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Abstract. We extend workflow Petri nets (wf-nets) with discrete prideg associating a price to
the execution of a transition and to the storage of tokensfirdtedefine the safety and the soundness
problems for priced wf-nets. A priced wf-net is safe if no @xgon costs more than a given budget.
The soundness problem is that of deciding whether the wavkélan always terminate properly,
where in the priced setting “properly” also means that trecaiion does not cost more than a given
threshold. Then, we study safety and soundness of rescorerained workflow nets (rcwf-nets),
an extension of wf-nets for the modeling of concurrent ekeas of a workflow, sharing some
global resources. We develop a framework in which to studigtgand soundness for priced rcwf-
nets, that is parametric on the cost model. Then, that frareis instantiated, obtaining the cases
in which the sum, the maximum, the average and the discowtedof the prices of all instances
are considered. We study the decidability and the compleXithese properties, together with their
relation.

1. Introduction

Workflow nets (wf-nets) are an important formalism for the modeling of lassiprocesses, or workflow
management systems [2, 3]. Roughly, a wf-net is a Petri net with two $pdsxias;in andout. Its initial
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marking is that with a token in the plaée and empty everywhere else, which models the situation in
which a task has been scheduled. The basic correctness notion fokféowas that of soundness.

Intuitively, a workflow is sound if it cannot go wrong, so that the scheduask can always be
completed. This implies that no supervisor is needed in order to ensure itdatimmgunder a fairness
assumption that rules out the presence of livelocks). More preciselyinagerms of wf-nets, soundness
implies that at any reachable state, it is possible to reach the final state,ithat twken in the place
out, and empty elsewhere. Soundness is decidable for wf-nets, and elgromial for free-choice
wf-nets [3].

Recent works [19, 20, 24] study an extension of wf-nets, calledureseconstrained wf-nets (rcwf-
nets) in which several instances of a workflow execute concurresiymaing that those instances share
some global resources. Even if a single instance of an rcwf-net isiseeweral instances could deadlock
because of these shared resources. In [19] the authors defimitygsoundness, the condition stating the
existence of a minimum amount of resources for which any number of iregannoning simultaneously
can always reach the final state, that in which all the tasks have beetetedhand the shared resources
are returned. The paper [20] defines another notion of dynamic sesadin terms of the absence
of instance deadlocks in rcwf-nets, fixing the initial amount of resoutfbesgh keeping the condition
that instances must not change the number of resources. In [24]ntiawead the work in [20], but we
considered that instances may create or consume resources. W thisvetion of dynamic soundness
to be undecidable, and we identified a subclass of rcwf-nets, calledmpfopwhich it is decidable.

In the fields of business process management or web services, the inggoofaQoS properties in
general and cost estimation in particular has been identified as centraherows works [29, 23, 30,
22, 26, 14, 15]. As an example, in the previously mentioned models, it maypsmhte to reach the
final marking in different ways, due to the different interleavings of thecation, or to the inherent
non-determinism in wf-nets. Moreover, in the case of rcwf-nets, anrinstkbcking some resource may
force another instance to take a “less convenient” path (in terms of mamengyeor gas emissions, for
example), that does not use the locked resource. However, theaneaga workflow should prefer one
path over another is something that lies outside the model.

As a motivating example, let us consider the following real scenario, takemthe Chemistry De-
gree of the Complutense University, where every student of the secomse must do a practical exercise
which consists in synthesizing two different chemical components and comgpheir properties. Each
student has to perform several steps. For that purpose, they nesel stome devices. We can model the
procedure that students have to follow as a wf-net, and the interactidhtbé atudents (with limited
resources) as a rcwf-net. In most of the steps, the use of the comndieg device has a cost. Later,
we will see that this kind of costs correspondfiting costs However, these are not the only costs we
need to take into account. When all the devices of a certain kind are beadgatithe same time, there
may be students who need to wait to use these devices and the componefmiavineyade until this
moment, may go wrong because of the delay if they do not keep them at segiicsponditions, as a
specific temperature, for example. Therefore, there are costs thertdiep the number of students that
are waiting to use the devices. These costs will correspostbtage costghat is, costs produced when
a transition is fired and there are some tokens in some specific places.

In order to model situations like this, in this paper we add prices to our nets, gynr@adone for
the (untimed) priced Petri nets in [5] or for causal nets in [14, 15]. Wesider different types of prices,
modeled as tuples of integers or naturals. More precisely, we add firgtg tmtransitions and storage
costs to places. Then, the price of firing a transition is computed as thefdgstiang plus the cost
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of storing all the tokens in the net when the transition is fired. The price of asrdefined as the sum
of the prices of the firings of its transitions. Then, we say that a workfletnaprice-safe if the price
of each of its runs stays under a given threshold. When costs arermtegeprove that price-safety is
undecidable, so that in the rest of the paper we restrict ourselves toagative costs.

In this priced setting, we restate the soundness problems. For ordinamgtsyfthis is straightfor-
ward: a priced wf-net is sound if we can always reach the final mankitfgput spending more than a
given budget. We prove that price-soundness is decidable for isf-eeen with negative costs.

For priced rcwf-nets, the definitions of safety and soundness arsorstraightforward, since they
must consider the behavior of an arbitrary number of instances. Weleomsrametric definitions: For
any run, we collect the prices of every instance in the run, so that safdtgoundness are parametric in
the way in which local prices are aggregated to obtain a global price. dfivétibn is open to many dif-
ferent variants. We study several such variants in this paper: the maxjdemoted byMaz), in which
we consider the price of the most expensive instance; the sum of the pfiedl the instancesfum);
the average of the prices of all the instancés){ and the discounted sunbg), in which we consider
a weighted sum of the prices of the instances, so that the first instamce®es important than the last
ones. For instance, in the caseAf, for each execution we compute the average of the prices of all the
instances participating. Then, safety with respectitoguarantees that all the computed averages (in
every possible execution) do not exceed a given bound.

Back to the example, the price for the university of a student performingvtiode exercise is the
sum of the costs of using each device and the costs that come from otemtstwaiting for the devices
he/she is using. Then, the university could be interested in setting a bound f

e The total amount of money spent by all students in a class;
e The money spent by each student;

e The average of the amounts spent by each student.

This corresponds to the study of priced safety and soundness of fesponding model for the
different price predicates.

We prove decidability of price-safety for the sum, the maximum, and a finitéoveo$ discounted
sum, relying on the decidability of coverability for a class of Petri nets with sabm@adcasts and whole
place operations, that can be seen as an unordered version of Dataitlename creation [4, 21]. In
these cases we have decidability of priced soundness within the prdassi As a consequence, we
obtain the corresponding results for ordinary priced wf-nets (with megative costs). For the average,
we reduce soundness to the unpriced case, so that it is decidablepar pcwf-nets. However, de-
cidability of price-safety for the average remains open. Finally, we psovee relations between the
studied predicates, and give a preliminary result regarding complexitye [diecisely, we prove that
price-safety forMaz, Sum and Ds has a non primitive recursive complexity.

In parallel to the works on wf-nets and rcwf-nets, there has recenéwy lam increasing interest
in the study of quantitative aspects of both finite and infinite state systems. E[§0]ithe authors
consider quantitative generalizations of classical languages, usingtegifinite automata, that assign
real numbers to words, instead of boolean values. They study differeblems, which are defined in
terms of how they assign a value to each run. In particular, they assign themuama, limsup, liminf,
average and discounted sum of the transition weights of the run.
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Numerous works extend timed automata with prices [5, 7, 8]. E.g., the papeefies a model
of Timed Petri Nets with discrete prices. In such model, a price is associatatiorun of the net.
Then, the reachability (coverability) threshold-problem, that of being abieach (cover) a given final
marking with at most a given price, is studied. This study is extended to thagouns case in [6]. In
our setting, we require the workflow to behave correctly in any case, utithe need of a supervisor,
which in the priced setting means that no run reaching the final marking castauoh, as opposed
to the threshold problems, in which the existence of one good run is coedider [14, 15], time and
costs are added to causal nets, a subclass of Petri nets for the modelingjress processes, and a
methodology for evaluating their performance is presented.

Quantitative aspects of reactive systems are studied as energy gane$3:.81, 17]. For example,
in [17] games are played on finite weighted automata, studying the existenmdeié runs satisfying
several properties over the accumulated weights, as ensuring thauacesss always available or does
not exceed some bound.

Outline.

Section 2 gives some notations we use throughout the paper. Sectiom@swtnets with prices. In
Section 4 we extend rcwf-nets and give some basic results. In Sectionsfude some specific price
predicates, studying the decidability of safety and soundness for théingsame complexity results
and relating the different price predicates. Finally, in Section 6 we presgrconclusions. This paper
is a revised and extended version of [25].

2. Preliminaries

A quasi-order< over a set4 is a reflexive and transitive binary relation owér Given a quasi-order
<, write thata < bif a < bandb £ a. GivenB C A, we denoteB |= {a € A | 3b € B,a < b}
the downward closure aB and we say thaB is downward-closed iB|= B. Analogously, we define
B+, the upward closure oB and sayB is upward closed ifB 1= B. We denote byN,, = N U {w},
the naturals completed with their limit. We write v[i] to denote th&'” component ofy € N* and
0 = (0,...,0). We denote by< the component-wise order in ab§f, or Z*, and by< its strict version.
A (finite) multisetm over a setd is a mappingn : A — N with finite support, that is, such that
supp(m) = {a € A | m(a) > 0} is finite. We denote byA® the set of finite multisets ovet. For two
multisetsmn, andms over A we definen;+ms € A® by (m1+ms2)(a) = m1(a)+ma(a) andmy C mo

if mi(a) < ma(a) for everya € A. For a multisetn and\ € N, we take(A « m)(a) = A * m(a).
Whenm; C my we can defineny, — my € A® by (ms — mq)(a) = ma(a) — mq(a). We denote by
the empty multiset, that if)(a) = 0 for everya € A, and|m| =" ., () m(a). We use set notation
for multisets when convenient, with repetitions to account for multiplicities grelaser one. We write
{a1,...,an} <% {b1,...,by,} if there is an injectiorh : {1,...,n} — {1,...,m} such that; < by, for
eachi € {1,...,n}.

Petri Nets.

A Place/Transition (P/T) net is a tuplé = (P, T, F'), whereP is a finite set of placed] is a finite set
of transitions (disjoint with?) andF' : (P x T') U (T' x P) — N is the flow function.
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A marking of N is an element of”®. For a transitiont we define*t € P® as®t(p) = F(p,t).
Analogously, we take®(p) = F(t,p), *p(t) = F(t,p) andp®(t) = F(p,t). A markingm enables a
transitiont € T if *¢ C m. In that case can be fired, reaching the marking = (m — *t) + ¢*, and
we writem—sm’. Arunris a sequencmoﬂmlﬁ...&mn. If r1 andry are two runs so that;
finishes at the marking in which, starts, we denote by, - 5 the run starting with the transitions in,
followed by those in-,, as expected.

Workflow Petri Nets.
A workflow Petri net [3] (shortly a wf-net) is a P/T n&t = (P, T, F') such that:

1. there arén, out € P with *in = (), in® # ), *out # () andout® = (),

2. foreachn € P UT thereis a patlin = ni,ng,...,n; =n,...,n, = out With F\(n;,n;11) > 0
forl <i<k-—1.

We will call the second condition thgath property Abusing the terminology, we will sometimes
say that a wf-net does not satisfy the path property, meaning that it atitfiss the first condition in
the previous definition. When there is no confusion we will simply refer to pgeeial places given by
the previous definition a& andout, respectively. We denote by, the marking of N with a single
token inin, and empty elsewhere. Analogously,,; is the marking ofV with a single token irut
and empty elsewhere. There are several definitions of soundne$sefsin the literature. We will use
one called weak soundness in [3]. A wi-netisakly soundf for any marking reachable fromn;,, it is
possible to reachu ;.

Petri Nets with dynamic name creation and whole place operations.

In order to model different instances running in the same net, we will usesizeach name representing
a different instance. Av-PN is an extension of Petri nets in which tokens are names and fresh name
creation can be performed. We define them here as a subclags®Ns, a class of nets which we will
need in Sect. 5.1, that also allows whole-place operations and brogdoa#ts to Data Nets [21]. Data
Nets extend P/T nets by considering a linearly ordered and dense dontaken$, and in which whole
place operations can be performed. Therefare;PNs can be seen as an unordered version of Data
nets [21] in which names can be created fresh. When a transitba wv-PN is fired, four operations
are performed: the subtraction of several tokens of different colansle-place operations (affecting
every color in the same way), the creation of new names and the additioneoistok

Let us consider a sétar of variables andl’ C Var a set of name creation variables.uAv-PN is a
tuple N = (P, T, F,G, H) whereP andT are finite disjoint sets of places and transitions, respectively;
foreacht € T, F, : P — (Var\Y)® is its subtraction functionz; : P x P — N is its whole-place
operations matrix, andf; : P — Var® is its addition function. Moreover, it € Hy(p) \ T then
x € Fy(p') for somep’ € P.

Let Id be an infinite set of names. A marking is any: P — Id®. An a-token inp is an occurrence
of a € m(p). Id(m) is the set of names appearingin that is,/d(m) = U, p supp(m(p)). We denote
by Var(t) = {x € Var | 3p € P, x € Fi(p) U Hi(p)} and Var(p) = {z € Var | 3t € T, = €
Fy(p) U Hy(p)}. A mode is a mapping : Var(t) — Id extended pointwise te : Var(t)® — I1d®. A
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@1‘ Ex,y@ — @x Ex,y@

b1 D2 b P2
Figure 1. The firing of avv-PN

transitiont is enabled at a marking with modeco if for all p € P, o(Fi(p)) € m(p) andforally € T,

o(v) ¢ Id(m). Then, we say that can be fired, reaching a new marking, where for allp € P,

m'(p) = e p((m(p) = o(F(p)) % Gip/.p)) + o(Hy(p)), which is denoted byn % /.

Example 2.1. Let N = ({p1,p2}, {t}, F, G, H) be awv-PN, where:
o Fi(p1) = {z}, Fi(p2) = 0.
o Hy(p1) =0, Hi(p2) = {=,v}.
e Gi(p1,p1) =1, Gi(p1,p2) = 0, Ge(p2, p1) = 1, Ge(p2, p2) = 0.

This net is depicted in Fig 1. Note that althoughand H; are represented by arrows labeled by
the corresponding variables, the effectshfare not depicted. Let be the marking ofV such that
m(p1) = {a,b} andm(p2) = {b,c}. Then,t can be fired ain with modeo, wheres(z) = a and
o(v) = d, reaching a new marking/’, such thatn'(p;) = {b,b, ¢} andm/(p2) = {a, d}. Note thatn’
is obtained frommn by the following steps:

e Removing aru-token from the place,, due to the effect of".
¢ Removing all tokens fromp, and copying them tp,, because of5.

e Adding ana-token and al-token tops, because off.

We writem; C my if there is a renamingn) of m; such thatn (p) C ma(p) for everyp € P. A
markingm is coverable from an initial marking, if we can reachn’ from mg such thatn C m/.

A wr-PN could be considered as an unordered Data Net, except for thbdha-PNs can create
fresh names. In [4] the authors extend Data Nets with fresh name creatgrave that coverability is
still decidable by instantiating the framework of Well Structured Transition 8ys{&8].

Proposition 2.1. Coverability is decidable for wPN.

Finally, we defines-PN [28], which is a fragment of wPN without whole-place operations. For-
mally, av-PN is awv-PN in which, for eaclt € T', G is the identity matrix, and we will simply write
(P, T,F,H).

In the rest of the paper we will introduce some more models, that will most dirttes be priced
versions of the models already defined. For the sake of readability,eferpo present these models in
an incremental way, instead of considering a general model which sssail the others.
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3. Priced Workflow-nets

Let us define a priced extension of wf-nets. We follow the cost model]inl{®ssentially amounts to
adding to a wf-net two functions, defining the price of the firing of eaatsitaon, and the cost of storing
tokens when a transition is fired, respectively.

Definition 3.1. (Priced workflow net)
A priced workflow nefpwf-net) withprice arity k > 0 is a tupleN = (P, T, F, C, S) such that:

e (P, T, F)is awf-net, called the underlying wf-net of,
e C : T — 7ZFis afunction assigning firing costs to transitions, and
e S: P x T — 7" is afunction assigning storage costs to pairs of places and transitions.

Notice that costs may be negative. The behavior of a pwf-net is givets ywderlying wf-net. In
particular, adding prices to a wf-net does not change its behaviorea®#ts are not a precondition for
any transition. That is the main difference between adding resourcegrimed. Indeed, firing costs
could be seen as resources. However, since storage costs depemdyron the transitions which are
fired, but also on the number of tokens in the rest of the places when tis#tisas are fired, they cannot
be seen as resources anymore.

Let us now define the price of firing a transition and the price of a run.

Definition 3.2. (Price of a run)
Let ¢ be a transition of a pwf-net enabled at a markingWe defineP(t, m), theprice of the firing oft
atm, as

Plt,m)=Ct)+ > S(p,t)

pEM—*1
Then, theprice of a runr = mq—ma—23ms . . . mn%mnﬂ of apwf-netisP(r) = Y | P(t;, m;).

Notice that in the definition ofP(¢, m) the termm — °¢ is a multiset, so that if a plage appears
twice in it then we are addin§(p, t) twice in turn. It can be seen that firing costs can be simulated by
storage costs, though we prefer to keep both to follow the approach iH§&Jever, storage costs cannot
be simulated by firing costs, since the former are marking dependent, whikgtéreare not. Next, we
define safety of a pwf-net with respect prices.

Definition 3.3. (b-p-safety)
Givenb € N¥, we say that a pwf-net isp-safeif for each runr reachingm,uz, P(r) < b.

Therefore, a pwf-net is-p-safe if all the runs that reach the final marking cost less than tha give
budget. Next, we define soundness for pwf-nets.

Definition 3.4. (b-p-soundness)
Givenb € Nﬁ, we say that a pwf-net &p-soundf from each markingn, reachable fromn,;,, via some
runry, we can reachn,,; via some rurry such thatP(rq - o) < b.
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Intuitively, for a pwf-net to be sound we need to be able to reach therfinging at any point with a
price that does not exceed the budyet N”. It is easy to see that a pwf-netligo-sound iff it is weakly
sound and-p-safe. However, as we prove next, the latter is undecidable.

Proposition 3.1. b-p-safety is undecidable for pwf-nets.

Proof:

We reduce the cost-threshold-reachability problem for PPN with negadsts, and price arity, which

is undecidable [5]. A PPN with arity is a P/T net{ P, T, F'), endowed with a functiod®' : PU T — Z
associating costs to transitions and places. Mored@vés,the disjoint union ofl}, the set ofinstanta-
neoustransitions, and’, the set oftimedtransitions. The cost of firing € Ty in any marking is just
C(t). The cost ofn—ym’ with ¢ € T} is C(t) + >_,ep C(p) - m(p). The cost of a run is the sum of
all the transitions costs in it. The cost-threshold-reachability problem densjggivenm andb € N,
decide whether there is a rarwith mo——m  such thaC(c) < b. Itis proved in [5] that this problem
is undecidable.

Given a PPNV = (P, T, F, C), a final markingn s andb € N, let us build a pwf-nefV’ as follows.
First, we add new placesg;, po, in andout, and transitions;, ¢, andt;. Transitiont, sets the initial
marking of N, andt; hasm; as precondition and puts a tokendat. Placeg; andp, and transitiort;
are added in order to makeé’ satisfy the second condition of the definition of workflow net. In order to
satisfy the path property, at the beginning of each run we put a tokeclnptace of the net, and remove
them by firingt; and¢,. Moreover,pg will be connected to each transition of the net and will be emptied
in the final step, wheuy is fired. More precisely:

e Transitiont; takes a token fronn, and puts a token in each placeéf except forpg, in andout,
connecting each place with.

e We set each place df’ except forin, py andout as a precondition ofy, andp, and every place
of mg as a postcondition af), connecting each place except tart to pg.

e We makep, be a precondition and postcondition of each 7", connecting each transition 1g.

e Finally, we setp, and every place ofn; as a precondition of;, connecting each place and
transition of the net witlvut.

The new places have no storage cogthas firing cosb + 1 andt¢; and¢; have firing cost. For
everyt € T we take—C(t) as the firing cost of in N'. Moreover, ift is an instantaneous transition we
setS(p,t) = 0 for everyp € P, and if it is a timed transition we tak&(p,t) = —C(p) for everyp € P.

By construction, ifr is a run inNV with coste, thent;t, - r is a run inN’ with costb + 1 — ¢. Let
us see that there exists a ruf N such thatng——m; with C(r) < biff N’ is not0-p-safe. Let- be
a run such thaﬁLoL)mf andC(r) < b. Letus callr’ = ¢;tyrt the corresponding run a¥’. Then,
C(r')=14b—C(r) > 1. Therefore N’ is not0-p-safe. Conversely, suppose that for everymah N
with moL>mf, C(r) > b. Then, for every run’ of N’ reachingm,,:, necessarily of the formytort s,
C(r')=1+b—C(r) <0. Therefore N’ is b-p-sound. O

Despite of the previous result, we can prove thptsoundness is decidable. We make use of the fact
that weakly sound wf-nets are bounded, which can be proven follogimigar arguments to those in [1]
for soundness.
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Lemma 3.1. Let N be a wf-net. IfN is weakly sound thefV is bounded.

Proof:

Assume by contradiction th&( is unbounded, so that for evenyc N there is a reachable markimng,,
such thatim,,| > n. Since the reachability trees of wf-nets are finitarjnkg’s lemma implies that we
can assume those markings to be in the same rus.ofrhen, by Dickson’s lemma [16], there are
andm’ # () such thatin —* m —* m + m/. SinceN is weakly sound, we haves —* out, so that
m+m/ —* out +m/’. Again, becausé&’ is weakly soundut +m’ —* out must hold, so that)’ —* ()
(becauseut® = (). But this is not possible, since the path property implies that all the transifai's
have postconditions. We have reached a contradiction, séitlimhecessarily bounded. O

Proposition 3.2. b-p-soundness is decidable for pwf-nets.

Proof:
Let N be a pwf-net. If the underlying wf-né¥’ of NV is not weakly sound, then there is a reachable
marking from whichm,,; is not reachable, and therefaheis notb-p-sound. Let us suppose thiit is
weakly sound. Theny’ is bounded (previous lemma) and therefore we can build its reachabiliti,grap
which is finite. More precisely, we build the graph whose nodes are tiobable markings ofV’, and
there is an arc connecting two markings andms if and only if m; BN mo for somet € T, labeled
by P(¢,m1). In that way, the price of a run d¥ corresponds to the length of the corresponding path in
the reachability graph. Sinc¥’ is weakly sound)N is notb-p-sound if and only if there is a run from
mip 10 My With @ price which is not smaller than that is, if and only if there is a path from,,, to
Moyt IN the reachability graph with a lengthandi € {1, ..., k}, such that[i] > b[i]. Therefore, in this
caseb-p-soundness can be reduced to computing the length of the longestgrathuf,, to m,,: in the
finite reachability graph (assumed to be infinite if no such path exists due togbenze of cycles with a
positive length). This can be done polynomially in the number of states, etlenegative weights [12].

O

In the following section we will consider a more general version of thelprobthat in which several
instances of the workflow execute concurrently, called resourcsti@ined workflow nets. Then, we
will obtain other (positive) results regarding pwf-nets as a conseguafithe more general problem.

To conclude this section, notice that if a pwf-nebip-safe §-p-sound) then it is alsti-p-safe §’'-p-
sound) for any’ > b, so that the seB(N) = {b € Nk | N is b-p-safe §-p-sound} is an upward-closed
set. In this situation, we can apply the Valk & Jantzen theorem:

Theorem 3.1. ([31])
Let V be an upward-closed set. We can compute a finite bagisibnd only if for eachv € NX we
can decide whether| NV # (.

Therefore, we can compute a finite basis of the3gY), i.e., the minimal budgets for which the
pwf-net isb-p-safe p-p-sound), provided we can decitkp-safety §-p-soundness) for eadhe N

4. Priced resource-constrained wf-nets

Let us start by recalling the definition of resource-constrained wf-fretgf-nets). For more details
see [24]. The definition we use is equivalent to those in [19, 20], thougte convenient for our pur-
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S(p,t1) =2  S(q,t;) = 0 otherwise.
C(t) = Clt2) = 0

in P out

O—a—C—a—0)

Figure 2. A priced resource-constrained workflowrigure 3. prcwf-net notSum(b) neither Maz(b)-
net dynamically sound for any € N

poses. We represent each instance in an rcwf-net by means ofrautiffeme. Hence, our definition of
rcwf-nets is based om-PN. Av-PN can be seen as a collection of P/T nets that can synchronize between
them and be created dynamically [27]. We start by defining a subclassdf, called asynchronous
v-PN, in which each instance can only interact with a special instance (wiickels resources) that is
represented by black tokens. We fix variables T andx, e € Var\Y.

Definition 4.1. (Asynchronousrv-PN)
An asynchronoug-PNis av-PN N = (P, T, F, H) such that:

e Foreactp € P, Var(p) C {z,v} or Var(p) = {¢}.
e Foreach € T, Var(t) C {v,e} or Var(t) C {z,€}.

Placegp € P with Var(p) = {e} are calledstatic and are represented in figures by circles in bold.
They can only contain (by construction) black tokens, so that they wilbsemt resources, and can only
be instantiated by. Place® € P with Var(p) C {x, v} are calleddynamic and are represented by nor-
mal circles. They can only contain names (different from the black tokba) represent instances, and
can only be instantiated by, We denotePs and Pp the sets of static and dynamic places, respectively,
so thatP = Ps U Pp.

Let us introduce some notations we will need in the following definition. GiverRN N =
(P,T,F,H) andz € Var we define the P/T nel, = (P, T, F,), whereF,(p,t) = F;(p)(x) and
F,(t,p) = H(p)(x) for eachp € P andt € T. Moreover, forQ C P, by F|g we mean eaclf;
restricted tal), and analogously foff |g. Roughly, an rcwf-net is an asynchronau®N that does not
create fresh names, and so that its underlying P/T net is a wf-net.

Definition 4.2. (Resource-constrained workflow nets)
A resource-constrained workflow ngtwf-net) N = (P, T, F, H) is an asynchronous-PN such that:

e forallt e T, v ¢ Var(t),
e N,=(Pp,T,F|p,,H|p,). is awf-net, called theroduction neof N.

Fig. 2 shows an rcwf-net (for now, disregard the annotatiorend S in the figure). In figures we
do not label arcs, since they can be inferred (arcs to/from static pdaedabeled by, and arcs to/from
dynamic places are labeled by. IV, the production net olV, is the P/T net obtained by projecting
to its dynamic places. Again, we will abuse terminology and say that a rcindfe®s not satisfy the path
property, if its production net does not satisfy it.
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Intuitively, each instance is given by a name, which is initiallyiin Givenm, € P, for each
j € N we define the initial markingn{) as the marking that contains,(s) black tokens in each static
places, j pairwise different names in its pla¢e, and is empty elsewhere. For instance, the marking of
the rcwf-net in Fig. 2 isnZ, wheremg = {s, s, s}. Moreover, for suchng we denote by\t? | the set of
markings in which the samgnames are in its placeut and every other dynamic place is empty. Note
that we do not impose any condition on the static places.

Now we define the subclass of proper rcwi-nets, which can be intuitivedierstood as the subclass
of rcwf-nets behaving properly (being weakly sound) if endowed witimitely-many resources, which

amounts to removing the restriction of its behavior by means of resources.

Definition 4.3. (Proper rcwf-nets)
An rcwi-net isproperif its production net is weakly sound.

It is decidable to check that an rcwf-net is proper [3, 24]. As fomets we have the concept of
soundness,which is calledi/namic soundneds this setting. Dynamic soundness corresponds to the
idea that each instance running in the net can always finish correctly.

Definition 4.4. (Dynamic soundness)
We say that the prcwf-néY is dynamically soundior mg € P? if for eachj > 0 and for each marking

m reachable fromn?, we can reach a marking ; € M

out*

In [24] we proved that this property is decidable for proper rcwf-néew we define the priced
version of rcwf-nets, analogously as in Def. 3.1.

Definition 4.5. (Priced rcwf-net)
A priced rcwf-net(prcwf-net) withprice arity £ > 0 is a tupleN = (P, T, F, H,C, S) such that:

e (P, T,F, H)is an rcwf-net, called the underlying rcwf-net &f,

e C:T — 7Z"andS : P x T — Z* are functions specifying the firing and storage costs, respec-
tively.

As for priced wi-nets, the behavior of a priced rcwf-net is given byitderlying rcwf-net. However,
its runs have a price. Before we start giving the formal definitions of tloe pf a run, let us go back to
the example in the introduction. The net in Fig. 4 is a very simple model of the ctngmi®rcise. We
model each step as a transition, and tokens in places represent stuldeai®weady to perform the next
step. Performing steps two (transitioy) and three (transitions) costsl, so thatC'(ty) = C(t3) = 1.
In the exercise, the step two can possibly go wrong, in which case thensguted to repeat this step,
which is possible thanks Q. The device used in those two steps is the same, and there is only one such
device, which is modelled by the static placwith one token initially. Moreover, the cost of a student
waiting in p, for the necessary deviceisand therefores (py, t2) = S(p4,t3) = 1.

Let us now define the price of an instance in a run.

Definition 4.6. (Price of an instance) ho)  ta(on) (o)
We define theprice of an instance € Id(my) inarunr = mg —'mi ~3'my ... Mn_1 —%'my, of a
prcwf-net as

n

Pla,r) = Y (Ct) + Y [mima(p) — o(F(p))] * S(p, t:)

i=1 pEP
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Figure 4. prcwf-net representing the practical exercish®iChemistry degree

Intuitively, we are considering those transitiong-ifired by a, and computing its price as we did in
Def. 3.2 for pwf-nets. In particular, we are assuming that when comptiiagrice of the firing of a
transition by an instance, the tokens belonging to other instances arentatdor. In other wordsg
pays a penalization for the storage of all tokens when it fires a transitiertold have also decided that
each instance only pays for its own tokens, thus being in a slightly diffeegting, but the techniques
used in our results would also apply.

Since in rcwf-nets we are interested in the behavior of several camtunstances, we collect their
prices in the following definition.

Definition 4.7. (Price of a run)
Given a runr of a prcwf-net starting imng, we define therice ofr as the multiset

P(r) = {Pla,r) | a € Id(mg)} € (Z¥)®.

Instead of fixing the condition to be satisfied by all the prices of each instane define a para-
metric version of p-safety and dynamic soundness. More preciselg firoperties for prcwf-nets are
parameterized with respect to a price-predicate.

Definition 4.8. (Price-predicate)
A price-predicatep of arity k > 0 is a predicate ovdﬁff, X (Z’“)@ such thatift < andA’ <9 A then
o(b, A) — ¢(b', A”) holds.

Intuitively, b stands for the budget, aml stands for the price of a run. Notice that price-predicates
are upward-closed in their first argument, but downward-closed in¢kewnd argument. Intuitively, if
a price-predicate holds for given budget and costs, then it holds witbadey budget and less costs, as
expected. From now on, for a price-predicatandb € Nﬁ, we will denote byg(b) the predicate over
(Z*)® that results of specializing with b. Moreover, when there is no confusion we will simply say
that a runr satisfies a predicate whé?(r) satisfies it.

We now proceed as in the case of a single instance, defining p-safetlyaahic soundness, though
with respect to a given price-predicate.

Definition 4.9. (¢-p-safety)
Letd € Nij and¢ be a price-predicate. We say that the prcwf-Neis ¢(b)-p-safefor mg € Pg‘? if for

eachj > 0, every run ofN starting inmé satisfiesp(b).
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Definition 4.10. (¢-dynamic soundness)
Letb € N* and¢ be a price-predicate. We say that the prcwf-Neis ¢(b)-dynamically soundor

mg € P§‘9 if for eachj > 0 and for each marking: reachable fromng by firing somer;, we can reach
a markingm; € M, , by firing somer, such thatr; - r, satisfiesp(b).

out

Ordinary dynamic soundness is obtained by takings the constantly true predicate. As we have
mentioned before, prices are different from resources in that theyotloonstraint the behavior of the
net. However, once we are interested in checking a priced-soungraggem, it is natural to consider
the available “budget” as an extra resource. Indeed, this can be dboalfp for firing costs, which are
local to transitions, but again this is not possible for storage costs.

Let us see some simple facts abgtp-safety ands-dynamic soundness.

Proposition 4.1. The following facts hold:

1. If 1 — ¢ holds, thenp, (b)-p-safety impliesps(b)-p-safety, andb; (b)-dynamic soundness im-
plies ¢2(b)-dynamic soundness.

2. For anyg, ¢-dynamic soundness implies (unpriced) dynamic soundness.

3. In generalgp-dynamic soundness is undecidable for rcwf-nets without the path pyope

Proof:

(1) is straightforward by Def. 4.9 and Def. 4.10. (2) follows from (d9nsidering that any entails
the constantly true predicate. (3) follows from the undecidability of (ugicdynamic soundness for
rcwf-nets without the path property [24]. O

As a (not very interesting) example, dfis the constantly false price-predicate, no prcwf-nep-is
dynamically sound, so that it is trivially decidable. Now we factorizéynamic soundness into unpriced
dynamic soundness and p-safety. As we proved in the previous se€tom,consider negative costs
safety is undecidable even for priced wf-nets. Therefore, for nowve will focus in rcwf-nets with
non-negative costs.

Proposition 4.2. Let ¢ be a price-predicate an a prcwf-net with non-negative costs. Théhis
¢(b)-dynamically sound if and only if it is dynamically sound ap()-p-safe.

Proof:

First notice that for any rum of N and any run”’ extendingr we havea(b, P(r - r')) — ¢(b, P(r)).
Indeed, it is enough to consider that, because we are consideringtsaiace non-negativ®,(r) <®
P(r - r') holds and, by Def. 4.8p is downward closed in its second parameter. For the if-pafy, i§
dynamically sound and all its runs satisfyb) then it is clearlyp(b)-dynamically sound. Conversely, if
itis ¢(b)-dynamically sound it is dynamically sound by Prop. 4.1. Assume by contiadlithat there is
a runr that does not satisfy(b). By the previous observation, no extension @fn satisfyp(b), so that
N is not¢(b)-dynamically sound, thus reaching a contradiction. O

Therefore, to decidé-dynamic soundness we can consider those two properties separataghr
(unpriced) dynamic soundness is undecidable for rcwf-nets (witheupaith property), it is decidable
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for the subclass of proper rcwf-nets [24]. In the following sections,will study the decidability of
¢(b)-p-safety for various price-predicates, eveVifis not proper.

To conclude this section, and as we did in the previous one, notice thanyqorace-predicatey,
the setB,(N) = {b € Nt | N is ¢(b)-dynamically sound¢(b)-p-safe} is upward-closed because
of the upward-closure in the first parameter of price-predicates.efdrer;, and as we did for pwf-nets,
we can apply the Valk & Jantzen result to compute the minimal budgitswhich N is ¢(b)-p-safe
(¢(b)-dynamically sound) whenever we can decitle)-p-safety ¢(b)-dynamic soundness) for each
be Nk

5. Selected price predicates

Now, we study some specific cases of these price predicates. In partigalatudy the maximum, the
sum, the average and the discounted sum.

5.1. Sum and Maz-dynamic soundness

Let us now study the two first of the concrete priced problems for pret$: When we consider several
instances of a workflow net running concurrently, we may be interestibe ioverall accumulated price,
or in the highest price that the execution of each instance may cost.

If we consider again the prcwf-net in Fig. 4, the price of a student caingl¢he exercise is un-
bounded, since an unbounded amount of students could pg, iand becausé, can go wrong an
unbounded number of times (it is possible to loop in a cycle with positive cos$tis dorresponds to
the idea that the prcwf-net is ndfaz(b)-p-safe for anyb. This situation could be fixed by allowing a
maximum number of retries per student in step two, and by limiting the maximum nurhbtrdents
that are waiting irp4, which can be done using static places.

Definition 5.1. (Sum and Mazx price-predicates)
We define the price-predicatésm and Mazx as:

Sum(b,A) = > ,cax=<Db
Maz(b,A) <— z<bforallze A

Sum and Maz are indeed price-predicates because they satisfy the conditions in.BeThey are
both upward closed in the first parameter and downward closed in thadetet us remark that the
cost model given bysum, in which all the prices are accumulated, is the analogous to the cost models
in [5, 6]. However, since we are here interested in the behavior ofl@traay number of instances, a
necessary condition fdfum (b)-p-safety is that all instances, except for a finite number of them, have a
null price (for those components érthat are notv).

Example 5.1. Consider the prcwf-ned in Fig. 3, and a run ofV with n instances, and in which is
not fired untilt; has been fired times. The price of théth instance in any such run2gi — 1). Indeed,
the first firing oft; costs nothing, because there are no tokens ut in the second one there is already
a token inp, so that the second firing costybecauseS(p, 1) = 2). In particular, the last instance of
the net cost&(n — 1). Therefore, the net is neithéfaz (b)-p-safe norSum (b)-p-safe for any € N.
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Now, suppose that(q,¢) = 0 for each place; and transitiort, C(¢;) = 1 andC(t2) = 0. Each
instance costs exactly so that it isMaz(1)-p-safe. However, in a run in whiehinstances have reached
out, the sum of the prices of all instancesiisso the net is noSum (b)-p-safe for any € N.

Now we prove decidability oMaxz and Sum-p-safety by reducing them to non-coverability problems
in awr-PN. Given a prcwf-nefV we build awv-PNC(N), thecost representation netff NV, by adding
to N new places, whose tokens represent the costs of each run. Theef thidl be safe iff no marking
with b; + 1 tokens in the place representing thecomponent of the prices can be covered. We simulate
firing costs by adding tav “normal arcs”, without whole-place operations, but for the simulation of
storage costs we need the whole-place capabilitiesoPN.

Proposition 5.1. Maz-p-safety andSum-p-safety are decidable for prcwf-nets, even without the path
property. Maz-dynamic soundness arfthm-dynamic soundness are decidable for proper prcwf-nets.

Proof:

By Prop. 4.2, it is enough to consider the price-safety problems. Weceesiun-p-safety to cov-
erability for wr-PN. Then, we show how to adapt this reduction to the cas&/af-p-safety. Let

N = (P,T,F,H,C,S) be a prcwf-net with price arity: andb € N¥. We can assume thathas no
w-components, or we could safely remove the cost information of those cmmis We build thevy-
PNC(N) as follows: First, we consider a transitignthat can put at any time a fresh name in the place
in, to simulate the fact that ifv the initial marking can have an arbitrary amount of different names in
that place. We also consider new plaegs.., ¢, to compute the costs of the current run. If the instance
fires a transitiont, thenC'(¢)[:] a-tokens are put im; (this can be done with regular postarcs). Moreover,
for each place in NV, the current marking gf is copiedS(p, ¢)[i] times inc; (this is done thanks to the
whole-place operations @f(/V)). Then, at any point, the number of tokenscin..., ¢, represents the
cost of the current run. In order to redu§em-p-safety to a coverability problem, it is enough to allow
the possibility that every token i) carries the same name. This can be done by adding a transition
that takes two different tokens from and puts one of them twice backdn Let us now formalize the
previous ideas. We defit§ N) = (P¢,T¢, F°,G°, H) as:

e P°=PU {Cl, ...,Ck},
o T¢=TU{t,} U{te,, rte,}-
e Foreach ¢ T,

— Ff(p) = Fy(p) if p € P, andFF(p) = 0, otherwise,
— Hf(p) = Hy(p) if p € P,andH{(¢;) = C(t)[i] » {x}, otherwise,
S(p,t)[i] if pe P,andp’ = ¢,
- Gi(p.,p') = 1 if p=1yp/,
0 otherwise.

e Foreach € {1, ..., k},

— Ff (¢;) = {z,y}, andF¢ (p) = 0 otherwise,
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Figure 5. The costs representation-PN of the prcwf-net in Fig. 2

— Hf (¢;) = {x,z}, andH{ (p) = 0 otherwise, and
— Gf_ s the identity matrix.

e F (p) =0foranyp e P, Hy, (in) = {v} and returns the empty multiset elsewhere, &fadis
the identity matrix.

Any runr of N can be simulated by a run 6{N), preceded by several firings of. Moreover, if
r starts inmg and finishes inn (seen as a run @ (N)), then by construction af(NV) it holds that the
sum of the prices of the instancesrins the vector formed by considering the number of tokens (maybe
with different colors) incy, ..., ¢x. In particular, when a transition ifi is fired, we add the corresponding
firing costs to places; by "normal arcs”, that is, we havB{(¢;) = C(t)[i] * {«}. Moreover, we add
storage costs by copying the necessary number of times the tokens in dylaces to places;, that
is, we haveG¢(p,¢;) = S(p,t)[i]. Finally, as each transitiofy, takes two tokens with different names
from ¢;, and puts them back, changing the name of one of them by the name of theobéne these
transitions allow to reach the markings in which the sum of the prices of all thenicess of a run is
represented by the tokens in the placgsil of them with the same name. ThéW,is Sum(b)-p-unsafe
if and only if there isj € {1,..., k} such that the marking with[j] + 1 tokens of the same color i
and empty elsewhere is coverable, and we are done.

The previous construction with some modifications also yields decidability«f(b)-p-safety. We
add one more plackst (which will always contain the name of the last instance that has fired a tran-
sition) and for each € {1,...,k}, we add a new placé; (where we will compute the costs). When a
transitiont € T is fired, inC(V) we replace the name ilast by the name of the current transition, and
reset every place; (by settingGy(c;, ¢;) = 0). Moreover, we change the effect of evepy. they now
take a token frona;, and put a token of the name imst in the placed; (see Fig. 6).

Therefore, when a transitiane T is fired, it is possible to reach a marking in which the costs of
firing t are added to every; (represented by the name of the instance that hastjitadfiring ¢ followed
by the firing of everyt., n; times, provided putn; tokens inc;. Notice that if another transition fires
before, then that run is lossy, in the sense that it is computing an undexappgtion of its cost, but it is
always possible to compute the exact cost. Therefres Max(b)-p-unsafe iff there ig € {1, ..., k}
such that the marking withij] + 1 tokens of the same color ify and empty elsewhere is coverablel

Example 5.2. Fig. 5 shows the costs representation net of theNdat Fig. 2. For a better readability,
we have removed some of the labels of the arcs. As the pric¥sare vectors oN?, we have added two
places,c; andcz, to store the costs; and two transitions andt.,, which take two tokens of different
colors of the corresponding places and put them back, with the same toeover, we have added
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Y
O
& last d;
in out’
Figure 6. The mechanism added fdux Figure 7. The construction of Cor. 5.1

arcs that manage the addition of the cost of transitions. In particularedasics denote copy arcs,
meaning that when the corresponding transition is fired, tokens are dogteelplaces indicated by the
arrows (which is the effect af in the proof of the previous result). Thesiym (b)-p-safety is reduced to
non-coverability problems: the prcwf-net$am (1, 1)-p-safe iff neithem, (the marking with only two
tokens carrying the same namedi) neitherms (the marking with only two tokens carrying the same
name incy) are coverable.

We remark that if we consider a cost model in which each instance onlyfpaits own tokens, as
discussed after Def. 4.6, the previous proof can be adapted by edngji@ version ofvv-PN with finer
whole-place operations, which are still a subclass of the ones corsiiderd, so that the result would
still apply. To conclude this section, we show that we can redyzsoundness andp-safety problems
for pwf-nets with non-negative costs, defined in Sect. 3Mar-dynamic soundness for prcwi-nets.
Therefore, if we consider non-negative costs, we can prove thidatelity of b-p-soundness (already
proved in Prop. 3.2 in the case with negative costs but considering thaatheproperty holds), and
decidability ofb-p-safety.

Corollary 5.1. b-p-safety andh-p-soundness are decidable for pwf-nets with non-negative coss, e
without the path property.

Proof:

Let N be a pwf-net. To decida-p-safety it is enough to build a prewf-nat’ by adding to/V a single
static places, initially containing one token, two new placas andout’ (the new initial and final places),
and two new transitiong,, andt,,;. Transitiont;,, can move a name frorn’ to in whenever there is
atoken ins, thatis,Fy, (in') = {z}, F,, (s) = {e} andF}, is empty elsewhere, anld;, (in) = {z}
and empty elsewhere. Analogousiy,; can move a name frowut to out’, putting the black token back
in s, that is, Fy_, (out) = {z}, and empty elsewhere, ard;_,, (out’) = {z}, Hy,,,(s) = {e}, and
empty elsewhere (see Fig. 7). In this way, the concurrent executioN$ arfe actually sequential. Since
there is no other way in which instances can synchronize with each othesube there are no more
static places) the potential behavior of all instances coincide, and coiimciden with the behavior of
N. Finally, we take the cost of firing;,, andt,,; as null, as well as the cost of storing tokensiif
andout’ for any transition, and the cost of storing tokens in any place;foandt,,;. More precisely,
C(tin) = Cltour) = 0, S(p,tin) = S(p,touwr) = 0 foranyp € P, andS(in’,t) = S(out’,t) = 0 for
anyt € T. In this way, the cost of each instance is the cost of a ruli .of herefore V is b-p-safe if and
only if N is Maz(b)-p-safe. Since weak soundness is decidable for wf-nets [3], wemba O
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5.2. Awv-dynamic soundness

Now we study the next of the concrete priced-soundness problentsathsf demanding that the exe-
cution of each instance does not exceed a given budget (thoughi¢eepone instance depends on the
others), we will consider an amortized, or average price.

Definition 5.2. (Av price-predicate)
We define the price-predicatev asAv(b, A) < (D ,ca )/ |A] < b.

Therefore,N is Av(b)-p-safe if in average, the price of each instance does not exceed any
number of instances. Alternatively, we could have a slightly more genefilitibn, in which we only
considered situations in which the number of instances exceeds a gieshdldl > 0. More precisely:
Avi(b,A) & |A| > 1 — (3 ,ca)/ |A] < b. We will work with Av, though we claim that with fairly
minor changes in our techniques we could also address the slightly monalgenes-predicated v;.

Example 5.3. Consider the prcwf-net in Fig. 10. The cost of firingis twice the number of instances
in placein whent, is fired. Therefore, the net i$v(2)-p-safe, though nat/az (b)-p-safe for any € N.
Now suppose that we fordg to be fired in the first place; in second place, and theén as many
times as possible, by adding some static conditions. Moreover, considéndhaist of firingt; is three
times the number of instances in plaget (instead of twice the number of instancesiit) whent;
is fired. Then, if we consider any runwith two or more instances, in which we fitg and, in the
beginning, the sum of the prices of the instances &f 3. Therefore, the if we consider such a run
with two instances, the average price3j& > 1, and then the net is notv(1)-p-safe. However, if we
consider that the number of instances is greater than two, the averagepoictss always remains under
1, and therefore the net i$v,(1)-p-safe if we consider any threshdld 3.

Next we prove decidability ofiv-dynamic soundness, though the casd ofp-safety remains open.
We can reducedv-dynamic soundness of a prcwf-n&tto (unpriced) dynamic soundness of an rcwf-
net N°. In order to ensurelv(b)-p-safety, the maximum budget we may spend in an execution with
n instances i9 x n. Essentially, the idea of this construction is to addMonew placess; ... s; in
which tokens represent the remaining budget, and remove tokens framuthen transitions are fired.
Moreover, each transition will have ... s, as preconditions, so that if the net has consumed all the
budget, then it halts before reaching the final marking. Thereforedaé @ tokens tos; each time an
instance starts its execution, for eachThe simulation is “lossy” because of how we manage storage
costs, but it preserves dynamic soundness. The proof of the rapdsition gives a detailed explanation
of this construction.

Proposition 5.2. Av-dynamic soundness is decidable for proper prcwf-nets.

Proof:

Let k be the price arity ofV. We reducedv-dynamic soundness to unpriced dynamic soundness. Given
a prewf-netN andb € N¥, let us see that there is an rcwf-n&t such thatV is Av(b)-dynamically
sound if and only ifN? is dynamically sound. We start the constructiom\8fby adding toN new static
placess, ..., si that initially contain one token each. These new places store the budgetahdre
consumed by instances, plus the initial extra token. For that purposg,iestance adds[i| tokens to

s; when it starts. When a transitiaris fired, we remove from; C(¢)][:] tokens to cope with firing costs.
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Original net

Figure 8. Construction farv(b)-dynamic sound- ~ Figure 9. Schema of the managing of storage
ness costs assuming(p,t) = 1

We will later explain how to cope with storage costs (notice tNatis an rcwf-net, and in particular
it does not have whole-place operations). Moreover, each transéi®s h.., s;, as preconditions and
postconditions. Therefore, the net will deadlock when sepig empty, meaning that it has used strictly
more than the allowed budget. ThenNfis not Av(b)-dynamically soundN? halts before reaching the
final marking for some execution, and therefore, it is not dynamically doMoreover, ifN is Av(b)-
dynamically sound, thev? is dynamically sound, because each plagcalways contains tokens, and
therefore the executions &’ represent executions &. Fig. 8 shows a schema of the reduction for
price arity 1.

Now we address the simulation of storage costs. Fig. 9 depicts the followimgraotion. We
simulate them in a “lossy” way, meaning that if the firingtah N costsv, in the simulation we will
removeat mostuv|i] tokens froms;. To do that, for each plageof N we will add a new place’. When
a transitior. is fired, for each placg we transfer tokens from to p’, one at a time (transitiot), in the
figure), removing at each tim&(p, ¢)[| tokens froms,. We add the same mechanism for the transfer of
tokens fromp’ to p and some static conditions to make sure that if we have started transferrergstok
from p to p’ because of the firing of a transition, we do not transfer tokens fform p because of the
same firing, and the other way around. At any point, the transfer car{estep if some tokens have not
been transfered), which finishes the simulatiort.oSince we now have two places representing each
placep (p andp’), for each transition ofV, we need to add several transitions in order to be able to take
(or put) tokens fromp, p’ or both.

Having lossy computations of the cost of a runj\ifexceeds the average budget for some execution
and some number of instances, thghwill have a deadlock when this execution is simulated correctly
(meaning that all the tokens which have to be transfered are indeedettisf Then,N? is not dy-
namically sound. Conversely, ¥ is Av(b)-dynamically sound (and in particular no run &fexceeds
the average budget), thévi® never consumes all the tokens in anyand it behaves a¥, so that it is
dynamically sound. O

5.3. Ordered prices

So far, we have considered that instances are not ordered in anyollaying directly the approaches
in [19, 20, 24]. Nevertheless, we could consider an order betweengtances, and use it to compute
the price of a run in such a way that the relative order between instandes.nfasensible way to do
that is to assume a linear order between instances within a run given byd#rd@rowhich they start their
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S(in,t;) =2
S(q,t;) = 0 otherwise.

out

Figure 10. Av-p-safety does not imply/az-p-safety

execution.

Definition 5.3. (Order between instances)

Let N be a prcwf-net, and andb be two instances in a runof N. We writea <, b if a is removed
from ¢n in r beforeb, anda =, b if neithera nor b have been removed from in r. We writea <, b if
a=,bora <, b.

Then, the ordeK, is a total order over the set of instancesrin In this situation we can write
Id(r) = a1 <, -+ <, a, to denote that, ..., a,, are all the instances in ordered as indicated. In the
following, for a setA we denote byd* the set of finite words oves.

Definition 5.4. (Ordered price of a run)
Given a runr of a prewf-net with/d(r) = a1 <, - -+ <, a,, we define therdered priceof r as the word

P,(r) = P(a1,r)..P(an,7) € (NF)*,

Notice that the previous definition is correct in the sense that whenever b then we have
P(a,r) = P(b,r) = 0. Moreover, the instances of a run are always ordereg as, --- <, a,, <
Um+1 =rp ... =p Qp.

With the notion of ordered price, we can consider price-predicates ¢patidi on the order in which
instances are fired. Therefore, ordered price-predicates aleaies oveN x (N*)*. We consider
the order<* over(N’“)* given byw;...w,, <* w;...w), iff n < m and for each) < i < n, w; < w.
For instance, following [10], we can model situations in which costs in thedudte less important than
closer ones.

Definition 5.5. (Ds-price predicate)
Given0 < A < 1, we define thaliscounted-surprice-predicate)s) as

Dsy(b,vy...v,) < Z)\i xv; < b
i=1

Example 5.4. Let us recall the run of the néY of Fig. 3 described in Ex. 5.1. We proved that the
net is neitherMax (b)-p-safe norSum(b)-p-safe for anyp € N. Moreover, the average price of the run
is >, 2(i — 1)/n, which equals: — 1, so that it is notdwv(b)-p-safe for anyp € N. However, the
discounted price of the run J5.7"_; 2(i — 1) A%, with 0 < X\ < 1. By using standard techniques, it can be
seen that the limit of those sumsbis= 2X2/(1 — \)2. Moreover, for\ = 1/c with ¢ > 1 that formula
simplifies to2/(c — 1)2. As it is easy to prove that the considered runs are the most expem&gent
N, it follows that it is Ds ) (b)-p-safe for thab € N.
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Note that if we considex*, then Ds) is downward-closed in its second argument. Decidability of
Ds-p-safety remains open, but a weaker version of this problem, in whichnlyeconsider finitely
many instances, is decidable.

Definition 5.6. (Fds-price predicate)
Given0 < A < 1 andi € N, we define the finite-discounted-sum price-predicate

min{n,l}

Fdsl/\(b,vl...vn) o Z Aoxu; < b
i=1

For this finite version of discounted-sum, p-safety is decidable.

Proposition 5.3. Letl € N, ¢ € N\ {0} and\ = 1/c. Fds)-p-safety is decidable for prcwf-nets.
Fds' -dynamic soundness is decidable for proper prcwi-nets.

Proof:

We reduceFds', -p-safety to coverability forwr-PN. Basically, we build a new net, in which the first
[ instances are managed separately, in order to store their weighted prases as in the proof of
Prop. 5.1. We considér+ 1 copies of the net, one for each of the fifshstances, and one for the rest
of the instances, to give the proper weight to the prices that we storeV let(P, T, F, H,C, S) be a
prcwf net. Let us build a newr-PN N’ = (P, T', F',G’, H') as follows:

For each dynamic place € P, we considem, py,...,p; in P/, and for eacht € T, we take
t,ty,...,tpinT". If p # in then, for each € {1,...,1}, F/(p) = F{ (p:) = Fi(p) and Hi(p) =
H{ (p;) = Hy(p). For each static place ¢ P, we consides € P’. Moreover, for each € T and for
eachi € {1,...,1}, F/(s) = F{,(s) = Fy(s) andH{(s) = H{ (s) = Hy(s). ThereforeN’ hasl + 1
copies of the dynamic part @f, sharing the static part.

We manage separately the plagesini,...,in;, in order to make sure that th& copy of the
dynamic part ofN corresponds with th&” instance that has started. In particular, when we remove a
token from a placen;, we put a token irin;, 1, to allow the next instance to start. Giver T" such that
Fi(in) # () then, for each € {1,...,1}, F{(in;) = F] (in) = F;(in) and for each € {1,...,1 — 1},
H{ (iniy 1) = v. Finally, the last instances will be managed in the same last copy of the netjdh wh
places do not have indexes, B§ (in) = H/(in) = v.

Now that we have the structure for the different copies of the net, wesanhe places to store the
weighted prices of the firgtinstances. Let be the arity ofb. Then,pry,...,pr, € P’ will be places
where we store the prices. To give a weight to each instance, we cotisdellowing:

22:1 MNoxv; <be 22:1 1/t xv; < b 01(2211 1/ctxv) <cxbe 22:1 A= sy < xb.

Then, for each, we will store the prices of thé” instance with weightéfi as in the proof of
Prop. 5.1, that is, we defin@ and H' for placespr;,consideringx}, andH; asG; andH/ in Prop. 5.1,
multiplied by . Therefore if we prove that for each rundf and each placer; the total stored price
in pr; is less than * b;, the predicateFds’, (b) will hold for the netN.

Finally, as in Prop. 5.1, we add transitions to make all the tokens in@gatarry the same name,
and we just need to check that for fio= {1, ...,n} the markingm; with m;(pr;) = {a“**1} and
m;(p) = 0 otherwise (for an arbitrary € Id) is coverable inV’, to conclude thalV is Fds) (b)-p-safe.

O
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5.4. Complexity

Now, we would like to study the complexity of the previous problems. As a preliyingsult, we
study the complexity of the safety property for the defined priced predicatehe case in which the
path property does not necessarily hold. More precisely, we redezability for-PN to each of the
previous safety problems, and therefore, they are at least non priretuesive. For that purpose, we
introduce the single-name coverability problem, which has the same complexityasbility, and we
set that this problem can be reduced to the problem of decithpgafety, for each of our predicates.

Definition 5.7. We define the single-name-coverability problem as that of givesP&l N with initial
markingmg, andm a marking with a single identifier, deciding whethey can be covered irv.

Single-name-coverability is a problem more restricted than coverability, whidiecidable fon -
PN [28]. Next we prove that its complexity is the same as that of generatability.

Lemma 5.1. The single-name-coverability problem has non primitive recursive coritylex

Proof:

We reduce coverability, which has non primitive recursive complexity, [@8%ingle-name-coverability.
Let m, be the final marking. It is enough to add a new transition that can be firetevierm is
covered, thus putting a (black) token in a new place. Thug,can be covered in the originatPN
iff the marking with a black token in the new place can be covered. Morethereduction is clearly
polynomial, so we are done. O

Proposition 5.4. The single-name-coverability problem forPNs can be reduced in polynomial time
to each of the following problems for prcwf-nets without the path propevfyz(1)-p-safety,Sum(1)-
p-safety,Av(1)-p-safety andDs, ,.(1)-p-safety (withc € N\ {0}).

Proof:

Let NV be av-PN, and a markingn s of N with a single name. In order to reduce the coverability of
my to the previous problems in polynomial time, we first build a new rcwfiétvhich simulates the
behavior of N, and then, we will add the prices in four different ways, building fouiedént prcwf-nets,
N1, Na, N3 and Ny, in order to reduce coverability ofi  to Maz (1)-p-safety,Sum(1)-p-safety,Av(1)-
p-safety andDs (1)-p-safety, respectively. In fact, the marking; of NV can be covered if and only if
the previous problems have a negative answer.

Let us first build the rcwf-neiV’, by adding taV a new placén, to be used as a fresh name storage.
Then, when a transition creating a fresh name is fire&jrin N’ a name is taken fronn, and put in
the corresponding places. Therefore, any ruNofan be simulated by a run & with enough fresh
tokens initially in the placén. Moreover, we add tdV’ a new transitiort ; which has the marking:
as precondition, as well as a new place which every name that is taken from is stored. For more
details on this part of the construction see the proof of undecidability cimysisoundness in [24].

Finally, we assign the prices f§’. The only transition with storage or firing costgjs Then, a run
r will have a price greater than zero if and only ffis fired inr, so thatn; can be covered if and only if
there is a run ofV’, with a price greater than zero. Now we define the three different prdesh reduce
coverability toMaz (1)-p-safety,Sum(1)-p-safety,Av(1)-p-safety andDs(1)-p-safety, respectively.
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o Maz(1)-p-safety:C(ty) = 2 andS(q,ty) = 0 for each place. If m is covered inV, there is a
runr of N’ in which tr is fired, and then, the price ofis 2, which is greater than 1. Conversely,
if my is not covered inV, t; cannot be fired in any run @¥’, and the price of any run is 0.

e Sum(1)-p-safety:C(t;) = 2 andS(q,tf) = 0 for each place;. This case is analogous to the
previous one.

o Av(1)-p-safety:C(tf) =0, S(p,ty) = 2andS(q,ts) = 0 for each place # p. If m[ is covered
in N, there is a rum of N in whicht is fired by an instance once. The price of the instance which
has firedt; is 2n, wheren is the number of instances which have startecl ilithe average sum of
the price ofr is2 x n/n = 2 > 1. The other implication is as in the case/Mdhz(1)-p-safety.

e Dsy.(1)-p-safety:C(ty) = 0, S(p,ty) = candS(q,t;) = 0 for each placg # p. The proof is
analogous to the previous one.
0

By the previous polynomial reduction, and because single-name-gxhtgraas non primitive re-
cursive complexity, we can conclude the following.

Corollary 5.2. Maz(1)-p-safety,Sum(1)-p-safety,Av(1)-p-safety andDs(1)-p-safety have non primi-
tive recursive complexity for prcwf-nets without the path property.

5.5. Relating price predicates

In this subsection we study the relations between the previous price pgesdicklore precisely, for
each pair of predicates andv), we will study whetheg(b)-dynamic soundness entailgb’)-dynamic
soundness for sonié. Moreover, we will try to set the relation between these two bounds.

First of all, let us focus on the prcwf-nets of Fig. 3 and Fig 10. As weastbin the previous
examples, the first of these nets proves that a net mapsyéb)-dynamically sound for a certaiby
but not Av-dynamically sound Maz-dynamically sound noSum-dynamically sound for any bound.
Analogously, the second net i$v(b)-dynamically sound for somé € N, but not Dsy-dynamically
sound,Maz-dynamically sound nosum-dynamically sound for any bound.

The next propositions set the remaining relations:

Proposition 5.5. Let N be aSum(b)-dynamically sound prcwf-net for sontec N. Then, N is also
Mazx(b)-dynamically soundAwv(b)-dynamically sound ands  (b)-dynamically sound.

Proof:

If we prove Sum(b) — Max(b), Av(b), Dsx(b), we are done (Prop. 4.1). Lét= {z;,...,z,} be aset

of prices satisfyingsum (b), thatis,> . , < b. Then, since we are considering non-negative prices, for
alla € A,a <) . 4x < b, and therefored satisfiesMaz(b). Moreover,> ", z/n <> . 2 <D
andif0 < X <1thend " N xa; <Y .42 <b. ThenA satisfiesdv(b) and Ds (b) too. 0

Proposition 5.6. Let V be aMaz(b)-dynamically sound prcwf-net for sontec N. Then, N is also
Awv(b)-dynamically sound ands ) (b')-dynamically sound, wher& = X\ x b/(1 — \). In particular, N
is Dsy j2(b)-dynamically sound.
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\ Sum \ Max \ Ds \ Av ‘
Sum v v v v
Max x (Ex. 5.1) v vl v
Ds x (Fig. 3) x (Fig. 3) v x (Fig. 3)
Av x (Fig. 10) x (Fig. 10) x (Fig. 10) v

Table 1. Av symbol in row¢; and columng, means that, (b)-dynamic soundness implies (b)-dynamic
soundness; @ symbol means that the implication holds for a possibly déffeb; a x means that the implication
does not hold

Proof:

Let us prove thatMaz(b) — Awv(b) and Max(b) — Dsy(V'). Let A = {x1,...,z,} be a set of
prices which satisfied/az(b), that is, for allz € A, x < b. Letm = max{xi,...,z,}. Then,
Y ozear/n < nxm/n = m < band therefored satisfiesAv(b). Moreover, if0 < A < 1 then
S A <SR A am < S0 N b < Axb/(1— )), S0A satisfiesDs ) (V). |

Table 1 summarizes the relations between the different predicates.

6. Conclusions and open problems

We have extended the study of workflow processes, adding pricesnto theparticular, we have added
firing and storage costs to wf-nets and rcwf-nets, as done for priegdrets in [5]. Then, we have
defined priced versions of safety and soundness for pwf-netseumadal notions of the same properties
for rcwf-nets, depending on how we aggregate local prices to obtdwbalgrice.

The main decidability results regarding pwf-nets we have proved here are

e b-p-safety is undecidable when negative costs are considered.
e b-p-safety and-p-soundness are both decidable for non-negative costs.

As b-p-safety for pwf-nets can be easily reducedton, Max, Av and F'ds-p-safety for prcwf-nets,
we have not considered negative costs in these cases. For prisybaemain results are:

e Sum, Maz, andF'ds-p-safety are decidable.

e Sum, Maz, Av and Fds-dynamic soundness are decidable for the subclass of proper petsf-

There are interesting open problems that remain open, as the decidability-pfsafety and the
problems related to the discounted sum. Their study would be a good staritmd@goahe study of more
sophisticated aggregation techniques, like the Gini or the Theil indices [13]

More study regarding the complexity of the problems studied here is neAdedpreliminary result,
we have showed that coverability forPN (which has a non-primitive recursive complexity [28]) can be
reduced toSum, Av and Max safety for nets without the path property, so that they are non-primitive
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recursive. Further research is needed to investigate the complexitiedf peoperties for nets with the
path property, and soundness properties.

A way in which we must extend this work is to consider that storage costadepehow long tokens
stay on places during the firing of transitions. For this purpose, time fdrmet¢ should be considered
instead of the arbitrary interleavings in the firing of concurrent transitiasslone in [6, 14, 15]. Then,
priced safety and soundness properties could be studied in this timed model.

Finally, the study ofDs-soundness, leads us to several interesting questions about how tbktkze
markings and prices of a (sound) rcwf-net may grow. In this senseyaudd be interested in studying
possible bounds for the number of tokens in places, or for the costsdtamce in terms of the number
of instances running in the net.
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