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Maŕıa Martos-Salgado, Fernando Rosa-Velardo⋆

Technical Report 9/13
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Abstract. We study dynamic networks of infinite-state timed processes,
modelled as unbounded Petri nets. These processes can evolve autono-
mously, synchronize with each other (e.g., in order to gain access to some
shared resources) and be created or become garbage dynamically. We
introduce dense time in two different ways. First, we consider that each
token in each process carries a real valued clock. We prove that this model
can faithfully simulate Turing-complete formalisms and, in particular,
safety properties are undecidable for them. Second, we consider locally-
timed processes, where each process carries a single real valued clock.
For them, we prove decidability of safety properties by a non-trivial
instantiation of the framework of Well-Structured Transition Systems.

1 Introduction

Perhaps the most widely known model of real-time systems is that of Timed Au-
tomata [6]. Several tools like UPPAAL or KRONOS are available for them. Natu-
ral extensions of Timed Automata are Networks of Timed Automata (NTA) [6] or
the Networks of Timed Processes in [3]. Both models consider parameterized sys-
tems of finite-state processes, each of which is endowed with a real clock.

Petri nets are one of the best known models for concurrent and distributed
systems. They have been extended with discrete or continuous time in many
works [19, 17, 20, 18, 9, 5]. In some, transitions have a duration, while in others
they fire atomically in some time interval. They also differ in whether time is
considered relative to places, transitions or arcs. In [8] an exhaustive comparison
of these models is done, and in particular it is proved that the class of Petri nets
obtained by adding time constrains to the arcs is more expressive than the classes
obtained from adding them to places or transitions. Among this class, in Timed-
Arc Petri Nets (TPN ) [5] each token is endowed with a real-valued clock. In
particular, clocks can be dynamically created or destroyed.

Under the so called counting abstraction, one can think that each token in
a place s of a Petri net represents a process in state s. Hence, Petri nets can
be seen as networks (or products) of finite-state automata. With this intuition
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in mind, in TPN each (finite-state) process has a real-valued clock. Therefore,
they encompass two infinite dimensions: infinitely-many (finite-state) processes
and clocks over an infinite (uncountable) domain. In TPN arcs are labeled with
intervals. Thus, when a token is taken from a place by a transition the value
of the clock of the token must be in the interval labeling the corresponding
arc, and when a token is put in a place, its clock is set to any real value in the
corresponding interval. Moreover, it follows the so called weak semantics in timed
systems, in which time delays may happen even when they disable transitions.

We extend the work in [5] by allowing each process to be infinite-state in
turn. Hence, our model manages infinitely-many timed processes, each of which
is infinite-state (a potentially unbounded Petri net). In this way we can for
example easily model dynamic networks of processes accessing shared resources,
that can be potentially unbounded.

Dynamic process creation is closely related to parametric verification, when
the number of processes is a parameter of the system. Indeed, a standard ap-
proach for parametric verification is the addition of an “initialization phase” that
spawns an unbounded number of processes (see e.g. [11] for a recent discussion).
Hence, our results on verifying dynamic systems can also be seen as results on
parametric verification of systems with a fixed number of processes.

As a starting point we consider an untimed model we have developed in pre-
vious work [21, 22], called ν-PN . In ν-PN tokens are names, that can be created
fresh and matched with other names. Therefore, there can be an unbounded
number of different names, each of which can appear an unbounded number of
times. Each name can be understood as a process identifier. Hence, ν-PN en-
compass infinitely-many (untimed) processes, each of which can be infinite-state.

We consider two ways in which to introduce time. In the first way we assign
a clock to each token in each process. Then, each process is a TPN , that can
be created fresh and can synchronize with others. We call this model Timed
ν-PN (ν-TPN ). As in TPN , the clock value of each token consumed by a tran-
sition must belong to a given interval, as well as for the produced tokens. More-
over, as in ν-PN , names can be created and matched. We prove that this model
can simulate Turing-complete formalisms and, in particular, even the control-
state reachability problem (that of deciding if a given place can be marked) is
undecidable.

In the second variant we consider that each process has a single real-valued
clock. Since each process is a (concurrent) Petri net, we say these are locally-
timed processes, and call them locally-timed ν-PN (ν-lTPN ). Hence, we still
encompass infinitely-many processes, each of which is infinite-state and is en-
dowed with a real-valued clock.

For ν-lTPN we successfully apply the theory of regions of [3]. More precisely,
we prove that working with regions we can give ν-lTPN a well-structure, so that
they belong to the class of Well-Structured Transition Systems [10, 1], for which
the coverability problem is decidable. This proves that control-state reachability
(which can be reduced to coverability) is decidable for them. Moreover, safety
properties can be reduced to control-state reachability by standard techniques.



Outline: Section 2 gives notations and results we use throughout the paper.
Section 3 defines ν-TPN and proves undecidability of control-state reachability
for them. In Section 4 we define ν-lTPN , and we prove decidability of control-
state reachability for them. Finally, in Section 5 we present our conclusions.

2 Preliminaries

Let N = {0, 1, 2, . . .} and for each n ∈ N let us denote n+ = {1, . . . , n} and
n∗ = {0, . . . , n}. We denote open, closed and mixed intervals of real numbers as
(a, c), [a, b] and [a, c) or (a, b], respectively, where a, b ∈ N and c ∈ N ∪ {∞}.
The set of intervals is denoted by I. Let R≥0 = [0,∞) and for each x ∈ R≥0 we
denote by ⌊x⌋ and frct(x) the integer and the fractional part of x, respectively.
Well orders: (X,≤) is a partial order (po)1 if ≤ is a reflexive, transitive and
antisymmetric binary relation on X. Let A ⊆ X. An element x ∈ A is minimal
in A if x′ ∈ A with x′ ≤ x implies x = x′. We denote by min(A) the set of
minimal elements in A. The upward closure of A ⊆ X is defined as ↑A = {x ∈
X | ∃x′ ∈ A, x′ ≤ x}. We say A is upward closed iff ↑A = A. A po (X,≤) is a
well partial order (wpo) if for every infinite sequence x0, x1, . . . ∈ X there are i
and j with i < j such that xi ≤ xj . Equivalently, a po is a wpo iff min(U) is finite
for every upward closed set U . If X is finite, then (X,=) is a wpo. If (X,≤X)
and (Y,≤Y ) are wpos, their product X × Y is well ordered by (x, y) ≤ (x′, y′)
iff x ≤X x′ and y ≤Y y′.
Multisets: A (finite) multiset m over X is a mapping m : X → N with finite
support, that is, such that supp(m) = {x ∈ X | m(x) > 0} is finite. We denote by
X⊕ the set of finite multisets over X. For m1,m2 ∈ X⊕ we define m1+m2 ∈ X⊕

by (m1 + m2)(x) = m1(x) + m2(x) and m1 ⊆ m2 if m1(x) ≤ m2(x) for every
x ∈ X. When m1 ⊆ m2 we can define m2 − m1 ∈ X⊕ by (m2 − m1)(x) =
m2(x)−m1(x). We denote by ∅ the empty multiset, that is, ∅(x) = 0 for every
x ∈ X, and |m| =

∑

x∈supp(m) m(x). We use set notation for multisets when
convenient, with repetitions to account for multiplicities greater than one. Given
a po ≤ over X, we define the po ≤⊕ over X⊕ as {x1, . . . , xn} ≤⊕ {y1, . . . , ym} if
there is an injection h : n+ → m+ such that xi ≤ yh(i) for each i ∈ n+. If (X,≤)
is a wpo then so is (X⊕,≤⊕) [13].
Words: Any u = x1 · · ·xn with n ≥ 0 and xi ∈ X for all i ∈ n+ is a (finite) word
over X. We denote by X⊛ the set of words over X. If n = 0 then u is the empty
word, denoted by ǫ. If X is a wpo then so is X⊛ [13] ordered by ≤⊛, defined
as x1 . . . xn ≤⊛ y1 . . . ym if there is a strictly increasing mapping h : n+ → m+

such that xi ≤ yh(i) for each i ∈ n+.
Transition systems: A transition system is a tuple S = 〈X,→, x0〉 where
X is the set of states, x0 ∈ X is the initial state and → ⊆ X × X is the
transition relation. We write x → x′ instead of (x, x′) ∈ → and we denote by
→∗ the reflexive and transitive closure of →. We say A ⊆ X is reachable if
x0 →∗ x for some x ∈ A. For x ∈ X we define Pre(x) = {x′ | x′ → x} and

1 We only work with po (and not quasi-orders).



Pre∗(x) = {x′ | x′ →∗ x}, and extend them pointwise to sets of states. If X is
a po, we can define the coverability problem, that of deciding, given U upward
closed, whether U is reachable, or equivalently, whether x0 ∈ Pre∗(U). All the
models in the paper induce transition systems in the obvious way if we provide
them with an initial state.
Timed-Arc Petri Nets A Timed-Arc Petri Net (TPN ) is a tuple N =
〈P, T, F,H〉, where P and T are finite disjoint sets of places and transitions,
respectively, and F,H : P × T → I⊕. A marking of a TPN is a finite multiset
M over P × R≥0. Abusing notation, we define M(p) as the multiset of clocks
of tokens in place p at M . There are two types of transitions: timed transitions
and discrete transitions. Given a marking M = {(p1, d1) . . . , (pn, dn)} and d ≥ 0,

we write M
d
→ M ′ if M ′ = {(p1, d1 + d) . . . , (pn, dn + d)}. Given t ∈ T and a

marking M we write M
t
→ M ′, if for each p ∈ P with F (p, t) = {I1, . . . , In}

and H(p, t) = {J1, . . . , Jm}, there are In = {r1, . . . , rn} and Out = {r′1, . . . , r
′
m}

such that In ⊆ M(p), ri ∈ Ii for any i ∈ n+, r′j ∈ Jj for any j ∈ m+ and
M ′(p) = (M(p) − Out) + In. Finally, we write M → M ′ iff there is d ≥ 0 with

M
d
→ M ′ or t ∈ T with M

t
→ M ′.

For an example see the nets in Fig. 1, in which F and H are represented by
labelled arcs. Disregard the variables labelling the arcs and the different names in
places, considering that all the names are plain tokens • instead. The superscripts
of the tokens represent their clocks. In the first net, transition t cannot be fired,
as the clocks of tokens do not fit in the intervals of the arcs. However, after an
elapse of 1 unit of time, transition t can be fired from the marking represented
in the second net, reaching the marking in the third one.
ν-Petri Nets: We fix infinite sets Id of names, Var of variables and a subset of
special variables Υ ⊂ Var for fresh name creation. A ν-Petri Net (ν-PN ) [22] is
a tuple N = 〈P, T, F,H〉, where P and T are finite disjoint sets, and F,H : T →
(P × Var)⊕ are the input and output functions, respectively. If (p, x) ∈ F (t)
((p, x) ∈ H(t)), we say that there is an arc from p to t (from t to p) labelled by x
(among possibly other variables).2 We call Var(t) = {x ∈ Var | ∃p ∈ P, (p, x) ∈
F (t) + H(t)}. A marking is a multiset over P × Id . A mode is an injection
σ : Var(t) → Id . Modes are extended homomorphically to (P × Var(t))⊕. A
transition t is enabled with mode σ for a marking M if σ(F (t)) ⊆ M and for

every ν ∈ Υ , (p, σ(ν)) /∈ M for any p. In that case we have M
t
→ M ′, where

M ′ = (M − σ(F (t)) + σ(H(t)) and M → M ′ if M
t
→ M ′ for some t ∈ T .

We interpret each name as (the identifier of) a process that can be created,
synchronize with other processes or become garbage.

Again, for an example see the second and the third nets in Fig. 1. Tokens
are represented as names in places. Disregard the intervals in the arcs and the
superscripts of the tokens. Transition t can be fired from the marking represented
in the second net, reaching the marking in the third one, with mode σ, with
σ(x) = a, σ(y) = b and σ(ν) = c. In particular, note that the firing of t creates
a new name c in place p4. See [22, 21] for more details.

2 We use this notation following [15].
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Fig. 1. Firing of transitions in a ν-TPN

3 Timed ν-Petri Nets

In this section we define the first extension of ν-PN with time, namely Timed
ν-Petri nets (ν-TPN for short) and we prove the undecidability of control-state
reachability for them.

Basically, a ν-TPN is a ν-PN in which each token has a clock, or equivalently,
a TPN in which each token has a name. Arcs are labelled by intervals, meaning
that the value of the clock of the tokens consumed and produced by the transition
must be in these intervals. In Fig. 1 the nets depicted show the same ν-TPN
with three different markings, in which tokens are depicted as names with its
clock as superscript. In the first marking the transition t is not enabled, since
the value of the clock of the only token in p2 is not in [1, 1]. After a delay of
one unit of time, t becomes enabled, and can be fired reaching, for example, the
marking depicted in the right.

Let us define ν-TPN formally. Let Var be a set of variables with Υ ⊂ Var.

Definition 1 (Timed ν-Petri Nets). A Timed ν-Petri net(ν-TPN ) is a tuple
N = 〈P, T, F,H〉, where:

– P and T are finite disjoint sets,
– F : T → (P × Var × I)⊕ is the input function,
– H : T → (P × Var × I)⊕ is the output function.

For a transition t ∈ T , we take Var(t) as the set of variables adjacent to t,
that is, Var(t) = {x ∈ Var | ∃p ∈ P, I ∈ I, (p, x, I) ∈ F (t)+H(t)}. In figures, for
each (p, x, I) ∈ F (t) we draw an arc from p to t, labeled by x, I (and analogously
for postconditions). For the next definition we consider a fixed infinite set Id of
names.

Definition 2 (Markings). A token of a ν-TPN is an element of P×Id×R≥0.
A marking is a finite multiset of tokens.

We write p(a, r) instead of (p, a, r) to denote tokens. Intuitively, p(a, r) is a
token in p, carrying the name a, with clock value r. We use M , M ′, M1,. . . to
range over markings. We say M marks p ∈ P if there are a ∈ Id and r ∈ R≥0

such that p(a, r) ∈ M . We denote Id(M) = {a | ∃p, r, p(a, r) ∈ M}. We assume
• ∈ Id , so that black tokens can appear in markings as in ordinary Petri nets.



If an arc is not labeled by any variable we assume that the token involved is
•. Moreover, in figures we do not write the interval [0,∞). Hence, ordinary
notations in Petri nets can be used.

Now, let us define the semantics of ν-TPN . As expected, markings may evolve
in two different ways: time elapsing and firing of transitions. Time elapsing is
accomplished by simply adding the same amount of time to each token in the
net. In order to fire a transition t ∈ T , we assign an identifier to each of the
variables in Var(t), and we need to ensure that for each (p, x, I) ∈ F (t), there is
a token p(a, r) in the current marking such that r ∈ I.

Definition 3 (Semantics of ν-TPN ). Time elapsing: Given a marking M =
{p1(a1, r1), . . . , pn(an, rn)} and a delay d ∈ R≥0, we write M+d to denote the
marking {p1(a1, r1 + d), . . . , pn(an, rn + d)} in which the value of the clocks of

all tokens has increased by d. Then we write M
d
→ M+d.

Firing of transitions: Let t ∈ T be a transition with F (t) = {p1(x1, I1), . . . ,
pn(xn, In)} and H(t) = {q1(y1, J1), . . . , qm(ym, Jm)}. We say t is enabled or

can be fired in marking M , evolving to M ′, and we denote it by M
t
→ M ′, if

there is an injection σ : Var(t) → Id, r1, . . . , rn ∈ R≥0 and r′1, . . . , r
′
m ∈ R≥0

such that:

– ri ∈ Ii for all i ∈ n+ and r′j ∈ Jj for all j ∈ m+,

– σ(ν) /∈ Id(M) for all ν ∈ Υ ,

– {p1(σ(x1), r1), . . . , pn(σ(xn), rn)} ⊆ M ,

– M ′ = (M − {p1(σ(x1), r1), . . . , pn(σ(xn), rn)})+
{q1(σ(y1), r

′
1), . . . , qm(σ(ym), r′m)}.

We write M → M ′ if M
t
→ M ′ for some t ∈ T or M

d
→ M ′ for some d ∈ R≥0.

As an example, let M1, M2 and M3 be the markings represented in the first,

second and third nets in Fig. 1, respectively. Note that M1
1
→ M+1

1 = M2 and

M2
t
→ M3 with mode σ, where σ(x) = a, σ(y) = b and σ(ν) = c. We remark

that we are defining a weak semantics, in which time elapsings can happen even
if they disable transitions. For instance, from M1 in Fig. 1 two units of time can
elapse, which disables the firing of t forever.

The control-state reachability problem is that of deciding, given a place p,
whether p is marked in some reachable marking (the same definition applies to
the rest of the models in the paper).3 Let us prove undecidability of control-
state reachability for ν-TPN . Instead of giving a reduction from a well-known
Turing-complete model (as Minsky or Turing machines), we first present a Turing
complete model based on Petri nets with identifiers, called ν-RN systems in [21].
Then we reduce control-state reachability in ν-RN , which is undecidable, to
our problem. Considering ν-RN considerably simplifies our reduction, since the

3 We use this terminology, even if places are not necessarily control-states.
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Fig. 2. A ν-RN system and the synchronous firing of the compatible transitions t1 and
t2, assuming it creates M with M(p) = {a, b} and M(q) = {a}

representation gap between both models is certainly smaller than that obtained
if we considered a better known Turing-complete formalism.4

We briefly present ν-RN systems. For more details see Appendix A. Intu-
itively, a ν-RN system is just a collection of ν-PN that can synchronize with each
other, and that can create replicas of themselves (hence the name, ν-Replicated
Nets). For synchronization purposes, we consider a set L of transition labels.

A ν-RN system is a tuple N = 〈P, T, F,H, λ〉, where 〈P, T, F,H〉 is a ν-PN
and λ : T → L labels transitions for two different purposes. On the one hand, it
specifies how a transition can be fired: whether it is an autonomous transition,
that can be fired in isolation, or a synchronizing transition, that must be fired
synchronously with another transition. On the other hand, it indicates which
new instances (if any) are created by its firing. An instance of N is a multiset
over P × Id (i.e., a marking of the underlying ν-PN ). A marking of N is a multi-
set of instances of N . Therefore, in ν-RN each instance contains tokens, possibly
with different names. A synchronous firing can happen whenever two compati-
ble transitions (having labels s? and s!) are enabled, according to the enabling
condition of ν-PN . In that case they can both be fired simultaneously, following
the ordinary token game of ν-PN . In particular, names can be moved along the
nets, be communicated between instances and be created fresh. Moreover, firings
may create new instances (see Fig. 2).

The control-state reachability problem for ν-RN is that of deciding whether
some reachable marking marks a given place. The model of ν-RN is Turing-
complete [21], and termination for Turing machines can be easily reduced to
control-state reachability for ν-RN . Hence control-state reachability is undecid-
able for ν-RN .

Proposition 1. Control-state reachability is undecidable for ν-TPN .

Proof. We reduce control-state reachability for ν-RN systems to our problem.
Given a ν-RN N = 〈P, T, F,H, λ〉, we build a ν-TPN N ′ = 〈P ′, T ′, F ′, H ′〉
which simulates it. In particular, we build N ′ such that P ⊂ P ′, and a place
p ∈ P can be marked in N iff it can be marked in N ′. Without loss of generality,
we suppose that the initial marking of every instance consists of a single (black)
token in a place p0 ∈ P . Moreover, we assume that only autonomous transitions
may create new instances.

4 Even a reduction from Petri nets with inhibitor arcs, which are also Turing-complete,
needs to fill a much bigger representation gap. Informally, inhibitor nets are close to
counter machines, while ν-RN systems and ν-TPN are somewhat close to Turing
machines.
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Fig. 3. Creation of instances

Intuitively, we represent each instance of N by a multiset of tokens with the
same clock value in N ′. The construction guarantees that all the transitions in
N ′ use only tokens with clocks set to 1. Hence, tokens with clocks older than 1
are dead tokens, that cannot be used for the firing of transitions. In order to allow
instances not to become dead, we will add transitions that reset tokens with clock
1 to 0. These transitions may not reset every token with clock 1, in which case
some tokens are lost (after the elapsing of time). Therefore, in some simulations
some tokens are lost, but there are also perfect simulations in which no tokens
are lost. In this sense our simulation is lossy, though it preserves control-state
reachability, since loosing tokens can only remove behavior(no spurious behavior
is introduced). We also guarantee in our construction that we do not merge
instances, that is, that no two tokens with different clock values may end up
having the same value.

Executions in N ′ simulate executions of N in two steps: In the first step
N ′ creates an unbounded number of tokens with different clock values, which
represent all the instances that may take part in the simulation. The second
step is the simulation itself. We consider in N ′ two places s1 and s2 (marked in
mutual exclusion) to specify in which of the two steps the simulation currently is.

Step 1 (creation of instances): In the first step, depicted in Fig. 3, we re-
peatedly fire a transition new , which creates new tokens with clock 0 in place
ins . The clock of each token in ins will represent a different instance of N , so
that we need to ensure that they are all different. We do that by forcing some
time elapsing between two consecutive firings of new , by demanding that the
token in s1 is strictly older than 0 when new is fired (and setting it back to 0).
Initially, there is only one token in place s1, with clock 0.

The firing of a transition init concludes step 1, by moving the token in s1 to
s2 when the token in s1 has a non-null clock. It also sets the initial marking of
N , by taking a token of clock vale 1 from ins and putting it in p0, with clock
0. Notice that this guarantees that the clock value of the token in the initial
instance is different from all the clock values of the tokens in ins .

Step 2 (simulation of transitions): As mentioned before, only tokens with
clocks between 0 and 1 (both included) are valid tokens, that represent a token in
some instance. Step 1 guarantees that at the beginning of step 2 there are no two
tokens having clocks set to 0 and 1, respectively. Moreover, at any point in step
2, two tokens in P with clocks 0 and 1 belong to the same instance. Now we show
how we reset the clock of tokens, and how we simulate the firing of autonomous
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transitions (possibly creating a fresh instance), and the synchronization of two
compatible transitions.

Reseting tokens: In order to be able to perform perfect (non-lossy) simu-
lations, we need to be able to reset the clock of tokens with value 1. For that
purpose, for each place p ∈ P ′ we add a transition tp which takes from p a token
of clock 1 and puts it back with clock set to 0.5 Formally, F ′(tp) = {(p, x, [1, 1])}
and H ′(tp) = {(p, x, [0, 0])}. Notice that this is correct because before reseting
there are no tokens with clock set to 0.

Simulation of the firing of a transition: The simulation of the (autonomous)
transition t ∈ T is simply achieved by demanding that the clock of all tokens
involved in the firing is set to 1. Thus, we consider t ∈ T ′, and we attach the
interval [1, 1] to every arc adjacent to t. More precisely, if (p, x) ∈ F (t) then
(p, x, [1, 1]) ∈ F ′(t) (and analogously for postconditions). We also add s2 as
pre/postcondition of t. Moreover, if t creates a fresh instance, it puts a token
in a new place act . Intuitively, we store in act a token for each instance that
the simulation has created, but that has not been initialized yet. In order to
initialize new instances, we add a new transition tset, which takes a token from
act and a token with clock value 1 from ins , and puts a token in p0 with clock
set to 0, analogously as init (see Fig.4). Again, notice that when there is a token
with clock value 1 in ins there is no token with clock 0 in the whole net, so that
we are correctly creating the new instance.

Simulation of synchronizing transition: Let us see how we simulate the firing
of u = (t1, t2) ∈ T ×T , where t1 and t2 are two compatible transitions according
to λ.(see Fig. 5). We simulate u by means of the consecutive firing of transitions
start1u, start

2
u, u, end

1
u and end2u in T ′. We guarantee (thanks to s2 and new

control places, not shown in Fig. 5) that these transitions can only be fired in
the order shown, and that start1u can only be fired when there is a token in s2
(no simultaneous simulations of firings can take place).

Let us consider in P ′ new places, role1 and role2 (whose content can also be
reseted, as explained above), and for each p ∈ P let us consider p ∈ P ′. The firing
of start1u removes the tokens from the preconditions p of t1 with clock value 1 and
puts them in the corresponding p (with any value for the clock). More precisely,
if (p, x) ∈ F (t1) then (p, x, [1, 1]) ∈ F ′(start1u) and (p, x, [0,∞)) ∈ H ′(start1u).
Moreover, a token (with any name, e.g. a black token) is added to role1 with
clock value 1. The case of start2u is analogous.

5 It is enough to reset places in which the clock is meaningful, unlike e.g. s2.
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Fig. 5. Synchronizing transitions

The firing of u simulates the firing of u (that is, the simultaneous firing of
t1 and t2) in the overlined places. More precisely, if (p, x) ∈ F (ti) for i ∈ {1, 2}
then (p, x, [0,∞)) ∈ F ′(u) (and analogously for postconditions). In particular, it
checks that names in different places are matched according to the variables in
the arcs, and new names are created if needed. Notice that if the names selected
by start1u and start2u do not match then u is disabled. Hence, our simulation may
introduce deadlocks, though it still preserves control-state reachability. Notice
also that this firing can take place independently of the clocks of the tokens
involved.

Finally, transitions end1u and end2u set the clocks of the tokens involved in
the firing of u to their correct values. For that purpose, endiu takes the token
from rolei with clock value 1, and for every p postcondition of ti it takes the
token in p and puts it in p with clock value 1. More precisely, for i = 1, 2,
(rolei, y, [1, 1]) ∈ F ′(ti) (where y is a fresh variable), and if (p, x) ∈ H(ti) then
(p, x, [0,∞)) ∈ F ′(endiu) and (p, x, [1, 1]) ∈ H ′(endiu).

The previous simulation preserves control-state reachability. Indeed, if p is
marked by some execution of N , then that execution can be perfectly simulated,
ending up in a marking that marks p. Conversely, if p is marked by some ex-
ecution of N ′, by construction that execution corresponds to the simulation of
some execution of N which also marks p (possibly with more tokens, if some
were lost).

4 Locally-timed ν-PN

In the previous section we have seen that even control-state reachability is unde-
cidable for ν-TPN . Now we define the class of locally-timed ν-PN (ν-lTPN ), for
which each instance has a single clock. ν-lTPN can be obtained as a syntactic
restriction of ν-TPN , ensuring that each instance uses only one clock. One way
to do it is to consider a special place in which we store a token of each name in
the net, whose clocks represents the age of the corresponding instance. However,
in order to have simpler notations, we prefer to define ν-lTPN from scratch6.

6 Read-only constraints could also be considered within the same setting. However,
for simplicity, we do not consider them in this paper.
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Fig. 6. Firing of a transition in a ν-lTPN .

Definition 4 (Locally-timed ν-PN ). A locally-timed ν-PN (ν-lTPN ) is a
tuple N = 〈P, T, F,H,G〉, where:

– P and T are finite disjoint sets,
– for t ∈ T , Ft, Ht : Var → P⊕ are the input and output functions of t,
– for t ∈ T , Gt : Var → I × I is the time constraints function of t.

For each t ∈ T we define Var(t) = {x ∈ Var | Ft(x) +Ht(x) 6= ∅}, which is
assumed to be finite, and we split it into nfVar(t) = Var(t) \ Υ and fVar(t) =
Var(t) ∩ Υ . In fact, Gt only needs to be defined in Var(t).

Definition 5 (Markings). A marking M of a ν-lTPN is an expression of the
form a1 :(m1, r1), ..., an :(mn, rn), where Id(M) = {a1, ..., an} ⊂ Id are pairwise
different names, and for each i ∈ n+, ∅ 6= mi ∈ P⊕ and ri ∈ R≥0.

We treat markings of ν-lTPN as multisets over elements of the form a:(m, r),
which we call instances. Hence, a : (m, r) is an instance with name a, tokens
according to m, and clock with value r. We assume that each mi in each instance
is not empty. We use M , M ′,... to range over markings, and say a marking M
marks p ∈ P if there is a:(m, r) ∈ M such that p ∈ m.

Definition 6 (Time delay). Given M = a1 :(m1, r1), ..., an :(mn, rn) and d ∈
R≥0, we write M+d to denote the marking a1 :(m1, r1 + d), ..., an :(mn, rn + d),

in which the clock of every instance has increased by d. We write M
d

−→M+d.

Again, we are defining a weak timed semantics. Now we define the firing of
transitions, for which we need the following notations. We denote by G1

t (x) and
G2
t (x) the first and second component of Gt(x), respectively. Intuitively, for a

transition to fire the instance corresponding to x must have a clock value in
G1
t (x). This clock is set to any value in G2

t (x). We say M ′ is an ∅-expansion of
a marking M (or M is the ∅-contraction of M ′) if M ′ is obtained by adding
instances a:(∅, r) to M .

Definition 7 (Firing of transitions). Let t ∈ T with nfVar(t) = {x1, ..., xn}
and fVar(t) = {ν1, ..., νk}. We say t is enabled at marking M if:

– M = a1 : (m1, r1), ..., an : (mn, rn) +M , for some M ,
– for each i ∈ n+, Ft(xi) ⊆ mi and ri ∈ G1

t (xi).



In Sw W Cs
k == 0 → xi := 0 xi < a → k := i, xi := 0 k == i ∧ xi > d

k 6= i ∧ xi > d

k := 0

Fig. 7. Timed automaton modelling the i-th process of Fischer’s mutual exclusion
protocol

Then, t can be fired, and taking

– {b1, ..., bk} pairwise different names not in Id(M),
– m′

i = (mi − Ft(xi)) +Ht(xi) for all i ∈ n+,
– m′′

j = Ht(νj) for all j ∈ k+,

– r′i any value in G2
t (xi), for all i ∈ n+,

– r′′j any value in G2
t (νj), for all j ∈ k+,

we can reach M ′, denoted by M
t

−→M ′, where M ′ is the ∅-contraction of

a1:(m
′
1, r

′
1), ..., an:(m

′
n, r

′
n), b1:(m

′′
1 , r

′′
1 ), ..., bk:(m

′′
k , r

′′
k) +M

Let us give two examples to illustrate the previous definitions.

Example 1. Fig. 6 depicts a ν-lTPN with three different markings. In the first
marking the transition t is not fireable, because no instance with a clock value
in [1, 1] has a token in place p2. However, after waiting 0.5 units of time, the
marking M2 is reached, and t becomes enabled. Then, we can fire t reaching, for
example, the marking M3 in the figure.

Example 2. Fischer’s protocol: We model a parameterized version of Fischer’s
protocol for mutual exclusion, which considers n processes pi (where n is a
parameter), each of those endowed with a real clock xi. Moreover, a shared
integer variable k ∈ {1, . . . , n} is considered, in order to set the turn for entering
the critical section. Each process pi can be modelled by the timed automaton of
Fig. 7, and behaves as follows:

1 repeat
2 non critical section 7 until k==i;
3 repeat 8 critical section;
4 await k==0; 9 k:=0;
5 k:=i; 10 non critical section
6 delay(d); 11 until false;

Process pi repeatedly tries to enter the critical section (state In). For that
purpose, it waits until k = 0, which means that no other process is in the critical
section (state Sw). Then, it sets k := i, to ask for permission to enter (state W ).
After a delay of d units of time, if k is still i, the process enters the critical section
(state Cs), setting k = 0 when it leaves. Otherwise, it repeats lines 4−6. In order
to make the algorithm satisfy the mutual exclusion property, it is important to
fix a proper delay d, greater than the time a it takes each process to execute line
5. Then in Fig. 7 we take a < d.
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Fig. 8. Fischer’s mutual exclusion protocol as a ν-lTPN

Let us define our model: We consider the net depicted in Fig 8. Intuitively,
each token in places In, Sw, W and Cs represents a different instance. The
variable k is represented by a place k that contains a black token if k = 0
or a token with the identifier that changed its value last. When a transition t
is fired, if there are two different variables x, y ∈ Var(t), then the names of the
tokens associated to x and y in the firing are different (hence checking if k == i).
Notice the transition new, that can create any number of processes in their initial
state. To prove mutual exclusion, we have to prove that no marking with two
tokens in place Cs can be reached, which can be easily reduced to control-state
reachability.

You can note that the timed automaton in Fig. 7 modelling Fischer’s protocol
and our parametric model are very similar. In [2], the authors model Fischer’s
protocol using TPN . As they do not use colors, they need to use the counting
abstraction (hence considering the state space of each process and the shared
variable), and the obtained model is far more complicated than ours.

The state space of ν-lTPN is infinite in various dimensions. It encompasses
infinitely-many instances, each of which is potentially unbounded, and contains
a clock over an uncountable domain. Moreover, as any marking has infinitely-
many successors due to time delays, the transition system induced by a ν-lTPN is
not finitary. Next, we use the theory of regions to obtain a finitary transition
system over a countable domain. Moreover, this transition system will be a
Well-Structured Transition System [1, 10], so that we can solve the control-state
reachability problem by reducing it to a coverability problem. The proofs omitted
from this section can be found in Appendix B.

We fix a ν-lTPN N = 〈P, T, F,H,G〉 and simply denote by max the maximum
integer bound appearing in the intervals of the net. Also, we write n∗

∞ to denote
n∗ ∪ {∞}. Following [3, 5], we represent markings of N using regions.

Definition 8 (Regions). A region is an expression of the form A0∗A1∗. . . An∗
A∞ with n ≥ 0, where Ai ∈ (P⊕ × Ii)

⊕ for every i ∈ n∗
∞ and I0 = max∗,

Ii = (max−1)∗ for i ∈ n+ and I∞ = {max+1}. We write |R| =
∑

i∈n∗
∞
|Ai|.

We assume Ai 6= ∅ for any i ∈ n+, and m 6= ∅ for all (m, r) ∈ Ai, for any
i ∈ n∗

∞. We use R, R′,. . . to range over regions and R, R′,. . . to range over sets of



regions. Let us intuitively explain their meaning. Each marking M of a ν-lTPN
has a region RM associated to it. To obtain it, we partition the instances in M
into three multisets:

– The multiset M1 of instances with an integer clock value of at most max,
– The multiset M2 of instances younger than max, with a non-integer clock

value,
– The multiset M3 of instances older than max.

Then we put instances in M1 in A0, with the information about their clocks
(though forgetting their names). Moreover, we keep in A1 . . . An the instances
in M2, ordered according to the fractional part of their clocks, and storing only
their integer part. Finally, we put instances in M3 in A∞, abstracting its clocks
to max+1. Let us see it formally.

Definition 9 (Region of a marking). Let M be a marking. We define the
region RM = A0 ∗A

x1 ∗ ... ∗Axn ∗A∞ where:

– |RM | = |M |, x1, ..., xn ∈ (0, 1) and i < j iff xi < xj,
– A0 = {(m, r) | a:(m, r) ∈ M, r ∈ max∗},
– Ax = {(m, ⌊r⌋) | a:(m, r) ∈ M, r < max, frct(r) = x},
– A∞ = {(m,max+1) | a:(m, r) ∈ M, r > max}.

Example 3. Let M = a1 :({p}, 1), a2 :({p}, 1.1), a3 :({q}, 2.1), a4 :({p, q}, 1.2), a5 :
({pq}, 3.1), a6 :({p, q}, 3), and max = 3. Then, RM = A0 ∗ A1 ∗ A2 ∗ A∞, with
A0 = {({p}, 1), ({p, q}, 3)} (which represents the two instances with integer clock
value), A1 = {({p}, 1), ({q}, 2)}, A2 = {({p, q}, 1)} (corresponding to the two
different fractional parts, ordered) and A∞ = {({pq}, 4)} (the only instance
with clock value greater than max). Note that x1, ..., xn above are not part of
the definition of RM .

Let us define the transition system over regions induced by N .
Time elapsing : There are two ways in which time may elapse in regions. If

A0 6= ∅, the region may evolve to ∅ ∗ A<
0 ∗ A1 ∗ . . . ∗ An ∗ (A∞ + A=

0 ), where
A< = {(m, r) ∈ A | r < max} and A= = {(m,max+1) | (m,max) ∈ A}, which
corresponds to a small elapsing of time that makes all the instances in A0 to
have a non-integer clock value, and so that the instances in An do not reach
an integer value. Notice that instances in A0 with clock max are added to A∞.
Otherwise, when A0 = ∅, the region may evolve to A+1

n ∗ A1 ∗ . . . ∗ An−1 ∗ A∞,
where A+1 = {(m, r + 1) | (m, r) ∈ A}, which represents an elapsing of time
that causes the instances in An (those with a higher fractional part) to reach
the next integer part. Formally:

Definition 10 (Time elapsing for regions). Let R = A0 ∗A1 ∗ . . . ∗An ∗A∞

be a region. We write R
δ
։R′, where

R′ =

{

∅ ∗A<
0 ∗A1 ∗ . . . ∗An ∗ (A∞ +A=

0 ) if A0 6= ∅
A+1

n ∗A1 ∗ . . . ∗An−1 ∗A∞ otherwise



Example 4. Consider the region RM = A0 ∗ A1 ∗ A2 ∗ A∞ of Ex.3. As A0 6= ∅
and max = 3, according to the first case of the previous definition, it holds

that RM

δ
։R′, where R′ = ∅ ∗ A<

0 ∗ A1 ∗ A2 ∗ (A∞ + A=
0 ), A

<
0 = {({p}, 1)} and

A=
0 = {({p, q}, 4)}.

Firing of transitions : In order to define the firing of transitions for regions
we first need to define ∅-expansions/contractions for them.

Definition 11 (∅-expansion/contraction). We say R′ is an ∅-expansion of
a region R = A0 ∗ A1 ∗ . . . ∗ An ∗ A∞ (or R is the ∅-contraction of R′) if R′ is
of the form A′

0 ∗ u0 ∗A
′
1 ∗ u1 ∗ . . . ∗A

′
n ∗ un ∗A′

∞ and for each i:

– A′
i = Ai +Bi with m = ∅ for all (m, r) ∈ Bi,

– ui = Bi
1 ∗ . . . ∗B

i
ki

with ki ≥ 0 and m = ∅ for all (m, r) ∈ Bi
j.

Example 5. Consider again the region RM of Ex.3. R∅ = A0 ∗A
′
1 ∗B ∗A2 ∗A∞,

with A′
1 = {({p}, 1), ({q}, 2), (∅, 1)} and B = {(∅, 1), (∅, 2)} is an ∅-expansion of

RM . Note that we have added to A1 the pair (∅, 1), and a new multiset B, with
only empty instances.

Now, we define the firing of transitions for regions. Intuitively, a transition t
is enabled at a region if we can assign to each variable x ∈ Var(t) with x /∈ Υ a
pair (m, r) in some multiset Ai of the region, in such a way that Ft(x) ⊆ m and
the clock that represents the pair is in G1

t (x). Then, the transition can be fired,
reaching a new region in which we update the markings of the pairs assigned
to each variable according to Ft and Ht, and we update the clocks of the pair
according to G2

t . Moreover, we possibly need to remove some of the pairs we have
chosen from some Ai they are in, and put them in a different Aj , according to
one of the possible clocks they may represent. Finally, for each ν ∈ Υ , we put
a new pair (Ht(ν), r) in a proper (and maybe new) multiset of the region. In
order to make the previous assignments, we define modes for regions. For any
interval I, we call left closure of I the result of replacing the left delimiter of I
by a closed one (for instance, the left closure of (a, b) is [a, b)).

Definition 12. Given a transition t ∈ T and an ∅-expansion A0 ∗A1 ∗ . . .∗An ∗
A∞ of a region R, let l = |Var(t)|. A mode for t and R is any tuple τ = (τ1, τ2, τ3)
where τ1 : Var(t) → (n∗

∞ × l+) is an injection, and τ2 : Var(t) → (max+1)∗ and
τ3 : Var(t) → n∗

∞ ∪ (n∗ × l+) are mappings such that:

– For all x ∈ Var(t), τ2(x) is in the left closure of G2
t (x),

– if τ2(x) > max then τ3(x) = ∞,
– if G2

t (x) = (a, b] or G2
t (x) = (a, b) and τ2(x) = a then τ3(x) 6= 0.

Intuitively, τ1, τ2 and τ3 assign to each variable of t an instance of the region
to perform the firing, the clock value to which we update this instance and
the new position in the region that the instance takes, respectively. The first
condition above ensures that the integers we choose to update the clocks of the
instances are correct according to G2

t (x). The second condition makes sure that



instances older than max are stored in A∞. The third condition ensures that the
created instances with a clock value of integer part a, but not exactly a, are not
stored in A0. Let us now define the firing of transitions for regions.

Definition 13. We say a transition t is enabled at a region R if there is an
∅-expansion A0 ∗ A1 ∗ . . . ∗ An ∗ A∞ of R and a mode τ = (τ1, τ2, τ3) such that
for each i ∈ n∗

∞ there is Āi = {(mij , rij) | τ1(x) = (i, j)} ⊆ Ai and for each
x ∈ Var(t) with τ1(x) = (i, j):

– If x ∈ Υ , then mij = ∅,
– Ft(x) ⊆ mij,
– rij ∈ G1

t (x) if i ∈ {0,∞}, and rij + 0.5 ∈ G1
t (x), otherwise.

Then, we define m′
ij = (mij −Ft(x))+Ht(x) and take for all k ∈ n∗ and b ∈ l+:

– Bk = Ak − Āk,
– Dk = {(m′

ij , r) | ∃x ∈ Var(t) with τ1(x) = (i, j), τ2(x) = r, τ3(x) = k},
– Ck = Bk +Dk and
– Ckb = {(m′

ij , r) | ∃x ∈ Var(t) with τ1(x) = (i, j), τ2(x) = r, τ3(x) = (k, b)}.

Then, we write R
t
։R′, where R′ is the ∅-contraction of C0 ∗C01 ∗ . . . ∗C0l ∗

C1 ∗ C11 ∗ . . . ∗ C1l ∗ . . . ∗ Cn ∗ Cn1 ∗ . . . ∗ Cnl ∗ C∞.

Intuitively, for each i ∈ n∗
∞, Āi represents the multiset of instances selected

by τ1 from the multiset Ai which take part in the firing. Therefore, Bi is the
multiset obtained after removing from Ai the instances corresponding to the
preconditions. Finally, Ci represents Bi after adding the postconditions, and the
Cijs represent multisets of instances which we assign to clocks with fractional
parts not appearing in R. Note that between two Cis we add l Cijs. This is so
to handle the case in which all the instances update their clocks to values with
a fractional part between the ones represented by Ci and Ci+1.

Example 6. Let t be a transition with:

– Ft(x) = {p},
– Ht(x) = {q}, Ht(ν) = {pq},
– G1

t (x) = (0, 3], G2
t (x) = (1, 2) and G2

t (ν) = (1, 3).

Then, we could consider the mode τ = (τ1, τ2, τ3) for t and the region RM in
Ex.3, where:

– τ1(x) = (2, 1),
– τ2(x) = 1, τ2(ν) = 2,
– τ3(x) = (2, 1) and τ3(ν) = 1.

According to the previous definition, we can fire t from RM with mode τ ,
reaching a new marking R′ = A0 ∗A

′
1 ∗A21 ∗A∞, where A′

1 = {({p}, 1), ({q}, 2),
({pq}, 2)} and A21 = {({q2}, 1)}. Note that A′

1 comes from adding ({pq}, 2) to
A1, which represents that the new instance (associated to ν) is created with a
clock with fractional part as the ones represented in A1. Moreover, the multiset
A2 dissapears, as we have removed from it the only instance it contained. Finally,
a new multiset A21 is created, with the instance associated to variable x.



Let
∆
։ be the reflexive and transitive closure of

δ
։ and ։ =

∆
։ ∪

⋃

t∈T

t
։.

Proposition 2. The following relations between → and ։ hold:

– If M−→∗M ′ then RM։
∗
RM ′ ,

– If RM։
∗
R′ then there is M ′ with R′ = RM ′ and M−→∗M ′.

The proof of the previous proposition can be found in Appendix B. We omit
it from this paper because it is rather technical. However, there is a point which
would be interesting to focus in, which is how we manage the elapsings of time.
In Def. 10 there are two ways time may elapse, depending on the region we
consider. Both ways correspond to a small elapse, of less than a unit of time.
However, we need to be able to represent longer elapsings. Prop. 2 can be proved

because
∆
։ is defined as the reflexive and transitive closure of

δ
։, and therefore,

we can concatenate as many small elapsings as we need, in order to represent
longer elapsings of time.

Let us next see that we can reduce the control-state reachability problem to a
coverability problem in ν-lTPN using regions. In the first place, we must define
an order over regions, which induces the corresponding coverability problem.

Definition 14 (Order over regions). We define (m, r) ≤ (m′, r′) iff m ⊆ m′

and r = r′. Then, we define A0 ∗ A1 ∗ . . . ∗ An ∗ A∞ ⊑ B0 ∗B1 ∗ . . . ∗ Bm ∗ B∞

iff A0 ≤⊕ B0, A∞ ≤⊕ B∞ and A1 . . . An≤
⊕⊛B1 . . . Bm.

Notice that we are using the word order induced by the multiset order, and
therefore ⊑ is a decidable wpo. The order ⊑ induces a coverability problem in
the transition system with regions as states, and we can reduce control-state
reachability to it.

Proposition 3. Given p ∈ P we can compute a finite set of regions Rp such
that p is marked by some reachable marking iff ↑Rp can be reached.

A Well Structured Transition System (WSTS) is a tuple S = 〈X,→, x0 ≤〉,
where 〈X,→, x0〉 is a transition system, and ≤ is a decidable wpo on X, such
that (i) for all x1, x2, x

′
1 ∈ X such that x1 ≤ x′

1 and x1 → x2 there is x
′
2 ∈ X such

that x′
1 → x′

2 and x2 ≤ x′
2 (compatibility); (ii) min(↑Pre(↑x)) is computable for

every x ∈ X (effective Pre-basis).7 Coverability is decidable for WSTS [1, 10].
Since ⊑ is a decidable wpo, in order to prove that the transition system over

regions induced by a ν-lTPNN is a WSTS, it only remains to prove that the
transition relation is compatible with the order, and that the effective Pre-basis
property holds. We prove both properties by first proving that they hold for
∆
։ and

t
։, and then considering the union of them. In particular, in order to

prove the effective Pre-basis, we split Pre into Pre∆(R) = {R′ | R′
∆
։R} and

Pret(R) = {R′ | R′
t
։R}, and we we define Pre∆ and Pret for each t ∈ T , so

7 This class is actually referred to as effective WSTS with strong compatibility and
effective Pred-basis in the literature.



that Pre∆(↑R) = ↑Pre∆(R) and Pret(↑R) = ↑Pret(R). These proofs are rather
technical, and therefore, we prefer to omit them from this paper. From the fact
that the transition system we have defined is a WSTS and Prop. 3 above, we
obtain the following result:

Corollary 1. Control-state reachability is decidable for ν-lTPN .

5 Conclusions and future work

We have introduced real time in a model of dynamic networks of processes that
encompasses two sources of infinity: processes can be infinite-state, and there
can be infinitely-many such processes. Despite there are previous works in which
real time is studied in such Turing-powerful concurrent systems, as in [7], up to
our knowledge, this is the first work in which real time is considered for this kind
of concurrent systems, in which safety properties are still decidable. In the first
model considered, ν-TPN , each process is endowed with an arbitrary amount
of real clocks, while in the second one, ν-lTPN , only one clock per process is
allowed. While control-state reachability (whether a given place can be marked)
is undecidable in the first model, we have shown that we can use the theory of
regions to prove decidability of this property in the second. With regions as state
space, we prove that ν-lTPN belong to the class of WSTS, for which coverability
is decidable. In [16], we compare ν-lTPN with other classes of WSTS, proving
that they are the most expressive of the studied classes. In particular, we prove
that TPN are strictly less expressive than ν-lTPN , using coverability languages
for their comparison.

As future work, we plan to study the expressive power of models in between
ν-TPN and ν-lTPN , in which a fixed number (possibly greater than one) of
clocks is allowed, and the relation of ν-lTPN to the existing works that model
GALS (globally asynchronous locally synchronous) systems using Petri nets [14].
In a different line, we have assumed that processes (or their identifiers) are not
ordered in any way. It would be interesting to see whether our work scales in the
case of ordered processes, which amounts to extend Data Nets [15] with time.

Regarding complexity, since ν-lTPN are more expressive than Data Nets or
TPN [16], we can already obtain a lower bound for coverability and termination
at level Fωωω [12] in the fast-growing hierarchy. It would be interesting to know
if this lower bound is tight, though we may expect it is not, due to the higher
order types of the state space in ν-lTPN .

Although we have not discussed properties other than control-state reachabil-
ity, the properties of termination and boundedness are still decidable for ν-lTPN .
Indeed, termination is decidable for WSTS under rather general hypothesis, as
well as boundedness.8 Other directions for further study include other proper-
ties, as the existence of Zeno behaviors [4] (actually, the first step in the proof of
Prop. 1 exhibits such behavior), or liveness properties, although negative results
in the untimed case are discouraging [22].

8 For boundedness compatibility must be strict, as we claim is the case for ν-lTPN .
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Appendix A. Definition of ν-RN systems

We fix an arbitrary set S of service names and let Sync = {s?, s! | s ∈ S}.

Definition 15 (ν-RN systems). A ν-RN system is a tuple N = 〈P, T, F,H, λ〉,
where:

– 〈P, T, F,H〉 is a ν-PN ,
– λ : T → L assigns a label to each transition,

where L = (S∪Sync)×(P ×Id)⊕. An instance of N is an element of (P ×Id)⊕.
A marking of N is a multiset of instances of N .

As for ν-TPN , we write Var(t) to denote the set of variables in arcs adjacent

to t. For two instances M and M ′ we write M
t(σ)
−→M ′ if M can reach M ′ after

the firing of t with mode σ, following the semantics of ν-PN . We write Id(M)
to denote the set of names that appear in marking M. We identify any marking
M with M+ {∅}.9

Definition 16 (Firing of autonomous transitions). Let t ∈ T such that

λ(t) = (s,M), and M and M ′ be two instances such that M
t(σ)
−→M ′ with σ(ν) /∈

Id(M) for ν ∈ Υ . Then {M} +M
t

−→{M ′,M} +M for any marking M such
that σ(ν) /∈ Id(M) for ν ∈ Υ .

Definition 17 (Firing of synchronizing transitions). Let t1, t2 ∈ T such
that λ(t1) = (s?,M1) and λ(t2) = (s!,M2) for some s ∈ S, and let M1,M

′
1,M2

and M ′
2 be instances such that Mi

ti(σi)
−→M ′

i with σ1(x) = σ2(x) for all x ∈

Var(t1) ∩ Var(t2) and σ(ν) /∈ Id(M i) for i = 1, 2. Then {M1,M2}+M
(t1,t2)
−→

{M ′
1,M

′
2,M1,M2}+M for any marking M such that σ(ν) /∈ Id(M) for ν ∈ Υ .

Notice that when M , M1 or M2 are empty then no instance is created.

Appendix B. Proofs of Section 4.

For simplicity, we sometimes extend firings of transitions in regions, to firings in
∅-expansions of regions in the natural way.

B1. Proof of Proposition 2 and Proposition 3

Let us denote C(M) = {r | a:(m, r) ∈ M} ∈ R≥0
⊕.

Lemma 1. Let M be a marking such that C(M) ∩N 6= ∅ and ǫ = max{frct(r) |

r ∈ C(M)}. If 0 < d < 1− ǫ then RM

δ
։RM+d . Moreover, C(M+d) ∩ N = ∅.

9 This is equivalent to the mechanism of ∅-expansions/contractions, though we prefer
to use the later in the rest of the paper in order to deal only with wpo (and not
wqo).



Proof. Suppose that RM = A0 ∗A
x1 ∗ ...∗Axn ∗A∞, where 0 < x1 < ... < xn < 1

are the fractional parts of the ages of the instances younger than max in M .
Then, as xn = ǫ = max{frct(r) | r ∈ C(M)}, 0 < d < 1 − ǫ and C(M) ∩ N 6= ∅,
the fractional parts of the ages of the instances younger than max in M+d are
d, x1 + d, ..., xn + d (with xn + d < 1). For each i ∈ n+, the instances and
markings with fractional parts of its ages xi+d in M+d are the same as the ones
in M with fractional parts of its ages xi. Moreover, the instances and markings
with fractional parts of its ages d in M+d are the instances with natural ages
younger than max in M . Therefore, RM+d = ∅ ∗ Ad ∗ Ax1+d ∗ ... ∗ Axn+d ∗ A′

∞

as defined in Def. 9, where in A′
∞ are represented the instances in A∞ and the

instances in A0 with age max and in Ad are represented the instances in A0

younger than max. By the first case of Def. 10, we have that RM

δ
։R′, where

R′ = ∅∗A<
0 ∗Ax1

∗...∗Axn
∗(A∞+A=

0 ) = ∅∗Ad∗Ax1+d∗...∗Axn+d∗A′
∞ = RM+d .

Lemma 2. Let M be a marking such that C(M) ∩N = ∅ and ǫ = max{frct(r) |
r ∈ C(M)}. If d < 1− ǫ then RM = RM+d .

Proof. Suppose that RM = ∅ ∗Ax1 ∗ ... ∗Axn ∗A∞, where 0 < x1 < ... < xn < 1
are the fractional parts of the ages of the instances younger than max in M .
Then, as xn = ǫ = max{frct(r) | r ∈ C(M)}, d < 1 − ǫ and C(M) ∩ N = ∅,
the fractional parts of the ages of the instances younger than max in M+d are
x1+d, ..., xn+d < 1, and moreover, for each i ∈ n+, the instances and markings
with fractional parts of its ages xi + d in M+d are the same as the ones in
M with fractional parts of its ages xi. Therefore, by the definition of region,
RM+d = ∅ ∗Ax1+d ∗ ... ∗Axn+d ∗A∞ = ∅ ∗Ax1 ∗ ... ∗Axn ∗A∞ = RM .

Lemma 3. Let M be a marking such that C(M) ∩N = ∅ and ǫ = max{frct(r) |

r ∈ C(M)}. If d = 1− ǫ then RM

δ
։RM+d . Moreover, C(M+d) ∩ N 6= ∅.

Proof. Suppose that RM = ∅ ∗Ax1 ∗ ... ∗Axn ∗A∞, where x1, ..., xn ∈ (0, 1) with
i < j iff xi < xj , are the fractional parts of the ages of the instances younger
than max in M . Then, as xn = ǫ = max{frct(r) | r ∈ C(M)}, d = 1 − ǫ and
C(M)∩N = ∅, the fractional parts of the ages of the instances younger than max
in M+d are 0, x1+d, ..., xn−1. For each i ∈ (n− 1)+, the instances and markings
with fractional parts of its ages xi+d in M+d are the same as the ones in M with
fractional parts of its ages xi. Moreover, the instances and markings with natural
ages in M+d are the instances with ages with fractional part xn in M . Therefore,
RM+d = A0 ∗A

x1+d ∗ ... ∗Axn−1+d ∗A∞ as defined in Def. 9. By the second case

of Def. 10, we have that RM

δ
։R′, where R′ = A+1

n ∗ Ax1
∗ ... ∗ Axn−1

∗ A∞ =
A0 ∗A

x1+d ∗ ... ∗Axn−1+d ∗A∞ = RM+d .

Lemma 4. Let M be a marking such that C(M) ∩ N 6= ∅. Then RM

∆
։RM+1 .

Proof. Let RM = A0 ∗A1 ∗ ... ∗An ∗A∞ and let xi be the fractional part of the
ages of instances in Ai for i ∈ n∗ (so x0 = 0) and take xn+1 = 1. Then x0 <
x1 < ... < xn < xn+1. We define ǫi = (xi+1 − xi)/2 for i ∈ n∗. Let Mn+1 = M ,



M ′
i+1 = M+ǫi

i+1 for i ∈ n∗ and Mi−1 = (M ′
i)

+ǫi for i ∈ (n+ 1)+. Then we have

M = Mn+1

ǫn
։M ′

n+1

ǫn
։Mn

ǫn−1

։ ...
ǫ1
։M1

ǫ0
։M ′

1

ǫ0
։M0. Notice that

∑

i∈n∗ 2ǫi = 1, so
that M0 = M+1. It also holds that C(Mi) ∩ N 6= ∅ for all i ∈ (n+ 1)∗ and
C(M ′

i) ∩ N = ∅ for all i ∈ (n+ 1)+. Moreover, the maximum fractional part of
the reals in Mi+1 is 1 − 2ǫi for i ∈ n+, and that of M ′

i+1 is 1 − ǫi for i ∈ n∗.
Then Mi+1 and ǫi are in the hypothesis of Lemma 1, and M ′

i+1 and ǫi in the

ones of Lemma 3. Therefore, RMi

δ
։RM ′

i
for i ∈ (n+ 1)+ and RM ′

i+1

δ
։RMi

for

i ∈ n∗, so that RM = RMn+1

∆
։RM0

= RM+1 .

Lemma 5. Given two markings M and M ′, if M
t

−→M ′ then RM

t
։RM ′ .

Proof. Let us suppose that M
t

−→M ′. Then, if nfVar(t) = {x1, ..., xn1
} and

fVar(t) = {xn1+1, ..., xn2
} then we have M = a1 : (m1, r1), ..., an1

: (mn1
, rn1

) +
M and for each i ∈ n+

1 , Ft(xi) ⊆ mi (1) and ri ∈ G1
t (xi) (2). Moreover, let

RM = A0 ∗ A1 ∗ . . . ∗ An ∗ A∞, and R∅
M = A0 ∗ A1 ∗ . . . ∗ An ∗ An+1 ∗ A∞ be

the ∅-expansion of RM , where Ai = {(m∅
i1, r

∅
i1), . . . , (m

∅
iki

, r∅iki
)} for i ∈ n∗

∞ and
An+1 which only contains empty instances. Let l = max{ki | i ∈ n∗

∞}.
Let us define a mode τ = (τ1, τ2, τ3) for firing t from RM , obtaining the

region R′
M . First of all, we define τ1, and prove that t is enabled at RM with a

mode with τ1 as first component. Let Φ1 : n+
1 → n∗

∞ × l, be the function which
associates each i ∈ n+

1 to the location of the pair which represents the instance
ai in RM . Note that the instances in M are not selected by τ1, and therefore,
they remain in the same Ais after firing t in the region. Then, we define τ1 such
that τ1(xi) = Φ1(i) if xi ∈ nfVar(t) and τ1(xi) = (n+ 1, i) otherwise. Then, we
have that, for each x ∈ Var(t):

– If x ∈ Υ then τ1(x) = (n+ 1, i), and mn+1,i = ∅.
– If τ1(x) = (i, j), then Ft(x) ⊆ m∅

ij , because of (1).

– rij ∈ G1
t (x) if i ∈ {0,∞}, and rij + 0.5 ∈ G1

t (x), otherwise, because of (2).

Therefore, t is enabled at RM . Now, we prove that we can fire it in such a
way that we reach RM ′ . For that purpose, we first need to define the proper
functions τ2 and τ3 of the mode for the firing.

Let us call Φ2 : Var(t) → R≥0 the function which associates each xi ∈ Var(t)
to the age to which the instance ai of M is updated in the firing. Then, we
define τ2 such that, for each x ∈ Var(t), τ2(x) = ⌊Φ2(x)⌋ if Φ2(x) ≤ max or
τ2(x) = max + 1. With this definition, for each x ∈ Var(t), τ2(x) is in the left
closure of G2

t (x), as Def. 12 demands. Finally, we define τ3 such that:

– If τ2(x) = n + 1 then τ3(x) = ∞ (and therefore, the second condition de-
manded by Def. 12) else,

– if τ2(x) = Φ2(x), that is, if Φ2(x) ∈ N then τ3(x) = 0 else,
– if frct(Φ2(x)), is a fractional part which has names represented in Ai then

τ3(x) = i else,



– if Ai represents the names with the greatest fractional part f lower than
τ2(x), and τ2(x) if the jth fractional part greater than f of all the frct(xi),
τ3(x) = (i, j).

The third condition of Def. 12 holds for the mode τ we have defined, because
if G2

t (x) = (a, b] or G2
t (x) = (a, b) and τ2(x) = a, then τ2(x) 6= Φ2(x) and

therefore τ3(x) 6= 0.
Now, we prove that the region R that we reach by firing t from RM with

mode τ is RM ′ . We do it by proving that A′
i is in R′

M iff it is in R.
We analyse different cases:

– First, we consider A′
0 of R′

M . A′
0 = {(m, r) | ∃a with a : (m, r) ∈ M̄, r ∈

N, r ≤ max}+ {(m, r) | ∃k ∈ n+
1 with Φ1(k) = (i, j),m = (m∅

ij − Ft(xk)) +

Ht(xk), Φ2(k) = r, r ∈ N, r ≤ max} = {(m∅
0j , r

∅
0j) ∈ A0 | ∄x ∈ V ar(t) with τ1(x) =

(0, j)}+ {(m, r) | ∃x with τ1(x) = (i, j),m = (m∅
ij −Ft(x)) +Ht(x), τ2(x) =

r, τ3(x) = 0} which is the first set in R.
– Consider A′

∞ of R′
M . A′

∞ = {(m,max + 1) | ∃a with a : (m, r) ∈ M̄, r >
max}+ {(m,max+ 1) | ∃k ∈ n+

1 with Φ1(k) = (i, j),m = (m∅
ij − Ft(xk)) +

Ht(xk), Φ2(k) = r, r > max} = {(m∅
∞j ,max+1) ∈ A∞ | ∄x ∈ V ar(t) with τ1(x) =

(∞, j)} + {(m,max + 1) | ∃x with τ1(x) = (i, j),m = (m∅
ij − Ft(x)) +

Ht(x), τ2(x) = max+ 1}, which is the last set in R.
– Now, let us consider the case in which A is a set of R′

M which repre-
sents instances in M with the fractional part of the age ρ. Moreover, let
us suppose Ak is the set of RM which represents instances with this frac-
tional part of the age. Then A = {(m, r) | ∃a with a : (m, r′) ∈ M̄, r =
⌊r′⌋, frct(r′) = ρ, r′ ≤ max} + {(m, r) | ∃k′ ∈ n+

1 with Φ1(k
′) = (i, j),m =

(m∅
ij − Ft(xk′)) +Ht(xk′), Φ2(k

′) = r′, r = ⌊r′⌋, frct(r′) = ρ, r′ ≤ max} =

= {(m∅
kj , r

∅
kj) ∈ Ak | ∄x ∈ V ar(t) with τ1(x) = (k, j)}+{(m, r) | ∃x with τ1(x) =

(i, j),m = (m∅
ij − Ft(x)) +Ht(x), τ2(x) = r, τ3(x) = k}, which is in R.

– Finally, we consider the case in which A is a set of R′
M which represents

instances with fractional part of the age ρ different to all the ones in M .
Then, A = {(m, r) | ∃k ∈ n+

1 with Φ1(k) = (i, j),m = (m∅
ij − Ft(xk)) +

Ht(xk), Φ2(k) = r′, r = ⌊r′⌋, frct(r′) = ρ, r′ ≤ max} = {(m, r) | ∃x with τ1(x) =
(i, j),m = (m∅

ij−Ft(x))+Ht(x), τ2(x) = r, τ3(x) = (k, k) where Ak1 represents

the names with the greatest fractional part f lower than r, and r if the kth

fractional part greater than f of all the frct(xi)}, which is in R.

Finally, note that the order of the sets of R correspond to the order of the
corresponding A′

i of R
′
M . That is because we have defined τ , in such a way that

we order the different sets depending on the fractional part of r′′g s younger than
max, setting the instances older than max in A′

∞, as in R′
M .

Lemma 6. Given two markings M and M ′ and d > 0, if M
d

−→M ′ then RM

∆
։RM ′

Proof. Let d > 1 (the other case is easier) and M
d

−→M ′. Suppose that C(M) ∩

N 6= ∅ (otherwise, by lemma 3 we know that there exist ǫ such that RM

δ
։RM+ǫ



and C(M+ǫ) ∩ N 6= ∅, and we start from M+ǫ). Then, we have that

M
1

−→M+1 1
−→M+2 1

−→ . . .
1

−→M+⌊d⌋frct(d)−→ M ′. Because of Lemma 4 we know

that RM

∆
։RM+1

∆
։RM+2

∆
։ . . .

∆
։RM+⌊r⌋ . Therefore, we only need to prove that

RM+⌊d⌋

∆
։RM ′ . As in Lemma 4, let RM+⌊d⌋ = A0 ∗A1 ∗ ... ∗An ∗A∞ and let xi

be the fractional part of the ages of instances in Ai for i ∈ n∗, xn+1 = 1, ǫi =
(xi+1 − xi)/2 for i ∈ n∗, Mn+1 = M+⌊d⌋, M ′

i+1 = M+ǫi
i+1 and Mi−1 = (M ′

i)
+ǫi .

Now, we select k such that 1−xk ≤ frct(d) and 1−xk−1 > frct(d), and we define
y = xk− (1− frct(d)) and My = M+y

k . Note that
∑n

i=k 2∗ǫ+y = (1−xk)+xk−

(1 − frct(d)) = frct(d), so that My = M+⌊d⌋+frct(d)
= M ′. Repeating the same

reasoning as in Lemma 4, we can conclude that RM+⌊d⌋ = RMn+1

∆
։RMy

= RM ′ .

Lemma 7. Given a markings M , if RM

t
։R′ then there is M ′ with R′ = RM ′

and M
t

−→M ′.

Proof. Let us suppose that RM

t
։R′ with mode τ = (τ1, τ2, τ3). We define a

marking M ′ with R′ = RM ′ , and then we prove that M
t

−→M ′. Let us suppose
RM = A0 ∗A1 ∗ . . . ∗An ∗A∞ and R′ = A′

0 ∗A
′
1 ∗ . . . ∗A

′
n′ ∗A∞. We define M ′

as the marking such that:

– For each (m, r) ∈ A′
0, a:(m, r) ∈ M ′.

– For each (m,max + 1) ∈ A′
∞, a : (m, r) ∈ M ′, where r is the age of the

corresponding instance a:(m, r) ∈ M if (m,max+1) is in A∞, and max+1
otherwise.

– Analogously, we consider (m, r) ∈ A′
i, where A

′
i is a set obtained in the firing

from the set A of RM which represents instances with age of fractional part
ρ(A′

i). Then, a:(m, r′) ∈ M ′, where r′ = r + ρ.
– Finally, for each A′

i which is a new set obtained in the firing from the set A,
we define some ρ(A′

i) ∈ (0, 1) such that if i < j then ρ(A′
i) < ρ(A′

j). Then,
for each (m, r) ∈ A′

i, a:(m, r′) ∈ M ′, where r′ = r + ρ.

Clearly, R′ = RM ′ . Now, we prove that t is enabled at M and M
t

−→M ′. We
know that t is enabled at RM with mode τ , and therefore, we have that for each
x ∈ nfVar(t) with τ1(x) = (i, j):

– Ft(x) ⊆ mij and
– rij ∈ G1

t (x) if i ∈ {0,∞}, and rij + 0.5 ∈ G1
t (x).

Therefore, if nfVar(t) = {x1, ..., xn}, we can renameM = a1 : (m1, r1), ..., an :
(mn, rn)+M , and for each i ∈ n+, Ft(xi) ⊆ mi and ri ∈ G1

t (xi), where mi is mjk

of RM if τ1(xi) = (j, k). Therefore, t is enabled at M , so there is M ′′ such that

M
t
→ M ′′. We prove that for each instance in M ′′, the same instance is in M ′,

and therefore, as the number of instances of M ′ and M ′′ are the same (because
of the definition of firing of transition for region), M ′′ = M ′. Let a:(m, r) ∈ M ′′.
We consider different cases:



– If a : (m, r) ∈ M then it is in M too. Let us suppose that (mij , rij) ∈ Ai

is the pair which represents this instance in RM . Then, because of how we
have renamed M , there is not x ∈ Var with τ1(x) = (i, j), and therefore
(mij , rij) ∈ A′

k, where A′
k is the set of R′ which represents instances that

remain in Ak after firing. Therefore, a : (m, r) ∈ M ′, because of the third
point in the definition of M ′.

– Suppose a:(m, r) /∈ M . Then, a:(m, r) is associated to some xi ∈ Var(t) in
the firing, that is, there is xi such that a = ai and m = (mi−Ft(xi))+Ht(xi)
if xi ∈ nfVar(t), m = Ht(xi) if xi ∈ fVar(t). We analize the first case, and
suppose τ3(xi) 6= ∞ (the other cases are analogous). If τ1(xi) = (j, k) then
(mjk, rjk) ∈ RM , where mjk = mi and rjk = ⌊ri⌋. Then, after firing t from
RM with mode τ , we have that (m, τ2(xi)) ∈ A′

τ3(x)
(with the notations

of the firings for R′). Therefore, because of how we have defined M ′, the
instance a:(m, r) is in M ′ (note that r = τ2(xi) + ρ, where ρ represents the
fractional part of the ages of the instances represented in A′

τ3(x)
.

Therefore, M ′′ = M ′, so M
t

−→M ′.

Lemma 8. Given a marking M , if RM

δ
։R′ there is M ′ with R′ = RM ′ and

M
d

−→M ′ for some d ∈ (0, 1).

Proof. Let us suppose that RM

δ
։R′. Let us first consider the case in which

RM = ∅ ∗Ax1 ∗ ... ∗Axn ∗A∞. Then, R′ = A+1
n ∗Ax1 ∗ ... ∗Axn ∗A∞. Let d be

the fractional part of the ages of the instances in An. And let M ′ be a marking

such that M
d

−→M ′. We are going to prove that R′ = RM ′ . By the definition of
region of a marking, RM ′ = A′

0 ∗A
x′
1 ∗ ... ∗Ax′

n ∗A′
∞ where:

– A′
0 = {(m, r) | a:(m, r) ∈ M ′, r ∈ max∗} = {(m, r) | a:(m, r − (1 − d)) ∈

M, r ∈ max∗} = A+1
n .

– Ax′
i = {(m, ⌊r⌋) | a : (m, r) ∈ M ′, r < max, frct(r) = x′

i} = {(m, ⌊r⌋) | a :
(m, r − d) ∈ M, r − d < max, frct(r − d) = xi} = Axi .

– A∞ = {(m,max+1) | a : (m, r) ∈ M ′, r > max} = {(m,max+1) | a :
(m, r − d) ∈ M, r − d > max} = A∞.

Now, we consider the case in which RM = A0∗A
x1 ∗...∗Axn ∗A∞ and A0 6= ∅.

Then, R′ = ∅ ∗A<
0 ∗Ax1 ∗ ... ∗Axn ∗ (A∞ +A=

0 ). Let 0 < d < 1− xn, and let M ′

be a marking such that M
d

−→M ′. Again, we are going to prove that R′ = RM ′ .
By the definition of region of a marking, RM ′ = A′

0 ∗A
x′
1 ∗ ... ∗Ax′

n ∗A′
∞ where:

– A′
0 = {(m, r) | a:(m, r) ∈ M ′, r ∈ max∗} = {(m, r) | a:(m, r − d) ∈ M ′, r ∈

max∗} = ∅.
– Ax′

1 = {(m, ⌊r⌋) | a : (m, r) ∈ M ′, r < max, frct(r) = x′
1} = {(m, ⌊r⌋) | a :

(m, r − d) ∈ M, r < max, frct(r) = x′
1} = A<

0 .

– Ax′
i = {(m, ⌊r⌋) | a : (m, r) ∈ M ′, r < max, frct(r) = x′

i} = {(m, ⌊r⌋) | a :
(m, r − d) ∈ M, r − d < max, frct(r − d) = xi} = Axi .



– A∞ = {(m,max+1) | a:(m, r) ∈ M ′, r > max} = {(m,max+1) | a:(m, r) ∈
M, r − d > max} ∪ {(m,max+1) | a:(m, r) ∈ M, r = max} = A∞ +A=

0 .

Lemma 9. Given a marking M , if RM

∆
։R′ there is M ′ with R′ = RM ′ and

M
d

−→M ′ for some d ∈ R≥0.

Proof. Suppose that RM

∆
։R′. As

∆
։ is the reflexive and transitive closure of

δ
։,

we have that RM = R0
δ
։R1

δ
։ . . .

δ
։R′ = Rk. We can prove by an inductive

reasoning that for each i ∈ n+, there exist Mi, di such that Ri = RMi
and

Mi−1
di−→Mi, by applying the previous claim to each Ri. Therefore, we have

that M = M0
d1−→M1

d2−→ . . .
dk−→Mk and R′ = Rk = RMk

. Therefore, if we take

d =
∑

i∈k+ di, then we have that M
d

−→Mk and R′ = RMk

As ։ =
∆
։ ∪

⋃

t∈T

t
։, Prop. 2 easily follows from the previous lemma.

Proposition 3 Given p ∈ P we can compute a set of regions Rp such that there
is a reachable marking that marks p iff ↑Rp can be reached.

Proof. Let Rr
0 = {({p}, r)} ∗ ∅ for each r ∈ max∗∞, R∞ = ∅ ∗ {({p},max+1)}

and Rr = ∅ ∗ {({p}, r)} ∗ ∅ for r ∈ (max−1)∗. Let us see that Rp = {Rr
0 |

r ∈ max∗∞} ∪ {Rr | r ∈ (max−1)∗} ∪ {R∞} satisfies the thesis. First, let us
assume that M0 →∗ M with a : (m, r) ∈ M with p ∈ m. By Prop. 2 we have
RM0
։

∗
RM = A0 ∗ A1 ∗ ... ∗ An ∗ A∞. Let us distinguish cases for r ∈ R≥0.

If r ∈ max∗ then by Def. 9, (m, r) ∈ A0 and Rr
0 ⊑ RM . If r > max also by

Def. 9 we have (m,max+1) ∈ A∞, so that R∞ ⊑ RM . Finally, if r ≤ max and
r /∈ N, we have (m, ⌊r⌋) ∈ Ai for some i ∈ n+, so that R⌊r⌋ ⊑ RM . In any case,
RM ∈ ↑Rp.

Conversely, let us assume that RM0
։

∗
R with R ∈ ↑Rp. By Prop. 2 there is

M reachable such that R = RM . Since RM ∈ ↑Rp there is R′ ∈ Rp such that
R′ ⊑ R. Analogously as in the converse implication, and using again Def. 9, we
distinguish cases over R′ obtaining in any case that a : (m, r) ∈ M for some m
with p ∈ m, and we conclude.

B2. ν-lTPN are Well Structured Transition systems

Proposition⊑ is a decidable wpo.

Proof. In the first place, it is trivially decidable. To prove that it is a wpo, let
us remark that a region R = A0 ∗ A1 ∗ ... ∗ An ∗ A∞ can be seen as an element
of X = X⊕

max∗ × (X⊕
(max−1)∗)

⊛ × X⊕
{max+1}, where for every I ⊆ (max+ 1)∗,

XI = P⊕ × I. Indeed, A0 ∈ X⊕
max∗ , A∞ ∈ X⊕

{max+1} and u = A1 ∗ ... ∗ An can

be seen as a word over X⊕
(max−1)∗ . Therefore, ⊑ is just the standard order in X,

as defined in the preliminaries. Then, ⊑ is a wpo because it is built from wpos



(finite sets with equality10) using operators that preserve well-orders (multisets,
words and the product).

Lemma 10. If R1
δ
։R2 and R1 ⊑ R′

1 then there is R′
2 such that R′

1 ⊑ R′
2 and

R′
1

∆
։R′

2.

Proof. Let R1 = A0 ∗A1 ∗ ... ∗An ∗A∞ and R′
1 = B0 ∗u0 ∗B1 ∗ ... ∗Bn ∗un ∗B∞

with Ai ≤
⊕ Bi. First we assume that A0 6= ∅, so that B0 6= ∅. By Def. 10 we

have R2 = ∅ ∗ A<
0 ∗ A1 ∗ ... ∗ An ∗ (A∞ + A=

0 ) and since B0 6= ∅ we also have

R′
1

δ
։R′

2 = ∅ ∗ B<
0 ∗ u0 ∗ B1 ∗ ... ∗ Bn ∗ un ∗ (B∞ + B=

0 ). Since A0 ≤ B0 we also
have A<

0 ≤ B<
0 , A=

0 ≤ B=
0 and thus (A∞ +A=

0 ) ≤ (B∞ +B=
0 ). Then R′

1 ⊑ R′
2.

Now let us assume that A0 = ∅, so that R2 = A+1
n ∗ A1 ∗ ... ∗ An−1 ∗ A∞.

We also assume that B0 6= ∅ (the other case is only slightly more simple). If

un = C1 ∗ ... ∗ Ck then R′
1

∆
։

∗R′
2 = B+1

n ∗ (C+1
1 )< ∗ ... ∗ (C+1

k )< ∗B<
0 ∗ u0 ∗B1 ∗

u1 ∗ ... ∗ un−1 ∗ (B∞ +B=
0 + (C+1

1 )= + ...+ (C+1
k )=) in 2k+ 2 steps, and clearly

R2 ⊑ R′
2.

Lemma 11. If R1
∆
։R2 and R1 ⊑ R′

1 then there is R′
2 such that R′

1 ⊑ R′
2 and

R′
1

∆
։R′

2.

Proof. Since
∆
։ is the reflexive and transitive closure of

δ
։, it follows from the

previous lemma.

Lemma 12. Let R and R′ be two regions such that R ⊑ R′. If A0 ∗ A1 ∗ ... ∗
An ∗A∞ is an ∅-expansion of R, then there is an ∅-expansion of R′ of the form
B0 ∗ u0 ∗B1 ∗ u1 ∗ ... ∗ un−1 ∗Bn ∗ un ∗B∞ such that for all i ∈ n∗

∞:

– Ai ≤
⊕ Bi,

– (∅, r) ∈ Ai iff (∅, r) ∈ Bi.

Proof. Indeed, the ∅-expansion of R′ in the lemma can be obtained by adding to
R′ the same empty instances added to R in order to obtain A0∗A1∗ ...∗An∗A∞.

Lemma 13. If R1
t
։R′

1 and R1 ⊑ R2 then there is R′
2 such that R2 ⊑ R′

2 and

R2
t
։R′

2.

Proof. Assume R1
t
։R′

1 with mode τ . Let A0 ∗ A1 ∗ . . . ∗ An ∗ A∞ be the ∅-
expansion of R1 in the firing of t. By the previous lemma, there is an ∅-expansion
of R2 of the form A2

0 ∗u0 ∗A
2
1 ∗u1 ∗ ... ∗un−1 ∗A

2
n ∗un ∗A

2
∞ such that Ai ≤

⊕ A2
i

and (∅, r) ∈ Ai iff (∅, r) ∈ A2
i for all i. Without loss of generality, we can

suppose that for each i ∈ n∗
∞, if Ai = {(m1, r1), . . . , (mn′ , rn′)} and A2

i =
{(m2

1, r
2
1), . . . , (m

2
n′′ , r2n′′)} then, for each j ∈ n′+, mij ⊆ m2

ij and rij = r2ij . Let
us see that we can fire t from R2 with mode τ , obtaining R′

2 greater than R′
1 (in

fact, mode τ for R2 is an abuse of notation, since we are forgetting about the
uis) . First, we prove that t is enabled at R2 with mode τ . Let x ∈ Var(t) with
τ1(x) = (i, j). Then:

10 Multiset containment is the multiset order induced by the equality.



– If x ∈ Υ , then mij = ∅, and therefore, m2
ij = ∅ (because of how we have

defined the ∅-expansion of R2).
– Ft(x) ⊆ mij ⊆ m2

ij .

– As rij = r2ij , the conditions for r2ij hold trivially.

Therefore, t is enabled at R2. Let us see that R2
t
։R′

2 ≤ R′
1. Suppose R′

1 =
A′

0∗A
′
01∗ . . .∗A

′
1∗ . . .∗A

′
n′ ∗A′

n′1∗ . . .∗A
′
∞ and R′

1 = A2′

0 ∗A2′

01∗ . . .∗u1∗ . . .∗A
2′

1 ∗

. . . ∗A2′

n ∗A2′

n1 ∗ . . . ∗un ∗ . . . ∗A
2′

∞, as in the definition of firings of transitions for
regions. Then, we prove that for each index i there is A2′

i′ with A′
i ≤

⊕ A2′

i′ . Let i

be one of the indices in R′
1. We prove that for each (m′

ij , r
′
ij) ∈ A′

i, (m
2′

ij , r
2′

ij ) is

such that m′
ij ⊆ m2′

ij and r2
′

ij = r2
′

ij . Note that, again, this is an abuse of notation,
because we are forgetting about the us. This could be fixed by defining another
τ ′3, by simply doing a renumeration. However, for the ease of understanding, we
prefer to keep using τ3 and only consider the A2′

i s (in fact, the us do not take
part in the firing). We consider two cases:

– Suppose that there is not x with τ3(x) = (i, j). Then, (m′
ij , r

′
ij) ∈ Ai, and

therefore there is (m2′

ij , r
2′

ij ) ∈ A2
i , with m′

ij ⊆ m2′

ij and r2ij = r2
′

ij . Moreover,

as there is not x with τ3(x) = (i, j), (m2′

ij , r
2′

ij ) ∈ A2′

i .
– Suppose that there is x with τ3(x) = (i, j). Then, if τ1(x) = (k, l) then

m′
ij = (mkj − Ft(x)) + Ht(x) ⊆ (m′

kj − Ft(x)) + Ht(x) = m2′

ij . Moreover,

r′ij = τ2(x) = r2
′

ij .

Finally, we obtain:

Proposition 4. ։ is compatible with ⊑.

Proof. It follows as a corollary of Lemma 11 and Lemma 13.

Therefore, we have proved that ν-lTPN are Well Structured Transition Sys-
tems. Now, we prove that the effective Pre-basis property holds for them.

For that purpose, we need to compute min(↑Pre(↑R)) for any region R. We

split Pre into Pre∆(R) = {R′ | R′
∆
։R} and Pret(R) = {R′ | R′

t
։R}, and we

we define Pre∆ and Pret for each t ∈ T , so that Pre∆(↑R) = ↑Pre∆(R) and
Pret(↑R) = ↑Pret(R). First, we define Pre∆, the function that computes the
predecessors corresponding to time delays, using in turn Preδ as an auxiliary
function, which corresponds to small time delays. Then Pre∆ is the reflexive
and transitive closure of Preδ.

Definition 18 (Preδ). Let R = A0 ∗ A1 ∗ . . . ∗ An ∗ A∞. We define Preδ(R)
(and extend it pointwise) as















{(A1 +B−1
0 ) ∗A2 ∗ ... ∗An ∗B∞,

B−1
0 ∗A1 ∗ ... ∗An ∗B∞ | A∞ = B0 +B∞} if A0 = ∅

{A1 ∗A2 ∗ ... ∗An ∗A−1
0 ∗A∞ | A−1

0 defined}, otherwise



Let Preδ
0
(R) = R, Preδ

i+1
(R) = Preδ

i
(R)∪Preδ(Preδ

i
(R)), and Pre∆(R) =

⋃

i≥0 Preδ
i
({R}).

Lemma 14. Given a region R, Pre∆(R) is finite and ↑Pre∆(R) = Pre∆(↑R)

We split the previous lemma in the following two lemmas, that we prove
separately.

Lemma 15. Given a region R, Pre∆(R) is finite.

Proof. For any R = A0 ∗A1 ∗ ...∗An ∗A∞ we define size(R) = (r, i, |A∞|) ∈ n∗×
n∗
∞×N, where (r, i) = min{(r, i) | (m, r) ∈ Ai, i ∈ n∗}, where the pairs (r, i) are

ordered lexicographically, and we also compare tuples size(R) lexicographically.
If size(R) > (0, 0, 0) one of the following holds:

– size(R) = (r, 0, s): then Preδ(R) = {R′} with R′ = ∅ ∗ A1 ∗ A2 ∗ ... ∗ An ∗
A−1

0 ∗A∞ and size(R′) = (r − 1, n, s).
– size(R) = (r, i, s) with 0 < i ≤ n: then the ages in A0, ..., Ai−1 are at least

r+1. The case A0 6= ∅ is analogous to the previous one: R′ as in the previous
case is the only region in Preδ(R), but now size(R′) = (r, i− 1, s). If A0 = ∅
then any R′ in Preδ(R) is either of the form (A1 +B−1

0 ) ∗A2 ∗ ... ∗An ∗B∞

or B−1
0 ∗A1 ∗ ... ∗An ∗B∞, with A∞ = B0 +B∞, so that size(R′) is either

(r, i − 1, s′) in the first case, or (r, i, s′) in the second case. Notice also that
in the second case, if R 6= R′ then s′ < s.

– If size(R) = (max+1,∞, s) then R = ∅ ∗ A∞ and every R′ in Preδ(R) is of
the form R′ = B−1

0 ∗ B∞ with A∞ = B0 + B∞. Notice that if B0 = ∅ then
R = R′. Otherwise, size(R′) = (max, 0, s′).

– If size(R) = (0, 0, s) then A−1
0 is undefined, and Preδ(R) = ∅.

Assume by contradiction that Pre∆(R) is infinite. Then there is a sequence
(Ri)i≥0 of pairwise different regions such that Ri+1 ∈ Preδ(Ri). By the previous
items notice that size(Ri+1) < size(Ri), which is a contradiction because the
lexicographic order is well-founded in n∗ × n∗

∞ × N.

Lemma 16. Given a region R, ↑Pre∆(R) = Pre∆(↑R)

Proof. Let us first see that Pre∆(↑R) ⊆ ↑Pre∆(R), for which it is enough to see
that Preδ(↑R) ⊆ ↑Pre∆(R). Let R = A0 ∗A1 ∗ ...∗An ∗A∞, R′ and R′′ such that

R′′
δ
։R′ with R ⊑ R′. Since R ⊑ R′ we can write R′ = B0∗u0∗B1∗...∗Bn∗un∗B∞

with Ai ≤⊕ Bi. We distinguish three cases: (i) If A0 6= ∅ then B0 6= ∅, in
which case R′′ = ∅ ∗ u0 ∗ B1 ∗ ... ∗ Bn ∗ un ∗ B−1

0 ∗ B∞, which is greater than
∅ ∗ A1 ∗ ... ∗ An ∗ A−1

0 ∗ A∞ ∈ Preδ(R) ⊆ Pre∆(R). (ii) If A0 = ∅ and B0 6= ∅
then R′′ = ∅ ∗ u0 ∗ B1 ∗ ... ∗ Bn ∗ un ∗ B−1

0 ∗ B∞ ∈ ↑R ⊆ ↑Pre∆(R). (iii)
Finally, if A0 = B0 = ∅ we distinguish two subcases. If u0 = ǫ then R′′ =
(B1+C1)∗u1 ∗B2 ∗ ...∗Bn ∗un ∗C2 with C+1

1 +C2 = B∞, which is greater than
(A1 + D1) ∗ A2 ∗ ... ∗ An ∗ D2 ∈ Preδ(R) for some D+1

1 + D2 = A∞. If u0 6= ǫ
then u0 = B ∗ u′

0, in which case R′′ = (B + C1) ∗ u′
0 ∗ B1 ∗ ... ∗ Bn ∗ un ∗ C2



with C+1
1 + C2 = B∞, which is greater than D1 ∗ A1 ∗ ... ∗ An ∗D2 ∈ Preδ(R)

for some D+1
1 +D2 = A∞. For the other containment, it is enough to see that

↑Preδ(R) ⊆ Pre∆(↑R). Notice that for any R′ ∈ Preδ(R) we have R′
∆
։R. Hence,

given R′′ ∈ ↑Preδ(R) we have R′ ⊑ R′′ for some R′ ∈ Preδ(R) such that R′
∆
։R.

Then, by compatibility of
δ
։ (see Lemma 10), R′′

∆
։ ↑R, so that R′′ ∈ Pre∆(↑R).

Now, we define Pret to compute the predecessors corresponding to firings
of transitions. We first define for t ∈ T and each region R a family F(t, R) of
functions which assign to each variable in Var(t) a part of the region taking part
of the firing. Then we define Pret(R) considering every f ∈ F(t, R).

Definition 19 (F(t, R)). Let t ∈ T and a region R = A0∗A1∗. . .∗An∗A∞, with
Ai = {(mi1, ri1), . . . , (miki

, riki
)}. Suppose that l = |V ar(t)| and q = max{ki |

i ∈ n∗
∞}. A function f : Var(t) → (n+ 1)∗∞ × (q + 1)∗ × (max+ 1)∗ × (n∗ ∪

{∞})× l∗ is in F(t, R) iff for all x ∈ Var(t), f(x) = (b1, b2, b3, b4, b5) with:

– If b1 ∈ n+ and b2 ≤ kb1 then rb1b2 + 0.5 ∈ G2
t (x).

– If b1 = 0 and b2 ≤ k0 then rb1b2 ∈ G2
t (x).

– If b1 = ∞ then max+0.5 ∈ G2
t (x).

– If x ∈ Υ then mb1b2 ⊆ Ht(x).
– If b4 ∈ n+ ∪ {∞} then b3 + 0.5 ∈ G1

t (x).
– If b4 = 0 then b3 ∈ G1

t (x).
– If b4 = ∞ iff b3 = max+ 1.
– If y 6= x and f(y) = (b′1, b

′
2, b

′
3, b

′
4, b

′
5), then (b1, b2) 6= (b′1, b

′
2).

Intuitively, the first two numbers that the previous functions assign to a
variable x, correspond to the selection of the part of the region we assign to x
to remove the effects of Ht. Analogously, the two last components manage the
effects of Ft. The third number assigns to each variable the natural number that
correspond to the age of the instance in the predecessor.

Clearly, the family F(t, R) is finite. We define Pret(R) as the effects of com-
puting the predecessors of R according to all the functions in F(t, R).

Definition 20 (Pret). Let l = |V ar(t)|. Given t ∈ T , f ∈ F(t, R) and R =
A0 ∗A1 ∗ . . . ∗An ∗A∞, with Ai = {(mi1, ri1), ..., (mik, rik)}, we define Preft(R)
as follows:

– First, we define R′′ = A′
00 ∗A

′
01 ∗ . . . ∗A

′
0l ∗A

′
10 ∗A

′
11 ∗ ... ∗A

′
nl ∗A

′
∞0, where:

• A′
j0 = Aj−{(mjk, rjk) | ∃x with f(x) = (j, k, b3, b4, b5) for some b3, b4, b5}

• A′
∞0 = A∞−{(m∞k,max+1) | ∃x with f(x) = (∞, k, b3, b4, b5) for some b3, b4, b5}

• A′
ij = ∅ elsewhere.

– For each x ∈ Var(t), if f(x) = (b1, b2, b3, b4, b5), then we define m′
x =

(mb1b2 ⊖Ht(x))+Ft(x) and r′x = b3, where (m1⊖m2)(x) = max(0,m1(x)−
m2(x)).

– Finally, Preft(R) is the ∅-contraction of B00 ∗ B01 ∗ . . . ∗ B0l ∗ B10 ∗ B11 ∗
. . . ∗ Bnl ∗ B∞0, where for each i ∈ n∗

∞ and j ∈ l∗, Bij = A′
ij + {(m′

x, r
′
x) |

f(x) = (b1, b2, b3, i, j) for some b1, b2, b3}.



Then, we define Pret(R) = {Preft(R) | f ∈ F(t, R)}.

Intuitively, in R′′ we have removed the instances corresponding to the effects
of Ht, and added l empty multisets of instances between each Ai and Ai+1 in
order to be able to add tokens with new fractional parts as predecessors.

Lemma 17. Given a region R, we can compute a finite set Pret(R) such that
Pret(↑R) = ↑Pret(R)

Proof. Clearly, Pret(R) as defined above is computable. First, we prove ↑Pret(R) ⊆
Pret(↑R). Let R′ ∈ ↑Pret(R), we are going to prove that R′ ∈ Pret(↑R). There-

fore, we need to prove that there is R′′′ with R ⊑ R′′′ such that R′ t
−→R′′′. Let

us call R = A0 ∗ A1 ∗ ... ∗ AnA
∗ A∞ with Ai = {(mA

ij , r
A
ij) | j ∈ |Ai|

+} and

R′ = E0 ∗ E1 ∗ ... ∗ EnE
∗ E∞ with Ei = {(mE

ij , r
E
ij) | j ∈ |Ei|

+}.

As R′ ∈ ↑Pret(R), there is R′′ ∈ Pret(R) such that R′′ ⊑ R′. Then, there is
f ∈ F(t, R) such that R′′ = Preft(R). Suppose that C00∗C01∗. . .∗C0l∗C10∗C11∗
. . . ∗ Cnl ∗ C∞0, is the ∅-expansion of R′′ obtained in the definition of Preft(R).
For simplicity, we consider the firing from this ∅-expansion. Abusing notation,
if x ∈ Var(t) with f(t, R) = (b1, b2, b3, b4, b5), we call (mC

b4b5x
, rCb4b5x) to the pair

(mA
b1b2

⊖Ht(x))+Ft(x), b3) we add in Cb4b5 . We define the mode τ = (τ1, τ2, τ3)
to fire t from R′′ such that, for each x ∈ Var(t), if f(t, R) = (b1, b2, b3, b4, b5):

– τ1(x) = (b4b5, x)
– τ2(x) = rb4b5
– τ3(x) = b10

Now, we prove that t is enabled at R′′. Indeed, for each x ∈ Var(t), if f(t, R) =
(b1, b2, b3, b4, b5), τ1(x) = (b4b5, x), so:

– if x ∈ Υ then mA
b1b2

≤ Ht(x), so mC
b4b5x

= (mA
b1b2

⊖Ht(x)) = ∅

– mC
b4b5x

= (mA
b1b2

⊖Ht(x)) + Ft(x), and therefore mC
b4b5x

≥ Ft(x)
– rb4b5x = b3. If b4 = 0 or b4 = ∞ then b3 ∈ G1

t (x). Otherwise, b3+0.5 ∈ G1
t (x),

because of the definition of F .

Therefore, t is enabled at R′′, so it is enabled in R′ too. Because of how we

have defined τ , R′′
t
։R̄ ⊇ R with this mode. As R′′ ⊆ R′, and the transition

system is monotonic, there is R′′′ such that R ⊑ R′′′, with R′
t
։R′′′.

Now, we prove that Pret(↑R) ⊆ ↑Pret(R). Let R = A0 ∗ A1 ∗ ... ∗ An ∗ A∞,

R′ and R′′ such that R′′
t
։R′ ⊒ R with mode τ . It is enough to see that there

exist f ∈ F(t, R′) such that R′′ ∈ ↑(Preft(R)). In order to define f , we give some
notations and renamings for these regions.

Suppose R′′ = F0 ∗ F1 ∗ . . . ∗ Fn̄ ∗ F∞. We denote by S the set {Fi | Fi −
{(mij , rij) | τ1(x) = (i, j)} = ∅} and l = max |Ai| for i ∈ n̄∗. Let us consider that



we fire t from the ∅-expansion of R′′ F00 ∗F
∗
01 . . .∗F0l+1 ∗ . . .∗Fn̄0 ∗ . . .∗Fn̄l ∗F∞

such that Fi0 = Fi if Fi /∈ S, Fij = Fk if Fk ∈ S and Fk is the jth set in S after
Fi; and Fij = ∅ otherwise. For simplicity, let us consider τ for this renaming
(defining the renumbering of τ is trivial, but we do not do that for simplicity).
Intuitively, we have renamed R′′ in order to define b4 and b5 of f(x), so that we
have renamed the Fks which do not “disappear” in the firing of t, have indices
j0 for some j.

Consider the ∅-expansion of R′ E0 ∗E01 ∗ . . . ∗En ∗En1 ∗ . . . ∗E∞ obtained
when firing t. Since R ⊑ R′, we can rewrite it as Ek0

∗u0∗Ek1
∗ ...∗Ekn

∗un∗E∞,
and ki ∈ n∗

∞ ∪ n∗
∞ × |V ar(t)|+, where Ai ⊆ Eki

for i ∈ n∗
∞. Without loss of

generality, for each i ∈ n∗
∞, j ∈ |Ai|, mij ≤ mE

kij
and rij = rk − ijE .

With these notations, let us define f . Given x ∈ Var(t), suppose that τ1(x) =
(i, j). Then, we define f(x) = (b1, b2, b3, b4, b5) with:

– Suppose that τ3(x) = i′, (mE
i′j′ , r

E
i′j′) in Ei′ is such that mE

i′j′ = (mij −

Ft(x))+Ht(x) and rEij = τ2(x) is the pair we add in the firing of t, associated
to x. Then bi = i′ and b2 = j′.

– b3 = rij .
– If τ1(x) = (i, j) with the considered renaming of the ∅-expansion of R′′, then

b4 = i and b5 = j.

Finally, we prove that if Rf = B00∗B01∗. . .∗B20∗. . .∗B∞0 is the ∅-expansion
obtained when calculating Preft(R), then Rf ⊆ R′′. We see that each Bij there
is Fi′j′ with Bij ⊆ Ei′j′ . We consider the case in which i = 0, because the other
one is easier.

First, we considerBi0, for some i. For each x ∈ Var(t), if f(x) = (b1, b2, b3, b4, b5),
we call m′

x = (mb1b2 ⊖Ht(x))+Ft(x) and r′x = b3. Then, Bi0 = Ai−{(mik, rik) |
∃x with f(x) = (i, k, b3, b4, b5) for some b3, b4, b5}+{(m′

x, r
′
x) | ∃x ∈ Var(t) with f(x) =

(b1, b2, b3, i, 0) for some b1, b2, b3} ⊆ Ei − {(mik, tik) | ∃x ∈ Var(t) with f(x) =
(i, k, b3, b4, b5) for some b3, b4, b5}+{(m′

x, r
′
x) | ∃x with f(x) = (b1, b2, b3, i, 0) for

some b1, b2, b3}, because Ai ⊆ Ei. Moreover, for each x ∈ Var(t) if bi = i′

and b2 = j′, there are i′, j′ such that τ3(x) = i′, (mE
i′j′ , r

E
i′j′) in Ei′ is such

that mE
i′j′ = (mij − Ft(x)) + Ht(x) and rEij = τ2(x) is the pair we add in the

firing of t, associated to x. Therefore, {(mik, rik) | ∃x ∈ Var(t) with f(x) =
(j, k, b3, b4, b5) for some b3, b4, b5} = {(mik, rik) | ∃j

′ such that, if τ3(x) = i′,
(mE

i′j′ , r
E
i′j′) in Ei′ is such that mE

i′j′ = (mik − Ft(x)) +Ht(x) and rEik = τ2(x)
is the pair we add in the firing of t}. Analogously, {(m′

x, r
′
x) | ∃x ∈ Var(t) with f(x) =

(b1, b2, b3, i, 0) for some b1, b2, b3} ⊆ {(m′
x, r

′
x) | ∃x ∈ Var(t) with τ1(x) = (i, 0)}.

Therefore, we obtain that there is i′, j′ with Bi0 ⊆ Fi′j′ , as we required.

Proposition 5. min(↑Pre(↑R)) is computable for any R.

Proof. Indeed, by the two previous lemmas, we can compute it as min(Pre∆(R)∪
⋃

t∈T Pret(R)).

Then, we obtain the following result:



Corollary 2. Control-state reachability is decidable for ν-lTPN .

Proof. We have proved that the transition system over regions is a WSTS, so
coverability is decidable. Since the control-state reachability problem can be
reduced to coverability (Prop. 3) the thesis follows.


