
Multiset Rewriting for the Verification of

Depth-Bounded Processes with Name Binding

Fernando Rosa-Velardo∗, Maŕıa Martos-Salgado

Sistemas Informáticos y Computación, Universidad Complutense de Madrid
Facultad de Informática, C/Prof. José Garćıa Santesmases, s/n. 28040 Madrid (Spain)

Abstract

We combine the two existing approaches to the study of concurrency by means
of multiset rewriting: multiset rewriting with existential quantification (MSR)
and constrained multiset rewriting. We obtain ν-MSR, where we rewrite mul-
tisets of atomic formulae, in which terms can only be pure names, where some
names can be restricted. We consider the subclass of depth-bounded ν-MSR,
for which the interdependence of names is bounded. We prove that they are
strictly Well Structured Transition Systems, so that coverability, termination
and boundedness are all decidable for depth-bounded ν-MSR. This allows us to
obtain new verification results for several formalisms with name binding that
can be encoded within ν-MSR, namely polyadic ν-PN (Petri nets with tuples
of names as tokens), the π-calculus, MSR or Mobile Ambients.

Key words: Multiset rewriting, depth-boundedness, WSTS, verification,
decidability, Petri nets, process algebrae

1. Introduction

MSR. Dynamic name generation has been thoroughly studied in the last
decade, mainly in the fields of security [11, 1] and mobility [27]. The paper [11]
presents a meta-notation for the specification and analysis of security protocols.
This meta-notation involves facts and transitions, where facts are first-order
atomic formulae and transitions are given by means of rewriting rules, with a
precondition and a postcondition. For instance, the rule

A0(k), Ann(k′) → ∃x.(A1(k, x), N(enc(k′, 〈x, k〉)), Ann(k′))

specifies the first rule of the Needham-Schroeder protocol, in which a principal
A with key k (A0(k)) decides to talk to another principal, with a key k′ that

∗Corresponding author
Email addresses: fernandorosa@sip.ucm.es (Fernando Rosa-Velardo),

mrmartos@estumail.ucm.es (Maŕıa Martos-Salgado)
Authors partially supported by the Spanish projects DESAFIOS10 TIN2009-14599-C03-

01 and PROMETIDOS S2009/TIC-1465.

Preprint submitted to Information & Computation June 3, 2011

has been announced (Ann(k′)), for which it creates a nonce x and sends to
the network the pair 〈x, k〉 ciphered under k′. This notation gave rise to the
specification language for security protocols MSR [10].

CMRS. In [14] Constraint Multiset Rewriting Systems (CMRS) are defined.
As in [11], facts are first-order atomic formulae, but the terms that can appear
as part of such formulae must belong to a constraint system. For instance, the
rule count(x), visit → count(x + 1), enter(x + 1) could be used to count the
number of visits to a web site. For a comprehensive survey of CMRS see [16].
In CMRS, there is no mechanism for name binding or name creation, so that
it has to be simulated using the order in the constraint system (for instance,
simulating the creation of a fresh name by taking a value greater than any of
the values that have appeared so far). Thus, in an unordered version of CMRS,
in which only the equality predicate between atoms is used, there is no way of
ensuring that a name is fresh.

Our goal. It is our goal in this paper to find a minimal set of primitives that
allows us to specify concurrent formalisms with name binding. This specification
may be achieved by means of some encoding, provided this encoding preserves
concurrency and name topology. This will allow us to obtain new decidability
results for those concurrent formalisms in a common framework.

We combine the features of the meta-notation MSR and CMRS, obtaining
ν-MSR. On the one hand, we maintain the existential quantifications in [11] to
keep a compositional approach, closer to that followed in process algebra with
name binding. On the other hand, we restrict terms in atomic formulae to be
pure names, that can only be compared with equality or inequality, unlike the
arbitrary terms over some syntax, as in [11], or terms in a constraint system, as
in CMRS.

Depth boundedness. In the field of process algebra, there are many recent
works that look for subclasses of the π-calculus for which some properties, such
as termination, are decidable [6, 32, 31, 33, 4]. In this paper we will consider
the results in [31] about depth-bounded π-calculus processes.

Depth-boundedness is a semantic restriction on π-calculus processes. Intu-
itively, a process is depth-bounded whenever the interdependence of names is
bounded in any process reachable from it. As a simple example, and assuming
that the reader is familiar with the following π-calculus syntax, if starting from
some process P the processes

νa1.an.(a1〈a2〉 | a2〈a3〉 | · · · | ai〈ai+1〉 | · · · | an−1〈an〉) | Qn

are reachable for every n > 0, then P is a depth-unbounded process. However,
the fact that processes

νa.a1.an.(a〈a1〉 | a〈a2〉 | · · · | a〈ai〉 | · · · | a〈an〉) | Qn

can be reached from P for every n does not allow us to conclude that P is
depth-unbounded, since though an unbounded number of names can appear in

2

reachable processes, those names do not depend one another, as happened in
the previous example.

Meyer proved in [31] that depth-bounded π-calculus processes are WSTS.
In this paper we adapt those results to ν-MSR. More precisely, we will consider
depth-bounded ν-MSR, that is, ν-MSR for which the interdependence of bound
names is bounded in every reachable term. We will prove that this subclass of
ν-MSR is well structured by following the same steps followed in [31]. Unfortu-
nately, we will see that this property itself is undecidable for ν-MSR (and also
for the π-calculus).

Then we will study the complexity of the decision procedures for depth-
bounded ν-MSR, proving that they are all non-primitive recursive, thus rising
the exponential space lower bound given in [31].

Models of concurrency with names. Two of the most well established
models for concurrency are Petri nets and process algebra. The π-calculus is
the paradigmatic example of process algebra with name binding. Names in
the π-calculus can be used to build a dynamic communication topology. Two
approaches to the dynamic generation of names in the field of Petri nets are
ν-PNs [36] and Data Nets [29].

In ν-PNs, tokens are pure names that can move along the places of the net,
be used to restrict the firing of transitions to happen only when some names
match, and be created fresh. ν-PNs are (strictly) Well Structured Transition
Systems (WSTS) [40, 21], but pν-PNs, its polyadic version, in which tokens are
tuples of pure names, are not. Actually, pν-PNs are Turing-complete [37], even
in the binary case.

In Data Nets, tokens are taken from a linearly ordered and dense domain,
and whole-place operations (like transfers or resets) are allowed. However, in
Data Nets (which are also WSTS), fresh name creation has to be simulated
using the linear order, as happens in CMRS. Actually, CMRS and Data Nets
are equivalent up to coverability languages (with coverability as accepting con-
dition), even if the former cannot perform whole-place operations [3].

Though ν-PN have better decidability properties than pν-PN, some works
need to use the model of pν-PN to model features like instance isolation in
architectures with multiple concurrent conversations [13] or transactions in data
bases [28]. We will prove that ν-MSRs are equivalent to pν-PNs. We will see
that this equivalence is a rather strong one (isomorphism between the transitions
systems). Moreover, the subclass of monadic ν-MSRs is equivalent to ν-PNs, so
that coverability, boundedness and termination are decidable for them.

Next, we will see that processes of the π-calculus can be simulated, in a
very natural way, by ν-MSRs. This translation is inspired by the results by
Meyer about structural stationary π-calculus processes, that can be mapped
to P/T nets [32]. As a corollary, depth-bounded π-calculus processes are well
structured, which was already known. Finally, we apply the same techniques
to other formalisms, like MSR [11] and Mobile Ambients [9]. Up to our knowl-
edge, this is the first time that decidability results for the verification of safety
properties of MSR are obtained. In the case of Mobile Ambients (MA), we

3

obtain in particular the decidability of the name convergence problem, which is
undecidable in general, even for the subclass without name restriction and in
which ambients cannot be opened.

The rest of the paper is organized as follows. In Section 2 we introduce some
basic definitions and notations we will use throughout the paper. Section 3 de-
fines ν-MSR. In Section 4 we study depth-boundedness for ν-MSR. In Section 5
the equivalence between ν-MSRs and pν-PNs is proved. Section 6 presents the
encoding of π-calculus terms within ν-MSR. Section 7 encodes other formalisms
within ν-MSR, thus obtaining new decidability results for them. Finally, Sec-
tion 8 presents our conclusions and some directions for future work. This paper
is a revised and extended version of the papers [38, 39].

2. Preliminaries

A quasi order in A is a reflexive and transitive binary relation on A. A
quasi order ≤ is said to be a well-quasi order (wqo) if for every infinite sequence
s0, s1, . . . there are i and j, with i < j, such that si ≤ sj. Equivalently, it is
a wqo if every infinite sequence has an increasing subsequence. Note that the
equality relation is a wqo in any finite set.

Given an arbitrary set A, we will denote by MS(A) the set of finite multisets
of A, that is, the set of mappings m : A → N such that supp(m) = {a ∈ A |
m(a) > 0} (the support of m) is finite. We denote by m1 + m2, m1 ⊆ m2

and m1 − m2 the multiset addition, inclusion, and subtraction, respectively.
Given f : A → B and m ∈ MS(A) then we can define f(m) ∈ MS(B) by
f(m)(b) =

∑
f(a)=b m(a).

Every quasi order ≤ defined in A induces a quasi order ⊑ in MS(A), given
by {a1, . . . , an} ⊑ {b1, . . . , bm} if there is some h : {1, . . . , n} → {1, . . . , m}
injective such that ai ≤ bh(i) for all i ∈ {1, . . . , n}. It is a well known fact that
the multiset order induced by a wqo is also a wqo.

The set T (A) of trees over A is defined by

T ::= a | (a, {T1, . . . , Tn})

where a ranges over A. An order ≤ over A induces the rooted tree embedding [31]
� over T (A), given by a � a′ if a ≤ a′, and (a,A) � (a′,A′) if a ≤ a′ and
A ⊑ A′, where ⊑ is the multiset order induced by �. The mapping height(T) is
defined as height(a) = 0 and height(a, {T1, . . . , Tn}) = 1+ max{height(Ti) | i =
1, . . . , n}. If we denote by T (A)n the set of trees of height less or equal than n,
then (T (A)n,�) is a wqo provided (A,≤) is a wqo [31].

A hypergraph is a tuple G = (V, E, inc), where V is the set of vertices, E is
the set of edges and for each e ∈ E, inc(e) is the set of vertices that incide in e.
There is an arc between v ∈ V and e ∈ E whenever v ∈ inc(e).

A transition system is a tuple (S,→, s0), where S is a (possibly infinite) set of
states, s0 ∈ S is the initial state and →⊆ S ×S. We denote by →∗ the reflexive
and transitive closure of →. The reachability problem in a transition system
consists in deciding for a given state sf whether s0 →∗ sf . The termination

4

problem consists in deciding whether there is an infinite sequence s0 → s1 →
s2 → · · · . The boundedness problem consists in deciding whether the set of
reachable states is finite. For any transition system (S,→, s0) endowed with a
quasi order ≤ we can define the coverability problem, that consists in deciding,
given a state sf , whether there is s ∈ S reachable such that sf ≤ s.

A Well Structured Transition System (WSTS) is a tuple (S,→,≤, s0), where
(S,→, s0) is a transition system and ≤ is a decidable wqo compatible with →,
meaning that s′1 ≥ s1 → s2 implies that there is s′2 ≥ s2 with s′1 → s′2. We will
refer to this property as monotonicity of → with respect to ≤. For WSTS, the
termination problem is decidable [21]. A WSTS is said to be strict if it satisfies
the following strict compatibility condition: s′1 > s1 → s2 implies that there
is s′2 > s2 with s′1 → s′2. For strict WSTS, also the boundedness problem is
decidable [21]. A WSTS satisfies the effective pred-basis property if for every
s ∈ S, the set of minimal elements in {s′ ∈ S | s′ → s′′ ≥ s} (which is always
finite) is computable. For WSTS that satisfy the effective pred-basis property,
also the coverability problem is decidable.

3. ν-MSR

Let us now define ν-MSR. We fix a denumerable set of predicate symbols P ,
a denumerable set Id of names and a denumerable set Var of variables. We use
a, b, c, . . . to range over Id , x, y, . . . to range over Var , and η, η′ . . . to range over
Id ∪ Var .

An atomic formula has the form p(η1, . . . , ηn), where p ∈ P and ηi ∈ Var∪Id
for all i. A ground atomic formula has the form p(a1, . . . , an), where p ∈ P and
ai ∈ Id for all i. We use X, Y, . . . to range over atomic formulae and A, B, . . .
to range over atomic ground formulae. We denote by Var(X) and Id(X) the
set of variables and names appearing in X , respectively. We will write x̃ and ã
to denote finite sequences of variables and names, respectively, so that we will
sometimes write p(x̃) or p(ã). Moreover, we will sometimes use set notation
with these sequences and write, for instance, x ∈ x̃ or x̃1 ∪ x̃2.

Definition 1. A ν-MSR term is given by the following grammar:

M ::= 0 | A | M1 + M2 | νa.M

We denote by M the set of ν-MSR terms, and use M , M ′, M1, . . . to range
over M. We define fn : M → P(Var) as fn(0) = ∅, fn(A) = Id(A), fn(M1 +
M2) = fn(M1) ∪ fn(M2), and fn(νa.M) = fn(M) \ {a}.

Definition 2. A rule t is an expression of the form

t : X1 + . . . + Xn → νã.(Y1 + . . . + Ym)

such that if x ∈ Var(Yj) for some j then x ∈ Var(Xi) for some i. A ν-MSR
is a tuple 〈R, M0〉, where M0 is the initial ν-MSR term and R is a finite set of
rules.

5

Sometimes in the examples, we will use commas instead of the symbol +. For
instance, we will write p(x, y), q(y, y) → νa.q(x, a) instead of p(x, y)+ q(y, y) →
νa.q(x, a). Given a rule t : X1, . . . , Xn → νã.(Y1, . . . , Ym), we will write pre(t) =⋃n

i=1 Var(Xi), post(t) =
⋃m

j=1 Var(Ym), and Var(t) = pre(t) ∪ post(t). With
these notations, every rule t satisfies post(t) ⊆ pre(t).

We will identify ν-MSR terms up to ≡, defined as the least congruence on
M where α-conversion of bound names is allowed, such that (M, +,0) is a
commutative monoid and the three following equations hold:

νa.νb.M ≡ νb.νa.M νa.0 ≡ 0

νa.(M1 + M2) ≡ νa.M1 + M2 if a /∈ fn(M2)

The first rule justifies our notation νã.M . The last rule is usually called
name extrusion when applied from right to left. A substitution for t : X1 +
. . . + Xn → νã.(Y1 + . . . + Ym) is any mapping σ : Var(t) → Id . We write
pret(σ) = σ(X1) + . . . + σ(Xn), where σ(p(η1, . . . , ηn)) = p(a1, . . . , an), with
ai = σ(ηi) if ηi ∈ Var , or ai = ηi if ηi ∈ Id .

In order to define the analogous post t(σ), and to avoid capturing free names,
we consider a sequence of pairwise different names b̃ (of the same length as ã)
such that σ(Var (t)) ∩ b̃ = ∅. Then, we take σ′ = σ ◦ {ã/b̃} and post t(σ) =
νb̃.(σ′(Y1) + . . . + σ′(Ym)), where {ã/b̃} denotes the simultaneous substitution
of each ai ∈ ã by the corresponding bi ∈ b̃. Let us define the transition system
(M,→, M0), where → is the least relation such that:

(t)
σ : Var(t) → Id

pret(σ) → post t(σ)

M1 ≡ M ′
1 → M ′

2 ≡ M2

M1 → M2
(≡)

(+)
M1 → M2

M1 + M → M2 + M

M1 → M2

νa.M1 → νa.M2
(ν)

Rules (+) and (ν) state that transitions can happen inside a sum or inside a
restriction, respectively. Rule (≡) is also standard, and formalizes that we are
rewriting terms modulo ≡. Then we have a rule (t) for each t ∈ R. For instance,
let t : p(x), q(x) → νb.p(b) be a rule in R. Then the rewriting p(a), q(a) →
νb.p(b) can take place by taking σ(x) = a, which satisfies pret(σ) = p(a), q(a)
and post t(σ) = νb.p(b). Consider now the term p(b), q(b). In order to apply
the previous rule, one must necessarily consider the substitution σ given by
σ(x) = b, that does not satisfy σ(Var(t)) ∩ {b} = ∅. Therefore, we need to first
rename b in the right handside of the rule, obtaining (e.g. if we replace b by c)
νc.p(c). We denote by −→6≡ the transition relation obtained as above though
without using the rule (≡).

As in the π-calculus, we can consider several normal forms, that force a
certain rearrangement of bound names.

Definition 3. A term M is in standard normal form if there is a set of names
ã and atomic formulae A1, . . . , An such that M = νã.(A1 + . . . + An).

6

Clearly, every term is equivalent to some term in standard form. To obtain it,
it is enough to apply the extrusion rule (from right to left) as much as necessary,
α-converting the bounded names when needed. The standard form is unique up
to commutativity and associativity of +, α-conversion and commutativity of the
names in ã. Notice that the right handside of rules is always in standard normal
form. Anyhow, we can specify a rule with a right handside not in standard
normal form if needed, just by converting it to an equivalent term in standard
form. Moreover, we can prove the following result, that relates the transition
relation with the standard normal form.

Proposition 1. M1 → M2 iff the following holds:

• Mi ≡ νãi.(A
i
1 + . . . + Ai

ni
+ M) for i = 1, 2, and some M ∈ M without

restrictions,

• there is t : X1
1 + . . . +X1

n1
→ νã.(X2

1 + . . . + X2
n2

) in R, σ substitution for

t and b̃ with σ(Var(t)) ∩ b̃ = ∅ such that σ(X1
j) = A1

j , σ(X2
j){ã/b̃} = A2

j

and ã1 ⊔ b̃ = ã2.

Proof. We prove the if implication by induction on the rules proving M1 →
M2.

• If M1 = pret(σ) and M2 = post t(σ) for some rule t and some substitution
σ for t, then trivially both M1 and M2 are in standard form, and ã1 = ∅
and ã2 = b̃, so that clearly ã1 ⊔ b̃ = ã2.

• Let Mi = M ′ + M ′
i with M ′

1 → M ′
2, so that by the induction hypothesis,

M ′
i ≡ νãi.(A

i
1+. . .+Ai

ni
+M) and ã1⊔b̃ = ã2. We assume fn(M ′)∩ãi = ∅,

or we rename the names in ãi that are free in M , obtaining a term that
is equivalent modulo ≡. Let M ≡ νc̃.M ′′ in standard form. As before,
we can assume that ãi ∩ c̃ = ∅. Then, Mi = M ′

i + M ′ ≡ νãi.(A
i
1 +

. . . + Ai
ni

+ M) + νc̃.M ′′, which by the extrusion rule is equivalent to

νãi, c̃.(A
i
1 + . . . + Ai

ni
+ M + M ′′). Moreover, ã2 ⊔ c̃ = ã1 ⊔ b̃ ⊔ c̃ and we

conclude.

• The cases for (ν) and (≡) are straightforward.

Conversely, A1
1 + . . . + Ai

n1
→ νb̃.(A2

1 + . . . + A2
n2

) holds by rule (t). Rules

(+) and (≡) for the extrusion, tells us that A1
1 + . . . + Ai

n1
+ M → νb̃.(A2

1 +
. . .+A2

n2
+M), and by successively applying rule (ν) for all the names in ã1, we

obtain that νã1.(A
1
1 + . . . + A1

n1
+ M1) → νã2.(A

2
1 + . . . + A2

n2
+ M2). Finally,

again by rule (≡) we can conclude that M1 → M2.

Since the behavior of ν-MSR systems is specified in terms of a congruent
rewriting relation (with respect to all the constructors), modulo the equational
theory defined by ≡, which is compatible with respect to the rewriting relation
(Prop. 1) the translation from a ν-MSR specification to an equivalent rewrite

7

specification is straightforward [30]. In [38] some of the details of their repre-
sentation in the Maude system [12] are given. This representation of ν-MSRs
within Maude allows us to use all the analysis machinery available for it.

Let us now define in our setting the restricted normal form of a term, which
can be seen as the opposite concept to standard form. Intuitively, a term is
in restricted form if the scope of its restrictions is minimal, that is, if every
expression νa.(A1 + . . .+Am) satisfies a ∈ fn(Ai) for all i, so that no extrusion
rule can be applied from left to right.

Definition 4. Let us define ≡̂ as the least congruence on M such that (M, +,0)
is a commutative monoid, and as the least binary relation on M such that:

a /∈ fn(M2)

νa.(M1 + M2) νa.M1 + M2

M1≡̂M ′
1 M ′

2≡̂M2

M1 M2

M1 M2

M1 + M M2 + M

M1 M2

νa.M1 νa.M2

We say M is in restricted form if there is no M ′ with M M ′. We say a term
M in restricted form is a fragment if it cannot be decomposed as M = M1+M2.

Any M in restricted form satisfies M = F1 + . . . + Fn with Fi fragments,
and any fragment is either an atomic formula or a term of the form νa.(F1 +
. . . + Fm), with Fi fragments such that a ∈ fn(Fi), for all i. For instance, M =
νa.νa1.νan.(p(a, a1), . . . , p(a, an)) F = νa.(νa1.p(a, a1), . . . , νan.p(a, an)).
It holds that F is a fragment, as well as each νai.p(a, ai).

Intuitively, within a fragment some bound names are shared. For instance,
if M = F1 + F2, then F1 and F2 share no names in M , and if F = νa.(F1 + F2)
then a is the only name shared by F1 and F2 in F .

The relation is confluent up to ≡̂. Moreover, if M M ′ then M ≡ M ′.
Unlike the standard normal form, the restricted normal form is not compatible
with the transition relation (that is, we do not have the analogous result to
Prop. 1 for the restricted normal form). For instance, for M and F as above,

the rule t : p(x, y1), p(x, y2) → q(x) satisfies M
t

−→6≡ but not F
t

−→6≡. However,
restricted normal forms give more insight about the topology of pure names in
terms. In particular, they are the basis of the proof that depth-bounded ν-MSR
terms yield WSTS.

4. Depth-bounded ν-MSR

We now consider depth-bounded ν-MSR. Intuitively, a ν-MSR is depth-
bounded if names cannot appear linked in an arbitrarily long way. Thus, if
every term of the form

νa1, . . . , νan.(p(a1, a2), p(a2, a3), . . . , p(an−1, an))

can be reached, then the ν-MSR is not depth-bounded. However, reaching
all terms of the form νa1, . . . , νan, νa.(p(a, a1), . . . , p(a, an)) does not allow us

8

p(a, a1) p(a, ai) p(a, an)

a

a1 ai an

· · · · · · · · · · · ·

· · · · · · · · · · · ·

Figure 1: Hypergraph of the fragment F = νa1. . . . νan.νa.(p(a, a1), . . . , p(a, an)), or its equiv-
alent F ′ = νa.(νa1.p(a, a1) + νa2.p(a, a2) + . . . + νan.p(a, an))

p(a1, a2) p(a2, a3) p(a3, a4)a1 a2 a3 a4

Figure 2: Hypergraph of the fragment F = νa1, a2, a3, a4.(p(a1, a2), p(a2, a3), p(a3, a4)), or
its equivalent F ′ = νa2.(νa1.p(a1, a2) + νa3.(p(a2, a3) + νa4.p(a3, a4)))

to conclude that the ν-MSR is depth-unbounded. In order to define depth-
boundedness for ν-MSR, we define a function nestν , that measures the nesting
of restrictions (occurrences of the operator ν) in a term.

Definition 5. We define nestν(M) by structural induction on M :

• nestν(A) = nestν(0) = 0,

• nestν(M1 + M2) = max(nestν(M1),nestν(M2)),

• nestν(νa.M) = 1 + nestν(M).

We take depth(M) = min{nestν(M ′) | M ≡ M ′}. A ν-MSR is k-bounded if
depth(M) ≤ k for any reachable M , and depth-bounded if it is k-bounded for
some k ≥ 0.

As explained in [31], depth measures the interdependence of restricted names.
The fragment F = νa1.νan.νa.(p(a, a1), . . . , p(a, an)), satisfies nestν(F) =
n+1 and is equivalent to F ′ = νa.(νa1.p(a, a1), . . . , νan.p(a, an)), which satisfies
nestν(F ′) = 2. In fact, it can be easily checked that depth(F) = 2. Therefore,
fragments that are equivalent modulo ≡ do not necessarily have the same nest-
ing, because ≡ allows to rearrange the binding operator. However, ≡̂ does not
allow those rearrangements, so that the following holds.

Lemma 1. If F ≡̂G then nestν(F) = nestν(G).

Proof. Obvious.

As in [31], we use the graph-theoretic interpretation of fragments. A frag-
ment can be seen as a hypergraph with its atomic formulae as vertices, and its
names as arcs, that link all the formulae that contain that name.

9

Definition 6. For a term M ≡ νã.(A1 + . . . + Am) we define the hypergraph
G(M) = (V, E, inc), where V = {A1, . . . , Am}, E = ã and for e ∈ E, inc(e) is
the set of atomic formulae in V in which e occurs.

Fragments correspond to connected components. M1 ≡ M2 implies that
G(M1) and G(M2) are isomorphic. For F = νa1 . . . νanνa.(p(a, a1), . . . , p(a, an))
and F ′ = νa.(νa1.p(a, a1), . . . , νan(p(a, an))), since F ≡ F ′ the hypergraphs
obtained for them are isomorphic (see Fig. 1). Another example is shown in
Fig. 2.

A path in a hypergraph is a finite sequence ρ = A1a1A2a2 · · ·anAn+1 with
Ai, Ai+1 ∈ inc(ai) for each i ∈ {1, . . . , n}. The length of ρ is |ρ| = n, and ρ is
simple whenever ai 6= aj for i 6= j. A simple path in the hypergraph in Fig. 1
is for instance

ρ1 = p(a, a1) a1 p(a, a1) a p(a, a2) a2 p(a, a2)

with length 3. Any attempt to extend that simple path results in a path that is
no longer simple (since a and a2 already occur in it). Indeed, it can be checked
that the length of every single path is at most 3. In the case of the hypergraph
in Fig. 2 the longest simple path, with length 4, is

ρ2 = p(a1, a2) a1 p(a1, a2) a2 p(a2, a3) a3 p(a3, a4) a4 p(a3, a4)

In [39] we proved, by following the same steps as in [31], that a ν-MSR is
depth-bounded if and only if the length of the simple paths in every reachable
fragment is bounded. Next we define an order over terms, that will endow
ν-MSR with a well-structure.

Definition 7. We define ⊑F as the least binary relation over fragments such

that A ⊑F A, νa.(
∑n

i=1 Fi) ⊑F νa.(
∑n

i=1 Gi +
∑n′

i=1 G′
i) provided Fi ⊑F Gi for

all i ∈ {1, . . . , n}, and F ⊑F G provided F ≡ F ′ ⊑F G′ ≡ G. We also define
M1 ⊑ M2 if Mi ≡

∑ni

j=1 F i
j , n1 ≤ n2 and F 1

i ⊑F F 2
i for i ∈ {1, . . . , n1}.

The order ⊑ over terms can be seen as the multiset order induced by ⊑F

over fragments. In turn, ⊑F can be intuitively characterized using standard
forms.

Lemma 2. Given two fragments F and G, F ⊑F G holds if and only if
F ≡ νã.(A1 + . . . + Am) and G ≡ νã.(A1 + . . . + Am + M) for some M ∈ M
without restrictions.

Proof. Let F and G such that F ⊑F G. We proceed by induction on the rules
used to derive F ⊑F G. For F = A ⊑F A = G it is trivial. Suppose now that
F = νa.(F1+. . .+Fn) and G = νa.(G1+. . .+Gn+G′

1+. . .+G′
m) with Fi ⊑F Gi.

The induction hypothesis tells us that Fi ≡ νãi.(
∑

Ai
j) and Gi ≡ νãi.(

∑
Ai

j +

Mi). Then, F ≡ νa, ã1, . . . , ãn.(
∑

Ai
j) and G ≡ νa, ã1, . . . , ãn.(

∑
Ai

j +
∑

G′
i +∑

Mi), which satisfy the thesis. Finally, if F ≡ F ′ ⊑F G′ ≡ G the induction

10

a1

a1

an

a

p(a, a1) p(a, ai) p(a, an)· · · · · ·

...

a1 ai an

p(a, a1) p(a, ai) p(a, an)

a

· · · · · · · · · · · ·

· · · · · · · · · · · ·

Figure 3: Trees of the fragments F (left) and F ′ (right) in Fig. 1

a1

a2

a3

a4

p(a1, a2) p(a2, a3) p(a3, a4)

a2

a1 a3

a4p(a1, a2) p(a2, a3)

p(a3, a4)

Figure 4: Trees of the fragments F (left) and F ′ (right) in Fig. 2

hypothesis tells us that F ′ ≡ νã.(A1+. . .+Am) and G′ ≡ νã.(A1+. . .+Am+M)
and because ≡ is transitive, the same holds for F and G.

Conversely, if F ≡ νã.(A1 + . . . + Am) and G ≡ νã.(A1 + . . . + Am + M),
trivially Ai ⊑F Ai, so that νã.(A1 + . . . + Am) ⊑F νã.(A1 + . . . + Am + M) and
we can conclude by rule (≡) that F ⊑F G.

Let us see that depth-bounded ν-MSR are WSTS with respect to that order.
In order to see that the order is a wqo, we map fragments to trees as follows.

Definition 8. Let ∆ be the set of names and atomic formulae. We define T
that maps fragments to trees in T (∆) as follows:

• T (A) = A,

• T (νa.(F1 + . . . + Fn)) = (a, {T (F1), . . . , T (Fn)}).

Figure 3 and Fig. 4 show the trees corresponding to the fragments considered
in Fig. 1 and Fig. 2, respectively. The following lemma is easy to prove.

Lemma 3. nestν(F) = height(T (F))

Proof. Clearly, nestν(A) = 0 = height(A) = height(T (A)). For a fragment
F = νa.(F1 + . . . + Fn), nestν(F) = 1 + max{nestν(Fi) | i = 1, . . . , n}.
By the induction hypothesis, nestν(Fi) = height(T (Fi)). Then, nestν(F) =
1 + max{height(T (Fi)) | i = 1, . . . , n} = height((a, {T (F1), . . . , T (Fn)})) =
height(T (F)).

11

Moreover, the corresponding orders are preserved by T in the following sense:

Proposition 2. If T (F1) � T (F2) then F1 ⊑F F2.

Proof. We proceed by induction on the rules used to derive T (F1) � T (F2). If
T (F1) = A � A = T (F2) then F1 = F2 = A and trivially, F1 ⊑F F2. Otherwise,
T (F1) = (a, {T1, . . . , Tn}) � (a, {T ′

1, . . . , T
′
n′}) = T (F2) and {T1, . . . , Tn} ⊑

{T ′
1, . . . , T

′
n′}, so that we can assume without loss of generality that Ti � T ′

i

for all i ∈ {1, . . . , n}. Then, F1 = νa.(F 1
1 + . . . + F 1

n) with T (F 1
i) = Ti, and

F2 = νa.(F 2
1 + . . . + F 2

n′) with T (F 2
i) = T ′

i . The induction hypothesis tells us
that F 1

i ⊑F F 2
i , which allows us to conclude that F1 ⊑F F2.

We denote by Fn the set of fragments with depth less or equal than n, and
analogously, we define Mn as the set of terms with depth less or equal than n.
Let us consider a depth-bounded ν-MSR, with depth n. Let Idn = {a0, ..., an}
and ∆(n) the set Idn together with all the atomic formulae that can be built
using names in Idn and predicates in the ν-MSR (that is, in its initial term and
in its rules). Notice that ∆(n) is a finite set. We will assume that fragments
do not contain free names (otherwise, we just have to add those free names to
Idn).

Lemma 4. If F ∈ Fn then there is F ′ ≡ F such that T (F ′) ∈ T (∆(n))n.

Proof. Since F ∈ Fn there is F ′′ ≡ F such that height(T (F ′′)) = nestν(F ′′) =
depth(F) ≤ n. The fragment F ′′ may use names not in Idn, but we can α-
convert them. Indeed, let F ′ = F ′′σ0, where each σi is defined recursively:
Aσi = A for A atomic, νa.(F1 + ... + Fm)σi = νai.(F1{a/ai}σi+1 + ... +
Fm{a/ai}σi+1). By induction we can check that 0 ≤ i ≤ n− nestν(G) holds in
every recursive call. In particular, 0 ≤ i ≤ n, so that all the names used are in
Idn, which implies that T (F ′) ∈ T (∆(n))n and we conclude.

Proposition 3. (Fn,⊑F) and (Mn,⊑) are wqos.

Proof. Let (Fi) be an infinite sequence of fragments in Fn. By the previous
lemma, for each i there is F ′

i ≡ Fi such that T (F ′
i) ∈ T (∆(n))n. Since ∆(n)

is finite, the equality is a wqo in it, and therefore so is T (∆(n))n. Then there
are i < j such that T (F ′

i) � T (F ′
j). By Prop. 2, F ′

i ⊑F F ′
j . Finally, because

Fi ≡ F ′
i and Fj ≡ F ′

j we can conclude that Fi ⊑F Fj . (Mn,⊑) is also a wqo
because ⊑F is a wqo and ⊑ is the multiset order induced by ⊑F .

The proof of the previous result makes use of the fact that the order � in
trees is a wqo. Therefore, if a ν-MSR is depth-bounded by n, then the set of
reachable terms is contained in Mn, which is a wqo with its order. In order
to see that they are WSTS, we still have to see that the transition relation is
monotonic with respect the considered order.

Proposition 4. Depth-bounded ν-MSR are strict WSTS.

12

Proof. We have to see that the defined order is strictly monotonic with respect
to the rewriting relation. This fact follows from the compatibility of the transi-
tion relation with respect to the standard normal form (Prop. 1) and Lemma 2.

Since termination and boundedness are decidable for strict WSTS [21, 2],
we obtain the following result as a corollary.

Corollary 1. Boundedness and termination are decidable for the class of depth-
bounded ν-MSR.

In [31], where depth-bounded π-calculus processes are proved to be WSTS,
the decidability of termination for the π-calculus was already discussed. For
boundedness, it is enough to prove that the WSTS is actually strict, as done
above. However, decidability of coverability was not considered. The most
common way to face this problem when WSTS are studied in the literature, is
by performing a backwards analysis, that computes a finite representation of
the set {s ∈ S | s →∗ s′ ≥ sf}, where sf is the state whose coverability we
want to decide, and then checking whether the initial state is in that set. In
order to perform this backwards analysis, the WSTS must satisfy the effective
pred-basis property.

In our case, when the system is k-bounded, we need to consider the set
{M ′ ∈ Mk | M ′ → M ′′ ⊒ M} for any M . If the bound k is known we
can compute that set using standard techniques (notice that in particular it is
possible to decide whether a given M is in Mk). Then the generic backwards
analysis in [2, 21] is feasible and coverability is decidable.

However, knowing a bound for the depth of a ν-MSR is not always possible,
that is, it may be the case that the system is depth-bounded, but we do not
know the particular bound k. In this case, the generic forward algorithms decid-
ing boundedness and termination are still applicable, so that Cor. 1 holds even
if the bound is not known. However, it is no longer possible to compute the set
of predecessors, so that we do not have the effective pred-basis property. In [43]
they solve this problem for the π-calculus by introducing an ADL (Adequate
Domain of Limits) to represent downward closed sets, and performing a forward
analysis deciding coverability. Instead of defining an ADL or any other repre-
sentation for downward closed sets [23, 24], we consider the algorithm proposed
in [25], which does not need a defined ADL nor a known bound for the depth.

Corollary 2. Coverability is decidable for depth-bounded ν-MSR, even if the
bound is not known.

Proof. It is enough to apply the abstract interpretation forward algorithm
in [25] (Algorithm 1). Effectiveness of (2) in the algorithm (Prop. 6 and Cor.
1) is proved assuming the WSTS satisfies the “effective Pred-basis” property.
However, Cor. 1 still holds even if such property is not satisfied, as in our case,
so the algorithm is still correct.

In Section 6 we will prove that π-calculus processes can be directly en-
coded into ν-MSR. Moreover, depth-bounded π-calculus processes correspond

13

to depth-bounded ν-MSR, so that they are WSTS, which was already known
in [31]. The novelty of our results lies in the fact that we can apply Prop. 4
to other formalisms that can be easily encoded within ν-MSR. This is the case
for pν-PN. In particular, as a corollary of the results in the next section, we
can prove that ν-MSR are Turing-complete. Instead, we prove it directly with
an encoding of Counter Machines, which will give us also the undecidability of
depth-boundedness.

A Minsky machine with two counters [34], or Two Counter Machine (TCM)
consists of a finite set of states S = {s0, . . . , sk} and a finite set of instructions
I = Inc ∪ Dec ∪ Zero: Inc(i, s, t) ∈ Inc increases counter ci by one when at
state s, and moves to state t; Dec(i, s, t) ∈ Dec when in state s decreases the
counter ci by one and moves to state t if ci > 0; Zero(i, s, t) moves to state t
when in s and ci = 0. Configurations are of the form 〈s, n1, n2〉, where s ∈ S
and ni is the value of the counter ci. The boundedness problem for TCM is
that of deciding if the values of the counters are bounded in every reachable
configuration, which is undecidable [34].

Proposition 5. ν-MSR are Turing complete and depth-boundedness is unde-
cidable for ν-MSR.

Proof. We simulate TCM by means of ν-MSR. Moreover, we do it in such a
way that we reduce the boundedness problem for TCM to depth-boundedness
in ν-MSR.

We consider 0-ary predicates s0, ..., sk, unary predicates zi, li and binary
predicates ci, for i = 1, 2. We represent a configuration 〈s, n1, n2〉 by means of
the ν-MSR term J〈s, n1, n2〉K

s +

2∑

i=1

νai
0, ..., a

i
ni

.(zi(a
i
0), ci(a

i
0, a

i
1), ..., ci(a

i
ni−1, ani

), li(ani
))

with ai
l 6= ai

r for l 6= r. Instructions can be simulated as rules as follows:

Inc(i, s, t) : s, li(x) → νa.(t, ci(x, a), li(a)),

Dec(i, s, t) : s, ci(x, y), li(y) → t, li(x),

Zero(i, s, t) : s, zi(x), li(x) → t, zi(x), li(x).

This simulation establishes an isomorphism between the reachability graphs,
that is, J K is a bijection between the reachable configurations such that C1 → C2

in the TCM if and only if JC1K → JC2K. Moreover, the depth of J〈s, n1, n2〉K
is max{n1, n2} + 1, so that the TCM is bounded iff its simulation is depth-
bounded, and we conclude.

To conclude this section let us study the complexity of the problems we
have proved to be decidable. In the next section we will prove that ν-MSR
is equivalent to pν-PN, Petri nets in which tokens are tuples of pure names.
Moreover, monadic ν-MSR (in which every predicate has arity at most 1) is

14

equivalent to ν-PN (for which tokens are pure names). This fact allows us to
obtain the following hardness results.2

Proposition 6. Coverability, boundedness and termination are not primitive
recursive for depth-bounded ν-MSR.

Proof. In the first place, notice that a monadic ν-MSR is 1-bounded. Then,
it is enough to consider that those properties are not primitive recursive for
ν-PN [40], which are equivalent to them.

5. ν-MSRs and pν-PNs

Let us now consider a class of Petri nets with name creation. A pν-PN [37]
is a Petri net in which tokens are tuples of pure names. Arcs are labelled by
tuples of variables (or multiset of such tuples, if we allow weights) that specify
how tokens flow from preconditions to postconditions. Variables are taken from
a set Var . Some of the variables in postarcs can be in the set of special variables
Υ ⊂ Var that can only be instantiated to names that do not occur in the current
marking, thus creating fresh names. We use ν, ν′, ν1, . . . to range over Υ. We
take L =

⋃
i>0 Var i, that is, the set of tuples of variables of arbitrary length.

We will sometimes use set notation for tuples, so that we will write, for instance,
x ∈ (x, y). Moreover, we will use an arbitrary set Id of names.

Definition 9. A pν-PN is a tuple N = (P, T, F), where P and T are finite
disjoint sets of elements called places and transitions, respectively,

F : (P × T) ∪ (T × P) → MS(L)

is such that for every t ∈ T , pre(t) ∩ Υ = ∅, and post(t) \ Υ ⊆ pre(t), where
pre(t) =

⋃
p∈P {x ∈ Var | x ∈ ℓ ∈ F (p, t)}, post(t) =

⋃
p∈P {x ∈ Var | x ∈ ℓ ∈

F (t, p)} and Var(t) = pre(t) ∪ post(t).

Let us denote by T the set of tuples of names of arbitrary length, that is,
T =

⋃
i>0 Id i. The tokens of a pν-PN are taken from T . We will use ϕ, ϕ′,

ϕ1, . . . to range over tokens.

Definition 10. A marking of a pν-PN N = (P, T, F) is any M : P → MS(T).

We define Id(M) =
⋃

p∈P {a ∈ Id | a ∈ ϕ ∈ M(p)} ⊂ Id , the set of all the
names appearing in some token in some place, according to the marking M .

Transitions are fired with respect to a mode, that chooses which tokens
are taken from preconditions and which are put in postconditions. Given a
transition t of a net N , a mode of t is a mapping σ : Var(t) → Id , that
instantiates each variable involved in the firing of t to an identifier. We will
use σ, σ′, σ1 . . . to range over modes. We extend modes to tuples of variables by
taking σ((x1, . . . , xn)) = (σ(x1), . . . , σ(xn)).

2Though we will not prove that equivalence until the next section, we prefer to “look
ahead” and consider here this hardness result.

15

p1

p2

q1

q2

(a, b) k

a

bc l

(x, y) x

y ν

→
p1

p2

q1

q2

k a

a

c d

(d fresh)

(x, y) x

y ν

Figure 5: A simple pν-PN

Definition 11. Let N be a pν-PN, M a marking of N , t a transition of N
and σ a mode of t. We say t is enabled with mode σ if σ(ν) /∈ Id(M) for all
ν ∈ Var(t) ∩ Υ, and σ(F (p, t)) ⊆ M(p) for all p ∈ P . The reached state of N
after the firing of t with mode σ is the marking M ′, given by

M ′(p) = (M(p) − σ(F (p, t))) + σ(F (t, p)) ∀p ∈ P

We will write M
t(σ)
−→ M ′ if M ′ is reached from M when t is fired with

mode σ. We also define the relations → and →∗, as usual. Fig. 5 depicts a
simple example of a pν-PN and the firing of its only transition. Notice that the
transition can be fired because the second component of the pair (a, b) in p1

matches one of the names in p2, as demanded by the labels in the arcs.
In order to capture the intuition that the names in Id are pure, we work

modulo ≡α, which allows consistent renaming of names in markings. Accord-
ingly, the order ⊑α that induces coverability for pν-PNs is defined as follows:
M ⊑α M ′ if there is an injection ι : Id(M) → Id(M ′) such that for every place
p ∈ P , ι(M(p)) ⊆ M ′(p), where ι((a1, . . . , an)) = (ι(a1), . . . , ι(an)).

Proposition 7. For any pν-PN N we can compute a ν-MSR JNK such that N
and JNK are isomorphic (as transition systems).

Proof. Let N = (P, T, F) with initial marking M0 be a pν-PN. For every
t ∈ T , if ν̃ is a sequence formed by the special variables in postarcs of t, let us
take any sequence (of the same length) of arbitrary names ã, and let us define
the rule

JtK :
∑

p∈P

∑

x̃∈F (p,t)

p(x̃) → νã.
∑

p∈P

∑

x̃∈F (t,p)

p(x̃{ã/ν̃})

For every marking M with b̃ = Id(M), we define JMK as the ν-MSR term
νb̃.(

∑
p∈P

∑
ãi∈M(p) p(ãi)). Then, we define R = {JtK | t ∈ T } and JNK =

〈R, JM0K〉. For two markings M1 and M2 with M1 → M2, it holds that JM1K →
JM2K. On the other hand, for two ν-MSR terms M1 and M2 such that M1 → M2,
Prop. 1 tells us that Mi ≡ νãi(A

i
1 + . . . + Ai

ni
+ M), so that Mi is equivalent

to a JM ′
iK for some markings M ′

i and M ′
2. Moreover, M ′

1 → M ′
2 and the thesis

follows.

For instance, consider the pν-PN in Fig. 5. The previous construction
yields the ν-MSR given by the rule t : p1(x, y), p2(y) → νa.(q1(x), q2(a)). The

16

initial marking is represented by νa, b.(p1(a, b), p2(b), p2(c)), which evolves to
νa, c, d.(q1(a), p2(c), q2(d)).

Therefore, pν-PNs can be just thought of as a graphical representation of
ν-MSRs. However, since pν-PNs lack a name binding operator, intuitively they
always work with terms in their standard normal form. Indeed, for a marking
M , the term JMK is in standard form. Let us now prove the converse result.

Proposition 8. For any ν-MSR S we can compute a pν-PN S∗ such that S
and S∗ are isomorphic (as transition systems).

Proof. Let S = 〈R, M0〉 be a ν-MSR using predicates in P ′ (finite). We define
G(S) = (P ′,R, F, JM0K) as follows. Let t :

∑n
i=1 pi(x̃i) → νã.(

∑m
i=1 qi(ηi)) be

a rule in R. We assume for the sake of readability that no name appears in
the tuples of the left handside of the rule, and that the only names appearing
in the right handside are those in ã. Let ν̃ be a sequence (of the same length
of ã) of pairwise different special variables. We define F (p, t) =

∑
p=pi

x̃i and

F (t, p) =
∑

p=qi

ηi{ν̃/ã}. For a ν-MSR term M ≡ νã.(
∑n

i=1 pi(ãi)) we define M∗

as the marking given by M∗(p) = {ãi | p = pi}. As in the previous result, for
two terms M1 and M2, thanks to Prop. 1, it holds that M∗

1 → M∗
2 . Moreover,

for two markings M1 and M2 such that M1 → M2, Mi = M ′
i
∗

for some terms
M ′

1 and M ′
2, with M ′

1 → M ′
2.

We have seen that ν-MSR are Turing-complete (and therefore, so are pν-PN,
though this fact was already proved in [37]). It is easy to devise some decidable
subclasses of ν-MSR. For instance, if a ν-MSR S is monadic, that is, if atomic
formulae have the form p(η), then the pν-PN S∗ obtained in Prop. 8 is a ν-
PN [36], that is, a Petri net in which tokens are pure names. In [40] we proved
that coverability, termination and boundedness are decidable for them, so that
they are also decidable for monadic ν-MSRs. Moreover, if we consider a ν-MSR
with only binary predicates and so that for every formula p(a, b) there are only
finitely many bi such that p(a, bi) appears in any reachable term, then S∗ is
a restricted binary pν-PN [37], for which these properties are also decidable.
We claim that these results could have been obtained directly for the restricted
classes of ν-MSRs, so that the corresponding results for Petri nets could have
been obtained as a corollary instead. Finally, let us remark that in the case
of ordinary P/T nets (that are a subclass of ν-PNs, in which only one element
of Id is used) our translation yields a ν-MSR that coincides with the rewriting
logic specification obtained in [42].

Let us now use the subclass of depth-bounded ν-MSR to obtain a new de-
cidable subclasses of pν-PN. We say a pν-PN is k-bounded if for any reachable
marking M and for any sequence A1, . . . , An of tokens in M such that for ev-
ery i, there is a different name ai in Ai and Ai+1, then necessarily n ≤ k. A
pν-PN is depth-bounded if it is k-bounded for some k. Depth-bounded ν-PN
correspond to depth-bounded ν-MSR.

Corollary 3. Depth-bounded pν-PN are strict WSTS.

17

Therefore, boundedness and termination are decidable for the class of depth-
bounded pν-PN, as well as coverability. However, in the case of coverability one
needs to be a bit more careful. Indeed, since coverability is decidable for depth-
bounded ν-MSR, so is coverability for pν-PN when considering the order induced
by the order ⊑ between ν-MSR terms. More precisely, if for two markings M1

and M2 we define M1 ≪ M2 ⇔ JM1K ⊑ JM2K, then coverability induced by
≪ (that we can call ≪-coverability) is decidable directly from Prop. 7 and
Corollary 3.

However, the natural order ⊑α in pν-PN is slightly different from ≪, so that
coverability is different from ≪-coverability. Intuitively, M1 ⊑α M2 holds when
M2 has more tokens than M1 (possibly renaming some names).

Example 1. Let M1 be a marking with only two tokens a and b in a place p.
Let M2 be the result of adding a token (a, b) in q. Then it holds that M1 ⊑α M2

(without need to rename), but M1 6≪ M2 Indeed, JM1K = νa, b.(p(a), p(b)) ≡
νa.p(a)+νb.p(b) ≡ F+F with F = νa.p(a), and JM2K = νa, b.(p(a), p(b), q(a, b)) ≡
G with G = νa.(p(a), νb.(p(b), q(a, b)). Since JM1K is composed by two frag-
ments but JM2K is composed by only one fragment, we have JM1K 6⊑ JM2K and,
therefore, M1 6≪ M2. Therefore, if we want to check that M1 can be ≪-covered,
reaching M2 would not provide us a positive answer.

Fortunately, we still have decidability for coverability with our natural order.

Proposition 9. Termination, boundedness and coverability are decidable for
depth-bounded pν-PN.

Proof. Termination and boundedness follow immediately from Cor. 3. From
that result we also obtain decidability of ≪-coverability. Let us see that cov-
erability of a marking M can be decided by solving a finite number of ≪-
coverability problems. Let JMK ≡ F1 + ... + Fn and each Fi has a different
name ai in the topmost restriction. Let M ′ such that νã.M ′ is equivalent to
F1 + ... + Fn in standard form, without renaming the ais. We consider a new
0-ary predicate ok and for each 1 ≤ m ≤ n we consider a new predicate linkm of
arity m. Intuitively, we will add an atomic formula linkm(a1, . . . , am) in order
to merge some fragments Fi1 , ..., Fim

into a single fragment. Notice that we will
only merge up to n fragments (otherwise, if we could merge arbitrarily many
fragments, the resulting ν-MSR could no longer be depth-bounded).

Let I = (Ii)
l
i=1 be a partition of {1, ..., n}, that is, Ii 6= ∅ for all i,

⋃l

i=1 Ii =
{1, ..., n} and Ii ∩ Ij = ∅ for each i 6= j. Assuming Ii = {ji

1, ..., j
i
ni
}, so that

|Ii| = ni, we consider the following new rule ok, M ′ → M ′, part(I), where
part(I) = linkn1

(ãi), ..., linknl
(ãl) and ãi = (aji

1

, ..., aji
ni

). Then, the marking

M can be covered from M0 in the pν-PN N iff there is some partition I such
that the ν-MSR term M ′, part(I) can be covered from JM0K, ok in the ν-MSR
JNK.

In Example 1, the construction would yield two new rules, one for the par-
tition I1 = {I} with I = {1, 2}, and another one for the partition I2 = {I1, I2}

18

with I1 = {1} and I2 = {2}. The rule for I1 is

ok, p(a), p(b) → p(a), p(b), link2(a, b)

and the rule for I2 is

ok, p(a), p(b) → p(a), p(b), link1(a), link2(b)

If we reached M2 in the pν-PN, then we can reach the ν-MSR term

ok, νa, b.(p(a), p(b), q(a, b))

that can evolve with the first of the new rules to

νa, b.(p(a), p(b), q(a, b), link2(a, b))

which is greater than νa, b.(p(a), p(b), q(a, b)), while JM2K is not.

6. ν-MSRs and the π-calculus

Let us see that ν-MSRs can simulate any π-calculus process in a simple
way. We use the monadic version of the π-calculus used in [32, 31, 41], with
parameterized recursion. The prefixes of the π-calculus are defined by π ::=
x〈y〉 p x(y) p τ . In order to define parameterized recursive processes we use
process identifiers K, K ′.... The set of the π-calculus processes is defined by

P ::=

n∑

i=1

πi.Pi p P1 | P2 p νa.P p K⌊ã⌋

The empty sum (with n = 0) is denoted as 0. As usual, we identify processes
up to ≡, which is the least congruence that allows α-conversion of bound names,
such that + and | are commutative and associative with 0 as identity, and the
following equations hold: νa.0 ≡ 0, νa.νb.P ≡ νb.νa.P and νa.(P | Q) ≡ νa.P |
Q, if a /∈ fn(Q), where fn(P) is the set of names that occur free in P . If a name
in P is not free then it is bound. As usual, we omit pending 0 in the examples.
The reaction relation is defined by the following rules:

τ.P + M → P x(y).P + M | x〈z〉.Q + N → P{z/y} | Q

K⌊ã⌋ → P{ã/x̃}, if K(x̃) := P

P → P ′

P | Q → P ′ | Q

P → P ′

νa.P → νa.P ′

P ≡ Q → Q′ ≡ P ′

P → P ′

We will use the notion of derivatives of a process introduced in [32]. For
a process P with recursive definitions Ki(x̃i) := Pi for i = 1, . . . , n, we de-
fine derivatives(P) = der(P) ∪

⋃n

i=1 der(Pi), where der(0) = ∅, der(K⌊ã⌋) =
{K⌊ã⌋}, der (

∑n

i=1 πi.Pi) = {
∑n

i=1 πi.Pi} ∪
⋃n

i=1 der (Pi) for n > 0, der (P1 |
P2) = der (P1) ∪ der (P2), and der (νa.P) = der (P).

19

The set of derivatives of a process is always finite, and it essentially corre-
sponds to the set of its sequential subprocesses, but disregarding name restric-
tion. As proved in [32], every reachable process can be built up by composing
derivatives with its free names renamed.

Proposition 10. [32, Proposition 3] Let P be a π-calculus process. Every Q
reachable from P is structurally congruent to νã.(Q1σ1 | · · · | Qnσn), where
Qi ∈ derivatives(P) and σi : fn(Qi) → fn(P) ∪ ã.

We will heavily rely on this result for our simulation of π-calculus processes
by means of ν-MSRs. More precisely, we will consider the finite set of derivatives
as predicates. If a derivative p has x̃ as free names, then we will write p(ã) to
represent the derivative p{x̃/ã}.

Definition 12. Given a process P0, we define JP K ∈ M for every P reachable
from P0 recursively as follows:

• J0K = 0

• JP1 | P2K = JP1K + JP2K

• Jνn.P K = νn.JP K

• JD(ã)K = D(ã) if D ∈ derivatives(P0).

Lemma 5. If P ≡ Q then JP K ≡ JQK.

Proof. It is easily proved by induction on the rules used to derive P ≡ Q,
considering that every rule for ≡ in the π-calculus is mimicked by a rule for ≡
in ν-MSR.

Let us now define the set of rules that simulate the behavior of a process.

Definition 13. Given a process P0 we define the ν-MSR 〈R, JP0K〉, where for
all D, D1 and D2 in derivatives(P0), R contains:

• D(x̃) → JP K if D(x̃) ≡ τ.P + M , or D(x̃) = K(x̃) with K⌊x̃⌋ := P ,

• D1(x̃), D2(ỹ) → JP{y/y′}K, JQK if D1(x̃) ≡ x(y).P + M and D2(ỹ) ≡
x〈y′〉.Q + N .

Notice that if JP K is not in standard normal form, we can always convert it to
an equivalent term in standard form.

Proposition 11. Let P0 be a π-calculus process. Then P0 and JP0K have iso-
morphic transition systems.

20

(a, b)p1 a

p2

ap3

p

p4

p p5t1

t2

t3

t4

t5

x

(x, y)

(x, y)

x

x

y

(x, y)

y

(x, y)

(x, y)

x

(x, y)

(y, x)

(x, y)

Figure 6: pν-PN simulating the process in Example 2

Proof. Let us see that if P1 is a reachable process and P1 → P2 then JP1K →
JP2K. We prove it by induction on the rules used to derive P1 → P2. If P1 =
K⌊ã⌋ and P2 = P{x̃/ã} with K(x̃) ::= P then there is a derivative D such that
JP1K = D(ã). By construction, we have a rule D(x̃) → JP K, that can be applied
for JP1K = D(ã), producing JP2K.

Let us now consider the case in which P1 = x(y).P ′
1 + M | x〈z〉.P ′

2 + N
and P2 = P ′

1{y/z} | P ′
2. Then there are derivatives D1 and D2 such that P1 =

D1{x̃1/ã1} | D2{x̃2/ã2}. By construction, there is a rule D1(x̃1), D2(x̃2) →
JP ′

1K, JP
′
2K, that can be instantiated for JP1K = D1(ã1), D2(ã2), yielding the

term JP2K.
The rules for parallel composition and restriction are easy to check because

they correspond to rules (+) and (ν), respectively. The rule for ≡ follows from
the previous lemma and rule (≡).

The converse implication is proved analogously by induction on the rules
used to derive JP1K → JP2K. Moreover, any term reachable from JP0K is of the
form JP K for some process P , which concludes the proof.

Example 2. Let us consider P = νb.a〈b〉.b(x) | a(y).K⌊a, y⌋, where K(x, y) :=
y〈x〉. The set of derivatives of P (renaming its free names for clarity) is
{p1, p2, p3, p4, p5}, where p1 = x〈y〉.y(z), p2 = x(y), p3 = x(y).K⌊x, y⌋, p4 =
K⌊x, y⌋, and p5 = x〈y〉. The ν-MSR term corresponding to P is JP K =
νb.p1(a, b), p3(a).

These derivatives give rise to the following rules:

t1 : p4(x, y) → p5(y, x)

t2 : p1(x, y), p2(x) → p2(y)

t3 : p1(x, y), p3(x) → p2(y), p4(x, y)

t4 : p2(x), p5(x, y) → 0

t5 : p3(x), p5(x, y) → p4(x, y)

In turn, according to Prop. 8, we can write these rules as a pν-PN, which is
depicted in Fig. 6. Its initial marking corresponds to the term JP K, with a token

21

a

p1

a

p2

a

q1

p

q2

t1 t2
x (x, ν) x

ν

(ν, x)

Figure 7: pν-PNs simulating the processes in Example 3

(a, b) in p1 and a token a in p3. Actually, the rules (and the net) obtained are
the same for any process with derivatives in p1, . . . , p5. Indeed, starting from the
process P , one can check that the derivatives p1 and p2, or p3 and p5, will never
be in parallel. Our construction is safe, so that it does consider the reaction
rules t2 and t5, though they will never be enabled. Thus, any process whose set
of derivatives coincides with that of P , is simulated by the same net, though
with a different initial marking. Finally, notice that the resulting net does not
have any arc labelled with any special variable, so that the names appearing
in any reachable markings are taken from the finite set of names in the initial
markings. In this situation, the net can be flattened to an equivalent P/T net.

Example 3. Let us consider the processes P1 = νa.L⌊a⌋ and P2 = νa.K⌊a⌋,
with L(x) := νb.(x〈b〉 | L⌊x⌋) and K(x) := νa.(a〈x〉 | K⌊a⌋). We have
derivatives(P1) = {L⌊x⌋, y〈z〉} and derivatives(P2) = {K⌊x⌋, y〈z〉}. Let us take
p1(x) = L⌊x⌋ and p2(y, z) = y〈z〉 for P1 and q1(x) = K⌊x⌋ and q2(y, z) = y〈z〉
for P2. The only rules obtained are

p1(x) → νb.(p1(x), p2(x, b))

for P1 and
q1(x) → νa.(q1(a), q2(a, x))

for P2. The corresponding ν-MSR gives rise to two pν-PNs, which are shown
in Fig. 7. Since each process has only two derivatives, the corresponding nets
have two places, and since they can only react in one way, only one transition
is produced for each.

Finally, if nestν(P) is as defined in [31], we have nestν(P) = nestν(JP K).
Then, thanks to the previous results, and as a corollary of Prop. 4 we can
obtain the following corollary.

Corollary 4. Depth-bounded π-calculus processes are strict WSTS. Therefore,
coverability, termination and boundedness are decidable for depth-bounded π-
calculus processes.

As already mentioned, the non-strict well-structuredness was already ob-
tained in [31] for depth-bounded π-calculus processes, so that decidability of
termination was proved. Now we add for depth-bounded π-calculus processes
the decidability of boundedness and coverability. In particular, we can specify
the control reachability problem in the π-calculus [15] in terms of coverability.
Given a process P and a derivative D ∈ derivatives(P), the control reachability

22

problem is that of deciding whether P →∗ νã.(D(b̃) | Q).3 In [15] a sound but
possibly non-terminating procedure deciding control reachability is given for the
asynchronous choice-free π-calculus. Here we have seen that it is decidable for
depth-bounded processes, even in the synchronous case with choice. Indeed, it
is enough to check whether the term JDK can be covered from JP K.

Finally, the complexity of the decision procedures is not discussed in [31].
In [43] the authors argue that since depth-bounded π-calculus processes sub-
sume Petri Nets, then we have an exponential space lower bound for cover-
ability [35], and state that the exact complexity for coverability is open. Since
depth-bounded π-calculus processes subsume not only Petri nets, but also ν-PN,
we can conclude as follows.

Corollary 5. Termination, boundedness and coverability are not primitive re-
cursive for depth-bounded π-calculus processes.

7. Applications to other formalisms

We have seen how the results in ν-MSR can be applied to other concurrent
formalisms with name binding, namely the π-calculus and pν-PN. The same
technique can be applied to other models for concurrency. As done for the π-
calculus, we could translate spi-calculus processes [1] into ν-MSR, thus bringing
together two different approaches for the specification and analysis of security
protocols, the spi-calculus and MSR. This translation would be completely anal-
ogous to the one followed for the π-calculus, so that we will not do it here.

Now we show it for other models for concurrency: MSR [11], that “extends”
ν-MSR with terms over an arbitrary signature, and Mobile Ambients [9].

7.1. ν-MSR and MSR

Now we consider the meta-notation for specification of security protocols
MSR. We are interested in translating it into ν-MSR in order to apply our
techniques to MSR. As we defined previously, in ν-MSR an atomic formula is of
the form p(η1, . . . , ηn), where p is a predicate symbol and for all i ∈ {1, . . . , n},
ηi is either a variable or a name. The atomic formulae of ν-MSR correspond
to facts p(t1, . . . , tn) of MSR, in which the predicates are not applied to names,
but to terms. The set of terms in MSR is defined as the free algebra over a
signature of symbols of a given arity. The rules are of the form F1, . . . , Fn →
∃a1, . . . , ai(G1, . . . , Gj), where F1, . . . , Fn, G1, . . . , Gn are facts and a1, . . . , an

are new names. Intuitively, a state S can evolve to another state S′ by applying
this rule if S contains the facts F1, . . . , Fn, and S′ is obtained from S by removing
F1, . . . , Fn and adding G1, . . . , Gn where a1, . . . , an are names.

Let us show that ν-MSRs can simulate any MSR. For that purpose, we define
two functions which translate MSR terms and facts, respectively, into ν-MSR
terms. Essentially, we have to represent the trees which define the terms of an

3This is a slightly different, yet equivalent, definition to the one used in [15].

23

MSR. For that purpose we identify each subterm of a term with a pure name
which will be in the set of parameters of the term and the subterm.

Definition 14. Given an MSR term t = f(t1 . . . tn) and a name a /∈ fn(t), we
define the ν-MSR term JtKa as

νã.(f(α1, . . . , αn, a) +
∑

i∈U

JtiK
ai)

where I = {i ∈ 1, . . . , n | ti ∈ Id ∪ V ar}, U = {1, . . . , n} − I, ai ∈ Id \ fn(ti) is
a different name for each i ∈ U , ã is the sequence formed by these ai, αi = ti
for all i ∈ I and αi = ai for all i ∈ U .

Intuitively, the parameter a denotes the name of the ν-MSR term represent-
ing the MSR term t we are considering. Therefore, we can consider each ai

as the name of the corresponding subterm of t. Now we define the translation
function for MSR facts analogously.

Definition 15. Given an MSR formula F , we define the ν-MSR term JF K in-
ductively as follows:

• If F = p(t1, . . . , tn) is an MSR fact and I = {i ∈ 1, . . . , n | ti ∈ Id ∪ V ar},
U = {1, . . . , n}− I, for each i ∈ U , ai ∈ Id\ fn(ti) is a different name and
ã is the sequence formed by these ai, then

JF K = νã.(p(α1, . . . , αn) +
∑

i∈U

JtiK
ai)

where αi = ti for all i ∈ I and αi = ai for all i ∈ U .

• JF1 + F2K = JF1K + JF2K,

• Jνa.F K = νa.JF K.

In order to simplify the notation, in the following examples we usually consider
the standard normal form of the translated terms and facts.

Example 4. Consider the fact p(f(b, g(c)), g(b)). The the corresponding ν-
MSR term Jp(f(b, g(c)), g(b))K is νa1a2a3(p(a1, a2) + f(b, a3, a1) + g(c, a3) +
g(b, a2)).

Finally, we translate rules. Suppose that p(t1, . . . , tn) is a MSR-term, and
Jp(t1, . . . , tn)K ≡ νã.M , in standard form (so that M has no restriction). Then
we will call N(p(t1, . . . , tn)) to M . We define the translation function for rules
as follows:

Definition 16. Consider an MSR rule R : F1, . . . , Fm → ∃a1 . . . ∃ak.G1, . . . , Gn.
We define JRK as the ν-MSR rule

N(F1) + . . . + N(Fm) → νa1 . . . ak.(JG1K + . . . + JGnK)

24

Example 5. Let us consider the rule q(g(x)) → ∃y p(f(x, g(y)), g(x)). The cor-
responding ν-MSR rule is q(a1)+ g(x, a1) → νa2a3a4y(p(a2, a3)+ f(x, a4, a2)+
g(y, a4) + g(x, a3)).

In this translation we may create garbage when a rule R, such that a variable
x is in the terms of its preconditions and does not appear in the terms of the
postconditions, is translated and applied by instantiating x to a term t which has
some subterms. That is because, in this case, these subterms are not consumed
but are not accessible from any fact. Therefore, they cannot be used again by a
rule, and therefore remain as garbage. Let us illustrate this creation of garbage
with an example:

Example 6. Consider the MSR rule p(f(x, y), x) → ∃zp(g(z), x). The cor-
responding ν-MSR rule would be p(a1, x) + f(x, y, a1) → νz, a2(p(a2, x) +
g(z, a2)). Now, consider the MSR state p(f(a, g(b)), a). Its translation is the
term νa1, a2(p(a1, a) + f(a, a2, a1) + g(b, a2)), which can evolve using the pre-
vious rule to νa2, z, a3(g(b, a2) + p(a3, a) + g(z, a3)). The term g(b, a2) remains
unreachable from any other term.

Garbage does not affect depth-boundedness because when it is created, it
can not grow anymore, and remains inaccessible. Anyhow, we can remove the
garbage when created. In order to do that, we can add a new term dispose(x)
to the translated rules when x is as explained above and add new rules like
dispose(x) + f(y1, . . . , yn, x) → dispose(y1) + . . . + dispose(yn).

As we defined depth-boundedness for ν-MSR, obtaining interesting results
for depth-bounded ν-MSRs, we are interested in having an analogous concept
in MSR, that is, having a set of conditions in MSR that ensure that the cor-
responding ν-MSR is depth-bounded. Given an MSR, the names of the states
of its translation are either names in the MSR term or names representing sub-
terms. Therefore, the set of restricted names causing the translation of an MSR
to be depth-unbounded, is formed by an infinite amount of restrictions applied
to names of one of these types (or both). That is why the translation of an MSR
is depth-unbounded if the MSR satisfies at least one of the following conditions:

• We consider the height of a term t of an MSR to be 0 if t ∈ Id and
1 + max {height(ti) | i = 1, . . . , n} if t = f(t1, . . . , tn). Then if the depth
of the terms of the reachable states of an MSR is unbounded, its translation
is depth-unbounded.

• Given a state S of an MSR, we define the hypergraph G(S) in a similar
way as we defined the graph of a ν-MSR term: We consider the facts of S
as vertices, and an arc from one node p to another node q if there is a ∈ Id
such that a belongs to both facts which represent p and q. Then, if there
is not a bound for the length of the simple paths in any hypergraph built
from the graphs of the reachable states of this MSR, then its translation
is depth-unbounded.

25

Processes

P, Q::= processes
(νn)P restriction
0 inactivity
P | Q composition
!P replication
n[P] ambient
π.P capability action

Actions

π::= capabilities
in n can enter in n
out n can exit n
open n can open n

Figure 8: Syntax of Mobile Ambients

The second condition is the same as for ν-MSR. Let us illustrate the first
one with an example:

Example 7. Consider an MSR with the rule p(x) → p(f(x)). Then, if the ini-
tial state is {p(a)}, we could reach all states of the form {p(f(f(. . . f(a) . . .)))}.
Therefore, the depth of the facts of the reachable states is unbounded, so the
MSR is depth-unbounded. If we consider now the corresponding ν-MSR, the
only rule is p(x) → νb(p(b)+ f(x, b)) and the initial state is p(a). Therefore, we
can reach every state of the form p(b1) + f(b2, b1)+ . . . + f(a, bn), for all n ∈ N,
so the ν-MSR is depth-unbounded.

Then we can use our general result to depth-bounded MSR systems.

Proposition 12. Coverability, termination and boundedness are decidable for
depth-bounded MSR systems.

7.2. ν-MSR and Mobile Ambients

Now we see how ν-MSR can be used to obtain decidable subclasses of Mobile
Ambients (MA), a Turing-complete formalism for the specification of concurrent
executing in a dynamical hierarchical topology [9]. Its syntax is defined in Fig. 8.
The ambient operator is responsible for the creation of the tree topology of
processes. The semantics is given by a structural congruence ≡, defined to be
the least congruence (for all operators) for which | is commutative, associative,
has 0 as identity and satisfies the equations in Fig. 9. Transitions can happen
inside restrictions, ambients and parallel compositions, and are given by the
axioms and rules in Fig. 9

26

Structural congruence

(νn)(νm)P ≡ (νm)(νn)P (Res)
(νn)(P | Q) ≡ P | (νn)Q if n /∈ fn(P) (Par)
(νn)(m[P]) ≡ m[(νn)P] if n 6= m (Amb)
(νn)0 ≡ 0 (ZeroRes)
!0 ≡ 0 (ZeroRepl)

Reduction

n[in m.P | Q] | m[R] → m[n[P | Q] | R] (In)
m[n[out m.P | Q] | R] → n[P | Q] | m[R] (Out)
open n.P | n[Q] → P | Q (Open)
!P → P |!P (Spawn)
P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ (≡)

Figure 9: Operational Semantics of Mobile Ambients

Many papers investigate decidable subclasses of MA [7, 8, 5, 17, 18]. More
precisely, these papers investigate subclasses of MA for which reachability is
decidable. In [5] the authors drop name restriction and the open capability
and consider the so called weak semantics of MA (the one we consider here), as
opposed to the strong semantics in which we also have the rule !P | P →!P . The
paper [7] considers the strong semantics, provided every occurrence of replication
is guarded by a prefix, and prove that reachability is still decidable. In [17] the
authors study different dialects of MA within the common framework of the Tree
Update Calculus (TUC), and in [18] extend their work to deal also with name
restriction, proving that MA with name restriction, without the open capability
and with the weak semantics still has decidable reachability.

Here we will extend these results by considering name restriction, the open
capability and the strong semantics (actually, for coverability it is indifferent
whether we use strong or weak semantics).

Let us now see how we encode MA inside ν-MSR. We will avoid using yet
another intermediate formalism such as TUC, though we will use some ideas
in [17, 18]. However, in those papers the translation from MA to TUC is done
for a fragment of MA without restriction in the first case, or one in which only
finitely-many names must be considered, in the second case.

For any MA process P we define the set of (sequential) processes Der(P)
by structural induction of P : Der(0) = {0}, Der(n[P]) = Der(P), Der(π.P) =
{π.P} ∪ Der(P), Der(νn.P) = Der(P), Der(P | Q) = Der(P) ∪ Der(Q),
and Der(!P) = {!P} ∪ Der(P). From the set of derivatives of a process we
can build every process that can be reached from it. More precisely, if Seq

27

is a set of (sequential) processes we define the set of processes P(Seq) as the
least set containing all renamings of processes in Seq, closed under the ambient
operator, parallel composition and name restriction, analogously as in Prop. 10
or as in [17]. Then it holds that if P →∗ Q then Q ∈ P(Der(P)).

Let us now assume that P0 is the initial process. We use each D ∈ Der(P0)
with n free variables as a predicate with arity n + 1, and we will write D(x̃)y

instead of D(x̃, y) to highlight the last parameter. Moreover, we use a 3-ary
predicate amb(x, y, z), meaning that y is an ambient with name x, inside ambient
z. Then we can define the ν-MSR term JP K for any MA process P inductively
as follows.

• J0Kη = 0

• JD(η̃)Kη = D(η̃)η

• JP1 | P2K
η = JP1K

η, JP2K
η

• Jνn.P Kη = νn.JP Kη

• Jn[P]Kη = νa(amb(n, a, η), JP Ka)

Now let us define ν-MSR rules that encode the transition relation of MA.
We will use a 0-ary predicate ok and a binary predicate moveup.

[Spawn] : ok, !P (x̃)x → ok, !P (x̃)x, JP (x̃)Kx

[In] : ok, amb(x, y, z), (in t.P)y, amb(t, u, z) → ok, amb(x, y, u), JP Ky

[Out] : ok, amb(x, y, z), amb(t, u, y), (out x.P)u → ok, amb(t, u, z), JP Ku

[Open] : ok, (open x.P)y, amb(x, z, y) → moveup(z, y), JP Ky

Moreover, we need to define rules to move up everything that was in the
opened ambient to its parent ambient:

[upSeq] : moveup(x, y), D(x̃)x → moveup(x, y), D(x̃)y

[upAmb] : moveup(x, y), amb(z, t, x) → moveup(x, y), amb(z, t, y)
[upDone] : moveup(x, y) → ok

This translation is lossy, in the sense that some processes may be lost.More
precisely, when an ambient is opened, all the processes it contains must be
“moved up” using rules [upSeq], [upAmb] and [upDone]. However, if rule
[upDone] is fired before all processes are moved, then those processes will re-
main as garbage, in the sense that they cannot be reached from the rest of the
processes (they remain as independent fragments). Again, this garbage does not
affect the properties we are interested in. Indeed, if the process with garbage is
non-terminating or unbounded, then so is the process without garbage.

Similarly to what we saw for MSR, with our encoding, depth-boundedness
corresponds to MA in which the interdependence of names is bounded, and in
which the height in the hierarchy of ambients is also bounded. However, the
breadth of the hierarchical topology can be unbounded, as well as the amount
of (non α-equivalent) processes in each ambient. Thus, our fragment of MA

28

still encompasses restriction, unguarded replication and the open capability. To
our knowledge, this is a novel subclass of MA for which some verification is
still possible. More precisely, termination, boundedness and coverability are
decidable for them and, as we have previously seen, we do not need to know in
advance the bound on the interdependence of names or in the height of every
reachable process.

Proposition 13. Termination, boundedness and coverability are decidable for
depth-bounded MA processes.

In terms of coverability we can specify the name convergence problem in
MA, proved to be undecidable in [5], even in the fragment of MA without
name restriction and without the open capability. Given an ambient name n
and a process P , the name convergence problem is that of deciding whether
P →∗ n[Q] | R for some processes Q and R. For depth-bounded processes
(even with name restriction and with the open capability) the name convergence
problem is decidable. Indeed, it is enough to decide whether νa.amb(n, a,⊤)
can be covered from JP K⊤.

Analogously, we can decide whether an ambient with a given name appears
at all in some reachable marking, or whether a given spatial configuration can
be covered.

8. Conclusions and future work

In this paper we have defined ν-MSRs, where MSR stands for MultiSet
Rewriting. ν-MSRs encompass the multiset rewriting approach for concurrency,
followed in [16], and the multiset rewriting approach for security, or name bind-
ing in general, followed in [11, 10].

We have proved that ν-MSRs simulate, in a very natural way, two models
of concurrency with name binding, namely pν-PNs and π-calculus processes.
The previous simulations establish that any result obtained for ν-MSRs can be
translated both to the π-calculus and pν-PNs.

In particular, we have adapted the results in [31] in order to prove that a sub-
class of ν-MSR, that of depth-bounded ν-MSR, in which the interdependence of
restricted names is bounded, is a strict Well Structured Transition System. This
yields decidability of coverability, termination and also boundedness. Moreover,
the decidability of those properties is obtained even when the bound on the
depth of the terms is not known, even for coverability, and without need to use
an Adequate Domain of Limits to finitely represent arbitrary downward closed
sets.

These results can be transferred to any formalism that can be encoded within
ν-MSR. We know that π-calculus processes can be easily translated to a ν-
MSR system, so that depth-bounded π-calculus processes are WSTS. This was
already proved in [31]. However, we can also obtain as a corollary the strict well
structuredness of depth-bounded pν-PN. We claim that the same result holds

29

for spi-calculus processes [1], with an encoding analogous to the one used for
the π-calculus.

Then we have shown how other concurrent formalisms with name binding
can be encoded within ν-MSR, namely MSR and Mobile Ambients (MA), and
we have discussed what depth-boundedness means in each particular case. Thus,
we obtain new decidability results for them. Up to our knowledge, this is the first
time that decidability of verification for MSR is studied in general. Moreover,
for the class of MA, we obtain new decidability results, as that of the name
convergence problem.

As future work, it would certainly be interesting to find useful structural (or
in any case decidable) sufficient conditions for depth-boundedness of ν-MSR.

In the encoding of MA, and more precisely in the encoding of the execution
of an open capability, we need to modify an arbitrary amount of predicates,
those representing processes inside the opened ambient. Since our rules only
deal with a fixed amount of predicates, we need to process those predicates
sequentially, perhaps leaving some garbage as explained there. Instead, we
could add broadcast primitives to ν-MSR, similarly as the transfers or resets in
Affine Well Nets [22] or as done for Data Nets [29]. For instance, we could have
a rule stating that given names a, b ∈ Id and predicates p, q ∈ P , every p(a, ã)
is replaced by q(b, ã). With such rules, we can for instance encode the open
capability in such a way that its execution corresponds to a single application
of a rule. Moreover, we claim that our decidability results still hold in that
extension of ν-MSR.

In a different line, ν-MSRs establish a clean bridge between Petri nets and
process algebra, that could be interesting in order to compare the natural con-
current (process) semantics of Petri nets to π-calculus processes.

Finally, recently new results for the verification of systems that rewrite
graphs have been obtained in [19, 20]. We plan to relate our order, inducing the
notion of depth-boundedness, to the order used in those papers to obtain well
structuredness.

Acknowledgments

The authors would like to thank Pierre Ganty for his suggestion to use
the generic abstract interpretation framework in [25] in the case of our depth-
bounded terms.

References

[1] Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The
spi Calculus. Inf. Comput. 148(1) (1999) 1–70

[2] P.A. Abdulla, K. Cerans, B. Jonsson, Y. Tsay. Algorithmic Analysis of
Programs with Well Quasi-ordered Domains. Inf. Comput. 160(1-2): 109-
127 (2000)

30

[3] Abdulla, P.A., Delzanno, G., Begin, L.V.: Comparing the expressive power
of well-structured transition systems. In Duparc, J., Henzinger, T.A., eds.:
CSL. Volume 4646 of Lecture Notes in Computer Science., Springer (2007)
99–114

[4] Baldan, P., Bonchi, F., Gadducci, F.: Encoding asynchronous interactions
using open Petri nets. In: CONCUR 2009: Proceedings of the 20th Inter-
national Conference on Concurrency Theory, Berlin, Heidelberg, Springer-
Verlag (2009) 99–114

[5] Boneva, I., Talbot, J.-M. When Ambients Cannot be Opened! TCS 333(1-
2):127-169, 2005.

[6] Busi, N., Gorrieri, R.: Distributed semantics for the pi-calculus based
on Petri nets with inhibitor arcs. J. Log. Algebr. Program. 78(3) (2009)
138–162

[7] Busi, N., Zavattaro, G. Deciding reachability in mobile ambients. In
ESOP’05:248-262.

[8] Busi, N., Zavattaro, G. Deciding reachability problems in turing-complete
fragments of mobile ambients. Mathematical Structures in Computer Sci-
ence 19(6) (2009) 1223–1263

[9] Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1)
(2000) 177–213

[10] Cervesato, I.: Typed MSR: Syntax and Examples. In Gorodetski, V.I.,
Skormin, V.A., Popyack, L.J., eds.: MMM-ACNS. Volume 2052 of Lecture
Notes in Computer Science., Springer (2001) 159–177

[11] Cervesato, I., Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: A
meta-notation for protocol analysis. In: CSFW. (1999) 55–69

[12] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer,
J., Talcott, C.L., (Eds.): All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting
Logic. Lecture Notes in Computer Science 4350. Springer (2007)

[13] G. Decker, and M. Weske. Instance Isolation Analysis for Service-Oriented
Architecture. In IEEE Int. Conference on Services Computing, SCC’08.
IEEE Computer Society, 2008.

[14] Delzanno, G.: An overview of MSR(C): A CLP-based framework for the
symbolic verification of parameterized concurrent systems. Electr. Notes
Theor. Comput. Sci. 76 (2002)

[15] Delzanno, G.: A Symbolic Procedure for Control Reachability in the
Asynchronous π-calculus. In 5th International Workshop on Verification
of Infinite-State Systems, INFINITY 2003. Electr. Notes Theor. Comput.
Sci. 98 21-33 (2004)

31

[16] Delzanno, G.: Constraint multiset rewriting. Technical Report DISI-TR-
05-08, University of Genova (2005)

[17] Delzanno, G., Montagna, R. Reachability Analysis of Mobile Ambients in
Fragments of AC Term Rewriting. Formal Asp. Comput. 20(4-5): 407-428
(2008)

[18] Delzanno, G., Montagna, R. Deciding Reachability in Mobile Ambients
with Name Restriction. Joint Proc. of the 8th, 9th, and 10th Int. Work-
shops on Verification of Infinite-State Systems, INFINITY 2006, 2007, 2008.
ENTCS 239:5-15 (2009)

[19] Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized Verification of
Ad Hoc Networks. In 21st International Conference on Concurrency The-
ory, CONCUR 2010. Lecture Notes in Computer Science 6269, pp. 313-327.
Springer (2010)

[20] Delzanno, G., Sangnier, A., Zavattaro, G.: On the Power of Cliques in the
Parameterized Verification of Ad Hoc Networks. In 14th International Con-
ference on Foundations of Software Science and Computational Structures,
FOSSACS 2011. Lecture Notes in Computer Science 6604, pp. 441-455.
Springer (2011)

[21] Finkel, A., Schnoebelen, P.: Well-structured transition systems every-
where! Theor. Comput. Sci. 256(1-2) (2001) 63–92

[22] A. Finkel, P. McKenzie, and C. Picaronny. A well-structured framework for
analysing petri net extensions. Information and Computation, vol. 195(1-
2):1-29 (2004).

[23] A. Finkel and J.Goubault-Larrecq. Forward analysis for WSTS, Part I:
Completions. In Proceedings of the 26th International Symposium on The-
oretical Aspects of Computer Science, STACS’09 (2009) 433-444.

[24] A. Finkel and J.Goubault-Larrecq. Forward analysis for WSTS, Part II:
Complete WSTS. In 36th International Colloquium on Automata, Lan-
guages and Programming, ICALP’09. LNCS vol. 5556. Springer (2009) 188-
199.

[25] P. Ganty, J.-F. Raskin, and L. van Begin. A complete abstract interpreta-
tion framework for coverability properties of WSTS. In 7th VMCAI, pages
4964. Springer Verlag LNCS 3855 (2006).

[26] G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand, Enlarge and Check:
New algorithms for the coverability problem of WSTS. J. Comput. Syst.
Sci. 72(1): 180-203 (2006)

[27] Gordon, A.D.: Notes on nominal calculi for security and mobility. In
Focardi, R., Gorrieri, R., eds.: FOSAD. Volume 2171 of Lecture Notes in
Computer Science., Springer (2000) 262–330

32

[28] K.M. van Hee, M. Sidorova, M. Voorhoeve, and J.M. van der Werf. Gener-
ation of Database Transactions with Petri Nets. Fundamenta Informaticae
93(1-3):171-184 (2009)

[29] Lazic, R., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets
with tokens which carry data. Fundam. Inform. 88(3) (2008) 251–274

[30] Meseguer, J.: Rewriting logic as a semantic framework for concurrency: a
progress report. In Montanari, U., Sassone, V., eds.: CONCUR. Volume
1119 of Lecture Notes in Computer Science., Springer (1996) 331–372

[31] Meyer, R.: On boundedness in Depth in the pi-calculus. In Ausiello, G.,
Karhumäki, J., Mauri, G., Ong, C.H.L., eds.: IFIP TCS. Volume 273 of
IFIP., Springer (2008) 477–489

[32] Meyer, R.: A theory of structural stationarity in the pi-calculus. Acta Inf.
46(2) (2009) 87–137

[33] Meyer, R., Gorrieri, R.: On the relationship between pi-calculus and finite
place/transition Petri nets. In Bravetti, M., Zavattaro, G., eds.: CONCUR.
Volume 5710 of Lecture Notes in Computer Science., Springer (2009) 463–
480

[34] Minsky, M.L. Computation: finite and infinite machines. Prentice-Hall,
Inc. (1967)

[35] Rackoff, C. The Covering and Boundedness Problems for Vector Addition
Systems. Theor. Comput. Sci. 6: 223-231 (1978)

[36] Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in
Petri net systems. Fundam. Inform. 88(3) (2008) 329–356

[37] Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability problems for Petri nets
with name creation and replication. Fundamenta Informaticae 104 (2010)
1–27

[38] Rosa-Velardo, F. Multiset Rewriting: a semantic framework for concur-
rency with name binding. In 8th International Workshop on Rewriting
Logic and its Applications, WRLA 2010. LNCS vol. 6381, pp. 191-207.
Springer-Verlag, 2010.

[39] Rosa-Velardo, F. Depth boundedness in multiset rewriting systems with
name binding. In 4th Workshop on Reachability Problems, RP 2010. LNCS
6227, pp. 161-175. Springer-Verlag, 2010.

[40] Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and Complexity of
Petri Nets with Unordered Data. Theoretical Computer Science (to appear)

[41] Sangiorgi, D., Walker, D.: The pi-calculus: a Theory of Mobile Processes.
Cambridge University Press (2001)

33

[42] Stehr, M.O., Meseguer, J., Ölveczky, P.C.: Rewriting logic as a unifying
framework for Petri nets. In Ehrig, H., Juhás, G., Padberg, J., Rozenberg,
G., eds.: Unifying Petri Nets. Volume 2128 of Lecture Notes in Computer
Science., Springer (2001) 250–303

[43] T. Wies, D. Zufferey, and T. Henzinger. Forward Analysis of Depth-
Bounded Processes. 13th Int. Conference Foundations of Software Science
and Computational Structures, FOSSACS 2010. LNCS vol. 6014, pp. 94-
108. Springer-Verlag, 2010.

34

