(PI’, N): MO | hops: N’ >)

< PI: P | cf: C,guests: SMO,forward: F >

=> if PI == PI’ then

< PI: P | cf: C < o(PI’, N): MO | p: PI,hops: N’ + 1,

mode: active >, guests: o(PI’, N) . SMO,

forward: F [N -> (PI, N’ + 1)] >

else < PI: P | cf: C < o(PI’, N): MO | p: PI, hops: N’ + 1,

mode: active >, guests: o(PI’, N) . SMO >

to PI’ @ (PI, N’ + 1) { N } fi.

The rule go-proc then initiates the move of the object from its current
process (PI) to another process PI’ by extracting it from PI and putting it
in the outer configuration. The arrive-proc rule then finishes the motion by
inserting the mobile object inside the belly of the target process in active mode
and with updated information about its current process and number of hops, and
includes the object’s name in the set of current guests. However, if the destination
process happens to be the parent process, then the forwarding information has
to be updated; otherwise, the parent process has to be informed of the mobile
object’s whereabouts by means of the message to PI’ @ (PI, N’ + 1) { N }.

The execution of mobile objects uses reflection and is accomplished by the
following rule which simply invokes meta-rewrite. This rule can be modified to
limit resources used in execution of each meta-rewrite and to enforce fairness.

rl [do-something]: < M: MO | mod: MOD, s: T, mode: active >

=> < M: MO | s: meta-rewrite(MOD, T, 1) >

4 A Mobile Cell Phone Example

In [15], Milner presents a simple mobile telephones example to illustrate the π-
calculus. We use a variant of this example to illustrate how mobile application
code can be written in Maude and can be wrapped in mobile objects. As already
explained in Section 3, Mobile Maude systems code is specified by a relatively
small number of rules for processes, mobile objects, mobility, and message pass-
ing. Such rules work in an application-independent way. Application code, on
the other hand, can be written as Maude object-oriented modules with great
freedom, except for being aware that, as explained in Section 3.1, the top level
of the state of a mobile object has to be a pair of configurations, with the sec-
ond component containing outgoing messages and the first containing the inner
object and incoming messages.

The example includes a set of cars, with mobile phones in them, which move
around a large geographical area. The mobile phones are always in contact with
one of the bases, which communicate among themselves through a control center.
When the center detects that a car is approaching a new base, it sends messages
to the base currently in contact with the car asking it to release the car, and to
the new base, asking it to get in contact with it.

80 Francisco Durán et al.

We represent cars, bases, and centers as objects of respective classes Car,
Base, and Center. Such objects in the application code will then be embedded
as inner objects of their corresponding mobile objects. We assume that the mobile
objects encapsulating different bases are located in different process, and that
the mobile object encapsulating a car is in the process of the base it is currently
in contact with. We also assume that there is a single mobile object encapsulating
the center, which is located in a different process. The center causes a car mobile
object to move from the process of the base it is currently in contact with to the
process of the new base it switches to.

An object of the Car class has two attributes, base, storing the name of the
base it is currently in contact with, and phone-book, a set storing the names of
other cars it knows about and can call.

class Car | base: Oid, phone-book: Set[Oid].

An object of the Base class has two attributes, cars, storing the names of
the cars the base is in contact with, and center, the name of the center.

class Base | cars: Set[Oid], center: Oid.

The center is an object of class Center. The connection information is a
partial function, mapping each car name to the base it is currently in contact
with, stored in the cntrl attribute. In addition, the center stores the names of
all bases and cars in the bases and cars attributes.

class Center | cntrl: PFun[Oid, Oid], bases: Set[Oid], cars: Set[Oid].

Cars talk to each other through their respective bases, with the center medi-
ating the conversations between cars in different bases. For simplicity, we model
any words said to a car object O by means of the term talk(O). Mobile Maude
can model binding and rebinding of resources in mobile systems. A car object
can initiate a conversation by choosing another car name in its phone book
and placing a message addressed to its current base with such a request in the
outgoing messages part of the state, according to the rule

rl [talk]: < O: Car | base: O’, phone-book: O’’ + OS > C & none

=> < O: Car | > C & (to O’: talk(O’’)).

Other rules then govern the handling of the request by the base, which for-
wards it to the other car if it is also in contact with it, or otherwise asks the
center to forward it to the appropriate base. Such car talking rules, and the
entire example, can be found in http://maude.csl.sri.com.

We focus instead on the application code rules that—when such code is
encapsulated in corresponding mobile objects—cause car mobile objects to move
from one process to another. We assume that, by some other mechanism not
modeled here, the center can know the positions of the cars and the bases, and
therefore can detect that a car is approaching a new base different from the one
it is in contact with, and can then start the switching of the connections. The

http://maude.csl.sri.com

Principles of Mobile Maude 81

center then sends a releasemessage to the base connected to such a car and an
alertmessage to the new base. When a base receives a releasemessage it sends
a switch message to the car with the identifier of its new base. When a base
receives the alert message it saves the identifier of the new car connected with
it. The reception of a switchmessage by a car causes it to connect to a new base,
by updating its base attribute, and by placing the go command in the outgoing
messages part of the state, causing the mobile object encapsulating the car to
move to the process in which the new base is located (see rule message-out-move
in Section 3.2). Note that crl is a conditional rule, that is, a rule that is only
enabled when the condition is true. As before, sort declarations for the variables
(O, O’, OS, OS’, C, etc) are omitted.

crl [switch]: < O: Center | cntrl: PF,bases: O’ + O’’’ + OS,

cars: O’’ + OS’ > C & none

=> < O: Center | cntrl: PF[O’’ -> O’] > C & (to O’: alert(O’’))

(to O’’’: release O’’ to O’) if PF[O’’] == O’’’.

rl [release]: < O: Base | cars: O’ + OS >

(to O: release O’ to O’’) C & none

=> < O: Base | cars: OS > C & (to O’: switch(O’’)).

rl [alert]: < O: Base | cars: OS > (to O: alert(O’))

=> < O: Base | cars: O’ + OS >.

rl [move]: < O: Car | > (to O: switch(o(PI, N))) C & none

=> < O: Car | base: o(PI, N) > & go(PI).

5 Mobile Maude Security

In Mobile Maude, like in all mobile-agent systems, four key security issues should
be addressed: protecting an individual machine (physical machine or in general
any execution environment) from malicious agents, protecting a group of ma-
chines from various forms of attack, protecting agents from malicious hosts, and
protecting groups of agents from one-another. For example, to protect an indi-
vidual machine from malicious agents, we employ cryptographic authentication
of the agent’s authority, resource constraints and fairness management based on
the agent’s identity, and secure execution environments that provide strong par-
titioning (if not some level of noninterference) and enforce the decisions of the
resource manager. No mobile agent systems today meet the strongest form of all
these security needs. Mobile Maude will provide a platform with some of these
kinds of secure services built-in, and the Maude reflective framework provides
an excellent vehicle for experimentation with techniques to provide a complete
secure solution for mobile agents. Specifically, Mobile Maude supports the pri-
vacy of data through encryption, the authentication of communications through
a public-key infrastructure service, the security of mobility (built on both of the
above), and the reliability and integrity of computation by means of redundant
checks.

82 Francisco Durán et al.

5.1 Mobile Maude Security Infrastructure

The security features of Mobile Maude are provided as optional features for those
applications which require one or more properties of security, privacy, authentic-
ity, and integrity. The Mobile Maude object system is used to define subclasses of
Mobile Maude objects, processes, and locations which can provide the required
features as needed. For example, the birthplace of an object acts as the authori-
tative signature key repository, and birthplaces are authenticated in a hierarchy
back to a predefined set of primordial sources of trust. Thus to authenticate a
message, a receiver can contact the birthplace of the sending object, and securely
obtain the public key of that object, and then authenticate that the message was
properly signed using PGP or similar secure signature scheme. This is similar to
the Telescript [18], D’Agents [8], and IBM Aglets [10]. In Aglets, for example,
migrating Java code is cryptographically signed and then standard Java security
resource mechanisms are enforced. In Mobile Maude the communication to the
birthplace must also be carried out using authentication, and thus authentica-
tion keys for all birthplaces must be obtained from the roots of trust entrusted
with public keys. When a Maude mobile object changes locations, its entire state
can be signed by the originating process and encrypted using the public key of
the destination process. In this way, as the object moves over untrusted commu-
nication paths, the object cannot be altered or interrogated, and can maintain
valuable secrets (such as it’s own signature keys).

5.2 Secure Message Passing and Mobility

There are several approaches to providing security for messages and mobility
in a mobile context. A simple and efficient but relatively insecure approach is
security by obscurity, where processes or objects are inaccessible if one does
not know their name. By hiding the name of a location, process, or object,
only those objects which already know the name can communicate with it. We
adopt in addition the encryption of messages and objects in transit. Objects
and processes that send or receive messages encrypt the communication and
forward it so that malicious network manipulation cannot read or modify the
communicated content.

5.3 Resource Bounds and Fairness

Another key aspect of Mobile Maude is the provision of fairness and other guar-
anteed bounds on resource allocation. The fairness provided by Mobile Maude
prevents some kinds of denial-of-service attacks by ensuring that all processes
are allowed to make progress, even in the presence of large numbers of spurious
messages or objects. However, more aggressive bounds on object-generation and
message-generation can be provided and can be combined with authentication
techniques to ensure even stronger guarantees on performance.

Principles of Mobile Maude 83

6 Implementation Approaches

The implementation of Mobile Maude presents several technical challenges. One
of the interesting notions is that rewriting logic allows one to specify something
at a high level of abstraction, while also allowing one to refine toward an efficient
implementation. That is, Mobile Maude is both a formal system specified via a
rewrite theory and an implementation of such a system. Of course, although the
rewriting logic specification is executable this leaves open many possibilities for
a concrete real implementation. The current Maude specification built on top
of Maude 1.0.5 is executable and can be used as a simulator. We have thought
through the detailed design of, and plan to implement a specific efficient single-
host implementation of Mobile Maude.

For the single-host executable implementation, we will build upon the forth-
coming Maude 2.0 interpreter/compiler, utilizing the builtin object system, for
object/message fairness. Maude is implemented as a high performance inter-
preter (up to 2.98 million rewrites per second on a 667Mhz Xeon) and as a
compiler (up to 15 million rewrites per second on a 667MHz Xeon). The Mobile
Maude system code will still be written entirely in Maude, and thus locations
and processes will be encoded as Maude terms. This implementation effort will
be completed rapidly once Maude 2.0 is available, by simplifying and extending
the existing specification.

For the second implementation effort, we will focus on true distributed exe-
cution. We will define and build a very simple Mobile Object Transfer Protocol
(MOTP) 0.1 on top of TCP/IP.We will implement Mobile Maude servers written
in Maude, using the built-in string handling and internet socket modules planned
for Maude 2.0. The Maude 2.0 socket modules will support non-blocking client
and server TCP sockets (at the OS level) and will make use of the concurrency
inherent in the Maude object-message model rather than relying on threads as
found in legacy programming languages. In this implementation effort, a Mobile
Maude server will run on top of a Maude 2.0 interpreter, keeping track of the
current locations of mobile objects created on a host, handle change of location
messages, reroute messages to mobile objects and run the code of mobile objects
by invoking the metalevel. In this implementation, processes could be actual, if
forking new interpreters or JIT Maude compilation is made available in Maude
2.0, or could be simulated (i.e. encoded as Maude terms). The total implemen-
tation effort here is moderate — over and above the effort need to implement
Maude 2.0, since much of the infrastructure including implementation of MOTP
0.1 will be done using the Maude 2.0 language implementation.

7 Concluding Remarks

We have presented the basic concepts of Mobile Maude, a new declarative mo-
bile language design extending Maude and based on rewriting logic reflection.
We have explained the language’s semantics based on its current specification,
which serves also as a simulator for the language. We have also illustrated the use

84 Francisco Durán et al.

of Maude with a simple mobile cell phone application. Security and implemen-
tation issues have also been discussed. Much work on implementation, security
infrastructure, formal methodology, and applications remains ahead.

Mobile Maude’s simple declarative semantics together with its security in-
frastructure offers the promise of being able to reach high levels of assurance
about the language itself and about specific applications through the use of a
variety of formal methods. This promise has to be fulfilled by developing ad-
equate formal methodologies, and by demonstrating how it can be attained in
practice for substantial applications. The encouraging experience using a flexible
range of formal methods in Maude (see the surveys [6,13]) and the formal tools
already available [5] and planned for the future will help in this task.

Acknowledgement

We would like to thank the reviewers for many insightful comments on this
paper.

References

1. M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi calculus.
Information and Computation, 148:1–70, 1999. An extended version of this paper
appears as Research Report 149, Digital Equipment Corporation Systems Research
Center, January 1998. 74

2. L. Cardelli and A. Gordon. Mobile ambients. In M. Nivat, editor, Proceedings
of FoSSaCS’98: Foundations of Software Science and Computational Structures,
number 1378 in Lecture Notes in Computer Science, pages 140–155. Springer-
Verlag, 1998. To appear in TCS July 2000. 74

3. P. Ciancarini and A. W. (eds.). Coordination Languages And Models, volume 1594.
Springer LNCS, 1999. 74

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. SRI International,
January 1999, http://maude.csl.sri.com. 74, 75, 76

5. M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational proving tools
by reflection in rewriting logic. In Proc. of the CafeOBJ Symposium ’98, Numazu,
Japan. CafeOBJ Project, April 1998. http://maude.csl.sri.com. 84

6. G. Denker, J. Meseguer, and C. Talcott. Formal specification and analysis of active
networks and communication protocols: the Maude experience. In Proc. DARPA
Information Survivability Conference and Exposition DICEX 2000, Vol. 1, Hilton
Head, South Carolina, January 2000, pages 251–265. IEEE, 2000. 84

7. C. Fournet and G. Gonthier. The reflexive cham and the join-calculus. In Pro-
ceedings of 23rd ACM Symposium on Principles of Programming Languages, pages
52–66. ACM, 1996. 74

8. R. S. Gray, D. Kotz, G. Cybenko, and D. Rus. D’Agents: Security in a multiple-
language, mobile-agent system. In G. Vigna, editor, Mobile Agents and Security,
LNCS 1419, pages 154–187. Springer-Verlag, 1998. 74, 82

9. D. Kotz and R. S. Gray. Mobile agents and the future of the Internet. ACM
Operating Systems Review, 33(3):7–13, August 1999. 73

http://maude.csl.sri.com
http://maude.csl.sri.com

Principles of Mobile Maude 85

10. D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with
Aglets. Addison-Wesley, 1998. 82

11. D. B. Lange and M. Oshima. Seven good reasons for mobile agents. Communica-
tions of the Association for Computing Machinery, 42:88–89, March 1999. 73

12. D. Martin, A. Cheyer, and D. Moran. The open agent architecture: A framework
for building distributed software systems. Applied Artificial Intelligence, 13:91–128,
1999. Available via http://www.ai.sri.com/~cheyer/papers/aai/oaa.html. 74

13. J. Meseguer. Rewriting logic and Maude: a wide-spectrum semantic framework
for object-based distributed systems. To appear in Proc. FMOODS 2000 Kluwer,
2000. 84

14. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96(1):73–155, 1992. 74, 75

15. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (Parts I and
II). Information and Computation, 100:1–77, 1992. 73, 79

16. G. Roman, P. McCann, and J. Plun. Mobile UNITY: Reasoning and specification in
mobile computing. ACM Transactions on Software Engineering and Methodology,
6:250–282, July 1997. 74

17. A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R. Singh. Mobile agent program-
ming in ajanta. In Proceedings of the 19th International Confernce on Distributed
Computing Systems (ICDCS ’99), 1999. 74

18. J. White. Telescript technology: the foundation for the electronic marketplace.
General Magic White Paper, General Magic, Inc., 1994. 82

http://www.ai.sri.com/~cheyer/papers/aai/oaa.html

	Principles of Mobile Maude
	Introduction
	Rewriting Logic, Maude and Reflection
	Object-Oriented Modules
	Reflection and the META-LEVEL

	Mobile Maude
	Processes and Mobile Objects
	Mobile Maude's Rewriting Semantics

	A Mobile Cell Phone Example
	Mobile Maude Security
	Mobile Maude Security Infrastructure
	Secure Message Passing and Mobility
	Resource Bounds and Fairness

	Implementation Approaches
	Concluding Remarks
	References

