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Abstract. We extend workflow Petri nets (wf-nets) with discrete prices, by associating a price to
the execution of a transition and to the storage of tokens. Wefirst define the safety and the soundness
problems for priced wf-nets. A priced wf-net is safe if no execution costs more than a given budget.
The soundness problem is that of deciding whether the workflow can always terminate properly,
where in the priced setting “properly” also means that the execution does not cost more than a given
threshold. Then, we study safety and soundness of resource-constrained workflow nets (rcwf-nets),
an extension of wf-nets for the modeling of concurrent executions of a workflow, sharing some
global resources. We develop a framework in which to study safety and soundness for priced rcwf-
nets, that is parametric on the cost model. Then, that framework is instantiated, obtaining the cases
in which the sum, the maximum, the average and the discountedsum of the prices of all instances
are considered. We study the decidability and the complexity of these properties, together with their
relation.

1. Introduction

Workflow nets (wf-nets) are an important formalism for the modeling of business processes, or workflow
management systems [2, 3]. Roughly, a wf-net is a Petri net with two special places,in andout. Its initial
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marking is that with a token in the placein and empty everywhere else, which models the situation in
which a task has been scheduled. The basic correctness notion for a workflow is that of soundness.

Intuitively, a workflow is sound if it cannot go wrong, so that the scheduled task can always be
completed. This implies that no supervisor is needed in order to ensure its completion (under a fairness
assumption that rules out the presence of livelocks). More precisely, and in terms of wf-nets, soundness
implies that at any reachable state, it is possible to reach the final state, that with a token in the place
out, and empty elsewhere. Soundness is decidable for wf-nets, and even polynomial for free-choice
wf-nets [3].

Recent works [19, 20, 24] study an extension of wf-nets, called resource-constrained wf-nets (rcwf-
nets) in which several instances of a workflow execute concurrently, assuming that those instances share
some global resources. Even if a single instance of an rcwf-net is sound, several instances could deadlock
because of these shared resources. In [19] the authors define dynamic soundness, the condition stating the
existence of a minimum amount of resources for which any number of instances running simultaneously
can always reach the final state, that in which all the tasks have been completed and the shared resources
are returned. The paper [20] defines another notion of dynamic soundness, in terms of the absence
of instance deadlocks in rcwf-nets, fixing the initial amount of resourcesthough keeping the condition
that instances must not change the number of resources. In [24] we continued the work in [20], but we
considered that instances may create or consume resources. We proved this notion of dynamic soundness
to be undecidable, and we identified a subclass of rcwf-nets, called proper, for which it is decidable.

In the fields of business process management or web services, the importance of QoS properties in
general and cost estimation in particular has been identified as central in numerous works [29, 23, 30,
22, 26, 14, 15]. As an example, in the previously mentioned models, it may be possible to reach the
final marking in different ways, due to the different interleavings of the execution, or to the inherent
non-determinism in wf-nets. Moreover, in the case of rcwf-nets, an instance locking some resource may
force another instance to take a “less convenient” path (in terms of money, energy or gas emissions, for
example), that does not use the locked resource. However, the reason why a workflow should prefer one
path over another is something that lies outside the model.

As a motivating example, let us consider the following real scenario, taken from the Chemistry De-
gree of the Complutense University, where every student of the secondcourse must do a practical exercise
which consists in synthesizing two different chemical components and comparing their properties. Each
student has to perform several steps. For that purpose, they need touse some devices. We can model the
procedure that students have to follow as a wf-net, and the interaction of all the students (with limited
resources) as a rcwf-net. In most of the steps, the use of the corresponding device has a cost. Later,
we will see that this kind of costs correspond tofiring costs. However, these are not the only costs we
need to take into account. When all the devices of a certain kind are being used at the same time, there
may be students who need to wait to use these devices and the components theyhave made until this
moment, may go wrong because of the delay if they do not keep them at some specific conditions, as a
specific temperature, for example. Therefore, there are costs that depend on the number of students that
are waiting to use the devices. These costs will correspond tostorage costs, that is, costs produced when
a transition is fired and there are some tokens in some specific places.

In order to model situations like this, in this paper we add prices to our nets, similarly as done for
the (untimed) priced Petri nets in [5] or for causal nets in [14, 15]. We consider different types of prices,
modeled as tuples of integers or naturals. More precisely, we add firing costs to transitions and storage
costs to places. Then, the price of firing a transition is computed as the cost of its firing plus the cost
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of storing all the tokens in the net when the transition is fired. The price of a run is defined as the sum
of the prices of the firings of its transitions. Then, we say that a workflow net is price-safe if the price
of each of its runs stays under a given threshold. When costs are integers, we prove that price-safety is
undecidable, so that in the rest of the paper we restrict ourselves to non-negative costs.

In this priced setting, we restate the soundness problems. For ordinary wf-nets, this is straightfor-
ward: a priced wf-net is sound if we can always reach the final markingwithout spending more than a
given budget. We prove that price-soundness is decidable for wf-nets, even with negative costs.

For priced rcwf-nets, the definitions of safety and soundness are notso straightforward, since they
must consider the behavior of an arbitrary number of instances. We consider parametric definitions: For
any run, we collect the prices of every instance in the run, so that safetyand soundness are parametric in
the way in which local prices are aggregated to obtain a global price. The definition is open to many dif-
ferent variants. We study several such variants in this paper: the maximum(denoted byMax ), in which
we consider the price of the most expensive instance; the sum of the prices of all the instances(Sum);
the average of the prices of all the instances (Av ); and the discounted sum (Ds), in which we consider
a weighted sum of the prices of the instances, so that the first instances are more important than the last
ones. For instance, in the case ofAv , for each execution we compute the average of the prices of all the
instances participating. Then, safety with respect toAv guarantees that all the computed averages (in
every possible execution) do not exceed a given bound.

Back to the example, the price for the university of a student performing thewhole exercise is the
sum of the costs of using each device and the costs that come from other students waiting for the devices
he/she is using. Then, the university could be interested in setting a bound for:

• The total amount of money spent by all students in a class;

• The money spent by each student;

• The average of the amounts spent by each student.

This corresponds to the study of priced safety and soundness of the corresponding model for the
different price predicates.

We prove decidability of price-safety for the sum, the maximum, and a finite version of discounted
sum, relying on the decidability of coverability for a class of Petri nets with names, broadcasts and whole
place operations, that can be seen as an unordered version of Data Nets with name creation [4, 21]. In
these cases we have decidability of priced soundness within the proper subclass. As a consequence, we
obtain the corresponding results for ordinary priced wf-nets (with non-negative costs). For the average,
we reduce soundness to the unpriced case, so that it is decidable for proper rcwf-nets. However, de-
cidability of price-safety for the average remains open. Finally, we provesome relations between the
studied predicates, and give a preliminary result regarding complexity. More precisely, we prove that
price-safety forMax , Sum andDs has a non primitive recursive complexity.

In parallel to the works on wf-nets and rcwf-nets, there has recently been an increasing interest
in the study of quantitative aspects of both finite and infinite state systems. E.g. in[10] the authors
consider quantitative generalizations of classical languages, using weighted finite automata, that assign
real numbers to words, instead of boolean values. They study different problems, which are defined in
terms of how they assign a value to each run. In particular, they assign the maximum, limsup, liminf,
average and discounted sum of the transition weights of the run.
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Numerous works extend timed automata with prices [5, 7, 8]. E.g., the paper [5] defines a model
of Timed Petri Nets with discrete prices. In such model, a price is associated toeach run of the net.
Then, the reachability (coverability) threshold-problem, that of being ableto reach (cover) a given final
marking with at most a given price, is studied. This study is extended to the continuous case in [6]. In
our setting, we require the workflow to behave correctly in any case, without the need of a supervisor,
which in the priced setting means that no run reaching the final marking costs too much, as opposed
to the threshold problems, in which the existence of one good run is considered. In [14, 15], time and
costs are added to causal nets, a subclass of Petri nets for the modelling of business processes, and a
methodology for evaluating their performance is presented.

Quantitative aspects of reactive systems are studied as energy games e.g.in [9, 11, 17]. For example,
in [17] games are played on finite weighted automata, studying the existence ofinfinite runs satisfying
several properties over the accumulated weights, as ensuring that a resource is always available or does
not exceed some bound.

Outline.

Section 2 gives some notations we use throughout the paper. Section 3 extends wf-nets with prices. In
Section 4 we extend rcwf-nets and give some basic results. In Section 5 westudy some specific price
predicates, studying the decidability of safety and soundness for them, setting some complexity results
and relating the different price predicates. Finally, in Section 6 we present our conclusions. This paper
is a revised and extended version of [25].

2. Preliminaries

A quasi-order≤ over a setA is a reflexive and transitive binary relation overA. Given a quasi-order
≤, write thata < b if a ≤ b andb � a. GivenB ⊆ A, we denoteB ↓= {a ∈ A | ∃b ∈ B, a ≤ b}
the downward closure ofB and we say thatB is downward-closed ifB↓= B. Analogously, we define
B ↑, the upward closure ofB and sayB is upward closed ifB ↑= B. We denote byNω = N ∪ {ω},
the naturals completed with their limitω. We writev[i] to denote theith component ofv ∈ Nk

ω and
0 = (0, ..., 0). We denote by≤ the component-wise order in anyNk

ω or Zk, and by< its strict version.
A (finite) multisetm over a setA is a mappingm : A → N with finite support, that is, such that
supp(m) = {a ∈ A | m(a) > 0} is finite. We denote byA⊕ the set of finite multisets overA. For two
multisetsm1 andm2 overAwe definem1+m2 ∈ A⊕ by (m1+m2)(a) = m1(a)+m2(a) andm1 ⊆ m2

if m1(a) ≤ m2(a) for everya ∈ A. For a multisetm andλ ∈ N, we take(λ ∗ m)(a) = λ ∗ m(a).
Whenm1 ⊆ m2 we can definem2 −m1 ∈ A⊕ by (m2 −m1)(a) = m2(a) −m1(a). We denote by∅
the empty multiset, that is,∅(a) = 0 for everya ∈ A, and|m| =

∑

a∈supp(m)m(a). We use set notation
for multisets when convenient, with repetitions to account for multiplicities greaterthan one. We write
{a1, ..., an} ≤⊕ {b1, ..., bm} if there is an injectionh : {1, ..., n} → {1, ...,m} such thatai ≤ bh(i) for
eachi ∈ {1, ..., n}.

Petri Nets.

A Place/Transition (P/T) net is a tupleN = (P, T, F ), whereP is a finite set of places,T is a finite set
of transitions (disjoint withP ) andF : (P × T ) ∪ (T × P ) → N is the flow function.
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A marking ofN is an element ofP⊕. For a transitiont we define•t ∈ P⊕ as•t(p) = F (p, t).
Analogously, we taket•(p) = F (t, p), •p(t) = F (t, p) andp•(t) = F (p, t). A markingm enables a
transitiont ∈ T if •t ⊆ m. In that caset can be fired, reaching the markingm′ = (m − •t) + t•, and

we writem
t

−→m′. A run r is a sequencem0
t1−→m1

t2−→...
tn−→mn. If r1 andr2 are two runs so thatr1

finishes at the marking in whichr2 starts, we denote byr1 · r2 the run starting with the transitions inr1,
followed by those inr2, as expected.

Workflow Petri Nets.

A workflow Petri net [3] (shortly a wf-net) is a P/T netN = (P, T, F ) such that:

1. there arein, out ∈ P with •in = ∅, in• 6= ∅, •out 6= ∅ andout• = ∅,

2. for eachn ∈ P ∪ T there is a pathin = n1, n2, . . . , nj = n, . . . , nk = out with F (ni, ni+1) > 0
for 1 ≤ i ≤ k − 1.

We will call the second condition thepath property. Abusing the terminology, we will sometimes
say that a wf-net does not satisfy the path property, meaning that it only satisfies the first condition in
the previous definition. When there is no confusion we will simply refer to the special places given by
the previous definition asin andout, respectively. We denote bymin the marking ofN with a single
token inin, and empty elsewhere. Analogously,mout is the marking ofN with a single token inout
and empty elsewhere. There are several definitions of soundness of wf-nets in the literature. We will use
one called weak soundness in [3]. A wf-net isweakly soundif for any marking reachable frommin it is
possible to reachmout.

Petri Nets with dynamic name creation and whole place operations.

In order to model different instances running in the same net, we will use names, each name representing
a different instance. Aν-PN is an extension of Petri nets in which tokens are names and fresh name
creation can be performed. We define them here as a subclass ofwν-PNs, a class of nets which we will
need in Sect. 5.1, that also allows whole-place operations and broadcasts, similar to Data Nets [21]. Data
Nets extend P/T nets by considering a linearly ordered and dense domain oftokens, and in which whole
place operations can be performed. Therefore,wν-PNs can be seen as an unordered version of Data
nets [21] in which names can be created fresh. When a transitiont of awν-PN is fired, four operations
are performed: the subtraction of several tokens of different colors, whole-place operations (affecting
every color in the same way), the creation of new names and the addition of tokens.

Let us consider a setVar of variables andΥ ⊂ Var a set of name creation variables. Awν-PN is a
tupleN = (P, T, F,G,H) whereP andT are finite disjoint sets of places and transitions, respectively;
for eacht ∈ T , Ft : P → (V ar\Υ)⊕ is its subtraction function,Gt : P × P → N is its whole-place
operations matrix, andHt : P → V ar⊕ is its addition function. Moreover, ifx ∈ Ht(p) \ Υ then
x ∈ Ft(p

′) for somep′ ∈ P .
Let Id be an infinite set of names. A marking is anym : P → Id⊕. An a-token inp is an occurrence

of a ∈ m(p). Id(m) is the set of names appearing inm, that is,Id(m) =
⋃

p∈P supp(m(p)). We denote
by Var(t) = {x ∈ V ar | ∃p ∈ P, x ∈ Ft(p) ∪ Ht(p)} andVar(p) = {x ∈ Var | ∃t ∈ T, x ∈
Ft(p) ∪Ht(p)}. A mode is a mappingσ : Var(t) → Id extended pointwise toσ : Var(t)⊕ → Id⊕. A
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Figure 1. The firing of awν-PN

transitiont is enabled at a markingm with modeσ if for all p ∈ P , σ(Ft(p)) ⊆ m(p) and for allν ∈ Υ,
σ(ν) /∈ Id(m). Then, we say thatt can be fired, reaching a new markingm′, where for allp ∈ P ,

m′(p) =
∑

p′∈P ((m(p′)− σ(Ft(p
′))) ∗Gt(p

′, p)) + σ(Ht(p)), which is denoted bym
t(σ)
→ m′.

Example 2.1. LetN = ({p1, p2}, {t}, F,G,H) be awν-PN, where:

• Ft(p1) = {x}, Ft(p2) = ∅.

• Ht(p1) = ∅,Ht(p2) = {x, ν}.

• Gt(p1, p1) = 1,Gt(p1, p2) = 0,Gt(p2, p1) = 1,Gt(p2, p2) = 0.

This net is depicted in Fig 1. Note that althoughFt andHt are represented by arrows labeled by
the corresponding variables, the effects ofGt are not depicted. Letm be the marking ofN such that
m(p1) = {a, b} andm(p2) = {b, c}. Then,t can be fired atm with modeσ, whereσ(x) = a and
σ(ν) = d, reaching a new markingm′, such thatm′(p1) = {b, b, c} andm′(p2) = {a, d}. Note thatm′

is obtained fromm by the following steps:

• Removing ana-token from the placep1, due to the effect ofF .

• Removing all tokens fromp2 and copying them top1, because ofG.

• Adding ana-token and ad-token top2, because ofH.

We writem1 ⊑ m2 if there is a renamingm′
1 of m1 such thatm′

1(p) ⊆ m2(p) for everyp ∈ P . A
markingm is coverable from an initial markingm0 if we can reachm′ fromm0 such thatm ⊑ m′.

A wν-PN could be considered as an unordered Data Net, except for the fact thatwν-PNs can create
fresh names. In [4] the authors extend Data Nets with fresh name creation and prove that coverability is
still decidable by instantiating the framework of Well Structured Transition Systems [18].

Proposition 2.1. Coverability is decidable for wν-PN.

Finally, we defineν-PN [28], which is a fragment of wν-PN without whole-place operations. For-
mally, aν-PN is awν-PN in which, for eacht ∈ T , Gt is the identity matrix, and we will simply write
(P, T, F,H).

In the rest of the paper we will introduce some more models, that will most of thetimes be priced
versions of the models already defined. For the sake of readability, we prefer to present these models in
an incremental way, instead of considering a general model which subsumes all the others.
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3. Priced Workflow-nets

Let us define a priced extension of wf-nets. We follow the cost model in [5]. It essentially amounts to
adding to a wf-net two functions, defining the price of the firing of each transition, and the cost of storing
tokens when a transition is fired, respectively.

Definition 3.1. (Priced workflow net)
A priced workflow net(pwf-net) withprice arityk ≥ 0 is a tupleN = (P, T, F, C, S) such that:

• (P, T, F ) is a wf-net, called the underlying wf-net ofN ,

• C : T → Zk is a function assigning firing costs to transitions, and

• S : P × T → Zk is a function assigning storage costs to pairs of places and transitions.

Notice that costs may be negative. The behavior of a pwf-net is given byits underlying wf-net. In
particular, adding prices to a wf-net does not change its behavior, as the costs are not a precondition for
any transition. That is the main difference between adding resources andprices. Indeed, firing costs
could be seen as resources. However, since storage costs depend not only on the transitions which are
fired, but also on the number of tokens in the rest of the places when the transitions are fired, they cannot
be seen as resources anymore.

Let us now define the price of firing a transition and the price of a run.

Definition 3.2. (Price of a run)
Let t be a transition of a pwf-net enabled at a markingm. We defineP(t,m), theprice of the firing oft
atm, as

P(t,m) = C(t) +
∑

p∈m−•t

S(p, t)

Then, theprice of a runr = m1
t1−→m2

t2−→m3 . . .mn
tn−→mn+1 of a pwf-net isP(r) =

∑n
i=1 P(ti,mi).

Notice that in the definition ofP(t,m) the termm − •t is a multiset, so that if a placep appears
twice in it then we are addingS(p, t) twice in turn. It can be seen that firing costs can be simulated by
storage costs, though we prefer to keep both to follow the approach in [5]. However, storage costs cannot
be simulated by firing costs, since the former are marking dependent, while thelatter are not. Next, we
define safety of a pwf-net with respect prices.

Definition 3.3. (b-p-safety)
Givenb ∈ Nk

ω, we say that a pwf-net isb-p-safeif for each runr reachingmout, P(r) ≤ b.

Therefore, a pwf-net isb-p-safe if all the runs that reach the final marking cost less than the given
budget. Next, we define soundness for pwf-nets.

Definition 3.4. (b-p-soundness)
Givenb ∈ Nk

ω, we say that a pwf-net isb-p-soundif from each markingm, reachable frommin via some
run r1, we can reachmout via some runr2 such thatP(r1 · r2) ≤ b.
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Intuitively, for a pwf-net to be sound we need to be able to reach the finalmarking at any point with a
price that does not exceed the budgetb ∈ Nk

ω. It is easy to see that a pwf-net isb-p-sound iff it is weakly
sound andb-p-safe. However, as we prove next, the latter is undecidable.

Proposition 3.1. b-p-safety is undecidable for pwf-nets.

Proof:
We reduce the cost-threshold-reachability problem for PPN with negativecosts, and price arity1, which
is undecidable [5]. A PPN with arity1 is a P/T net(P, T, F ), endowed with a functionC : P ∪ T → Z
associating costs to transitions and places. Moreover,T is the disjoint union ofT0, the set ofinstanta-
neoustransitions, andT1, the set oftimed transitions. The cost of firingt ∈ T0 in any marking is just

C(t). The cost ofm
t

−→m′ with t ∈ T1 is C(t) +
∑

p∈P C(p) ·m(p). The cost of a run is the sum of
all the transitions costs in it. The cost-threshold-reachability problem consists in, givenmf andb ∈ N,
decide whether there is a runσ with m0

σ
−→mf such thatC(σ) ≤ b. It is proved in [5] that this problem

is undecidable.
Given a PPNN = (P, T, F, C), a final markingmf andb ∈ N, let us build a pwf-netN ′ as follows.

First, we add new places,pi, p0, in andout, and transitionsti, t0 andtf . Transitiont0 sets the initial
marking ofN , andtf hasmf as precondition and puts a token inout. Placespi andp0 and transitionti
are added in order to makeN ′ satisfy the second condition of the definition of workflow net. In order to
satisfy the path property, at the beginning of each run we put a token in each place of the net, and remove
them by firingti andt0. Moreover,p0 will be connected to each transition of the net and will be emptied
in the final step, whentf is fired. More precisely:

• Transitionti takes a token fromin, and puts a token in each place ofN ′ except forp0, in andout,
connecting each place within.

• We set each place ofN ′ except forin, p0 andout as a precondition oft0, andp0 and every place
of m0 as a postcondition oft0, connecting each place except forout to p0.

• We makep0 be a precondition and postcondition of eacht ∈ T , connecting each transition top0.

• Finally, we setp0 and every place ofmf as a precondition oftf , connecting each place and
transition of the net without.

The new places have no storage cost,t0 has firing costb + 1 andtf andti have firing cost0. For
everyt ∈ T we take−C(t) as the firing cost oft in N ′. Moreover, ift is an instantaneous transition we
setS(p, t) = 0 for everyp ∈ P , and if it is a timed transition we takeS(p, t) = −C(p) for everyp ∈ P .

By construction, ifr is a run inN with costc, thentit0 · r is a run inN ′ with costb + 1 − c. Let
us see that there exists a runr of N such thatm0

r
−→mf with C(r) ≤ b iff N ′ is not0-p-safe. Letr be

a run such thatm0
r

−→mf andC(r) ≤ b. Let us callr′ = tit0rtf the corresponding run ofN ′. Then,
C(r′) = 1+ b−C(r) ≥ 1. Therefore,N ′ is not0-p-safe. Conversely, suppose that for every runr of N
with m0

r
−→mf , C(r) > b. Then, for every runr′ of N ′ reachingmout, necessarily of the formtit0rtf ,

C(r′) = 1 + b− C(r) ≤ 0. Therefore,N ′ is b-p-sound. ⊓⊔

Despite of the previous result, we can prove thatb-p-soundness is decidable. We make use of the fact
that weakly sound wf-nets are bounded, which can be proven followingsimilar arguments to those in [1]
for soundness.
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Lemma 3.1. LetN be a wf-net. IfN is weakly sound thenN is bounded.

Proof:
Assume by contradiction thatN is unbounded, so that for everyn ∈ N there is a reachable markingmn

such that|mn| > n. Since the reachability trees of wf-nets are finitary, König’s lemma implies that we
can assume those markings to be in the same run ofN . Then, by Dickson’s lemma [16], there arem
andm′ 6= ∅ such thatin →∗ m →∗ m +m′. SinceN is weakly sound, we havem →∗ out, so that
m+m′ →∗ out+m′. Again, becauseN is weakly soundout+m′ →∗ outmust hold, so thatm′ →∗ ∅
(becauseout• = ∅). But this is not possible, since the path property implies that all the transitionsof N
have postconditions. We have reached a contradiction, so thatN is necessarily bounded. ⊓⊔

Proposition 3.2. b-p-soundness is decidable for pwf-nets.

Proof:
Let N be a pwf-net. If the underlying wf-netN ′ of N is not weakly sound, then there is a reachable
marking from whichmout is not reachable, and thereforeN is notb-p-sound. Let us suppose thatN ′ is
weakly sound. Then,N ′ is bounded (previous lemma) and therefore we can build its reachability graph,
which is finite. More precisely, we build the graph whose nodes are the reachable markings ofN ′, and

there is an arc connecting two markingsm1 andm2 if and only if m1
t
→ m2 for somet ∈ T , labeled

by P(t,m1). In that way, the price of a run ofN corresponds to the length of the corresponding path in
the reachability graph. SinceN ′ is weakly sound,N is notb-p-sound if and only if there is a run from
min to mout with a price which is not smaller thanb, that is, if and only if there is a path frommin to
mout in the reachability graph with a lengthc, andi ∈ {1, ..., k}, such thatc[i] > b[i]. Therefore, in this
caseb-p-soundness can be reduced to computing the length of the longest path frommin tomout in the
finite reachability graph (assumed to be infinite if no such path exists due to the presence of cycles with a
positive length). This can be done polynomially in the number of states, even with negative weights [12].

⊓⊔

In the following section we will consider a more general version of the problem, that in which several
instances of the workflow execute concurrently, called resource-constrained workflow nets. Then, we
will obtain other (positive) results regarding pwf-nets as a consequence of the more general problem.

To conclude this section, notice that if a pwf-net isb-p-safe (b-p-sound) then it is alsob′-p-safe (b′-p-
sound) for anyb′ > b, so that the setB(N) = {b ∈ Nk

ω | N is b-p-safe (b-p-sound)} is an upward-closed
set. In this situation, we can apply the Valk & Jantzen theorem:

Theorem 3.1. ([31])
Let V be an upward-closed set. We can compute a finite basis ofV if and only if for eachv ∈ Nk

ω we
can decide whetherv↓ ∩V 6= ∅.

Therefore, we can compute a finite basis of the setB(N), i.e., the minimal budgetsb for which the
pwf-net isb-p-safe (b-p-sound), provided we can decideb-p-safety (b-p-soundness) for eachb ∈ Nk

ω.

4. Priced resource-constrained wf-nets

Let us start by recalling the definition of resource-constrained wf-nets(rcwf-nets). For more details
see [24]. The definition we use is equivalent to those in [19, 20], thoughmore convenient for our pur-
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Figure 2. A priced resource-constrained workflow
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S(p, t1) = 2

C(t1) = C(t2) = 0

S(q, tj) = 0 otherwise.
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Figure 3. prcwf-net notSum(b) neither Max (b)-
dynamically sound for anyb ∈ N

poses. We represent each instance in an rcwf-net by means of a different name. Hence, our definition of
rcwf-nets is based onν-PN. Aν-PN can be seen as a collection of P/T nets that can synchronize between
them and be created dynamically [27]. We start by defining a subclass ofν-PN, called asynchronous
ν-PN, in which each instance can only interact with a special instance (whichmodels resources) that is
represented by black tokens. We fix variablesν ∈ Υ andx, ǫ ∈ V ar\Υ.

Definition 4.1. (Asynchronousν-PN)
An asynchronousν-PN is aν-PNN = (P, T, F,H) such that:

• For eachp ∈ P , Var(p) ⊆ {x, ν} orVar(p) = {ǫ}.

• For eacht ∈ T , Var(t) ⊆ {ν, ǫ} orVar(t) ⊆ {x, ǫ}.

Placesp ∈ P with V ar(p) = {ǫ} are calledstatic, and are represented in figures by circles in bold.
They can only contain (by construction) black tokens, so that they will represent resources, and can only
be instantiated byǫ. Placesp ∈ P with Var(p) ⊆ {x, ν} are calleddynamic, and are represented by nor-
mal circles. They can only contain names (different from the black token), that represent instances, and
can only be instantiated byx. We denotePS andPD the sets of static and dynamic places, respectively,
so thatP = PS ∪ PD.

Let us introduce some notations we will need in the following definition. Given aν-PN N =
(P, T, F,H) andx ∈ Var we define the P/T netNx = (P, T, Fx), whereFx(p, t) = Ft(p)(x) and
Fx(t, p) = Ht(p)(x) for eachp ∈ P and t ∈ T . Moreover, forQ ⊆ P , by F |Q we mean eachFt

restricted toQ, and analogously forH|Q. Roughly, an rcwf-net is an asynchronousν-PN that does not
create fresh names, and so that its underlying P/T net is a wf-net.

Definition 4.2. (Resource-constrained workflow nets)
A resource-constrained workflow net(rcwf-net)N = (P, T, F,H) is an asynchronousν-PN such that:

• for all t ∈ T , ν /∈ V ar(t),

• Np = (PD, T, F |PD
, H|PD

)x is a wf-net, called theproduction netof N .

Fig. 2 shows an rcwf-net (for now, disregard the annotationsC andS in the figure). In figures we
do not label arcs, since they can be inferred (arcs to/from static placesare labeled byǫ, and arcs to/from
dynamic places are labeled byx). Np, the production net ofN , is the P/T net obtained by projectingN
to its dynamic places. Again, we will abuse terminology and say that a rcwf-net does not satisfy the path
property, if its production net does not satisfy it.
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Intuitively, each instance is given by a name, which is initially inin. Givenm0 ∈ P⊕
S , for each

j ∈ N we define the initial markingmj
0 as the marking that containsm0(s) black tokens in each static

places, j pairwise different names in its placein, and is empty elsewhere. For instance, the marking of
the rcwf-net in Fig. 2 ism2

0, wherem0 = {s, s, s}. Moreover, for suchmj
0 we denote byMj

out the set of
markings in which the samej names are in its placeout and every other dynamic place is empty. Note
that we do not impose any condition on the static places.

Now we define the subclass of proper rcwf-nets, which can be intuitivelyunderstood as the subclass
of rcwf-nets behaving properly (being weakly sound) if endowed with infinitely-many resources, which
amounts to removing the restriction of its behavior by means of resources.

Definition 4.3. (Proper rcwf-nets)
An rcwf-net isproper if its production net is weakly sound.

It is decidable to check that an rcwf-net is proper [3, 24]. As for wf-nets we have the concept of
soundness,which is calleddynamic soundnessin this setting. Dynamic soundness corresponds to the
idea that each instance running in the net can always finish correctly.

Definition 4.4. (Dynamic soundness)
We say that the prcwf-netN is dynamically soundfor m0 ∈ P⊕

S if for eachj > 0 and for each marking

m reachable frommj
0 we can reach a markingmf ∈ Mj

out.

In [24] we proved that this property is decidable for proper rcwf-nets. Now we define the priced
version of rcwf-nets, analogously as in Def. 3.1.

Definition 4.5. (Priced rcwf-net)
A priced rcwf-net(prcwf-net) withprice arityk ≥ 0 is a tupleN = (P, T, F,H,C, S) such that:

• (P, T, F,H) is an rcwf-net, called the underlying rcwf-net ofN ,

• C : T → Zk andS : P × T → Zk are functions specifying the firing and storage costs, respec-
tively.

As for priced wf-nets, the behavior of a priced rcwf-net is given by itsunderlying rcwf-net. However,
its runs have a price. Before we start giving the formal definitions of the price of a run, let us go back to
the example in the introduction. The net in Fig. 4 is a very simple model of the chemistry exercise. We
model each step as a transition, and tokens in places represent students who are ready to perform the next
step. Performing steps two (transitiont2) and three (transitiont3) costs1, so thatC(t2) = C(t3) = 1.
In the exercise, the step two can possibly go wrong, in which case the students need to repeat this step,
which is possible thanks tot1. The device used in those two steps is the same, and there is only one such
device, which is modelled by the static places with one token initially. Moreover, the cost of a student
waiting inp4 for the necessary device is1, and thereforeS(p4, t2) = S(p4, t3) = 1.

Let us now define the price of an instance in a run.

Definition 4.6. (Price of an instance)
We define theprice of an instancea ∈ Id(m0) in a runr = m0

t1(σ1)
−→m1

t2(σ2)
−→m2 . . .mn−1

tn(σn)
−→ mn of a

prcwf-net as

P(a, r) =
n
∑

i=1
σi(x)=a

(C(ti) +
∑

p∈P

|mi−1(p)− σ(Ft(p))| ∗ S(p, ti))
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Figure 4. prcwf-net representing the practical exercise ofthe Chemistry degree

Intuitively, we are considering those transitions inr fired bya, and computing its price as we did in
Def. 3.2 for pwf-nets. In particular, we are assuming that when computingthe price of the firing of a
transition by an instance, the tokens belonging to other instances are accounted for. In other words,a
pays a penalization for the storage of all tokens when it fires a transition. We could have also decided that
each instance only pays for its own tokens, thus being in a slightly differentsetting, but the techniques
used in our results would also apply.

Since in rcwf-nets we are interested in the behavior of several concurrent instances, we collect their
prices in the following definition.

Definition 4.7. (Price of a run)
Given a runr of a prcwf-net starting inm0, we define theprice ofr as the multiset

P(r) = {P(a, r) | a ∈ Id(m0)} ∈ (Zk)⊕.

Instead of fixing the condition to be satisfied by all the prices of each instance, we define a para-
metric version of p-safety and dynamic soundness. More precisely, those properties for prcwf-nets are
parameterized with respect to a price-predicate.

Definition 4.8. (Price-predicate)
A price-predicateφ of arity k ≥ 0 is a predicate overNk

ω × (Zk)⊕ such that ifb ≤ b′ andA′ ≤⊕ A then
φ(b, A) → φ(b′, A′) holds.

Intuitively, b stands for the budget, andA stands for the price of a run. Notice that price-predicates
are upward-closed in their first argument, but downward-closed in theirsecond argument. Intuitively, if
a price-predicate holds for given budget and costs, then it holds with a greater budget and less costs, as
expected. From now on, for a price-predicateφ andb ∈ Nk

ω, we will denote byφ(b) the predicate over
(Zk)⊕ that results of specializingφ with b. Moreover, when there is no confusion we will simply say
that a runr satisfies a predicate whenP(r) satisfies it.

We now proceed as in the case of a single instance, defining p-safety anddynamic soundness, though
with respect to a given price-predicate.

Definition 4.9. (φ-p-safety)
Let b ∈ Nk

ω andφ be a price-predicate. We say that the prcwf-netN is φ(b)-p-safefor m0 ∈ P⊕
S if for

eachj > 0, every run ofN starting inmj
0 satisfiesφ(b).
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Definition 4.10. (φ-dynamic soundness)
Let b ∈ Nk

ω andφ be a price-predicate. We say that the prcwf-netN is φ(b)-dynamically soundfor

m0 ∈ P⊕
S if for eachj > 0 and for each markingm reachable frommj

0 by firing somer1, we can reach
a markingmf ∈ Mj

out by firing somer2 such thatr1 · r2 satisfiesφ(b).

Ordinary dynamic soundness is obtained by takingφ as the constantly true predicate. As we have
mentioned before, prices are different from resources in that they donot constraint the behavior of the
net. However, once we are interested in checking a priced-soundnessproblem, it is natural to consider
the available “budget” as an extra resource. Indeed, this can be done but only for firing costs, which are
local to transitions, but again this is not possible for storage costs.

Let us see some simple facts aboutφ-p-safety andφ-dynamic soundness.

Proposition 4.1. The following facts hold:

1. If φ1 → φ2 holds, thenφ1(b)-p-safety impliesφ2(b)-p-safety, andφ1(b)-dynamic soundness im-
pliesφ2(b)-dynamic soundness.

2. For anyφ, φ-dynamic soundness implies (unpriced) dynamic soundness.

3. In general,φ-dynamic soundness is undecidable for rcwf-nets without the path property.

Proof:
(1) is straightforward by Def. 4.9 and Def. 4.10. (2) follows from (1),considering that anyφ entails
the constantly true predicate. (3) follows from the undecidability of (unpriced) dynamic soundness for
rcwf-nets without the path property [24]. ⊓⊔

As a (not very interesting) example, ifφ is the constantly false price-predicate, no prcwf-net isφ-
dynamically sound, so that it is trivially decidable. Now we factorizeφ-dynamic soundness into unpriced
dynamic soundness and p-safety. As we proved in the previous section,if we consider negative costs
safety is undecidable even for priced wf-nets. Therefore, for now on we will focus in rcwf-nets with
non-negative costs.

Proposition 4.2. Let φ be a price-predicate andN a prcwf-net with non-negative costs. ThenN is
φ(b)-dynamically sound if and only if it is dynamically sound andφ(b)-p-safe.

Proof:
First notice that for any runr of N and any runr′ extendingr we haveφ(b,P(r · r′)) → φ(b,P(r)).
Indeed, it is enough to consider that, because we are considering that costs are non-negative,P(r) ≤⊕

P(r · r′) holds and, by Def. 4.8,φ is downward closed in its second parameter. For the if-part, ifN is
dynamically sound and all its runs satisfyφ(b) then it is clearlyφ(b)-dynamically sound. Conversely, if
it is φ(b)-dynamically sound it is dynamically sound by Prop. 4.1. Assume by contradiction that there is
a runr that does not satisfyφ(b). By the previous observation, no extension ofr can satisfyφ(b), so that
N is notφ(b)-dynamically sound, thus reaching a contradiction. ⊓⊔

Therefore, to decideφ-dynamic soundness we can consider those two properties separately. Though
(unpriced) dynamic soundness is undecidable for rcwf-nets (without the path property), it is decidable
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for the subclass of proper rcwf-nets [24]. In the following sections, we will study the decidability of
φ(b)-p-safety for various price-predicates, even ifN is not proper.

To conclude this section, and as we did in the previous one, notice that for any price-predicateφ,
the setBφ(N) = {b ∈ Nk

ω | N is φ(b)-dynamically sound (φ(b)-p-safe)} is upward-closed because
of the upward-closure in the first parameter of price-predicates. Therefore, and as we did for pwf-nets,
we can apply the Valk & Jantzen result to compute the minimal budgetsb for whichN is φ(b)-p-safe
(φ(b)-dynamically sound) whenever we can decideφ(b)-p-safety (φ(b)-dynamic soundness) for each
b ∈ Nk

ω.

5. Selected price predicates

Now, we study some specific cases of these price predicates. In particular, we study the maximum, the
sum, the average and the discounted sum.

5.1. Sum andMax -dynamic soundness

Let us now study the two first of the concrete priced problems for prcwf-nets. When we consider several
instances of a workflow net running concurrently, we may be interested inthe overall accumulated price,
or in the highest price that the execution of each instance may cost.

If we consider again the prcwf-net in Fig. 4, the price of a student completing the exercise is un-
bounded, since an unbounded amount of students could be inp4, and becauset2 can go wrong an
unbounded number of times (it is possible to loop in a cycle with positive cost). This corresponds to
the idea that the prcwf-net is notMax (b)-p-safe for anyb. This situation could be fixed by allowing a
maximum number of retries per student in step two, and by limiting the maximum number of students
that are waiting inp4, which can be done using static places.

Definition 5.1. (Sum andMax price-predicates)
We define the price-predicatesSum andMax as:

Sum(b, A) ⇐⇒
∑

x∈A x ≤ b

Max (b, A) ⇐⇒ x ≤ b for all x ∈ A

Sum andMax are indeed price-predicates because they satisfy the conditions in Def. 4.8. They are
both upward closed in the first parameter and downward closed in the second. Let us remark that the
cost model given bySum, in which all the prices are accumulated, is the analogous to the cost models
in [5, 6]. However, since we are here interested in the behavior of an arbitrary number of instances, a
necessary condition forSum(b)-p-safety is that all instances, except for a finite number of them, have a
null price (for those components inb that are notω).

Example 5.1. Consider the prcwf-netN in Fig. 3, and a run ofN with n instances, and in whicht2 is
not fired untilt1 has been firedn times. The price of thei-th instance in any such run is2(i−1). Indeed,
the first firing oft1 costs nothing, because there are no tokens inp, but in the second one there is already
a token inp, so that the second firing costs2 (becauseS(p, t1) = 2). In particular, the last instance of
the net costs2(n− 1). Therefore, the net is neitherMax (b)-p-safe norSum(b)-p-safe for anyb ∈ N.
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Now, suppose thatS(q, t) = 0 for each placeq and transitiont, C(t1) = 1 andC(t2) = 0. Each
instance costs exactly1, so that it isMax (1)-p-safe. However, in a run in whichn instances have reached
out, the sum of the prices of all instances isn, so the net is notSum(b)-p-safe for anyb ∈ N.

Now we prove decidability ofMax andSum-p-safety by reducing them to non-coverability problems
in awν-PN. Given a prcwf-netN we build awν-PNC(N), thecost representation netof N , by adding
toN new places, whose tokens represent the costs of each run. Then, thenet will be safe iff no marking
with bi +1 tokens in the place representing theith component of the prices can be covered. We simulate
firing costs by adding toN “normal arcs”, without whole-place operations, but for the simulation of
storage costs we need the whole-place capabilities ofwν-PN.

Proposition 5.1. Max -p-safety andSum-p-safety are decidable for prcwf-nets, even without the path
property.Max -dynamic soundness andSum-dynamic soundness are decidable for proper prcwf-nets.

Proof:
By Prop. 4.2, it is enough to consider the price-safety problems. We reduce Sum-p-safety to cov-
erability for wν-PN. Then, we show how to adapt this reduction to the case ofMax -p-safety. Let
N = (P, T, F,H,C, S) be a prcwf-net with price arityk andb ∈ Nk

ω. We can assume thatb has no
ω-components, or we could safely remove the cost information of those components. We build thewν-
PNC(N) as follows: First, we consider a transitiontν that can put at any time a fresh name in the place
in, to simulate the fact that inN the initial marking can have an arbitrary amount of different names in
that place. We also consider new placesc1, ..., ck to compute the costs of the current run. If the instancea
fires a transitiont, thenC(t)[i] a-tokens are put inci (this can be done with regular postarcs). Moreover,
for each placep in N , the current marking ofp is copiedS(p, t)[i] times inci (this is done thanks to the
whole-place operations ofC(N)). Then, at any point, the number of tokens inc1, ..., ck represents the
cost of the current run. In order to reduceSum-p-safety to a coverability problem, it is enough to allow
the possibility that every token inci carries the same name. This can be done by adding a transitiontci
that takes two different tokens fromci and puts one of them twice back inci. Let us now formalize the
previous ideas. We defineC(N) = (P c, T c, F c, Gc, Hc) as:

• P c = P ∪ {c1, ..., ck},

• T c = T ∪ {tν} ∪ {tc1 , ..., tck}.

• For eacht ∈ T ,

– F c
t (p) = Ft(p) if p ∈ P , andF c

t (p) = ∅, otherwise,

– Hc
t (p) = Ht(p) if p ∈ P , andHc

t (ci) = C(t)[i] ∗ {x}, otherwise,

– Gc
t(p, p

′) =











S(p, t)[i] if p ∈ P , andp′ = ci,

1 if p = p′,

0 otherwise.

• For eachi ∈ {1, ..., k},

– F c
tci
(ci) = {x, y}, andF c

tci
(p) = ∅ otherwise,
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Figure 5. The costs representationwν-PN of the prcwf-net in Fig. 2

– Hc
tci
(ci) = {x, x}, andHc

tci
(p) = ∅ otherwise, and

– Gc
tci

is the identity matrix.

• Ftν (p) = ∅ for anyp ∈ P c, Htν (in) = {ν} and returns the empty multiset elsewhere, andGtν is
the identity matrix.

Any run r of N can be simulated by a run ofC(N), preceded by several firings oftν . Moreover, if
r starts inm0 and finishes inm (seen as a run ofC(N)), then by construction ofC(N) it holds that the
sum of the prices of the instances inr, is the vector formed by considering the number of tokens (maybe
with different colors) inc1, ..., ck. In particular, when a transition inT is fired, we add the corresponding
firing costs to placesci by ”normal arcs”, that is, we haveHc

t (ci) = C(t)[i] ∗ {x}. Moreover, we add
storage costs by copying the necessary number of times the tokens in dynamicplaces to placesci, that
is, we haveGc

t(p, ci) = S(p, t)[i]. Finally, as each transitiontci takes two tokens with different names
from ci, and puts them back, changing the name of one of them by the name of the other token, these
transitions allow to reach the markings in which the sum of the prices of all the instances of a run is
represented by the tokens in the placesci, all of them with the same name. Then,N is Sum(b)-p-unsafe
if and only if there isj ∈ {1, ..., k} such that the marking withb[j] + 1 tokens of the same color incj
and empty elsewhere is coverable, and we are done.

The previous construction with some modifications also yields decidability ofMax (b)-p-safety. We
add one more placelast (which will always contain the name of the last instance that has fired a tran-
sition) and for eachi ∈ {1, ..., k}, we add a new placedi (where we will compute the costs). When a
transitiont ∈ T is fired, inC(N) we replace the name inlast by the name of the current transition, and
reset every placeci (by settingGt(ci, ci) = 0). Moreover, we change the effect of everytci : they now
take a token fromci, and put a token of the name inlast in the placedi (see Fig. 6).

Therefore, when a transitiont ∈ T is fired, it is possible to reach a marking in which the costs of
firing t are added to everydi (represented by the name of the instance that has firedt) by firing t followed
by the firing of everytci ni times, providedt put ni tokens inci. Notice that if another transition fires
before, then that run is lossy, in the sense that it is computing an underapproximation of its cost, but it is
always possible to compute the exact cost. Therefore,N is Max (b)-p-unsafe iff there isj ∈ {1, ..., k}
such that the marking withb[j] + 1 tokens of the same color indj and empty elsewhere is coverable.⊓⊔

Example 5.2. Fig. 5 shows the costs representation net of the netN in Fig. 2. For a better readability,
we have removed some of the labels of the arcs. As the prices inN are vectors ofN2, we have added two
places,c1 andc2, to store the costs; and two transitionstc1 andtc2 , which take two tokens of different
colors of the corresponding places and put them back, with the same color. Moreover, we have added
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Figure 7. The construction of Cor. 5.1

arcs that manage the addition of the cost of transitions. In particular, dashed arcs denote copy arcs,
meaning that when the corresponding transition is fired, tokens are copiedin the places indicated by the
arrows (which is the effect ofG in the proof of the previous result). Then,Sum(b)-p-safety is reduced to
non-coverability problems: the prcwf-net isSum(1, 1)-p-safe iff neitherm1 (the marking with only two
tokens carrying the same name inc1) neitherm2 (the marking with only two tokens carrying the same
name inc2) are coverable.

We remark that if we consider a cost model in which each instance only paysfor its own tokens, as
discussed after Def. 4.6, the previous proof can be adapted by considering a version ofwν-PN with finer
whole-place operations, which are still a subclass of the ones considered in [4], so that the result would
still apply. To conclude this section, we show that we can reduceb-p-soundness andb-p-safety problems
for pwf-nets with non-negative costs, defined in Sect. 3, toMax -dynamic soundness for prcwf-nets.
Therefore, if we consider non-negative costs, we can prove the decidability of b-p-soundness (already
proved in Prop. 3.2 in the case with negative costs but considering that thepath property holds), and
decidability ofb-p-safety.

Corollary 5.1. b-p-safety andb-p-soundness are decidable for pwf-nets with non-negative costs, even
without the path property.

Proof:
Let N be a pwf-net. To decideb-p-safety it is enough to build a prcwf-netN ′ by adding toN a single
static places, initially containing one token, two new placesin′ andout′ (the new initial and final places),
and two new transitionstin andtout. Transitiontin can move a name fromin′ to in whenever there is
a token ins, that is,Ftin(in

′) = {x}, Ftin(s) = {ǫ} andFtin is empty elsewhere, andHtin(in) = {x}
and empty elsewhere. Analogously,tout can move a name fromout to out′, putting the black token back
in s, that is,Ftout(out) = {x}, and empty elsewhere, andHtout(out

′) = {x}, Htout(s) = {ǫ}, and
empty elsewhere (see Fig. 7). In this way, the concurrent executions ofN ′ are actually sequential. Since
there is no other way in which instances can synchronize with each other (because there are no more
static places) the potential behavior of all instances coincide, and coincidein turn with the behavior of
N . Finally, we take the cost of firingtin and tout as null, as well as the cost of storing tokens inin′

andout′ for any transition, and the cost of storing tokens in any place fortin andtout. More precisely,
C(tin) = C(tout) = 0, S(p, tin) = S(p, tout) = 0 for anyp ∈ P , andS(in′, t) = S(out′, t) = 0 for
anyt ∈ T . In this way, the cost of each instance is the cost of a run ofN . Therefore,N is b-p-safe if and
only if N ′ is Max (b)-p-safe. Since weak soundness is decidable for wf-nets [3], we conclude. ⊓⊔
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5.2. Av -dynamic soundness

Now we study the next of the concrete priced-soundness problems. Instead of demanding that the exe-
cution of each instance does not exceed a given budget (though the price of one instance depends on the
others), we will consider an amortized, or average price.

Definition 5.2. (Av price-predicate)
We define the price-predicateAv asAv(b, A) ⇔ (

∑

x∈A x)/ |A| ≤ b.

Therefore,N is Av(b)-p-safe if in average, the price of each instance does not exceedb, for any
number of instances. Alternatively, we could have a slightly more general definition, in which we only
considered situations in which the number of instances exceeds a given thresholdl > 0. More precisely:
Av l(b, A) ⇔ |A| ≥ l → (

∑

x∈A x)/ |A| ≤ b. We will work with Av , though we claim that with fairly
minor changes in our techniques we could also address the slightly more general price-predicateAv l.

Example 5.3. Consider the prcwf-net in Fig. 10. The cost of firingt1 is twice the number of instances
in placein whent1 is fired. Therefore, the net isAv(2)-p-safe, though notMax (b)-p-safe for anyb ∈ N.

Now suppose that we forcet2 to be fired in the first place,t1 in second place, and thent2 as many
times as possible, by adding some static conditions. Moreover, consider thatthe cost of firingt1 is three
times the number of instances in placeout (instead of twice the number of instances inin) when t1
is fired. Then, if we consider any runr with two or more instances, in which we firet1 andt2 in the
beginning, the sum of the prices of the instances ofr is 3. Therefore, the if we consider such a run
with two instances, the average price is3/2 > 1, and then the net is notAv(1)-p-safe. However, if we
consider that the number of instances is greater than two, the average of the prices always remains under
1, and therefore the net isAv l(1)-p-safe if we consider any thresholdl ≥ 3.

Next we prove decidability ofAv -dynamic soundness, though the case ofAv -p-safety remains open.
We can reduceAv -dynamic soundness of a prcwf-netN to (unpriced) dynamic soundness of an rcwf-
netN b. In order to ensureAv(b)-p-safety, the maximum budget we may spend in an execution with
n instances isb ∗ n. Essentially, the idea of this construction is to add toN new placess1 . . . sk in
which tokens represent the remaining budget, and remove tokens from them when transitions are fired.
Moreover, each transition will haves1 . . . sk as preconditions, so that if the net has consumed all the
budget, then it halts before reaching the final marking. Therefore, we add b [i] tokens tosi each time an
instance starts its execution, for eachi. The simulation is “lossy” because of how we manage storage
costs, but it preserves dynamic soundness. The proof of the next proposition gives a detailed explanation
of this construction.

Proposition 5.2. Av -dynamic soundness is decidable for proper prcwf-nets.

Proof:
Let k be the price arity ofN . We reduceAv -dynamic soundness to unpriced dynamic soundness. Given
a prcwf-netN andb ∈ Nk

ω, let us see that there is an rcwf-netN b such thatN is Av(b)-dynamically
sound if and only ifN b is dynamically sound. We start the construction ofN b by adding toN new static
placess1, ..., sk that initially contain one token each. These new places store the budget thancan be
consumed by instances, plus the initial extra token. For that purpose, every instance addsb[i] tokens to
si when it starts. When a transitiont is fired, we remove fromsi C(t)[i] tokens to cope with firing costs.
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Figure 9. Schema of the managing of storage
costs assumingS(p, t) = 1

We will later explain how to cope with storage costs (notice thatN b is an rcwf-net, and in particular
it does not have whole-place operations). Moreover, each transition hass1, ..., sk as preconditions and
postconditions. Therefore, the net will deadlock when somesi is empty, meaning that it has used strictly
more than the allowed budget. Then, ifN is notAv(b)-dynamically sound,N b halts before reaching the
final marking for some execution, and therefore, it is not dynamically sound. Moreover, ifN is Av(b)-
dynamically sound, thenN b is dynamically sound, because each placesi always contains tokens, and
therefore the executions ofN b represent executions ofN . Fig. 8 shows a schema of the reduction for
price arity 1.

Now we address the simulation of storage costs. Fig. 9 depicts the following construction. We
simulate them in a “lossy” way, meaning that if the firing oft in N costsv, in the simulation we will
removeat mostv[i] tokens fromsi. To do that, for each placep of N we will add a new placep′. When
a transitiont is fired, for each placep we transfer tokens fromp to p′, one at a time (transitiontp in the
figure), removing at each timeS(p, t)[i] tokens fromsi. We add the same mechanism for the transfer of
tokens fromp′ to p and some static conditions to make sure that if we have started transferring tokens
from p to p′ because of the firing of a transition, we do not transfer tokens fromp′ to p because of the
same firing, and the other way around. At any point, the transfer can stop(even if some tokens have not
been transfered), which finishes the simulation oft. Since we now have two places representing each
placep (p andp′), for each transition ofN , we need to add several transitions in order to be able to take
(or put) tokens fromp, p′ or both.

Having lossy computations of the cost of a run, ifN exceeds the average budget for some execution
and some number of instances, thenN b will have a deadlock when this execution is simulated correctly
(meaning that all the tokens which have to be transfered are indeed transfered). Then,N b is not dy-
namically sound. Conversely, ifN is Av(b)-dynamically sound (and in particular no run ofN exceeds
the average budget), thenN b never consumes all the tokens in anysi, and it behaves asN , so that it is
dynamically sound. ⊓⊔

5.3. Ordered prices

So far, we have considered that instances are not ordered in any way, following directly the approaches
in [19, 20, 24]. Nevertheless, we could consider an order between theinstances, and use it to compute
the price of a run in such a way that the relative order between instances matter. A sensible way to do
that is to assume a linear order between instances within a run given by the order in which they start their
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S(in, t1) = 2C(t1) = C(t2) = 0

S(q, ti) = 0 otherwise.
in out

s

• • •

•••

• • •

t2

t1

Figure 10. Av -p-safety does not implyMax -p-safety

execution.

Definition 5.3. (Order between instances)
Let N be a prcwf-net, anda andb be two instances in a runr of N . We writea <r b if a is removed
from in in r beforeb, anda =r b if neithera nor b have been removed fromin in r. We writea ≤r b if
a =r b or a <r b.

Then, the order≤r is a total order over the set of instances inr. In this situation we can write
Id(r) = a1 ≤r · · · ≤r an to denote thata1, ..., an are all the instances inr, ordered as indicated. In the
following, for a setA we denote byA∗ the set of finite words overA.

Definition 5.4. (Ordered price of a run)
Given a runr of a prcwf-net withId(r) = a1 ≤r · · · ≤r an we define theordered priceof r as the word
Po(r) = P(a1, r)...P(an, r) ∈ (Nk)∗.

Notice that the previous definition is correct in the sense that whenevera =r b then we have
P(a, r) = P(b, r) = 0. Moreover, the instances of a run are always ordered asa1 <r · · · <r am <
am+1 =r ... =r an.

With the notion of ordered price, we can consider price-predicates that depend on the order in which
instances are fired. Therefore, ordered price-predicates are predicates overNk

ω × (Nk)∗. We consider
the order≤∗ over (Nk)∗ given byw1...wn ≤∗ w1...w

′
m iff n ≤ m and for each0 < i ≤ n, wi ≤ w′

i.
For instance, following [10], we can model situations in which costs in the future are less important than
closer ones.

Definition 5.5. (Ds-price predicate)
Given0 < λ < 1, we define thediscounted-sumprice-predicateDsλ as

Dsλ(b, v1...vn) ⇔
n
∑

i=1

λi ∗ vi ≤ b

Example 5.4. Let us recall the run of the netN of Fig. 3 described in Ex. 5.1. We proved that the
net is neitherMax (b)-p-safe norSum(b)-p-safe for anyb ∈ N. Moreover, the average price of the run
is
∑n

i=1 2(i − 1)/n, which equalsn − 1, so that it is notAv(b)-p-safe for anyb ∈ N. However, the
discounted price of the run is

∑n
i=1 2(i− 1)λi, with 0 < λ < 1. By using standard techniques, it can be

seen that the limit of those sums isb = 2λ2/(1 − λ)2. Moreover, forλ = 1/c with c > 1 that formula
simplifies to2/(c − 1)2. As it is easy to prove that the considered runs are the most expensive ones of
N , it follows that it isDsλ(b)-p-safe for thatb ∈ N.
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Note that if we consider≤∗, thenDsλ is downward-closed in its second argument. Decidability of
Dsλ-p-safety remains open, but a weaker version of this problem, in which weonly consider finitely
many instances, is decidable.

Definition 5.6. (Fds-price predicate)
Given0 < λ < 1 andl ∈ N, we define the finite-discounted-sum price-predicate

Fds lλ(b, v1...vn) ⇔

min{n,l}
∑

i=1

λi ∗ vi ≤ b

For this finite version of discounted-sum, p-safety is decidable.

Proposition 5.3. Let l ∈ N, c ∈ N \ {0} andλ = 1/c. Fds lλ-p-safety is decidable for prcwf-nets.
Fds lλ-dynamic soundness is decidable for proper prcwf-nets.

Proof:
We reduceFds lλ-p-safety to coverability forwν-PN. Basically, we build a new net, in which the first
l instances are managed separately, in order to store their weighted prices inplaces as in the proof of
Prop. 5.1. We considerl + 1 copies of the net, one for each of the firstl instances, and one for the rest
of the instances, to give the proper weight to the prices that we store. LetN = (P, T, F,H,C, S) be a
prcwf net. Let us build a newwν-PNN ′ = (P ′, T ′, F ′, G′, H ′) as follows:

For each dynamic placep ∈ P , we considerp, p1, . . . , pl in P ′, and for eacht ∈ T , we take
t, t1, . . . , tl in T ′. If p 6= in then, for eachi ∈ {1, . . . , l}, F ′

t(p) = F ′
ti(pi) = Ft(p) andH ′

t(p) =
H ′

ti(pi) = Ht(p). For each static places ∈ P , we considers ∈ P ′. Moreover, for eacht ∈ T and for
eachi ∈ {1, . . . , l}, F ′

t(s) = F ′
ti(s) = Ft(s) andH ′

t(s) = H ′
ti(s) = Ht(s). ThereforeN ′ hasl + 1

copies of the dynamic part ofN , sharing the static part.
We manage separately the placesin, in1, . . . , inl, in order to make sure that theith copy of the

dynamic part ofN corresponds with theith instance that has started. In particular, when we remove a
token from a placeini, we put a token inini+1, to allow the next instance to start. Givent ∈ T such that
Ft(in) 6= ∅ then, for eachi ∈ {1, . . . , l}, F ′

t(ini) = F ′
ti(in) = Ft(in) and for eachi ∈ {1, . . . , l − 1},

H ′
ti(ini+1) = ν. Finally, the last instances will be managed in the same last copy of the net, in which

places do not have indexes, soH ′
tl
(in) = H ′

t(in) = ν.
Now that we have the structure for the different copies of the net, we addsome places to store the

weighted prices of the firstl instances. Letn be the arity ofb. Then,pr1, . . . , prn ∈ P ′ will be places
where we store the prices. To give a weight to each instance, we consider the following:

∑l
i=1 λ

i ∗ vi ≤ b⇔
∑l

i=1 1/c
i ∗ vi ≤ b⇔ cl(

∑l
i=1 1/c

i ∗ vi) ≤ cl ∗ b⇔
∑l

i=1 c
l−i ∗ vi ≤ cl ∗ b.

Then, for eachi, we will store the prices of theith instance with weightcl−i
j as in the proof of

Prop. 5.1, that is, we defineG′ andH ′ for placespri,consideringG′
ti andH ′

ti asG′
t andH ′

t in Prop. 5.1,
multiplied bycl−i. Therefore if we prove that for each run ofN ′ and each placeprj the total stored price
in prj is less thanci ∗ bj , the predicateFds lλ(b) will hold for the netN .

Finally, as in Prop. 5.1, we add transitions to make all the tokens in eachprj carry the same name,
and we just need to check that for noj ∈ {1, ..., n} the markingmj with mj(prj) = {ac

l∗bj+1} and
mj(p) = ∅ otherwise (for an arbitrarya ∈ Id ) is coverable inN ′, to conclude thatN is Fds lλ(b)-p-safe.

⊓⊔
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5.4. Complexity

Now, we would like to study the complexity of the previous problems. As a preliminary result, we
study the complexity of the safety property for the defined priced predicates, in the case in which the
path property does not necessarily hold. More precisely, we reduce coverability forν-PN to each of the
previous safety problems, and therefore, they are at least non primitive-recursive. For that purpose, we
introduce the single-name coverability problem, which has the same complexity ascoverability, and we
set that this problem can be reduced to the problem of decidingφ-p-safety, for each of our predicates.

Definition 5.7. We define the single-name-coverability problem as that of given aν-PNN with initial
markingm0, andmf a marking with a single identifier, deciding whethermf can be covered inN .

Single-name-coverability is a problem more restricted than coverability, whichis decidable forν-
PN [28]. Next we prove that its complexity is the same as that of general coverability.

Lemma 5.1. The single-name-coverability problem has non primitive recursive complexity.

Proof:
We reduce coverability, which has non primitive recursive complexity [28], to single-name-coverability.
Let mf be the final marking. It is enough to add a new transition that can be fired whenevermf is
covered, thus putting a (black) token in a new place. Thus,mf can be covered in the originalν-PN
iff the marking with a black token in the new place can be covered. Moreover, the reduction is clearly
polynomial, so we are done. ⊓⊔

Proposition 5.4. The single-name-coverability problem forν-PNs can be reduced in polynomial time
to each of the following problems for prcwf-nets without the path property:Max (1)-p-safety,Sum(1)-
p-safety,Av(1)-p-safety andDs1/c(1)-p-safety (withc ∈ N \ {0}).

Proof:
Let N be aν-PN, and a markingmf of N with a single name. In order to reduce the coverability of
mf to the previous problems in polynomial time, we first build a new rcwf-netN ′ which simulates the
behavior ofN , and then, we will add the prices in four different ways, building four different prcwf-nets,
N1,N2,N3 andN4, in order to reduce coverability ofmf toMax (1)-p-safety,Sum(1)-p-safety,Av(1)-
p-safety andDsλ(1)-p-safety, respectively. In fact, the markingmf of N can be covered if and only if
the previous problems have a negative answer.

Let us first build the rcwf-netN ′, by adding toN a new placein, to be used as a fresh name storage.
Then, when a transition creating a fresh name is fired inN , in N ′ a name is taken fromin, and put in
the corresponding places. Therefore, any run ofN can be simulated by a run ofN ′ with enough fresh
tokens initially in the placein. Moreover, we add toN ′ a new transitiontf which has the markingmf

as precondition, as well as a new placep in which every name that is taken fromin is stored. For more
details on this part of the construction see the proof of undecidability of dynamic soundness in [24].

Finally, we assign the prices toN ′. The only transition with storage or firing costs istf . Then, a run
r will have a price greater than zero if and only iftf is fired inr, so thatmf can be covered if and only if
there is a run ofN ′, with a price greater than zero. Now we define the three different prices, which reduce
coverability toMax (1)-p-safety,Sum(1)-p-safety,Av(1)-p-safety andDs(1)-p-safety, respectively.
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• Max (1)-p-safety:C(tf ) = 2 andS(q, tf ) = 0 for each placeq. If mf is covered inN , there is a
run r of N ′ in which tf is fired, and then, the price ofr is 2, which is greater than 1. Conversely,
if mf is not covered inN , tf cannot be fired in any run ofN ′, and the price of any run is 0.

• Sum(1)-p-safety:C(tf ) = 2 andS(q, tf ) = 0 for each placeq. This case is analogous to the
previous one.

• Av(1)-p-safety:C(tf ) = 0, S(p, tf ) = 2 andS(q, tf ) = 0 for each placeq 6= p. If mf is covered
inN , there is a runr ofN ′ in whichtf is fired by an instance once. The price of the instance which
has firedtf is 2n, wheren is the number of instances which have started inr. The average sum of
the price ofr is 2 ∗ n/n = 2 > 1. The other implication is as in the case ofMax (1)-p-safety.

• Ds1/c(1)-p-safety:C(tf ) = 0, S(p, tf ) = c andS(q, tf ) = 0 for each placeq 6= p. The proof is
analogous to the previous one.

⊓⊔

By the previous polynomial reduction, and because single-name-coverability has non primitive re-
cursive complexity, we can conclude the following.

Corollary 5.2. Max (1)-p-safety,Sum(1)-p-safety,Av(1)-p-safety andDs(1)-p-safety have non primi-
tive recursive complexity for prcwf-nets without the path property.

5.5. Relating price predicates

In this subsection we study the relations between the previous price predicates. More precisely, for
each pair of predicatesφ andψ, we will study whetherφ(b)-dynamic soundness entailsψ(b′)-dynamic
soundness for someb′. Moreover, we will try to set the relation between these two bounds.

First of all, let us focus on the prcwf-nets of Fig. 3 and Fig 10. As we showed in the previous
examples, the first of these nets proves that a net may beDsλ(b)-dynamically sound for a certainb,
but notAv -dynamically sound,Max -dynamically sound norSum-dynamically sound for any bound.
Analogously, the second net isAv(b)-dynamically sound for someb ∈ N, but notDsλ-dynamically
sound,Max -dynamically sound norSum-dynamically sound for any bound.

The next propositions set the remaining relations:

Proposition 5.5. Let N be aSum(b)-dynamically sound prcwf-net for someb ∈ N. Then,N is also
Max (b)-dynamically sound,Av(b)-dynamically sound andDsλ(b)-dynamically sound.

Proof:
If we proveSum(b) → Max (b),Av(b),Dsλ(b), we are done (Prop. 4.1). LetA = {x1, . . . , xn} be a set
of prices satisfyingSum(b), that is,

∑

x∈A x ≤ b. Then, since we are considering non-negative prices, for
all a ∈ A, a ≤

∑

x∈A x ≤ b, and thereforeA satisfiesMax (b). Moreover,
∑

x∈A x/n ≤
∑

x∈A x ≤ b
and if0 < λ < 1 then

∑n
i=1 λ

i ∗ xi <
∑

x∈A x ≤ b. ThenA satisfiesAv(b) andDsλ(b) too. ⊓⊔

Proposition 5.6. Let N be aMax (b)-dynamically sound prcwf-net for someb ∈ N. Then,N is also
Av(b)-dynamically sound andDsλ(b

′)-dynamically sound, whereb′ = λ ∗ b/(1 − λ). In particular,N
isDs1/2(b)-dynamically sound.
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Sum Max Ds Av

Sum X X X X

Max × (Ex. 5.1) X 2� X

Ds × (Fig. 3) × (Fig. 3) X × (Fig. 3)

Av × (Fig. 10) × (Fig. 10) × (Fig. 10) X

Table 1. AX symbol in rowφ1 and columnφ2 means thatφ1(b)-dynamic soundness impliesφ2(b)-dynamic
soundness; a2� symbol means that the implication holds for a possibly differentb; a× means that the implication
does not hold

Proof:
Let us prove thatMax (b) → Av(b) andMax (b) → Dsλ(b

′). Let A = {x1, . . . , xn} be a set of
prices which satisfiesMax (b), that is, for allx ∈ A, x ≤ b. Let m = max{x1, . . . , xn}. Then,
∑

x∈A x/n ≤ n ∗ m/n = m ≤ b and thereforeA satisfiesAv(b). Moreover, if0 < λ < 1 then
∑n

i=1 λ
i ∗ xi ≤

∑n
i=1 λ

i ∗m ≤
∑n

i=1 λ
i ∗ b ≤ λ ∗ b/(1− λ), soA satisfiesDsλ(b

′). ⊓⊔

Table 1 summarizes the relations between the different predicates.

6. Conclusions and open problems

We have extended the study of workflow processes, adding prices to them. In particular, we have added
firing and storage costs to wf-nets and rcwf-nets, as done for priced Petri nets in [5]. Then, we have
defined priced versions of safety and soundness for pwf-nets, andseveral notions of the same properties
for rcwf-nets, depending on how we aggregate local prices to obtain a global price.

The main decidability results regarding pwf-nets we have proved here are:

• b-p-safety is undecidable when negative costs are considered.

• b-p-safety andb-p-soundness are both decidable for non-negative costs.

As b-p-safety for pwf-nets can be easily reduced toSum, Max , Av andFds-p-safety for prcwf-nets,
we have not considered negative costs in these cases. For prcwf-nets, our main results are:

• Sum, Max , andFds-p-safety are decidable.

• Sum, Max , Av andFds-dynamic soundness are decidable for the subclass of proper prcwf-nets.

There are interesting open problems that remain open, as the decidability ofAv -p-safety and the
problems related to the discounted sum. Their study would be a good starting point for the study of more
sophisticated aggregation techniques, like the Gini or the Theil indices [13].

More study regarding the complexity of the problems studied here is needed.As a preliminary result,
we have showed that coverability forν-PN (which has a non-primitive recursive complexity [28]) can be
reduced toSum, Av andMax safety for nets without the path property, so that they are non-primitive
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recursive. Further research is needed to investigate the complexity of safety properties for nets with the
path property, and soundness properties.

A way in which we must extend this work is to consider that storage costs depend on how long tokens
stay on places during the firing of transitions. For this purpose, time for rcwf-nets should be considered
instead of the arbitrary interleavings in the firing of concurrent transitions, as done in [6, 14, 15]. Then,
priced safety and soundness properties could be studied in this timed model.

Finally, the study ofDs-soundness, leads us to several interesting questions about how the sizeof the
markings and prices of a (sound) rcwf-net may grow. In this sense, wewould be interested in studying
possible bounds for the number of tokens in places, or for the costs of aninstance in terms of the number
of instances running in the net.
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