
Expressiveness of ν-lsPN

Maŕıa Martos-Salgado, Fernando Rosa-Velardo⋆

Technical Report 10/13
Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid
E-mail: mrmartos@estumail.ucm.es, fernandorosa@sip.ucm.es

Abstract. Locally synchronous processes are dynamic networks of infinite-
state timed processes in which each process carries a single real valued
clock. Here, we prove that locally synchronous processes are strictly more
expressive than Timed-Arc Petri nets, using coverability languages to
compare classes of WSTS. Therefore, we conclude that up to our knowl-
edge, locally synchronous processes is the most expressive class of WSTS
among those whose relative expressive power has been studied.

1 Introduction

Petri nets are one of the best known models for concurrent and distributed
systems. They have been extended with discrete or continuous time in many
works [17, 15, 18, 16, 5]. In [8] an exhaustive comparison of these models is done,
and the class of Petri nets with time relative to arcs is proved to be the most
expressive one. Among them, in Timed-Arc Petri Nets (TdPN) [5] tokens are
endowed with a real-valued clock, that can be dynamically created.

Under the so called counting abstraction, each token in a place s of a Petri
net represents a process in state s. Hence, Petri nets can be seen as networks
(or products) of finite-state automata. With this intuition in mind, TdPN can
be seen as dynamic networks of finite-state process, each carrying a real-valued
clock. Therefore, TdPN extend Timed Automata [6] in that they can be used
to verify parameterized systems of finite-state timed processes.

In [14] we extend the work in [5] by allowing each process to be infinite-
state in turn. Hence, our model manages infinitely-many timed processes, each
of which is infinite-state (a potentially unbounded Petri net). In this way we can
for example easily model dynamic networks of processes communicating asyn-
chronously via unbounded (unordered) buffers or sharing some global resources,
that can be potentially unbounded. In particular, our model can serve as a basis
for the parameterized verification of such processes. As a starting point for our
work we consider an untimed model we have developed in previous works [19, 20],
called ν-PN . In ν-PN tokens are names, that can be created fresh and matched
with other names. Names can be understood as the identifier of processes that
can be spawned and synchronize with each other.

⋆ Authors supported by the Spanish projects STRONGSOFT TIN2012-39391-C04-04,
DESAFIOS10 TIN2009-14599-C03-01 and PROMETIDOS S2009/TIC-1465.

Then, we consider that each process has a single real-valued clock (as in [5]
under the counting abstraction). We say these are locally-synchronous processes,
and call them locally synchronous ν-PN (ν-lsPN). Each transition specifies
which are the possible ages of the processes involved, and how this age is up-
dated. We allow read-only constraints, so that the age of some processes may
not change when firing a transition.

In [14] we successfully apply the theory of regions of [3]. More precisely, work-
ing with regions we prove that ν-lsPN belong to the class of Well-Structured
Transition Systems [10, 1], for which coverability is decidable. This proves that
control-state reachability (which can be reduced to coverability) is decidable for
them. Moreover, safety properties can be reduced to control-state reachability
with standard techniques.

Here, we compare the expressiveness of ν-lsPN with other well-structured
models. In [11] coverability languages (those obtained with coverability as ac-
ceptance condition) are proposed as a measure to compare the expressiveness of
WSTS. In [2, 11, 7] Petri nets (PN), Petri nets with transfers and resets (AWN),
ν-PN and Data Nets (DN), an extension of ν-PN with ordered data, are com-
pared, proving the following strict relations: PN ≺ AWN ≺ ν-PN ≺ DN .
Moreover, DN and TdPN are proved to be equivalent in [7]. We complete this
picture by proving that TdPN ≺ ν-lsPN . Therefore, we prove that ν-lsPN is
the most expressive model within the WSTS class, up to our knowledge, out of
those whose relative expressive power has been studied.1

Outline Section 2 gives notations and results we use throughout the paper. In
Section 3 we define ν-lsPN and in Section 4 we study its expressiveness. Finally,
in Section 5 we present our conclusions.

2 Preliminaries

Let N = {0, 1, 2, ...} and for n ∈ N let n+ = {1, ..., n} and n∗ = {0, ..., n}. (X,≤)
is a partial order (po) if ≤ is a reflexive, transitive and antisymmetric binary
relation on X.
Multisets. A (finite) multiset m over X is a mapping m : X → N such that
{x ∈ X | m(x) > 0} is finite. We denote by X⊕ the set of multisets over X.
For m1,m2 ∈ X⊕ we define m1 +m2 ∈ X⊕ by (m1 +m2)(x) = m1(x) +m2(x)
and m1 ⊆ m2 if m1(x) ≤ m2(x) for every x ∈ X. When m1 ⊆ m2 we can define
m2 −m1 ∈ X⊕ by (m2 −m1)(x) = m2(x)−m1(x). We denote by ∅ the empty
multiset, that is, ∅(a) = 0 for every a ∈ A, and |m| =

∑

x∈X m(x). We use set
notation for multisets with repetitions to account for multiplicities.
Transition systems. A transition system is a tuple S = 〈X,→, x0〉 where X
is the set of states, x0 ∈ X is the initial state and →⊆ X ×X is the transition
relation. We write x → x′ instead of (x, x′) ∈→ and we denote by →∗ the

1 The expressive powers of WSTS based on trees or graphs have not been compared
with others using the techniques in [11], up to our knowledge.

reflexive and transitive closure of →. We say A ⊆ X is reachable if x0 →∗ x
for some x ∈ A. If X is a po, we can define the coverability problem, that of
deciding, given U upward closed, whether U is reachable.
ν-Petri Nets. We fix infinite sets Id of names, Var of variables and a subset of
special variables Υ ⊂ Var for fresh name creation. A ν-PN [20] is a tuple N =
〈P, T, F,H〉, where P and T are finite disjoint sets, and F,H : T → (P × V ar)⊕

are the input and output functions, respectively. We say that x ∈ V ar(t) iff there
is p ∈ P with (p, x) ∈ F (t) +H(t). A marking is a finite multiset over P × Id .
A mode is an injection σ : Var(t) → Id . Modes are extended homeomorphically
to (P × Var(t))⊕. A transition t is enabled with mode σ for a marking M if
σ(F (t)) ⊆ M and for every ν ∈ Υ , (p, σ(ν)) /∈ M for any p. The last condition is

used to create new names, not in the current marking. Then we have M
t

−→M ′,

where M ′ = (M − σ(F (t)) + σ(H(t)) and M → M ′ if M
t

−→M ′ for some t ∈ T .

3 Locally synchronous ν-PN

Now we define the class of locally synchronous ν-PN (ν-lsPN). In ν-lsPN each
instance has a single clock. Moreover, we will allow read-only contraints.

Definition 1 (Locally synchronous ν-PN). A locally synchronous ν-PN
(ν-lsPN) is a tuple N = 〈P, T, F,H,G〉, where:

– P and T are finite disjoint sets,
– for t ∈ T , Ft, Ht : Var → P⊕ are the input and output functions of t,
– for t ∈ T , Gt : Var → I × (I ∪ {ro}) is the time constraints function of t.

Definition 2 (Markings). A marking M of a ν-lsPN is an expression of the
form a1 :(m1, r1), ..., an :(mn, rn), where Id(M) = {a1, ..., an} ⊂ Id are pairwise
different names, and for each i ∈ n+, ∅ 6= mi ∈ P⊕ and ri ∈ R≥0.

We treat markings of ν-lsPN as multisets over elements of the form a:(m, r),
which we call instances. Hence, a : (m, r) is an instance with name a, tokens
according to m, and age r. We assume that each mi in each instance is not
empty. We use M , M ′,... to range over markings. We say a marking M marks
p ∈ P if there is a:(m, r) ∈ M such that p ∈ m.

Definition 3 (Time delay). Given M = a1 :(m1, r1), ..., an :(mn, rn) and d ∈
R≥0, we write M+d to denote the marking a1 :(m1, r1 + d), ..., an :(mn, rn + d),

in which the age of every instance has increased by d. We write M
d

−→M+d.

Now we define the firing of transitions, for which we need the following no-
tations. We denote by G1

t (x) and G2
t (x) the first and second component of Gt(x),

respectively. Intuitively, for a transition to fire the instance corresponding to x
must have an age in G1

t (x). This age is set to any value in G2
t (x), except when x is

read-only (when G2
t (x) = ro), in which case its age does not change. If ν ∈ Υ we

assume G2
t (ν) 6= ro. For each t ∈ T we define Var(t) = {x ∈ Var | Ft(x)+Ht(x) 6=

ab

p1

b

p2

a

p3 p4

tx, (0, 1]

y, [1, 1]

x, (2, 4)

ν, [0, 0]

ab

p1

b

p2

a

p3 p4

tx, (0, 1]

y, [1, 1]

x, (2, 4)

ν, [0, 0]

b

p1 p2

aa

p3

c

p4

tx, (0, 1]

y, [1, 1]

x, (2, 4)

ν, [0, 0]

M1 = a:({p1p3}, 0),
b:({p1p2}, 0.5)

M2 = a:({p1p3}, 0.5),
b:({p1p2}, 1)

M3 = a:({p3p3}, 3), b:({p1}, 1),
c:({p4}, 0)

→ →

Fig. 1. Firing of a transition in a ν-lsPN .

∅}, which is assumed to be finite, and we split it into nfVar(t) = Var(t) \ Υ and
fVar(t) = Var(t)∩Υ . We say M ′ is an ∅-expansion of a marking M (or M is the
∅-contraction of M ′) if M ′ is obtained by adding instances a:(∅, r) to M .

Definition 4 (Firing of transitions). Let t ∈ T with nfVar(t) = {x1, ..., xn}
and fVar(t) = {ν1, ..., νk}. We say t is enabled at marking M if:

– M = a1 : (m1, r1), ..., an : (mn, rn) +M ,

– for each i ∈ n+, Ft(xi) ⊆ mi and ri ∈ G1
t (xi).

Then, t can be fired, and taking

– {b1, ..., bk} pairwise different names not in Id(M),

– m′
i = (mi − Ft(xi)) +Ht(xi) for all i ∈ n+,

– m′′
j = Ht(νj) for all j ∈ k+,

– r′i = ri if G
2
t (xi) = ro, or any value in G2

t (xi), otherwise, for all i ∈ n+,

– r′′j any value in G2
t (νj), for all j ∈ k+,

we can reach M ′, denoted by M
t

−→M ′, where M ′ is the ∅-contraction of

a1:(m
′
1, r

′
1), ..., an:(m

′
n, r

′
n), b1:(m

′′
1 , r

′′
1), ..., bk:(m

′′
k , r

′′
k) +M

We write M → M ′ if M
t

−→M ′ for some t ∈ T or M
d

−→M ′ for some d ∈ R≥0,
and we implicitly assume an initial marking M0, thus obtaining the transition
system induced by N . Again, the semantics of ν-lsPN is a weak semantics, since
time elapsing may disable transitions. The control-state reachability problem for
ν-lsPN is defined as reachability of the set of states that mark a given place.

Example 1. Fig. 1 depicts a ν-lsPN with three different markings. In the first
marking the transition t is not fireable, because no instance with an age in [1, 1]
has a token in place p2. However, after waiting 0.5 units of time, the marking
M2 is reached, and t becomes enabled. Then, we can fire t reaching, for example,
the marking M3 in the figure.

In [14] we use the theory of regions to obtain a finitary transition system over
a countable domain, which will be a WSTS, so that we can solve the control-state
reachability problem by reducing it to a coverability problem.

Proposition 1. ν-lsPN are WSTS.

4 Expressiveness result

In this section we prove that ν-lsPN are strictly more expressive than TdPN .
We compare classes of WSTS by comparing the families of coverability languages
they accept, as advocated for instance in [11, 2].

A labeled WSTS is a WSTS in which each transition is endowed with a
label taken from Σ ∪{ǫ}, where Σ is a finite alphabet. A label ǫ denotes a silent
transition.be ǫ). We assume that (labeled) WSTS are endowed with a final state.
If x0 and xf are the initial and final states of S, we can define the coverability

language of S by L(S) = {u ∈ Σ⊛ | x0
u

−→x, x ≥ xf}.
For two classes of WSTS, S1 and S2, we write S1 � S2 whenever for every

S1 ∈ S1 there is S2 ∈ S2 such that L(S1) = L(S2). We write S1 ≃ S2 when
S1 � S2 and S2 � S1, and we write S1 ≺ S2 if S1 � S2 and S2 � S1. In [2, 11,
7] the following relations between classes of WSTS are proved:

PN ≺ AWN ≺ ν-PN ≺ DN ≃ TdPN

We complete this picture by proving that TdPN ≺ ν-lsPN . We first prove
that ν-lsPN extend TdPN by simulating a TdPN by means of a ν-lsPN .

Proposition 2. TdPN � ν-lsPN

Proof (Sketch). We simulate a token in p with age x by an instance with a
single token in p, and with age x. Each transition is simulated by a transition
(having the same label) that (i) removes instances/tokens with clocks with the
proper values and (ii) creates fresh instances, again with clocks with the proper
values. If the initial marking of the TdPN is p1(x1), ..., pn(xn) then we consider
a1 :(p1, x1), ..., an :(pn, xn) (for arbitrary names a1, ..., an) as initial marking of
the ν-lsPN (and analogously for the final marking). ⊓⊔

In [7] a framework for the strict comparison of WSTS is developed. This
framework is based on two concepts: reflections and witness languages. A map-
ping ϕ : X → Y is a reflection if ϕ(x) ≤ ϕ(x′) implies x ≤ x′ for all x, x′ ∈ X.
A reflection is an isomorphism if it is bijective and x ≤ x′ implies ϕ(x) ≤ ϕ(x′).
We write X ⊑refl Y if there is a reflection from X to Y . We extend the relation
⊑refl to classes of wpo by X ⊑refl X

′ if for any X ∈ X, there exists X ′ ∈ X′

such that X ⊑refl X
′.

Witness languages represent the capability of a WSTS to recognize a state
space. They are useful to prove strict relations between classes of WSTS because
they can be proven not to be recognizable by some class of WSTS.

Given an alphabetΣ = {a1, ...,ak}, we consider a disjoint copyΣ = {a1, ...,ak}.
This notation is extended to words and languages, as expected. AΣ-representation
of a wpo X is any surjective partial function γ : Σ⊛ → X. Intuitively, every
u ∈ Σ⊛ with γ(u) = x is a possible encoding or representation of x ∈ X. We
denote by dom(γ) the domain of γ. For a Σ-representation γ of X, we define
Lγ = {uv | u, v ∈ dom(γ) and γ(v) ≤ γ(u)}, and we say Lγ is a witness of

X.2 The fact that a WSTS can recognize such Lγ witnesses that it is capable
of representing the structure of X: it is capable of accepting all words starting
with some u (representing some state γ(u)), followed by some v that represents
γ(v) ≤ γ(u). In particular, it must be able to accept uu for any u ∈ dom(γ).

In order to be able to apply the general framework to two classes of WSTS
we must prove that both classes are self-witnessing. Intuitively, a class of WSTS
S is self-witnessing if it can accept encodings (over some alphabet) of their state
spaces. Formally, if X is a class of wpos and S is a class of WSTS whose state
spaces are included in X, (X,S) is self-witnessing if, for all X ∈ X, there exists
S ∈ S that recognizes a witness of X.

Proposition 3 ([7]). Let (X,S) and (X′,S′) be self-witnessing WSTS classes.
If S � S′ then X ⊑refl X

′.

In the rest of the section for any model M we denote by XM the set of
state spaces used in M. In [7] it is proven that DN (and therefore TdPN) are
self-witnessing. Thus, in order to apply Prop. 3 to prove ν-lsPN � TdPN we
only need to see that ν-lsPN is self-witnessing and that Xν-lsPN 6⊑refl XTdPN .

To prove that ν-lsPN is self-witnessing, given the set X of regions with n
places and having bound max, we need to find a ν-lsPN which accept a witness
of X.

Proposition 4. ν-lsPN is self-witnessing.

Proof. As seen in the previous section, we can use the set of regions as state
space of ν-lsPN . Then, given a state space X we have to prove that there is
a ν-lsPNN that accepts a witness of X. If P is the set of places in X, we can
write X as X⊕

max∗ × (X⊕
(max−1)∗)

⊛ ×X⊕
{max+1}, where for every I ⊆ (max+1)∗,

XI = P⊕ × I.
Take Σ = P ∪ (max+1)∗ ∪ {∗,#, $}. We define auxiliary functions γI

1 :
Σ⊛ → XI , γ

I
2 : Σ⊛ → X⊕

I and γI
3 : Σ⊛ → (X⊕

I)⊛ as follows: γI
1 (p1...pnk) =

({p1, ..., pn}, k), with pi ∈ P and k ∈ I; γI
2 (u1#...#un) = {γI

1 (u1), ..., γ
I
1 (un)},

with ui ∈ dom(γI
1) for every i; and γI

3(v1 ∗ ... ∗ vn) = γI
2 (v1)...γ

I
2 (vn), where

vi ∈ dom(γI
2) for every i. Finally, let γ : Σ⊛ → X be defined as γ(u&v&w) =

(γmax∗

2 (u), γ
(max−1)∗

3 (v), γ
{max+1}
2 (w)), where u, v and w are in the domain of

the corresponding mappings.
Clearly, γ is a Σ-representation of X. Let us now build a ν-lsPNN that

accepts Lγ (which is a witness of X).
N operates in two phases: the first phase generates u with γ(u) = R =

A0∗A1∗...∗An∗A∞, and the second one recognizes any v with γ(v) ≤ R. In turn,
each of the phases has three consecutive sub-phases, dealing with A0, A1∗ ...∗An

and A∞, respectively. We use control places to move from one (sub)phase to the
next (with transitions labeled by & or &). In order to differentiate between
phases, we say that we generate words in the first one, but we recognize them
in the second.

2 Actually, the definition in [7] is slightly more general.

We explain the generation of A1 ∗ ... ∗ An (the other phases are simpler).
Let Ai = {(mi

1, k
i
1), ..., (m

i
ni
, kini

)}. We use a different name to represent each
instance. Moreover, instances in the same Ai have the same age. We use a place
now that holds the name (with age 0) of the instance currently being generated.
For a given i, we start by firing transitions of the form tp, labeled by p, that
copy the name in now to a place p, followed by the firing of some tk with
k ∈ (max−1)∗, labeled by k, which copies the name in now to a place pk.

Therefore, a word u with γ
(max−1)∗

1 (u) = (mi
1, k

i
1) can be produced. Next, the

name in now is moved to a place all , and replaced by a fresh name, with age
0 (transition t#, labeled by #). These actions can be repeated to generate (the
encoding of) any element in X⊕

(max−1)∗ . Notice that they all demand that the

instance involved has age 0. At any point, instead of firing t# we can fire t∗
(labeled by ∗). This transition has the same effect as t#, but it is only enabled
if the instance in now has a non-null age, so that some time must elapse. Hence,
we start accepting the instances with a higher fractional part, in Ai+1.

After this phase, there is any number of pairwise different names (each rep-
resenting an instance) in all , some of which have the same age (those instances
with an age with the same fractional part). Moreover, for any name a in all , a
belongs to some of the places in P , and exactly to one place pk. The transitions
in this second phase demand that the age of the instances involved is exactly 1.
Moreover, they are all labeled with symbols in Σ.

This phase starts by taking any name in all and putting it back to now .
Then, transitions of the form tp (labeled by p) can be fired, each consuming
a name from p matching the name in now . At any point, a transition of the
form tk, labeled by k (with k ∈ (max−1)∗) can be fired, and consumes from
pk a name matching the one in now . Thus, if the current name represented an
instance (m, k) then (an encoding of) any (m′, k) with m′ ≤ m can now be
recognized. Then, the name in now can be replaced by a name taken from all
(transition t# labeled by #) in order to recognize the next instance.

At any point, time can elapse, so that another instance in now reaches age 1.
Then, t∗ can be fired, labeled by ∗, with the same effect as t#. Notice that when
time elapses, all the names with age greater than 1 are lost (the encodings of the
instances they represent cannot be recognized). This is consistent with the fact
that we must recognize (the encoding of) a state which is less or equal than the
one we generated. Notice also that even in the first phase, names with ages older
than 1 become garbage. However, it is possible to generate all the names in the
first phase with an age smaller than 1, so that the same state can be recognized.

Even though the order between instances is not preserved within each Ai (this
is not demanded by the order in X⊕

(max−1)∗), this order is preserved between

different Ai’s, because older instances reach the age of 1 before. To conclude, we
consider as final marking the one with a token in the control-state marked in
the second phase (the recognizing one). ⊓⊔

In order to prove Xν-lsPN 6⊑refl XTdPN we will use ordinal theory (see Prop.
5 below). Let us explain the needed concepts about ordinals. For more details
see [7]. Each ordinal α is equal to the set of ordinals {β | β < α} below it,

and the class of ordinals is totally ordered by inclusion. Every total well order
(X,≤X) is isomorphic to a unique ordinal ot(X,≤X), called the order type of
X.

In the context of ordinals, we define 0 = ∅, n = {0, ..., n − 1} and ω = N,
ordered by the usual order. Moreover, given α and α′ ordinals, we define α+ α′

as the order type of ({0} × α) ∪ ({1} × α′) ordered by ≤lex, the lexicographic
order. In the same way, α ∗ α′ is defined as the order type of α′ × α ordered
by ≤lex.The definitions of + and ∗ coincide with the usual operations on N for

ordinals below ω, and we have α+
k
· · ·+ α = α ∗ k. Let αβ be the order type of

the set of functions from β to α ordered by ≤lex defined by:

f <lex g ⇐⇒ ∃x ∈ β.

{

f(x) < g(x)
∀y < x. f(y) = g(y)

The ordinals below ε0 (those that can be bounded by a tower ωω·
·
·
ω

) can be
represented by the hierarchy of ordinals in Cantor Normal Form (CNF), that is
recursively given by the following rules:

C0 = {0}.
Cn+1 = {ωα1 + ... + ωαp | p ∈ N, α1, ..., αp ∈ Cn and α1 ≥ ... ≥ αp} ordered by

ωα1 + · · ·+ ωαp ≤ ωα′

1 + · · ·+ ωα′

q iff (α1, . . . , αp) ≤lex (α′
1, . . . , α

′
q)

Each ordinal below ε0 has a unique CNF. If α = ωβ1 + · · ·+ ωβn , we denote
by Cantor(α) the multiset {β1, . . . , βn}.

A linearization of a po ≤X is a total order ≤′
X on X such that x ≤X y =⇒

x ≤′
X y. A linearization of a wpo is a well total order, hence isomorphic to an

ordinal.
Let (X,≤X) be a wpo. The maximal order type (shortly: order type) of

(X,≤X) is ot(X,≤X) = sup {ot(X,≤′
X) | ≤′

X linearization of ≤X}.
The existence of the sup comes from ordinal theory.
We need the following definitions of natural addition (denoted ⊕) and natural

multiplication (denoted ⊗) on ordinals, to characterize the order types of X ⊎Y
and X × Y :
Cantor(α⊕ α′) = Cantor(α) + Cantor(α′)
Cantor(α⊗ α′) = {β ⊕ β′ | β ∈ Cantor(α), β′ ∈ Cantor(α′)}
Let us now prove that Xν-lsPN 6⊑refl XTdPN . The following result states that

we can do it comparing their ordinal types (ot) [9, 21].

Proposition 5 ([22, 7]). Let X and Y be two wpos. If X ⊑refl Y then ot(X) ≤
ot(Y).

Using [9, 21, 22], we can compute the order type of products, domains of finite
words or finite multisets.

Lemma 1. ot((Nm)⊛) = ωωωm

and ot((N⊕)⊛) = ωωωω

Proof. Let X be a wpo with ω ≤ ot(X) < ε0, that is, bounded by a tower ωω·
·
·
ω

.

In [9, 21] it is proved that ot(X⊛) = ωωot(X)

, and [22] proves that ot(X⊕) =

ωot(X). Moreover, ot(Nm) = ωm for m ≥ 1. This allows us to compute the
ordinals in the lemma. ⊓⊔

Proposition 6. Xν-lsPN 6⊑refl XTdPN

Proof. We have to see that there is X ∈ Xν-lsPN such that for any X ′ ∈ XTdPN

we have X 6⊑refl X
′. Since TdPN ≃ DN , we can work with DN . The state space

of a DN with set of places P is (N|P |)⊛ [13]. Let P = {p} and max = 1, and take
X = (P⊕ ×{0, 1})⊕ × ((P⊕ ×{0})⊕)⊛ × (P⊕ ×{2})⊕. Since |P | = 1, P⊕ ×{0}

is isomorphic to N. By Lemma 1 we have that ot(X) ≥ ot((N⊕)⊛) = ωωωω

.

Let any X ′ = (Nm)⊛ ∈ XTdPN . By the previous lemma, ot(X ′) = ωωωm

. Then
ot(X) 6≤ ot(X ′), and by Prop. 5 we conclude. ⊓⊔

Corollary 1. TdPN ≺ ν-lsPN

5 Conclusions

In this report, we have compared ν-lsPN with other classes of WSTS, proving
that they are the most expressive of the studied classes. In particular, we have
proved that TdPN ≺ ν-lsPN by applying the framework in [7].

As future work, we plan to study the expressive power of models in which a
fixed number (possibly greater than one) of clocks is allowed. Also, it would be
useful to compare the models yielded by bounded Petri nets with TdPN or NTA,
in order to profit from the numerous works existing for the latter. In a different
line, in our works we have assumed that processes (or their identifiers) are not
ordered in any way. It would be interesting to see whether our work scales in the
case of ordered processes, which amounts to extend DN with time.

Regarding complexity, since ν-lsPN are more expressive than DN or TdPN ,
the complexity of the control-state reachability problem can be proved to be non-
primitive recursive. It would be interesting to obtain a finer-grained complexity
analysis, as done in [12].

Other directions for further study include other properties, as the existence
of Zeno behaviors [4], or liveness properties, although the negative results in the
untimed case are discouraging [20].

References

1. Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. Al-
gorithmic analysis of programs with well quasi-ordered domains. Inf. Comput.,
160(1-2):109–127, 2000.

2. Parosh Aziz Abdulla, Giorgio Delzanno, and Laurent Van Begin. A classifica-
tion of the expressive power of well-structured transition systems. Inf. Comput.,
209(3):248–279, 2011.

3. Parosh Aziz Abdulla and Bengt Jonsson. Verifying networks of timed processes
(extended abstract). In Bernhard Steffen, editor, TACAS, volume 1384 of Lecture
Notes in Computer Science, pages 298–312. Springer, 1998.

4. Parosh Aziz Abdulla, Pritha Mahata, and Richard Mayr. Dense-timed Petri nets:
Checking zenoness, token liveness and boundedness. Logical Methods in Computer

Science, 3(1), 2007.
5. Parosh Aziz Abdulla and Aletta Nylén. Timed Petri nets and bqos. In José Manuel

Colom and Maciej Koutny, editors, ICATPN, volume 2075 of Lecture Notes in

Computer Science, pages 53–70. Springer, 2001.
6. Rajeev Alur, Costas Courcoubetis, and Thomas A. Henzinger. The observational

power of clocks. In Bengt Jonsson and Joachim Parrow, editors, CONCUR, volume
836 of Lecture Notes in Computer Science, pages 162–177. Springer, 1994.

7. Rémi Bonnet, Alain Finkel, Serge Haddad, and Fernando Rosa-Velardo. Ordinal
theory for expressiveness of well structured transition systems. Inf. Comput., 2012.

8. Marc Boyer and Olivier H. Roux. On the compared expressiveness of arc, place
and transition time Petri nets. Fundam. Inform., 88(3):225–249, 2008.

9. D. H. J. de Jongh and R. Parikh. Well partial orderings and hierarchies. In
Indagationes Mathematicae, volume 80, pages 195–207, 1977.

10. Alain Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1-2):63–92, 2001.

11. Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. Well-structured
languages. Acta Inf., 44(3-4):249–288, 2007.

12. Serge Haddad, Sylvain Schmitz, and Philippe Schnoebelen. The ordinal-recursive
complexity of timed-arc Petri nets, data nets, and other enriched nets. In LICS,
pages 355–364. IEEE, 2012.

13. Ranko Lazic, Tom Newcomb, Joël Ouaknine, A. W. Roscoe, and James Worrell.
Nets with tokens which carry data. Fundam. Inform., 88(3):251–274, 2008.

14. Maŕıa Martos-Salgado and Fernando Rosa-Velardo. Dynamic networks of infinite-
state timed processes. Technical Report 9/13, DSIC Universidad Complutense de
Madrid. http://antares.sip.ucm.es/~frosa/, 2013.

15. P. Merlin and D. Farber. Recoverability of communication protocols–implications
of a theoretical study. Communications, IEEE Transactions on, 24(9):1036 – 1043,
sep 1976.

16. Mauro Pezzè. Time Petri nets. In Proceedings of the Multi-Workshop on Formal

Methods in Performance Evaluation and Applications, 1999.
17. C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri

nets. Technical report, Cambridge, MA, USA, 1974.
18. Rami R. Razouk and Charles V. Phelps. Performance analysis using timed Petri

nets. In Yechiam Yemini, Robert E. Strom, and Shaula Yemini, editors, PSTV,
pages 561–576. North-Holland, 1984.

19. Fernando Rosa-Velardo and David de Frutos-Escrig. Name creation vs. replication
in Petri net systems. Fundam. Inform., 88(3):329–356, 2008.

20. Fernando Rosa-Velardo and David de Frutos-Escrig. Decidability and complexity
of Petri nets with unordered data. Theor. Comput. Sci., 412(34):4439–4451, 2011.

21. D. Schmidt. Well-partial orderings and their maximal order types, 1979. Habili-
tationsscrift.

22. Andreas Weiermann. A computation of the maximal order type of the term or-
dering on finite multisets. In Klaus Ambos-Spies, Benedikt Löwe, and Wolfgang
Merkle, editors, CiE, volume 5635 of Lecture Notes in Computer Science, pages
488–498. Springer, 2009.

