
WRLA 2006

A distributed implementation of Mobile
Maude ?

Francisco Durán, a Adrián Riesco, b and Alberto Verdejo b

a ETSI Informática, Universidad de Málaga, Spain. duran@lcc.uma.es
b Facultad de Informática, Universidad Complutense, Madrid, Spain.

ariesco@fdi.ucm.es alberto@sip.ucm.es

Abstract

We present a new specification/implementation of the mobile agent language Mobile
Maude. This new version uses the external sockets provided by Maude since its 2.2
version, thus obtaining a really distributed implementation of the mobile language,
where messages and mobile objects now may travel from one machine to another
one in a transparent way. We also show how, even though the complexity of the
Mobile Maude specification and the use of reflection, we have managed to use the
Maude’s model checker to prove properties about mobile agents applications.

Keywords: Mobile agents, Mobile Maude, model checking.

1 Introduction

Mobile Maude is a mobile agent language extending Maude and supporting
mobile computation. It was first presented in [3], and a significant application
appeared in [4].

Mobile Maude uses reflection to obtain a simple and general declarative
mobile language design and makes possible strong assurances of mobile agent
behavior. The formal semantics of Mobile Maude is given by a rewrite the-
ory in rewriting logic. Since this specification is executable, it can be used
as a prototype of the language, in which mobile agent systems can be simu-
lated. The two key notions are processes and mobile objects. Processes are
located computational environments where mobile objects can reside. Mobile
objects have their own code, can move between different processes in different
locations, and can communicate asynchronously with each other by means
of messages. Mobile Maude’s key characteristics include: (1) reflection as a

? Research partially supported by the MCyT Spanish projects MIDAS (TIC 2003-01000)
and TIN2005-09405-C02-01.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Durán, Riesco, and Verdejo

way of endowing mobile objects with “higher-order” capabilities; (2) object-
orientation and asynchronous message passing; and (3) a simple semantics
without loss in the expressive power of application code.

The code of a mobile object is given by (the metarepresentation of) an
object-based module—a rewrite theory—and its data is given by a configu-
ration of objects and messages that represent its state. Such configuration
is a valid term in the code module, which is used to execute it. Maude con-
figurations become located computational environments where mobile objects
can reside. Mobile objects can interact with other ones (possibly in different
locations), and can move from one location to another.

In [3], Durán, Eker, Lincoln, and Meseguer first introduced Mobile Maude.
In that work, the authors presented a ‘simulator’ of Mobile Maude, an exe-
cutable Maude specification on top of Maude 1.0.5, in which the system code
was written entirely in Maude, and thus locations and processes were encoded
as Maude terms. In the same paper, the authors also gave a development
plan including two development efforts: a first step in which a single-host ex-
ecutable was implemented, and a second implementation effort focussing on
true distributed execution.

The release of Maude 2.0 allowed taking the first step. This implemen-
tation effort was completed in a very short time, utilizing the builtin object
system, for object/message fairness, just by simplifying and extending the pre-
vious specification. This new version was developed by Durán and Verdejo,
and used in several examples, one of which was reported in [4].

The present work summarizes our results in the second development effort.
The built-in string handling and internet socket module available in Maude 2.2
has allowed us to build a really distributed implementation. The Maude 2.2
socket modules support non-blocking client and server TCP sockets (at the
OS level). In this implementation effort, a Mobile Maude server runs on
top of a Maude interpreter and performs the following tasks: keeps track of
the current locations of mobile objects created on a host, handles change of
location messages, reroutes messages to mobile objects, and runs the code
of mobile objects by invoking the metalevel. In fact, we have made a quite
significant number of changes on Mobile Maude. Processes and locations
are no longer part of the specification of Mobile Maude, now we talk about
Maude processes—not terms, OS processes, which may be running on different
machines—and IP addresses. We have also introduced the notion of root
objects as managers of the configurations of mobile objects in the different
processes.

We explain below the design of processes and mobile objects and their
rewriting semantics, based on a formal specification of Mobile Maude written
in Maude.

The fundamental notions of Mobile Maude, namely processes, mobile ob-
jects, and messages are introduced in Section 2. In Section 3, we give a flavor
of the rewriting semantics of Mobile Maude. In Section 4 we discuss on the

2

Durán, Riesco, and Verdejo

connections via sockets between the different processes in a distributed config-
uration; in particular, we introduce Maude sockets, we explain buffered sockets
and then introduce a very simple sample architecture. Section 5 presents a
Mobile Maude application code example in which we specify the search of the
best offer between several distributed alternatives. Section 6 explains how
we have used the model checker to check properties on our Mobile Maude
specifications. Section 7 wraps this piece of work with some final conclusions.

2 Processes, mobile objects, and messages

The key entities in Mobile Maude are processes and mobile objects. Mobile
objects are modeled as distributed objects in the class MobileObject. A
distributed configuration is made up of located configurations. Each located
configuration is executed in a Maude process. Such processes can therefore
be seen as located computational environments inside which mobile objects
can reside, execute, and send and receive messages to and from other mobile
objects located in different processes. We assume that each located configu-
ration has one (and only one) root object, of class RootObject, which keeps
information on the location of the process, on the mobile objects in such a
configuration, and on the whereabouts of the mobile objects created in it,
which may have moved to other processes. We assume uniqueness of root
object names in a distributed configuration.

Mobile objects carry their own internal state and code (rewrite rules) with
them, can move from one process to another, and can communicate with each
other by asynchronous message passing. The names of root objects range
over the sort Loc, and have the form l(IP, N) with IP the IP address of the
machine in which the process is being executed and N a number. The names of
mobile objects range over the sort Mid and have the form o(L, N) with L the
name of the root object of the process in which it was created and N a number.
Figure 1 shows several mobile objects in two processes, with (mobile) object
o(l(IP, 0), 1) moving from the process with root object l(IP, 0) to the
process of root object l(IP’, 0), and with object o(l(IP, 0), 0) sending
a message to o(l(IP’, 0), 0).

Mobile objects are specified as objects of the following class MobileObject: 1

class MobileObject |
mod : Module, *** rewrite rules of the mobile object
s : Term, *** current state
gas : Nat, *** bound on resources
hops : Nat, *** number of hops
mode : Mode . *** objects in motion cannot be active

1 We use here the Full Maude object-oriented notation for defining classes. However, the
actual implementation of Mobile Maude is made in Core Maude, because Full Maude does
not support external objects. The complete code for Mobile Maude including the corre-
sponding declarations in Core Maude for the classes MobileObject and RootObject can be
found in http://maude.sip.ucm.es/mobilemaude.

3

http://maude.sip.ucm.es/mobilemaude

Durán, Riesco, and Verdejo

o(l(IP, 0), 0)

l(IP, 0)

o(l(IP, 0), 1)

o(l(IP', 0), 0)

o(l(IP, 0), 1)

l(IP', 0)

Fig. 1. Object and message mobility.

The sorts Module and Term, associated to the attributes mod and s respec-
tively, are sorts in the module META-LEVEL. The mobile object’s module must
be object-based, and the mobile object’s state must be the metarepresentation
of a pair of configurations meaningful for that module and having the form
C & C’, where C is a configuration of objects and messages—unprocessed in-
coming messages and inter-inner-objects messages, see below—and C’ is a
multiset of messages—the outgoing messages tray. One of the objects in the
configuration of objects and messages is supposed to have the same identifier
as the mobile object it is in. We sometimes refer to this object as the main
one, which in most cases will be the only one. Therefore, we can think of a
mobile object as a wrapper that encapsulates the state and code of its inner
object and mediates its communication with other objects and its mobility.
For this reason, Figure 1 depicts mobile objects by two concentric circles,
with the inner object and its incoming and outgoing messages contained in
the inner circle.

To maintain the forwarding information up to date (see below), the defini-
tion of the class MobileObject includes the attribute hops, which stores the
number of “hops” from one process to another. To guarantee that all mobile
objects eventually have some activity, and as a bound on the resources they
can consume, they have a gas attribute. Finally, an object’s mode is only
active inside the belly of a process: on-transit objects are idle.

The class RootObject of root objects is declared as follows:

class RootObject |
cnt : Nat, *** counter to generate mobile obj. names
guests : Set{Oid}, *** objects in the location
forward : Map{Nat, Tuple{Loc, Nat}}, *** forwarding information
state : RootObjectState, *** idle, waiting-connection, or active
neighbors : Map{Loc, Oid}, *** associates a socket to each location
defNeighbor : Default{Oid} . *** default socket

We assume that each located configuration contains one and only one root
object, plus the messages and mobile objects currently residing in such a

4

Durán, Riesco, and Verdejo

process. Located configurations, running on different Maude processes, make
up a distributed configuration. Mobile objects can move from one process
(located configuration) to another.

The root object of each process keeps information about the mobile ob-
jects currently in it in the guests attribute. Mobile objects are named with
identifiers of the form o(L, N). The attribute cnt stores a counter to gener-
ate such unique new mobile object names. Since mobile objects may move
from one process to another, reaching them by messages is nontrivial. The
solution adopted in Mobile Maude [3] is that, when a message’s addressee is
not in the current process, the message is forwarded to the addressee’s parent
process (the process it was created at). Each root object stores forwarding
information about the whereabouts of its children in its forward attribute, a
partial function in Map{Nat, Tuple{Loc, Nat}} that maps child number n
to a pair consisting of the name of the located process in which the object
currently resides, and the number of “hops” to different processes that the
mobile object has taken so far. The number of hops is important in disam-
biguating situations when old messages (containing old location information)
arrive after newer messages containing current location. The most current lo-
cation is that associated with the largest number of hops. Whenever a mobile
object moves to a new process, the object’s parent process is always notified.
Note that this mechanism does not guarantee message delivery in the case
that objects move more rapidly than messages.

In the previous version of Mobile Maude [3,4], all the processes were in the
same Maude object-oriented configuration, and reaching a particular process
was represented by one single rule. However, in this new version, when a
mobile object moves to a different location, or a message is sent to a mobile
object in a different location, since we use TCP sockets to connect processes,
we need to know which of the sockets must be used to send the information.
The root object in the process is in charge of sending it through the appropri-
ate socket. 2 Assuming that all processes are directly connected to each other
is not realistic, would be very limited in the number of processes we could con-
nect, and would make the task of connecting a new process a really expensive
one. Fortunately, connectivity between two nodes does not necessarily imply
a direct connection between them. An indirect connectivity may be achieved
among a set of cooperating nodes. Nevertheless, just because a set of hosts
are directly or indirectly connected to each other does not mean that we have
succeeded in providing host-to-host connectivity. When a source node wants
the network to deliver a message to a certain destination node, it specifies the
address of the destination node. If the sending and receiving nodes are not
directly connected, then the nodes of the network between them—switchers
and routers—use this address to decide how to forward the message toward
the destination. The process of determining systematically how to forward

2 As we will see in the coming sections, root objects send messages through buffered sockets.
We discuss the used of sockets and buffered sockets in Section 4.

5

Durán, Riesco, and Verdejo

messages toward the destination node based on its address—which is usually
called routing—is nontrivial. 3 Here, we assume a very simple, although quite
general, approach consisting in having a routing table in each root object.
Such a table gives the socket through which a message must be sent if one
wants to reach a particular location. If there is a socket between the source
and the target of the message then it reaches its destination in a single step;
otherwise the forwarding have to be repeated several times. The neighbors

attribute maintains such a routing table as a map associating socket object
identifiers to location identifiers. That is, the attribute neighbors stores in
a partial function Map{Loc, Oid} information on the sockets through which
sending the data to reach a particular location.

In case there is no socket associated to a particular location in the map
neighbors, there can be a default socket stored in the attribute defNeighbor.
Nevertheless, the value of the defNeighbor attribute may also be unspecified.
The sort Default{X} declared in the module DEFAULT-ELEMENT below adds a
default value to the sort used in the instantiation of the module. We define
the parameterized functional module DEFAULT-ELEMENT{X :: TRIV} in which
we declare a sort Default{X} as a supersort of the sort Elt of the parameter
theory, and a constant null of sort Default{X}.

fmod DEFAULT-ELEMENT{X :: TRIV} is
sort Default{X} .
subsort X$Elt < Default{X} .
op null : -> Default{X} [ctor] .

endfm

Then, since defNeighbor is declared of sort Default{Oid}, it can take as
value either an object identifier or null.

If there is no socket associated to a particular location and a default one
has not been specified then the data is not delivered. Note that this model
allows us to represent many different network architectures, and, although we
do not care here about it, the routing information may be updated and used
in a very flexible way. We will explain how to build a very simple architecture
in Section 4.2.

Finally, a root object may be in state idle, waiting-connection, or
active. The attribute state will take one of these values. Root objects are
only idle when they are created, being their first action either being activated
as a client or server socket. They stay in waiting-connection until they get
the confirmation from the server socket, passing then to active mode, state
in which they will develop their normal activity.

Mobile Maude system code is specified by a relatively small number of rules
(about 40) for root objects, mobile objects, mobility, and message passing.

3 We only consider the case of a source node wanting to send a message to a single desti-
nation node (unicast). The cases of multicasting—the source node wants to send a message
to some subset of the nodes on the network—and broadcasting—the source node wants to
send a message to all the nodes on the network—could similarly be specified.

6

Durán, Riesco, and Verdejo

Such rules work in an application-independent way. Application code, on
the other hand, can be written as Maude object-based modules with great
freedom, except for being aware that, as explained above, the top level of the
state of a mobile object has to be a pair of configurations, with the second
component containing outgoing messages and the first containing the inner
object(s) and incoming messages.

sort MobObjState .
op _&_ : Configuration Configuration -> MobObjState [ctor] .

The messages being pulled in or out of a mobile object must be of the form
to O : C, go(L), go-find(O, L), newo(Mod, Conf, O), or kill, for L a lo-
cation (of sort Loc), O a mobile object identifier (of sort Mid), C a term of sort
Contents, Mod a term of sort Module, and Conf a term of sort Configuration.
Such messages may in fact be understood as commands that the object—or one
of the objects—in the inner configuration of a mobile object gives to it. Thus,
an object may send a message with contents C to the object O with the message
to O : C; may request to move from its current location to a given location L

with the go(L) message; may request going to the location in which the mo-
bile object O resides, which is possibly L, with the message go-find(O, L);
may request creating a new mobile object with module Mod, initial state Conf,
and temporal identifier of the main object in such a configuration O, with the
message newo(Mod, Conf, O); or may request the destruction of the mobile
object it resides into with the message kill. The definition of all these ingre-
dients are defined in the module MOBILE-OBJECT-ADDITIONAL-DEFS, which is
assumed to be imported by the user in all his Mobile Maude applications.

Note that messages being sent to other mobile objects must be of the form
to_:_, with the addressee of the message as first argument and a term of sort
Contents as second argument. The definition of such a sort is left to each
particular application (see Section 5), which in fact let the user the freedom
to define any kind of message, with the restriction of having the identifier of
the addressee as first argument.

3 Mobile Maude’s rewriting semantics

The entire semantics of Mobile Maude can be defined by a relatively small
number of rewrite rules written in Maude. We should think of such rules as
an implementation/specification of the system code of Mobile Maude, that
operates in an application-independent way providing all the object creation
and destruction, message passing, and object mobility primitives.

We give the flavor of Mobile Maude’s rewriting semantics by comment-
ing on some of its rules. In particular, we focus on the rules in charge of
delivering inter-object messages since, in addition to illustrating the general
approach (a more detailed discussion may be found in [3] and [4]), it is di-
rectly related to the main novelty in the new implementation: sockets. The
complete specification, including other rules in the same style can be found in

7

Durán, Riesco, and Verdejo

http://maude.sip.ucm.es/mobilemaude.

There are three kinds of communication between objects. Objects in-
side the same mobile object can communicate with each other by means of
messages with any format, and such communication may be synchronous or
asynchronous. Objects in different mobile objects may communicate when
such mobile objects are in the same process and when they are in different
processes; in these cases, the actual kind of communication is transparent to
the mobile objects, but such communication must be asynchronous through
messages of the form to_:_, as explained above. If the addressee is an object
in a different mobile object, then the message must be put by the sender ob-
ject in the second component of its state (the outgoing messages tray). The
system code will then send the message to the addressee object. First the
message is pulled out of the object’s outgoing tray.

rl [message-out-to] :
< O : V@MobileObject |

mod : MOD, s : ’_&_[T, ’to_:_[T’, T’’]], mode : active, AtS >
=> < O : V@MobileObject |

mod : MOD, s : ’_&_[T, ’none.Configuration], mode : active, AtS >
(to downTerm(T’, o(l("null", 0), 0)) { T’’ }) .

Once the message is out of the mobile object, it can be appropriately
delivered. The msg-send rule below redirects messages addressed to mobile
objects in different locations.

crl [msg-send] :
< L : V@RootObject | state : active, guests : OS, forward : F, AtS >
(to o(L, N) { T })
=> < L : V@RootObject | state : active, guests : OS, forward : F, AtS >

Send(p1(F[N]), L, to o(L, N) hops p2(F[N]) in p1(F[N]) { T })
if (p1(F[N]) =/= L) /\ (not o(L, N) in OS) .

Notice the use of the message

op Send : Oid Oid Msg -> Msg [ctor msg] .

to send messages to the appropriate locations. The first and second arguments
of the Send message are, respectively, the addressee and sender of the message,
and the third argument is the message being sent. We will see in Section 4
how the Send messages will be used to send the corresponding data through
the appropriate sockets.

The arrival of an inter-object message to a location where the addressee
object is, is handled by the following rule. The message is just put in the
location so the object can get it.

rl [msg-arrive-to-loc] :
to o(L, N) hops H in L’ { T’ }
< L’ : V@RootObject | state : active, guests : (o(L, N), OS), AtS >
=> < L’ : V@RootObject | state : active, guests : (o(L, N), OS), AtS >

to o(L, N) { T’ } .

Once the message reaches its addressee object, the message must be in-

8

http://maude.sip.ucm.es/mobilemaude

Durán, Riesco, and Verdejo

serted in—push into—the state of such a mobile object. To make sure that
the mobile object will remain in a valid state, we check that the metarepre-
sentation of the corresponding message is a valid message in the module of
the object.

rl [msg-in] :
to O { T }
< O : V@MobileObject | mod : MOD, s : ’_&_[T’, T’’], AtS >
=> if sortLeq(MOD, leastSort(MOD, ’to_:_[upTerm(O), T]), ’Msg)

or sortLeq(MOD, ’Msg, leastSort(MOD, ’to_:_[upTerm(O), T]))
then < O : V@MobileObject |

mod : MOD, s : ’_&_[’__[’to_:_[upTerm(O), T], T’], T’’], AtS >
else < O : V@MobileObject | mod : MOD, s : ’_&_[T’, T’’], AtS >
fi .

4 Socket handling

Maude 2.2 supports rewriting with external objects and an implementation of
sockets as the first such external object. Rewriting with external objects is
started by the command erewrite (abbreviated erew) which is like frewrite
except it allows messages to be exchanged with external objects that do not
reside in the configuration.

Sockets are accessed using the messages declared in the module SOCKET,
which can be found in the file socket.maude distributed with Maude. We
briefly describe here Maude sockets. For a complete explanation of Maude
sockets, their use, and examples, we refer the reader to the Maude manual [2].
Currently only IPv4 TCP sockets are supported; other protocol families and
socket types may be added in the future.

The external object named by the constant socketManager is a factory for
socket objects. To create a client socket, a message createClientTcpSocket

(socketManager, ME, ADDRESS, PORT) has to be sent to the socketManager,
where ME is the name of the object the reply should be sent to, ADDRESS is
the name of the server you want to connect to, and PORT is the port you want
to connect to (say 80 for HTTP connections). The reply will be the message
createdSocket(ME, socketManager, SOCKET-NAME) where SOCKET-NAME is
the name of the newly created socket. All errors on a client socket are handled
by closing the socket.

You can then send data to the server with a message send(SOCKET-NAME,

ME, DATA) which elicits the message sent(ME, SOCKET-NAME). Similarly you
can receive data from the server with a message receive(SOCKET-NAME, ME)

which elicits the message received(ME, SOCKET-NAME, DATA).

To have communication between two Maude interpreter instances, one of
them must take the server role and offer a service on a given port. To create
a server socket, you send socketManager a message

createServerTcpSocket(socketManager, ME, PORT, BACKLOG)

where PORT is the port number and BACKLOG is the number of queue requests

9

Durán, Riesco, and Verdejo

for connection that you will allow. The response is the message

createdSocket(ME, socketManager, SERVER-SOCKET-NAME).

Here SERVER-SOCKET-NAME refers to a server socket. The only thing you can
do with a server socket is to accept clients, by means of the message

acceptClient(SERVER-SOCKET-NAME, ME)

which elicits the message

acceptedClient(ME, SERVER-SOCKET-NAME, ADDRESS, NEW-SOCKET-NAME).

Here ADDRESS is the originating address of the client and NEW-SOCKET-NAME

is the name of the socket you use to communicate with that client. This new
socket behaves just like a client socket for sending and receiving.

As we have seen in Section 3, the specification of Mobile Maude does not
know about sockets. The only place where we get close to sockets is when
using the Send messages, which is in fact not a socket message, but a buffered
socket one. We introduce in Section 4.1 buffered sockets, a kind of filter class
that makes Mobile Maude independent of sockets at the same time it adds
some additional functionality. As we will see in Section 6, this independence
is precisely what allows us to model check Mobile Maude specifications in a
rather clean way. Section 4.2 talks about the architecture of the systems,
on how processes get connected, and show how to do it for a very simple
architecture.

4.1 Buffered sockets

TCP sockets do not preserve message boundaries. Thus, sending e.g. mes-
sages “ONE” and “TWO” might result in the reception of messages “ON”
and “ETWO”. Although not relevant in other applications, in the current
case we need to guarantee that messages are received as originally sent; for
instance, if a mobile object is sent through a socket, we need to be able to
recover a valid object, in the same valid state in which it was sent, upon the
reception of the message. To guarantee message boundaries we use a filter
class BufferedSocket, defined in the module BUFFERED-SOCKET. This mod-
ule is completely independent of Mobile Maude, and can therefore be used
in other applications. We interact with buffered sockets in the same way we
interact with sockets, with the only difference that all messages in the mod-
ule SOCKET have been capitalized to avoid the confusion, being the boundary
control completely transparent to the user.

When a buffered socket is created, in addition to the socket object through
which the information will be sent, a BufferedSocket object is also created on
each side of the socket (one in each one of the configurations between which the
communication is established). All messages sent through a buffered socket
are manipulated before they are sent through the socket underneath. When
a message is sent through a buffered socket, a mark is placed at the end of it;
the BufferedSocket object at the other side of the socket stores all messages

10

Durán, Riesco, and Verdejo

received on a buffer, in such a way that when a message is requested the marks
placed say which part of the information received must be given as the next
message.

An object of class BufferedSocket has three attributes: read, of sort
String, which stores the messages read, bState, which indicates whether the
filter is idle or active, and waiting, which indicates if we are waiting for a
sent message (when we are waiting, we do not allow sending new messages).

sort BState .
ops idle active : -> BState [ctor] .
class BufferedSocket | read : String, bState : BState, waiting : Bool .

We do not give here all the rules, but only those related to the sending of
messages.

Once a connection has been established, and a BufferedSocket object has
been created on each side, messages can be sent and received. When a Send

message is received, the buffered socket sends a send message with the same
data plus a mark 4 to indicate the end of the message.

rl [send] :
< b(SOCKET) : V@BufferedSocket | bState : active,

waiting : false, Atts >
Send(b(SOCKET), O, DATA)
=> < b(SOCKET) : V@BufferedSocket | bState : active,

waiting : true, Atts >
send(SOCKET, O, DATA + "#") .

The key is then in the reception of messages. A BufferedSocket object
is always listening to the socket. It sends a receive message at start up and
puts all the received messages in its buffer. Notice that a buffered socket goes
from idle to active in the buffer-start-up rule. A Receive message is
then handled if there is a complete message in the buffer, that is, there is
a mark on it, and results in the reception of the first message in the buffer,
which is removed from it.

rl [buffer-start-up] :
< b(SOCKET) : V@BufferedSocket | bState : idle, Atts >
=> < b(SOCKET) : V@BufferedSocket | bState : active, Atts >

receive(SOCKET, b(SOCKET)) .

rl [received] :
< b(SOCKET) : V@BufferedSocket | bState : active, read : S, Atts >
received(b(SOCKET), O, DATA)
=> < b(SOCKET) : V@BufferedSocket | bState : active,

read : (S + DATA), Atts >
receive(SOCKET, b(SOCKET)) .

crl [Received] :
< b(SOCKET) : V@BufferedSocket | bState : active, read : S, Atts >
Receive(b(SOCKET), O)

4 In the rules we use the string "#" as mark, but any other could be used. Note that the
user data sent through the sockets should not contain such a mark.

11

Durán, Riesco, and Verdejo

=> < b(SOCKET) : V@BufferedSocket | bState : active, read : S’, Atts >
Received(O, b(SOCKET), DATA)

if N := find(S, "#", 0) /\ DATA := substr(S, 0, N)
/\ S’ := substr(S, N + 1, length(S)) .

4.2 A client/server architecture

Although the specification of Mobile Maude presented in the previous sections
allows different configurations of processes, we present here a very simple
client/server architecture. We distinguish clients and servers by declaring two
subclasses ServerRootObject and ClientRootObject of RootObject, with
no additional attributes, although with different behavior.

class ClientRootObject .
class ServerRootObject .
subclasses ClientRootObject ServerRootObject < RootObject .

The architecture we present here consists in a process with a server root
object, and several processes with client root objects. The server is connected
to all clients, and a client is connected only to the server. If a mobile object
residing in a client process—a process with a client root object in it—wants to
move to (or send a message to a mobile object in) another client process, then
it will be sent to the server process, and from there to its final destination.
That is, we have a very simple star network, with a server root object in the
middle redirecting all messages.

When a ServerRootObject is created it send an AcceptClient mes-
sage indicating that it is ready to accept clients through the server socket.
When a ClientRootObject is created it first tries to establish a connection
with the sever by sending a CreateClientTcpSocket message. In the rule
acceptedClient below, in addition to sending messages AcceptClient and
Receive indicating, respectively, that it is ready to accept new clients through
the server socket, and messages through the new socket, the server root object
that gets the AcceptedClient message sends a start-up message new-socket

communicating its identifier. Notice that the client knows the address and port
of the server root object, but not its identity. In this first message the server
sends its name to its client, allowing to this one establishing the association
between the socket and the identity of the object in it.

rl [acceptedClient] :
< l(IP, N) : V@ServerRootObject | state : active, AtS >
AcceptedClient(l(IP, N), SOCKET, IP’, NEW-SOCKET)
=> < l(IP, N) : V@ServerRootObject | state : active, AtS >

AcceptClient(SOCKET, l(IP, N))
Receive(NEW-SOCKET, l(IP, N))
Send(NEW-SOCKET, l(IP, N), msg2string(new-socket(l(IP, N)))) .

Since the third argument of a Send message is a String, the message being sent
is transformed with the msg2string function; string2msg does the inverse
transformation.

12

Durán, Riesco, and Verdejo

The response to a client root object’s socket connection request is handled
by the following rule connected, where a client also sends a new-socket

message right after the socket is created.

rl [connected] :
< l(IP, N) : V@ClientRootObject | state : waiting-connection, AtS >
CreatedSocket(O, SOCKET-MANAGER, SOCKET)
=> < l(IP, N) : V@ClientRootObject | state : active, AtS >

Receive(SOCKET, l(IP, N))
Send(SOCKET, l(IP, N), msg2string(new-socket(l(IP, N)))) .

The attributes neighbors and defNeighbor are key for sending messages
through the appropriate sockets. The reason why the first message sent
through a socket after its creation is the message new-socket is to initial-
ize these attributes. When it is received, depending on whether the receiver
is a client or a server, and whether there is already a default neighbor or not,
one or another action is taken.

To avoid unintended loops in the delivering of messages, we assume that
server root objects do not have default neighbors. For clients, the first con-
nection is made the default one.

crl [Received] :
< O : V@RootObject | state : active, neighbors : empty,

defNeighbor : null, AtS >
Received(O, SOCKET, DATA)
=> < O : V@RootObject | state : active,

neighbors : insert(L, SOCKET, empty),
defNeighbor : if V@RootObject == ServerRootObject

then null
else SOCKET
fi,

AtS >
Receive(SOCKET, O)

if new-socket(L) := string2msg(DATA) .

crl [Received] :
< O : V@RootObject | state : active, neighbors : LSPF, AtS >
Received(O, SOCKET, DATA)
=> < O : V@RootObject | state : active,

neighbors : insert(L, SOCKET, LSPF), AtS >
Receive(SOCKET, O)

if LSPF =/= empty /\ new-socket(L) := string2msg(DATA) .

If not a new-socket message, then the message is just left in the configu-
ration.

crl [Received] :
< O : V@RootObject | state : active, AtS >
Received(O, SOCKET, DATA)
=> < O : V@RootObject | state : active, AtS >

string2msg(DATA) Receive(SOCKET, O)
if not new-socket(DATA) .

13

Durán, Riesco, and Verdejo

5 A buying printers example

In this section we present a simple application to illustrate how mobile appli-
cation code can be written in Maude and can be wrapped in mobile objects.
In this example we have printers, buyers, and sellers; a buyer agent visits
several printer sellers which provide him information on their printers. The
buyer looks for the cheapest printer, and once he has visited all the sellers, he
goes back to the location of the seller offering the best price.

From the previous description, we can identify different actors, which may
move freely from one process to another, and therefore they should be rep-
resented as mobile objects. In the Mobile Maude approach the specification
of the system consists of objects embedded inside mobile objects, which com-
municate to each other via messages. In addition to the term representing
its state, each mobile object carries the code managing the behavior of the
configuration of objects and messages representing such a state. The main
difference with respect to the specification of systems in Maude is that these
objects must be aware of the fact that they are inside mobile objects, and that
in order to communicate with (objects in) other mobile objects or to use some
of the system messages available, they must follow the appropriate procedure.

In our sample application we have two different classes of mobile objects:
sellers and buyers. A buyer visits several sellers. The buyer asks each seller
he visits for the description of the seller’s printer (represented here only by
its price). The seller sends back this information, which the buyer keeps if it
corresponds to a better (cheaper) printer. Otherwise he discards it. Once the
buyer has visited all the sellers he knows, he goes back to the location of the
best offer.

We represent sellers and buyers as objects of respective classes Seller and
Buyer. Such objects in the application code will then be embedded as inner
objects of their corresponding mobile objects.

The class Seller has a single attribute description with the printer price
(a natural number).

class Seller | description : Nat .

Sellers receive messages of the form get-printer-price(B), with B the
identifier of the buyer mobile object sending the message. A seller can send
messages of the form printer-price(N), with N a natural number represent-
ing the printer’s price. Both are defined of sort Contents, declared in the
module MOBILE-OBJECT-ADDITIONAL-DEFS.

op get-printer-price : Mid -> Contents .
op printer-price : Nat -> Contents .

A seller’s behavior is represented by the following single rewrite rule: when
a seller receives a description (price) request, it sends the description back to
the buyer.

14

Durán, Riesco, and Verdejo

rl [get-des] :
(to S : get-printer-price(B))
< S : V@Seller | description : N, AtS > Conf & none
=> < S : V@Seller | description : N, AtS > Conf

& (to B : printer-price(N)) .

Note the use of the _&_ constructor. Since the printer description is sent to
an object outside the mobile object in which the Seller object is located, the
message is placed in its righthand side. The rule get-des is applied only if the
outgoing messages tray is empty, making sure in this way that any previous
outgoing message has been handled. The _&_ operator is the top operator
of the term representing the state of the mobile object, and therefore, since
there may be other objects and messages in the configuration in its lefthand
side, we include a variable Conf of sort Configuration to match the rest.
Note also how an object may communicate to objects in other mobile objects,
which may be in different locations, in a completely transparent way.

A buyer has an attribute sellers with a list of the identifiers of the known
sellers. It also has an attribute status with its current state: onArrival,
asking, done, or buying. Finally, the buyer keeps information about the
printer with the best price in the attributes price and bestSeller of sorts,
respectively, Default{Nat} and Default{Oid}. Initially, these two last at-
tributes are null.

class Buyer | sellers : List{Mid}, status : Status,
price : Default{Nat}, bestSeller : Default{Oid} .

The first rewrite rule, move, handles the travels of the buyer to request
information on printers: if it is not in the middle of a request (its status is
done) and there is at least one seller name in the sellers attribute, it asks
the system to take it to the host where the next seller is.

rl [move] :
< B : V@Buyer | status : done, sellers : o(L, N) . OS, AtS >
Conf & none
=> < B : V@Buyer | status : onArrival, sellers : o(L, N) . OS, AtS >

Conf & go-find(o(L, N), L) .

Since Mobile Maude guarantees that mobile objects moving from one lo-
cation to another are idle, we know that, once the go-find command is given
in the move rule, the buyer object will not be able to do anything until the
mobile object in which it is embedded is set to active, that is, until it has
reached the seller’s process. Therefore, since there is no rule taking a Buyer

object in onArrival state and a nonempty outgoing messages tray, this object
will not do anything until it reaches its destination.

On arrival, the buyer asks the seller for the printer description.

rl [onArrival] :
< B : V@Buyer | status : onArrival, sellers : S . OS, AtS >
Conf & none
=> < B : V@Buyer | status : asking, sellers : S . OS, AtS >

Conf & (to S : get-printer-price(B)) .

15

Durán, Riesco, and Verdejo

When the printer price arrives, if it corresponds to the first seller (the at-
tribute price is null) the buyer keeps it as the best known price; or compares
it with the best known printer and updates its information if needed. Notice
that the first identifier in the list of known sellers gives us the identifier of the
seller it is currently interacting with.

rl [new-des] :
(to B : printer-price(N))
< B : V@Buyer | status : asking, price : null, bestSeller : null,

sellers : S . OS, AtS >
=> < B : V@Buyer | status : done, price : N, bestSeller : S,

sellers : OS, AtS > .

rl [new-des] :
(to B : printer-price(N))
< B : V@Buyer | status : asking, price : N’, bestSeller : S’,

sellers : S . OS, AtS >
=> if (N < N’)

then < B : V@Buyer | status : done, price : N, bestSeller : S,
sellers : OS, AtS >

else < B : V@Buyer | status : done, price : N’, bestSeller : S’,
sellers : OS, AtS >

fi .

Notice that since these last rules do not imply the sending of any message
out of the mobile object, we do not need to use the _&_ operator and variable
Conf to wrap the whole state.

Finally, when the list of remaining sellers is empty, the buyer travels to
find the best seller and reaches the buying status.

rl [buy-it] :
< B : V@Buyer | status : done, sellers : no-id, bestSeller : o(L,N), AtS >
Conf & none
=> < B : V@Buyer | status : buying, sellers : no-id,

bestSeller : o(L,N), AtS >
Conf & go-find(o(L,N), L) .

Let us see an example of a distributed configuration, and how we can
rewrite it by using the erewrite command. Our sample buyers/sellers con-
figuration, shown in Figure 2, is constituted by three located configurations,
each one to be executed in a Maude process—in this case the three processes
run on the same machine, with IP address IP. The first located configuration
(shown in the middle of the figure) contains a ServerRootObject, with iden-
tifier l(IP, 0), and a mobile object with identifier o(l(IP, 0), 0) with a
Seller in its belly. The Maude command to introduce the initial state of this
configuration is as follows:

erew <> < l(IP, 0) : ServerRootObject |
cnt : 1,
guests : o(l(IP, 0), 0),
forward : 0 |-> (l(IP, 0), 0),
neighbors : empty,

16

Durán, Riesco, and Verdejo

l(IP,2):ClientRootObject

o(l(IP,2),0):Seller

15

l(IP,0):ServerRootObject

o(l(IP,0),0):Seller

o(l(IP,1),0):Buyer

30

7. get-price

8. printer-price(30)

o(l(IP,1),0):Buyer

4. get price

5. printer-price(15)

l(IP,1):ClientRootObject

o(l(IP,1),1):Seller

o(l(IP,1),0):Buyer

1. get-price

2. printer-price(20)

20

3

6

9

Fig. 2. Buyers and sellers configuration.

state : idle,
defNeighbor : null >

< o(l(IP, 0), 0) : MobileObject |
mod : upModule(’SELLER, false),
s : upTerm(< o(l(IP, 0), 0) : Seller | description : 30 >

& none),
gas : 200,
hops : 0,
mode : active > .

Note how the function upModule is used to obtain the metarepresentation
of the module SELLER, and how the function upTerm is used to metarepresent
the initial state of the inner object.

This configuration must be executed before the other two ones because it
contains the object ServerRootObject, which is in the central process of the
star network.

The second located configuration (on the left in the figure) contains a
ClientRootObject, a Buyer and a Seller with cheaper printers. Finally, the
third located configuration (on the right) contains another ClientRootObject
and a Seller with the cheapest printers. The Maude commands, introduced
in other two different Maude process, are very similar to the previous one. 5

5 The execution of these three commands in three different Maude processes does not
finish. And that is because of the blocking behavior of the socket messages like receive.
An execution of a Mobile Maude application is not intended to finish since the located
configurations are always waiting for messages or mobile objects to come in from other
configurations. Due to this fact, it is recommended to execute these applications with the
trace on. In this way we can see what is happening in each Maude process. When the
execution of a concrete example seems to be finished because we do not see evolution in any
of the involved processes, we can finish them by pressing ^C. We are working on a graphic
interface that supports execution of Mobile Maude applications.

17

Durán, Riesco, and Verdejo

Figure 2 shows how the order in which the different actions occur. First the
buyer asks to the seller in his same location (price 20). Then the buyer travels
to the location on the right (through the location with the ServerRootObject)
and asks to the seller who sells printers costing 15. After that, the buyer
travels to the middle location and asks to the seller there (price 30). Finally,
the buyer travels to the right location to find the seller with the best offer.

6 Model checking Mobile Maude applications

Maude’s model checker [5] allows us to prove properties on Maude speci-
fications when the set of states reachable from an initial state in such a
Maude system module is finite. This is supported in Maude by its prede-
fined MODEL-CHECKER module and other related modules, which can be found
in the model-checker.maude file distributed with Maude.

The properties to be checked are described by using a specific property
specification logic, namely Linear Temporal Logic (LTL) [8,1], which allows
specification of properties such as safety properties (ensuring that something
bad never happens) and liveness properties (ensuring that something good
eventually happens). Then, the model checker can be used to check whether
a given initial state, represented by a Maude term, fulfills a given property.

Using the model checker on Mobile Maude is not easy however. Mobile
Maude configurations are distributed among several hosts, and therefore the
model checker cannot be used directly to prove properties about these global
configurations. On the other hand, we would like to check properties on the
application code, which is metarepresented in the belly of the mobile objects.
We show in the following sections how we have addressed both issues. The
former problem has been solved by considering an algebraic specification of
the sockets provided by Maude. The later one has been solved by considering
two-level properties, stating different properties on each of the reflection levels.

6.1 Redefinition of the SOCKET module

To solve the distribution problem, we have provided an algebraic specification
of sockets. We have redefined the SOCKET module, simulating the behavior of
sockets on local configurations. This specification expresses processes as terms
of a class Process with a single attribute conf. Processes work as hosts in
the distributed version, keeping the configuration separated from the others
in its attribute. Message passing is then defined between processes instead of
between hosts.

Thus, we have specified sockets, socket managers and server sockets to deal
with processes:

• The socket manager is now an instance of a class Manager, with a counter

attribute to name the new sockets.

• The sockets are instances of a class Socket with attributes source (the

18

Durán, Riesco, and Verdejo

source Process), target (the target Process), and socketState (the socket
state). Notice that although we talk about source and target, sockets are
bidirectional.

• The server sockets are instances of the class ServerSocket with the at-
tributes address (the server address), port (the server port), and backlog

(the number of queue requests for connection that the server will allow).
When one object want to create a server, we create one server socket at
process level and the object receives a createdSocket message with the
server socket identifier.

Note that there is no need for a client sockets class, they are only processes, so
to create a client socket we create a socket with target the server and source
the process.

The class Process allows to represent in a single term a whole distributed
configuration. The rest of the above mentioned classes and the rewrite rules
defined in the new module SOCKET allow to use the specification of Mobile
Maude with no more changes. So in order to prove a property about a dis-
tributed configuration we have to prove it on the corresponding “local” con-
figuration by using Processes.

6.2 Two-level atomic propositions for the buying printers example

To use the model checker we just need to make explicit two things: the in-
tended sort of states, Configuration, and the relevant state predicates, that
is, the relevant LTL atomic propositions.

To be able to model check Mobile Maude application code, we propose
defining these predicates at two different levels: the processes level and the
inner objects level. In the processes level we look for inner objects which have
some properties; in the inner objects level we check such properties.

Let us see an example about the buying printers case study. Suppose we
want to prove that the buyer always finds the best price, and that, when he
has visited all sellers, he finishes in the process of the seller who has such a
best price. If bestPrice&Seller represents the state predicate asserting that
the buyer is in the process of the seller with the best offer, then the LTL
formula we want to check is 32bestPrice&Seller , that is, it is always possible
to reach an state where the property bestPrice&Seller is fulfilled and from
that state the property keeps invariant.

First, we define when a top configuration of processes fulfills such a prop-
erty. For it, we use an auxiliary predicate bestPrice&Seller with an argument,
(the metarepresentation of) the best price, obtained by means of the auxiliary
function minPrice.

op bestPrice&Seller : -> Prop .
op bestPrice&Seller : Term -> Prop .
eq C |= bestPrice&Seller = C |= bestPrice&Seller(minPrice(C)) .

The definition of bestPrice&Seller(N) recursively traverses all the pro-

19

Durán, Riesco, and Verdejo

cesses going inside each configuration looking for a seller with the given price
and a buyer who has it as the best price.

op existsSeller : Term -> Prop .
op existsBuyer : Term -> Prop .

eq (C < PID : Process | conf : C’ >) |= bestPrice&Seller(N)
= (C |= bestPrice&Seller(N)) or
((C’ |= existsSeller(N)) and (C’ |= existsBuyer(N))) .

eq C |= bestPrice&Seller(N) = false [owise] .

eq (< O : MobileObject | s : (’_&_[TERM, TERM’]), AtS > C)
|= existsSeller(N)

= (getTerm(metaReduce(upModule(’EXAMPLE-PREDS, false),
’_|=_[TERM, ’exSeller[N]])) == ’true.Bool)

or (C |= existsSeller(N)) .
eq C |= existsSeller(N) = false [owise] .

The definition of existsSeller(N) uses the predicate exSeller defined at
the inner objects level. The predicate existsBuyer(N) is defined in the same
way. The module EXAMPLE-PREDS includes the definition of the predicates
exSeller and exBuyer.

op exSeller : Nat -> Prop .
op exBuyer : Nat -> Prop .

eq < S : Seller | description : N, AtS > C |= exSeller(N) = true .
eq C |= exSeller(N) = false [owise] .

eq < B : Buyer | price : N, status : buying, AtS > C |= exBuyer(N)
= true .

eq C |= exBuyer(N) = false [owise] .

Notice that these atomic propositions are defined at the level of the appli-
cation code.

After having defined these predicates, the Maude command to use the
model checker for examining whether an initial configuration initial fulfills
the formula 32bestPrice&Seller is as follows:

Maude> red modelCheck(initial, <> [] bestPrice&Seller) .
result Bool: true

7 Conclusions

We have presented a distributed implementation of Mobile Maude where mo-
bile objects, carrying its own code and internal state, can travel from one
machine to another one. Sockets now provided by Maude are used to achieve
this goal in a really distributed setting.

Although the main concepts and design decisions have been maintained
as they were presented in the first implementation of the language [3], the
parts regarding how the distributed state is represented and controlling how
messages and mobile objects are transferred between different machines are

20

Durán, Riesco, and Verdejo

completely new. We have designed these new parts in a way as independent
of the concrete underlying architecture as possible.

We have used the language to implement several case studies. Here we have
shown an application where a printer buyer has to choose the seller offering
the cheapest printer. The conference reviewing system presented in [4] has
also been migrated to this new version of the language.

By explicitly representing the different processes in which a distributed
application is allocated, we can represent the whole distributed state in a
single term, and by redefining the predefined module SOCKET we can use the
Mobile Maude implementation shown in this paper to execute/ simulate the
behavior of such application. This compact representation can be used to
prove properties it fulfills by means of Maude’s model checker. However,
model checking non-trivial examples takes too many time, so we are working
on state space reduction techniques [6].

References

[1] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. Maude Manual (Version 2.2), December 2005. http://maude.cs.
uiuc.edu/maude2-manual.

[3] F. Durán, S. Eker, P. Lincoln, and J. Meseguer. Principles of Mobile
Maude. In D. Kotz and F. Mattern, editors, Agent Systems, Mobile Agents,
and Applications, Second International Symposium on Agent Systems and
Applications and Fourth International Symposium on Mobile Agents, ASA/MA
2000, Zurich, Switzerland, September 13–15, 2000, Proceedings, volume 1882 of
Lecture Notes in Computer Science, pages 73–85. Springer, 2000.

[4] F. Durán and A. Verdejo. A conference reviewing system in Mobile Maude. In
Gadducci and Montanari [7], pages 79–95.

[5] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker.
In Gadducci and Montanari [7], pages 115–141.

[6] A. Farzan and J. Meseguer. State space reduction of rewrite theories using
invisible transitions. To appear in AMAST 2006.

[7] F. Gadducci and U. Montanari, editors. Proceedings Fourth International
Workshop on Rewriting Logic and its Applications, WRLA 2002, Pisa, Italy,
September 19–21, 2002, volume 71 of Electronic Notes in Theoretical Computer
Science. Elsevier, 2002.

[8] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Specifications. Springer-Verlag, 1992.

21

http://maude.cs.uiuc.edu/maude2-manual
http://maude.cs.uiuc.edu/maude2-manual

	Introduction
	Processes, mobile objects, and messages
	Mobile Maude's rewriting semantics
	Socket handling
	Buffered sockets
	A client/server architecture

	A buying printers example
	Model checking Mobile Maude applications
	Redefinition of the SOCKET module
	Two-level atomic propositions for the buying printers example

	Conclusions
	References

