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Abstract. We extend workflow Petri nets (wf-nets) with discrete prices,
by associating a price to the execution of a transition and, more impor-
tantly, to the storage of tokens. We first define the soundness problem
for priced wf-nets, that of deciding whether the workflow can always
terminate properly, where in the priced setting “properly” also means
that the execution does not cost more than a given threshold. Then,
we study soundness of resource-constrained workflow nets (rcwf-nets),
an extension of wf-nets for the modeling of concurrent executions of
a workflow, sharing some global resources. We develop a framework in
which to study soundness for priced rcwf-nets, that is parametric on the
cost model. Then, that framework is instantiated, obtaining the cases in
which the sum, the maximum, the average and the discounted sum of
the prices of each all instances are considered. We study the relations
between these properties, together with their decidability.

1 Introduction

Workflow nets (wf-nets) are an important formalism for the modeling of business
processes, or workflow management systems [1, 2]. Roughly, a wf-net is a Petri
net with two special places, in and out. Its initial marking is that with a token
in the place in and empty everywhere else, which models the situation in which
a task has been scheduled. The basic correctness notion for a workflow is that
of soundness. Intuitively, a workflow is sound if it cannot go wrong, so that
no supervisor is needed in order to ensure the completion of the task under a
fairness assumption. More precisely, and in terms of wf-nets, soundness implies
that at any reachable state, it is possible to reach the final state, that with a
token in the place out, and empty elsewhere. Soundness is decidable for wf-nets,
and even polynomial for free-choice wf-nets [2].

Recent works [3–5] study an extension of wf-nets, called resource-constrained
wf-nets (rcwf-nets) in which several instances of a workflow execute concurrently,
assuming that those instances share some global resources. Even if a singe in-
stance of an rcwf-net is sound, several instances could deadlock because of these
shared resources. In [3] the authors define dynamic soundness, the condition
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stating the existence of a minimum amount of resources for which any number
of instances running simultaneously can always reach the final state, that in
which all the tasks have been completed and the number of resources is as in
the initial state. The paper [4] defines another notion of dynamic soundness, in
terms of the absence of instance deadlocks in rcwf-nets, fixing the initial amount
of resources though keeping the condition that instances must not change the
number of resources. In [5] we continued the work in [4], but we considered that
instances may create or consume resources. We proved this notion of dynamic
soundness to be undecidable, and we identified a subclass of rcwf-nets, called
proper, for which dynamic soundness is decidable.

In the fields of business process management or web services, the importance
of QoS properties in general and cost estimation in particular has been identified
as central in numerous works [6–10]. As an example, in the previously mentioned
models, it may be possible to reach the final marking in different ways, due to
the different interleavings of the execution, or to the inherent non-determinism
in wf-nets. Moreover, in the case of rcwf-nets, an instance locking some resource
may force another instance to take a “less convenient” path (in terms of money,
energy or gas emissions, for example), that does not use the locked resource.
However, the reason why a workflow should prefer one path over another is
something that lies outside the model.

In order to study these problems, in this paper we add prices to our nets,
similarly as done for the (untimed) priced Petri nets in [11]. We consider different
types of prices, modeled as tuples of integers or naturals. More precisely, we add
firing costs to transitions, and more importantly, storage costs to places. Then,
the price of firing a transition is computed as the cost of its firing plus the cost of
storing all the tokens in the net while the transition is fired. The price of a run is
defined as the sum of the prices of the firings of its transitions. Then, we say that
a workflow net is price-safe if the price of each of its runs stays under a given
threshold. When costs are integers, we prove that price-safety is undecidable, so
that in the rest of the paper we restrict ourselves to non-negative costs.

In this priced setting, we restate the soundness problems. For ordinary wf-
nets, this is straightforward: a priced wf-net is sound if essentially we can always
reach the final marking, without spending more than a given budget. For priced
rcwf-nets, the definition of soundness is not so straightforward, since it must
consider the behavior of an arbitrary number of instances. We consider a para-
metric definition of soundness for priced rcwf-nets. For any run, we collect the
prices of every instance in the run, so that soundness is parametric in the way
in which local prices are aggregated to obtain a global price. The definition is
open to many different variants, we study several such variants in this paper:
the maximum, the sum, the average and the discounted sum.

We prove decidability of price-safety for the sum, the maximum, and a finite
version of discounted sum, relying on the decidability of coverability for a class
of Petri nets with names, broadcasts and whole place operations, that can be
seen as an unordered version of Data Nets with name creation [12, 13]. In these
cases we have decidability of priced soundness within the proper subclass. As a



corollary, we obtain the corresponding results for ordinary priced wf-nets (with
non-negative costs). For the average, we reduce soundness to the unpriced case,
so that it is decidable for proper rcwf-nets. However, price-safety remains open.

Related Work. In parallel to the works on wf-nets and rcwf-nets, there has
recently been an increasing interest in the study of quantitative aspects of both
finite and infinite state systems. In [14] the authors consider quantitative gen-
eralizations of classical languages, using weighted finite automata, that assign
real numbers to words, instead of boolean values. They study different problems,
which are defined in terms of how they assign a value to each run. In particular,
they assign the maximum, limsup, liminf, average and discounted sum of the
transition weights of the run.

Numerous works extend timed automata with prices [11, 15, 16]. E.g., the pa-
per [11] defines a model of Timed Petri Nets with discrete prices. In such model,
a price is associated to each run of the net. Then, the reachability (coverability)
threshold-problem, that of being able to reach (cover) a given final marking with
at most a given price, is studied. This study is extended to the continuous case
in [17]. In our setting, we require the workflow to behave correctly in any case,
without the need of a supervisor, which in the priced setting means that no run
reaching the final marking costs too much, as opposed to the threshold problems,
in which the existence of one good run is considered.

Quantitative aspects of reactive systems are studied as energy games e.g.
in [18–20]. For example, in [20] games are played on finite weighted automata,
studying the existence of infinite runs satisfying several properties over the ac-
cumulated weights, as ensuring that a resource is always available or does not
exceed some bound.

Outline. Sect. 2 gives some notations we will use throughout the paper. Sec. 3
extends wf-nets with prices and proves undecidability of price-safety with nega-
tive costs. In Sect. 4 we extend rcwf-nets and give some basic results. In Sect. 5
we study some specific cases of price predicates. Finally, in Sect. 6 we present
our conclusions. Missing proofs can be found in [21].

2 Preliminaries

A quasi-order ≤ over a set A is a reflexive and transitive binary relation over A.
Given a quasi-order ≤, we say that a < b if a ≤ b and b � a. Given B ⊆ A, we
denote B ↓= {a ∈ A | ∃b ∈ B, a ≤ b} the downward closure of B and we say that
B is downward-closed if B ↓= B. Analogously, we define B ↑, the upward closure
of B and say B is upward closed if B ↑= B. We denote by Nω = N∪{ω}, the nat-
urals completed with their limit ω and 0 = (0, ..., 0). We write v[i] to denote the
ith component of v ∈ Nk

ω. We denote by ≤ the component-wise order in any Nk
ω

or Zk, and by < its strict version. A (finite) multiset m over a set A is a mapping
m : A → N with finite support, that is, such that supp(m) = {a ∈ A | m(a) > 0}



is finite. We denote by A⊕ the set of finite multisets over A. For two multisets
m1 and m2 over A we define m1 + m2 ∈ A⊕ by (m1 + m2)(a) = m1(a) + m2(a)
and m1 ⊆ m2 if m1(a) ≤ m2(a) for every a ∈ A. For a multiset m and λ ∈ N,
we take (λ ∗ m)(a) = λ ∗ m(a). When m1 ⊆ m2 we can define m2 − m1 ∈ A⊕

by (m2 − m1)(a) = m2(a) − m1(a). We denote by ∅ the empty multiset, that
is, ∅(a) = 0 for every a ∈ A, and |m| =

∑

a∈supp(m) m(a). We use set nota-
tion for multisets when convenient, with repetitions to account for multiplicities
greater than one. We write {a1, ..., an} ≤⊕ {b1, ..., bm} if there is an injection
h : {1, ..., n} → {1, ..., m} such that ai ≤ bh(i) for each i ∈ {1, ..., n}.

Petri Nets. A Place/Transition (P/T) net is a tuple N = (P, T, F ), where
P is a finite set of places, T is a finite set of transitions (disjoint with P ) and
F : (P × T ) ∪ (T × P ) → N is the flow function.

A marking of N is an element of P⊕. For a transition t we define •t ∈ P⊕

as •t(p) = F (p, t). Analogously, we take t•(p) = F (t, p), •p(t) = F (t, p) and
p•(t) = F (p, t). A marking m enables a transition t ∈ T if •t ⊆ m. In that case t

can be fired, reaching the marking m′ = (m− •t) + t•, and we write m
t

−→m′. A

run r is a sequence m0
t1−→m1

t2−→...
tn−→mn. If r1 and r2 are two runs so that r1

finishes at the marking in which r2 starts, we denote by r1 · r2 the run starting
with the transitions in r1, followed by those in r2, as expected.

Workflow Petri Nets. We will use the definition in [4]. A workflow Petri net
(shortly a wf-net) is a P/T net N = (P, T, F ) such that:

– there are in, out ∈ P with •in = ∅, in• 6= ∅, •out 6= ∅ and out• = ∅,
– for each p ∈ P \ {in, out}, •p 6= ∅ and p• 6= ∅.

When there is no confusion we will simply refer to the special places given
by the previous definition as in and out, respectively. We denote by min the
marking of N with a single token in in, and empty elsewhere. Analogously, mout

is the marking of N with a single token in out and empty elsewhere. There are
several definitions of soundness of wf-nets in the literature. We will use one called
weak soundness in [2]. A wf-net is weakly sound if for any marking reachable
from min it is possible to reach mout.

Petri Nets with dynamic name creation and whole place operations.
In order to model different instances running in the same net, we will use names,
each name representing a different instance. A ν-PN is an extension of Petri nets
in which tokens are names and fresh name creation can be performed. We define
them here as a subclass of wν-PNs, a class of nets which we will need in Sect. 5.1,
that also allow whole-place operations and broadcasts, similar to Data Nets [13].
Data Nets extend P/T nets by considering a linearly ordered and dense domain
of tokens, and in which whole place operations can be performed. Therefore,
wν-PNs can be seen as an unordered version of Data nets [13] in which names
can be created fresh. When a transition t of a wν-PN is fired, four operations



a

p1

a

p2

a

p1

a

p2

ab bc adbc
b

t t
x x, ν x x, ν

Fig. 1. The firing of a wν-PN

are performed: the subtraction of several tokens of different colors, whole-place
operations (affecting every color in the same way), the creation of new names
and the addition of tokens.

Let us consider a set Var of variables and Υ ⊂ Var a set of name creation vari-
ables. A wν-PN is a tuple N = (P, T, F, G, H) where P and T are finite disjoint
sets of places and transitions, respectively; for each t ∈ T , Ft : P → (V ar\Υ )⊕

is its subtraction function, Gt : P ×P → N is its whole-place operations matrix,
and Ht : P → V ar⊕ is its addition function. Moreover, if x ∈ Ht(p) \ Υ then
x ∈ Ft(p

′) for some p′ ∈ P .
Let Id be an infinite set of names. A marking is any m : P → Id⊕. An a-token

in p is an occurrence of a ∈ m(p). Id(m) is the set of names appearing in m, that
is, Id(m) =

⋃

p∈P supp(m(p)). We denote by Var(t) = {x ∈ V ar | ∃p ∈ P, x ∈
Ft(p)∪Ht(p)} and Var(p) = {x ∈ Var | ∃t ∈ T, x ∈ Ft(p)∪Ht(p)}. A mode is a
mapping σ : Var(t) → Id extended pointwise to σ : Var(t)⊕ → Id⊕. A transition
t is enabled at a marking m with mode σ if for all p ∈ P , σ(Ft(p)) ⊆ m(p) and for
all ν ∈ Υ , σ(ν) /∈ Id(m). Then, we say that t can be fired, reaching a new marking
m′, where for all p ∈ P , m′(p) =

∑

p′∈P ((m(p′)−σ(Ft(p
′)))∗Gt(p

′, p))+σ(Ht(p)),

and we denote this by m
t(σ)
→ m′.

Example 1. Let N = ({p1, p2}, {t}, F, G, H) be a wν-PN, where:

– Ft(p1) = {x}, Ft(p2) = ∅.
– Ht(p1) = ∅, Ht(p2) = {x, ν}.
– Gt(p1, p1) = 1, Gt(p1, p2) = 0, Gt(p2, p1) = 1, Gt(p2, p2) = 0.

This net is depicted in Fig 1. Note that although Ft and Ht are represented by
arrows labelled by the corresponding variables, the effects of Gt are not depicted.

Let m be the marking of N such that m(p1) = {a, b} and m(p2) = {b, c}.
Then, t can be fired at m with mode σ, where σ(x) = a and σ(ν) = d, reaching
a new marking m′, such that m′(p1) = {b, b, c} and m′(p2) = {a, d}. Note that
m′ is obtained from m by the following steps:

– Removing an a-token from the place p1, due to the “effect” of F .
– Removing all tokens from p2 and copying them to p1, because of G.
– Adding an a-token and a d-token to p2, because of H .

We write m1 ⊑ m2 if there is a renaming m′
1 of m1 such that m′

1(p) ⊆ m2(p)
for every p ∈ P . A marking m is coverable from an initial marking m0 if we can
reach m′ from m0 such that m ⊑ m′.

A wν-PN could be considered as an unordered Data Net, except for the fact
that wν-PNs can create fresh names. In [12] the authors extend Data Nets with
fresh name creation and prove that coverability is still decidable by instantiating
the framework of Well Structured Transition Systems [22].



Proposition 1. Coverability is decidable for wν-PN.

Finally, we define ν-PN [23], which is a fragment of wν-PN without whole-
place operations. Formally, a ν-PN is a wν-PN in which, for each t ∈ T , Gt is
the identity matrix, and we will simply write (P, T, F, H).

In the rest of the paper we will introduce some more models, that will be
most of the time priced versions of the models already defined. For the sake of
readability, we prefer to present these models in an incremental way, instead of
considering a very general model which subsumes all the others.

3 Priced Workflow-nets

Let us define a priced extension of wf-nets. We follow the cost model in [11]. It
essentially amounts to adding to a wf-net two functions, defining the price of the
firing of each transition, and the cost of storing tokens during the firing of each
transition, respectively.

Definition 1 (Priced workflow net). A priced workflow net (pwf-net) with
price arity k ≥ 0 is a tuple N = (P, T, F, C, S) such that:

– (P, T, F ) is a wf-net, called the underlying wf-net of N ,
– C : T → Zk is a function assigning firing costs to transitions, and
– S : P × T → Zk is a function assigning storage costs to pairs of places and

transitions.

Notice that costs may be negative. The behavior of a pwf-net is given by its
underlying wf-net. In particular, adding prices to a wf-net does not change its
behavior, as the costs are not a precondition for any transition. That is the main
difference between adding resources and prices. Indeed, firing costs can be seen
as resources. However, since storage costs depend not only on the transitions
which are fired, but also on the number of tokens in the rest of the places when
the transitions are fired, they cannot be seen as resources anymore.

Let us define the price of a transition.

Definition 2 (Price of a run). Let t be a transition of a pwf-net enabled at a
marking m. We define P(t, m), the price of the firing of t at m, as

P(t, m) = C(t) +
∑

p∈m−•t

S(p, t)

Then, the price of a run r = m1
t1−→m2

t2−→m3 . . . mn
tn−→mn+1 of a pwf-net is

P(r) =
∑n

i=1 P(ti, mi).

Notice that in the definition of P(t, m) the term m− •t is a multiset, so that
if a place p appears twice in it then we are adding S(p, t) twice in turn. It can be
seen that firing costs can be simulated by storage costs, though we prefer to keep
both to follow the approach in [11]. However, storage costs cannot be simulated
by firing costs, since the former are marking dependent, while the latter are not.
Next, we define safeness of a pwf-net with respect prices.



Definition 3 (b-p-safeness). Given b ∈ Nk
ω, we say that a pwf-net is b-p-safe

if for each run r reaching mout, P(r) ≤ b.

Therefore, a pwf-net is b-safe if all the runs that reach the final marking cost
less than the given budget. Next, define soundness for pwf-nets.

Definition 4 (b-soundness). Given b ∈ Nk
ω, we say that a pwf-net is b-sound

if from each marking m, reachable from min via some run r1, we can reach mout

via some run r2 such that P(r1 · r2) ≤ b.

Intuitively, for a pwf-net to be sound we need to be able to reach the final
marking at any point with a price that does not exceed the budget b ∈ Nk

ω. It is
easy to see that a pwf-net is b-sound iff it is weakly sound and b-p-safe. However,
as we prove next, the latter is undecidable.

Proposition 2. b-p-safeness is undecidable.

Proof (sketch). We reduce the cost-threshold-reachability problem for PPN with
negative costs, which is undecidable [11]. A PPN is a P/T net endowed with stor-
age and firing costs. The cost-threshold-reachability problem consists in, given
mf and b ∈ Nk

ω, decide whether there is a run σ with m0
σ

−→mf such that
C(σ) ≤ v. The reduction consists essentially in obtaining the pwf-net as the
inverse of the PPN, by taking the inverse of each firing and storage cost. Then,
if a run σ has price c in the PPN, the simulating run has cost v − c, so that it
satisfies the cost-threshold-reachability property iff N 6|= 0. The details of the
proof can be found in [21].

Instead of addressing the problem of b-soundness with non-negative costs di-
rectly, we will consider a more general version of the problem, that in which sev-
eral instances of the workflow execute concurrently, called resource-constrained
workflow nets. Then, we will obtain the results regarding pwf-nets as a corollary
of the more general problem.

To conclude this section, notice that if a pwf-net is b-p-safe (b-sound) then it
is also b′-p-safe (b′-sound) for any b′ > b, so that the set B(N) = {b ∈ Nk

ω | N is
b-p-safe (b-sound)} is an upward-closed set. In this situation, we can apply the
Valk & Jantzen theorem:

Theorem 1 ([24]). Let V be an upward-closed set. We can compute a finite
basis of V if and only if for each v ∈ Nk

ω we can decide whether v ↓ ∩V 6= ∅.

Therefore, we can compute a finite basis of the set B(N), i.e., the minimal
budgets b for which the pwf-net is b-p-safe (b-sound), provided we can decide
b-p-safety (b-soundness) for each b ∈ Nk

ω.

4 Priced resource-constrained wf-nets

Let us start by recalling the definition of resource-constrained wf-nets (rcwf-
nets). For more details see [5]. The definition we use is equivalent to those in [3,



4], though more convenient for our purposes. We represent each instance in an
rcwf-net by means of a different name. Hence, our definition of rcwf-nets is based
on ν-PN. A ν-PN can be seen as a collection of P/T nets that can synchronize
between them and be created dynamically [25]. We start by defining a subclass
of ν-PN, called asynchronous ν-PN, in which each instance can only interact
with a special instance (which models resources) that is represented by black
tokens. We fix variables ν ∈ Υ and x, ǫ ∈ V ar\Υ .

Definition 5 (Asynchronous ν-PN). An asynchronous ν-PN is a ν-PN N =
(P, T, F, H) such that:

– For each p ∈ P , Var(p) ⊆ {x, ν} or Var(p) = {ǫ}.
– For each t ∈ T , Var(t) ⊆ {ν, ǫ} or Var(t) ⊆ {x, ǫ}.

Places p ∈ P with V ar(p) = {ǫ} are called static, and represented in figures
by circles in bold. They can only contain (by construction) black tokens, so that
they will represent resources, and can only be instantiated by ǫ. Places p ∈ P
with Var(p) ⊆ {x, ν} are called dynamic, and represented by normal circles.
They can only contain names (different from the black token), that represent
instances, and can only be instantiated by x. We denote PS and PD the sets of
static and dynamic places respectively, so that P = PS ∪ PD.

Let us introduce some notations we will need in the following definition. Given
a ν-PN N = (P, T, F, H) and x ∈ Var we define the P/T net Nx = (P, T, Fx),
where Fx(p, t) = Ft(p)(x) and Fx(t, p) = Ht(p)(x) for each p ∈ P and t ∈ T .
Moreover, for Q ⊆ P , by F |Q we mean each Ft restricted to Q, and analogously
for H |Q. Roughly, an rcwf-net is an asynchronous ν-PN that does not create
fresh names, and so that its underlying P/T net is a wf-net.

Definition 6 (Resource-constrained workflow nets). A resource-constrained
workflow net (rcwf-net) N = (P, T, F, H) is an asynchronous ν-PN such that:

– for all t ∈ T , ν /∈ V ar(t),
– Np = (PD, T, F |PD

, H |PD
)x is a wf-net, called the production net of N .

Fig. 2 shows an rcwf-net (for now, disregard the annotations C and S in the
figure). In figures we do not label arcs, since they can be inferred (arcs to/from
static places are labelled by ǫ, and arcs to/from dynamic places are labelled by
x). Np, the production net of N , is the P/T net obtained by projecting N to its
dynamic places.

Intuitively, each instance is given by a name, which is initially in in. Given
m0 ∈ P⊕

S , for each j ∈ N we define the initial marking mj
0 as the marking that

contains m0(s) black tokens in each static place s, j pairwise different names in
its place in, and is empty elsewhere. For instance, the marking of the rcwf-net
in Fig. 2 is m2

0, where m0 = {s, s, s}. Moreover, for such mj
0 we denote by Mj

out

the set of markings in which the same j names are in its place out and every
other dynamic place is empty. Now we define the priced version of rcwf-nets,
analogously as in Def. 1.
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Definition 7 (Priced rcwf-net). A priced rcwf-net (prcwf-net) with price ar-
ity k ≥ 0 is a tuple N = (P, T, F, H, C, S) such that:

– (P, T, F, H) is an rcwf-net, called the underlying rcwf-net of N ,
– C : T → Zk and S : P × T → Zk are functions specifying the firing and

storage costs, respectively.

As for priced wf-nets, the behavior of a priced rcwf-net is given by its under-
lying rcwf-net. However, its runs have a price associated. We start by defining
the price of an instance in a run.

Definition 8 (Price of an instance). We define the price of an instance

a ∈ Id(m0) in a run r = m0
t1(σ1)
−→ m1

t2(σ2)
−→ m2 . . .mn−1

tn(σn)
−→ mn of a prcwf-net as

P(a, r) =
n

∑

i=1
σi(x)=a

(C(ti) +
∑

p∈P

|mi−1(p) − σ(Ft(p))| ∗ S(p, ti))

Intuitively, we are considering those transitions in r fired by a, and comput-
ing its price as we did in Def. 2 for pwf-nets. In particular, we are assuming
that when computing the price of the firing of a transition by an instance, the
tokens belonging to other instances are accounted for. In other words, a pays
a penalitation for the storage of all tokens when it fires a transition. We could
have also decided that each instance only pays for its own tokens, thus being
in a slightly different setting, but the techniques used in our results would also
apply.

As we have mentioned before, prices are different from resources in that
they do not constraint the behavior of the net. However, once we are interested
in checking a priced-soundness problem, it is natural to consider the available
“budget” as an extra resource. Indeed, this can be done but only for firing costs,
which are local to transitions, but again this is not possible for storage costs.

Since in rcwf-nets we are interested in the behavior of several concurrent
instances, we collect their prices in the following definition.

Definition 9 (Price of a run). Given a run r of a prcwf-net starting in m0,
we define the price of r as the multiset P(r) = {P(a, r) | a ∈ Id(m0)} ∈ (Zk)⊕.



Instead of fixing the condition to be satisfied by all the prices of each in-
stance, we define a parametric version of p-safeness and dynamic soundness.
More precisely, those properties for prcwf-nets are parameterized with respect
to a price-predicate.

Definition 10 (Price-predicate). A price-predicate φ of arity k ≥ 0 is a
predicate over Nk

ω × (Zk)⊕ such that if b ≤ b′ and A′ ≤⊕ A then φ(b, A) →
φ(b′, A′) holds.

Intuitively, b stands for the budget, and A stands for the price of a run. Notice
that price-predicates are upward-closed in their first argument, but downward-
closed in their second argument. Intuitively, if a price-predicate holds for given
budget and costs, then it holds with a greater budget and less costs, as expected.
From now on, for a price-predicate φ and b ∈ Nk

ω, we will denote by φ(b) the
predicate over (Zk)⊕ that results of specializing φ with b. Moreover, when there
is no confusion we will simply say that a run r satisfies a predicate when P(r)
satisfies it.

We now proceed as in the case of a single instance, defining p-safeness and
dynamic soundness, though with respect to a given price-predicate.

Definition 11 (φ-p-safeness). Let b ∈ Nk
ω and φ be a price-predicate. We say

that the prcwf-net N is φ(b)-p-safe for m0 ∈ P⊕
S if for each j > 0, every run of

N starting in mj
0 satisfies φ(b).

Definition 12 (φ-dynamic soundness). Let b ∈ Nk
ω and φ be a price-predicate.

We say that the prcwf-net N is φ(b)-dynamically sound for m0 ∈ P⊕
S if for each

j > 0 and for each marking m reachable from mj
0 by firing some r1, we can reach

a marking mf ∈ Mj
out by firing some r2 such that r1 · r2 satisfies φ(b).

Ordinary dynamic soundness [5] is obtained by taking φ as the constantly
true predicate. Let us see some simple facts about φ-p-safeness and φ-dynamic
soundness.

Proposition 3. The following holds:

1. If φ1 → φ2 holds, then φ1(b)-p-safeness implies φ2(b)-p-safeness, and φ1(b)-
dynamic soundness implies φ2(b)-dynamic soundness.

2. For any φ, φ-dynamic soundness implies (unpriced) dynamic soundness.
3. In general, φ-dynamic soundness is undecidable.

Proof. (1) is straightforward by Def. 11 and Def. 12. (2) follows from (1), con-
sidering that any φ entails the constantly true predicate. (3) follows from the
undecidability of (unpriced) dynamic soundness for general rcwf-nets [5]. ⊓⊔

Therefore, φ-dynamic soundness is undecidable for some φ, though certainly
not for all. As a (not very interesting) example, if φ is the constantly false price-
predicate, no prcwf-net is φ-dynamically sound, so that it is trivially decidable.
Now we factorize φ-dynamic soundness into unpriced dynamic soundness and
p-safety. As we proved in the previous section, if we consider negative costs
safeness is undecidible even for priced wf-nets. Therefore, for now on we will
focus in rcwf-nets with costs in N.



Proposition 4. Let φ be a price-predicate and N a prcwf-net with non-negative
costs. Then N is φ(b)-dynamically sound if and only if it is dynamically sound
and φ(b)-p-safe.

Proof. First notice that for any run r of N and any run r′ extending r we have
φ(b,P(r · r′)) → φ(b,P(r)). Indeed, it is enough to consider that, because we are
considering that costs are non-negative, P(r) ≤⊕ P(r·r′) holds and, by Def. 10, φ
is downward closed in its second parameter. For the if-part, if N is dynamically
sound and all its runs satisfy φ(b) then it is clearly φ(b)-dynamically sound.
Conversely, if it is φ(b)-dynamically sound it is dynamically sound by Prop. 3.
Assume by contradiction that there is a run r that does not satisfy φ(b). By
the previous observation, no extension of r can satisfy φ(b), so that N is not
φ(b)-dynamically sound, thus reaching a contradiction. ⊓⊔

Therefore, to decide φ-dynamic soundness we can consider those two proper-
ties separately. Though (unpriced) dynamic soundness is undecidable for general
rcwf-nets, it is decidable for a subclass of rcwf-nets that we call proper rcwf-
nets [5]. An rcwf-net is proper if its production net is weakly sound and for each
transition t in the production net, t• 6= ∅. The first condition can be intuitively
understood as the rcwf-net behaving properly (being weakly sound) if endowed
with infinitely-many resources, which amounts to removing the restriction of its
behavior by means of resources. The second condition is a slight relaxation of
the standard connection condition considered for wf-nets [2]: for any n ∈ P ∪ T
there exists a path from in to n and from n to out. That is because, given a
transition t ∈ T , if there exists a path from t to out, then there must be p ∈ P
with p ∈ (•t) and therefore t• 6= ∅.

In turn, it is decidable to check that an rcwf-net is proper [5]. In the follow-
ing sections, we will study the decidability of φ(b)-p-safeness for various price-
predicates, even if N is not proper.

To conclude this section, and as we did in the previous one, notice that
for any price-predicate φ, the set Bφ(N) = {b ∈ Nk

ω | N is φ(b)-dynamically
sound (φ(b)-p-safe)} is upward-closed because of the upward-closure in the first
parameter of price-predicates. Therefore, and as we did for pwf-nets, we can
apply the Valk & Jantzen result to compute the minimal budgets b for which N
is φ(b)-p-safe (φ(b)-dynamically sound) whenever we can decide φ(b)-p-safeness
(φ(b)-dynamic soundness) for each b ∈ Nk

ω.

5 Selected price predicates

Now, we study some specific cases of these price predicates. In particular, we
study the maximum, the sum, the average and the discounted sum.

5.1 Sum and Max -dynamic soundness

Let us now study the two first of the concrete priced problems for prcwf-nets.
When we consider several instances of a workflow net running concurrently, we



may be interested in the overall accumulated price, or in the highest price that
the execution of each instance may cost.

Definition 13 (Sum and Max price-predicates). We define the price-predicates
Sum and Max as:

Sum(b, A) ⇐⇒
∑

x∈A x ≤ b

Max (b, A) ⇐⇒ x ≤ b for all x ∈ A

Sum and Max are indeed price-predicates because they satisfy the conditions
in Def. 10. They are both upward closed in the first parameter and downward
closed in the second. Let us remark that the cost model given by Sum, in which
all the prices are accumulated, is the analogous to the cost models in [11, 17].
However, since we are here interested in the behavior of an arbitrary number
of instances, a necessary condition for Sum(b)-p-safeness is the existence of an
instance from which the rest of the instances have a null price (for those com-
ponents in b that are not ω).

Example 2. Consider the prcwf-net N in Fig. 3, and a run of N with n instances,
and in which t2 is not fired until t1 has been fired n times. The price of the i-th
instance in any such run is 2 · (i− 1). Indeed, the first firing of t1 costs nothing,
because there are no tokens in p, but in the second one there is already a token in
p, so that the second firing costs 2 (because S(p, t1) = 2). In particular, the last
instance of the net costs 2 · (n − 1). Therefore, the net is neither Max (b)-p-safe
nor Sum(b)-p-safe for any b ∈ N.

Now, suppose that S(p, t) = 0 for each place p and transition t, C(t1) = 1 and
C(t2) = 0. Each instance costs exactly 1, so that it is Max (1)-p-safe. However,
if we consider a run in which n instances have reached out, then the sum of the
prices of all instances is n, and the net is not Sum(b)-p-safe for any b ∈ N.

Now we prove decidability of Max (b) and Sum(b)-p-safety by reducing them
to non-coverability problems in a wν-PN. Given a prcwf-net N we build a wν-
PN C(N), the cost representation net of N , by adding to N new places, whose
tokens represent the costs of each run. Then, the net will be safe iff no marking
with bi + 1 tokens in the place representing the ith component of the prices
can be covered. More precisely, we will use a-tokens to compute the cost of the
instance represented by a. We simulate firing costs by adding to N “normal
arcs”, without whole-place operations, but for the simulation of storage costs we
need the whole-place capabilities of wν-PN.

Proposition 5. Max-p-safety and Sum-p-safety are decidable for prcwf-nets.
Max-dynamic soundness and Sum-dynamic soundness are decidable for proper
prcwf-nets.

Proof. We reduce Sum-p-safety to coverability for wν-PN. Then, we sketch how
to adapt this reduction to the case of Max -p-safety. Let N = (P, T, F, H, C, S)
be a prcwf-net with price arity k. Let b ∈ Nk

ω. We can assume that b has no ω-
components, or we could safely remove the cost information of those components.
We build the wν-PN C(N) = (P c, T c, F c, Gc, Hc) as follows:
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Fig. 4. The costs representation wν-PN of the prcwf-net in Fig. 2

– P c = P ∪ {c1, ..., ck},
– T c = T ∪ {tν} ∪ {tc1, ..., tck

}.
– For each t ∈ T ,

• F c
t (p) = Ft(p) if p ∈ P , and F c

t (p) = ∅, otherwise,

• Hc
t (p) = Ht(p) if p ∈ P , and Hc

t (ci) = C(t)[i] ∗ {x}, otherwise,

• Gc
t(p, p′) =







S(p, t)[i] if p ∈ P , and p′ = ci,
1 if p = p′,
0 otherwise.

– For each i ∈ {1, ..., k},

• F c
tci

(ci) = {x, y}, and F c
tci

(p) = ∅ otherwise,

• Hc
tci

(ci) = {x, x}, and Hc
tci

(p) = ∅ otherwise, and

• Gc
tci

is the identity matrix.

– Ftν
(p) = ∅ for any p ∈ P c, Htν

(in) = {ν} and returns the empty multiset
elsewhere, and Gtν

is the identity matrix.

Any run r of N can be simulated by a run of C(N), preceded by several firings
of tν . Moreover, if r starts in m0 and finishes in m (seen as a run of C(N)), then
by construction of C(N) it holds that the sum of the prices of the instances in r,
is the vector formed by considering the number of tokens (maybe with different
colors) in c1, ..., ck. Finally, as each transition tci

takes two tokens with different
names from ci, and puts them back, changing the name of one of them by the
name of the other token, these transitions allow to reach each markings in which
the sum of the prices of all instances of a run is represented by the tokens in the
places ci, all of them with the same name. Then, N is Sum(b)-p-unsafe if and
only if there is j ∈ {1, ..., k} such that the marking with b[j] + 1 tokens of the
same color in cj and empty elsewhere is not coverable, and we are done.

The previous construction with some modifications also yields decidability of
Max (b)-p-safeness. We add one more place last (which will always contain the
name of the last instance that has fired a transition) and for each i ∈ {1, ..., k},
we add a new place di (where we will compute the costs). When a transition



t ∈ T is fired, in C(N) we replace the name in last by the name of the current
transition, and reset every place ci (by setting Gt(ci, ci) = 0). Moreover, we
change the effect of every tci

: they now take a token from ci, and put a token of
the name in last in the place di (see Fig. 5).

Therefore, when a transition t ∈ T is fired, it is possible to reach a marking in
which the costs of firing t are added to every di (represented by the name of the
instance that has fired t) by firing t followed by the firing of every tci

ni times,
provided t put ni tokens in ci. Notice that if another transition fires before, then
that run is lossy, in the sense that it is computing an underapproximation of
its cost, but it is always possible to compute the exact cost. Therefore, N is
Max (b)-p-unsafe if and only if there is j ∈ {1, ..., k} such that the marking with
b[j] + 1 tokens of the same color in dj and empty elsewhere is not coverable. ⊓⊔

Example 3. Fig. 4 shows the costs representation net of the net N in Fig. 2.
For a better readability, we have removed the labels of the arcs. As the prices
in N are vectors of N2, we have added two places, c1 and c2, to store the costs;
and two transitions tc1 and tc2 , which take two tokens of different colours of the
correspondig places and put them back, with the same colour. Moreover, we have
added arcs that manage the addition of the costs of transitions. In particular,
dashed arcs denote copy arcs, meaning that when the corresponding transition is
fired, tokens are copied in the places indicated by the arrows (which is the effect
of G in the proof of the previous result). Then, Sum(b)-p-safeness is reduced to
non-coverability problems: the prcwf-net is Sum(1, 1)-p-safe iff neither m1 (the
marking with only two tokens carrying the same name in c1) neither m2 (the
marking with only two tokens carrying the same name in c2) are coverable.

We remark that if we consider a cost model in which each instance only pays
for its own tokens, as discussed after Def. 8, the previous proof can be adapted
by considering a version of wν-PN with finer whole-place operations, which are
still a subclass of the ones considered in [12], so that the result would still apply.
To conclude this section, we show that we can reduce the soundness problem for
pwf-nets defined in Sect. 3 to Max -dynamic soundness for prcwf-nets.

Corollary 1. b-p-safeness and b-soundness are decidable for pwf-nets with non-
negative costs.

Proof. Let N be a pwf-net. To decide b-safety it is enough to build a prcwf-net
N ′ by adding to N a single static place s, initially containing one token, two new
places in′ and out′ (the new initial and final places), and two new transitions
tin and tout. Transition tin can move a name from in′ to in whenever there is a
token in s, that is, Ftin

(in′) = {x}, Ftin
(s) = {ǫ} and Ftin

is empty elsewhere,
and Htin

(in) = {x} and empty elsewhere. Analogously, tout can move a name
from out to out′, putting the black token back in s, that is, Ftout

(out) = {x}, and
empty elsewhere, and Htout

(out′) = {x}, Htout
(s) = {ǫ}, and empty elsewhere.

In this way, the concurrent executions of N ′ are actually sequential. Since there
is no other way in which instances can synchronize with each other (because
there are no more static places) the potential behavior of all instances coincide,
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Fig. 6. The construction of Cor. 1

and coincide in turn with the behavior of N . Finally, we take the cost of firing
tin and tout as null, as well as the cost of storing tokens in in′ and out′ for any
transition, and the cost of storing tokens in any place for tin and tout. More
precisely, C(tin) = C(tout) = 0, S(p, tin) = S(p, tout) = 0 for any p ∈ P , and
S(in′, t) = S(out′, t) = 0 for any t ∈ T . In this way, the cost of each instance is
the cost of a run of N . Therefore, N is b-p-safe if and only if N ′ is Max (b)-p-safe.
Since weak soundness is decidable for wf-nets [2], we conclude. ⊓⊔

5.2 Av-dynamic soundness

Now we study the next of the concrete priced-soundness problems. Instead of
demanding that the execution of each instance does not exceed a given budget
(though the price of one instance depends on the others), we will consider an
amortized, or average price.

Definition 14 (Av price-predicate). We define the price-predicate Av as
Av(b, A) ⇔ (

∑

x∈A x)/ |A| ≤ b.

Therefore, N is Av(b)-p-safe if in average, the price of each instance does not
exceed b, for any number of instances. Alternatively, we could have a slightly
more general definition, in which we only considered situations in which the
number of instances exceeds a given threshold l > 0. More precisely: Av l(b, A) ⇔
|A| ≥ l → (

∑

x∈A x)/ |A| ≤ b. We will work with Av , though we claim that with
fairly minor changes in our techniques we could also address the slightly more
general price-predicate Av l.

Example 4. Consider the prcwf-net in Fig. 9. The cost of firing t1 is twice the
number of instances in place in when t1 is fired. Therefore, the net is Av(2)-p-
safe, though it is not Max (b)-p-safe for any b ∈ N.

Now suppose that we force t1 to be fired in the first place by adding some
static conditions. Then, though the net is not Av(0)-p-safe, it is Av l(0)-p-safe if
we consider any threshold l ≥ 2.

We can reduce Av(b)-dynamic soundness of a prcwf-net N to (unpriced) dy-
namic soundness of an rcwf-net N b. In order to ensure Av(b)-p-safeness, the
maximum budget we may spend in an execution with n instances is b∗n. Essen-
tially, the idea of this construction is to add to N new places s in which tokens
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represent the remaining budget, and remove tokens from them when transitions
are fired. Moreover, each transition will have s as a precondition, so that if the
net has consumed all the budget, then it halts before reaching the final mark-
ing. Therefore, we add b tokens to s each time an instance starts its execution.
The simulation is “lossy” because of how we manage storage costs, but it pre-
serves dynamic soundness. The proof of the next proposition gives a detailed
explanation of this construction.

Proposition 6. Given a prcwf-net N and b ∈ Nk
ω, there is an rcwf-net N b such

that N is Av(b)-dynamically sound if and only if N b is dynamically sound.

Proof. Let k be the price arity of N . We start the construction of N b by adding
to N new static places s1, ..., sk that initially contain one token each. These new
places store the budget than can be consumed by instances, plus the initial extra
token. In order to obtain that, every instance adds b[i] tokens to si when it starts.
When a transition t is fired, we remove from si C(t)[i] tokens to cope with firing
costs. We will later explain how to cope with storage costs (notice that N b is an
rcwf-net, and in particular it does not have whole-place operations). Moreover,
each transition has s1, ..., sk as preconditions and postconditions. Therefore, the
net will deadlock when some si is empty, meaning that it has used strictly
more than the allowed budget. Then, if N is not Av(b)-dynamically sound, N b

halts before reaching the final marking for some execution, and therefore, it is
not dynamically sound. Moreover, if N is Av(b)-dynamically sound, then N b is
dynamically sound, because each place si always contains tokens, and therefore
the executions of N b represent executions of N . Fig. 7 shows a schema of the
reduction for price arity 1.

Now we address the simulation of storage costs. Fig. 8 depicts the following
construction. We simulate them in a “lossy” way, meaning that if the firing of t
in N costs v, in the simulation we will remove at most v[i] tokens from si. To
do that, for each place p of N we will add a new place p′.

When a transition t is fired, for each place p we transfer tokens from p to
p′, one at a time (transition tp in the figure), removing at each time S(p, t)[i]
tokens from si. We add the same mechanism for the transfer of tokens from p′

to p. At any point, the transfer can stop (even if some tokens have not been
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Fig. 9. Av -p-safety does not imply Max -p-safety

transfered), which finishes the simulation of t. Since we now have two places
representing each place p (p and p′), for each transition of N , we need to add
several transitions in order to be able to take (or put) tokens from p, p′ or both.

Having lossy computations of the cost of a run, if N exceeds the average
budget for some execution and some number of instances, then N b will have a
deadlock when this execution is simulated correctly (meaning that all the tokens
which have to be transfered are indeed transfered). Then, N b is not dynamically
sound. Conversely, if N is Av(b)-dynamically sound (and in particular no run of
N exceeds the average budget), then N b never consumes all the tokens in any
si, and it behaves as N , so that it is dynamically sound. ⊓⊔

Corollary 2. Av-dynamic soundness is decidable for proper prcwf-nets.

5.3 Ordered prices

So far, we have considered that instances are not ordered in any way, follow-
ing directly the approaches in [3–5]. Nevertheless, we could consider an order
between the instances, and use it to compute the price of a run in such a way
that the relative order between instances matter. A sensible way to do that is
to assume a linear order between instances within a run given by the order in
which they start their execution.

Definition 15 (Order between instances). Let N be a prcwf-net, and a and
b be two instances in a run r of N . We write a <r b if a is removed from in in
r before b, and a =r b if neither a nor b have been removed from in in r. We
write a ≤r b if a =r b or a <r b.

Then, the order ≤r is a total order over the set of instances in r. In this
situation we can write Id(r) = a1 ≤r · · · ≤r an to denote that a1, ..., an are all
the instances in r, ordered as indicated. In the following, for a set A we denote
by A∗ the set of finite words over A.

Definition 16 (Ordered price of a run). Given a run r of a prcwf-net with
Id(r) = a1 ≤r · · · ≤r an we define the ordered price of r as the word Po(r) =
P(a1, r)...P(an, r) ∈ (Nk)∗.

Notice that the previous definition is correct in the sense that whenever
a =r b then we have P(a, r) = P(b, r) = 0. Moreover, the instances of a run are
always ordered as a1 <r · · · <r am < am+1 =r ... =r an.



Sum Max Ds Av

Sum X X X X

Max × (Ex. 2) X 2� [21] X [21]

Ds × (Fig. 3) × (Fig. 3) X × (Fig. 3)

Av × (Fig. 9) × (Fig. 9) × (Fig. 9) X

Table 1. A X symbol in row φ1 and column φ2 means that φ1(b)-dynamic soundness
implies φ2(b)-dynamic soundness; a 2� symbol means that the implication holds possibly
for a different b; a × means that the implication does not hold

With the notion of ordered price, we can consider price-predicates that
depend on the order in which instances are fired. Therefore, ordered price-
predicates are predicates over Nk

ω × (Nk)∗. We consider the order ≤∗ over (Nk)∗

given by w1...wn ≤∗ w1...w
′
m iff n < m and for each 0 < i ≤ n, wi ≤ w′

i. For
instance, following [14], we can model situations in which costs in the future are
less important than closer ones.

Definition 17 (Ds-price predicate). Given 0 < λ < 1, we define the discounted-
sum price-predicate Dsλ as Dsλ(b, v1...vn) ⇔

∑n
i=1 λi · vi ≤ b.

Example 5. Let us recall the run of the net N of Fig. 3 described in Ex. 2. We
proved that the net is neither Max (b)-p-safe nor Sum(b)-p-safe for any b ∈ N.
Moreover, the average price of the run is

∑n
i=1 2(i − 1)/n, which equals n − 1,

so that it is not Av(b)-p-safe for any b ∈ N. However, the discounted price of
the run is

∑n
i=1 2(i − 1)λi, with 0 < λ < 1. By using standard techniques, it

can be seen that the limit of those sums is b = 2λ2/(1 − λ)2. Moreover, for
λ = 1/c with c > 1 that formula simplifies to 2/(c − 1)2. As it is easy to prove
that the considered runs are the most expensive ones of N , it follows that it is
Dsλ(b)-p-safe for that b ∈ N.

Note that if we consider ≤∗, then Dsλ is downward-closed in its second
argument. Decidability of Dsλ-p-safeness remains open, but a weaker version of
this problem, in which we only consider finitely many instances, is decidable.

Definition 18 (Fds-price predicate). Given 0 < λ < 1 and k ∈ N, we define

the finite-discounted-sum price-predicate Fdsk
λ(b, v1...vn) ⇔

∑min{n,k}
i=1 λi ·vi ≤ b

For this finite version of discounted-sum, p-safety is decidable.

Proposition 7. Let k ∈ N, c ∈ N \ {0} and λ = 1/c. Fdsk
λ-p-safety is decidable

for prcwf-nets. Fdsk
λ-dynamic soundness is decidable for proper prcwf-nets.

6 Conclusions and open problems

We have extended the study of workflow processes, adding prices to them. In
particular, we have added firing and storage costs to wf-nets and rcwf-nets,
as done for priced Petri nets in [11]. Then, we have defined priced versions of



safety and soundness for pwf-nets, and several notions of the same properties for
rcwf-nets, depending on how we aggregate local prices to obtain a global price.
Table 1 shows the relations between the different predicates. Some of its results
are either trivial or proved in [21].

We have proved that b-p-safety is undecidable when negative costs are con-
sidered, but decidable for non-negative costs. Moreover, b-soundness is also de-
cidable in this case. Regarding prcwf-nets, we have proved that Sum, Max , and
Fds-p-safety are decidable, and Sum, Max , Av and Fds-dynamic soundness are
decidable for the subclass of proper prcwf-nets.

There are interesting open problems that remain open: decidability of Av-
p-safety and that of the problems related to the discounted sum. Their study
would be a good starting point for the study of more sophisticated aggregation
techniques, like the Gini or the Theil index.

There are several ways in which we can extend this work. It would be inter-
esting to consider that storage costs depend on how long tokens stay on places
during the transitions. For this purpose, time for rcwf-nets should be considered
instead of arbitrary interleavings in the firing of transitions, as done in [17]. The,
priced safety and soundness properties could be studied in this timed model.

Moreover, it would be interesting to study the complexity of the problems
studied here. It is easy to see that coverability for ν-PN (which has a non-
primitive recursive complexity [23]) can be reduced to Sum and Max safety, so
that they are non-primitive recursive. Further research is needed to investigage
the complexity for the remaining predicates.

Finally, the study of Ds-soundness, leads us to several interesting questions
about how the size of the markings and prices of a (sound) rcwf-net may grow. In
this sense, we would be interested in studying possible bounds for the number
of tokens in places, or for the costs of an instance in terms of the number of
instances running in the net.
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Appendix: missing proofs

Proposition 2. b-p-safeness is undecidable.

Proof. We reduce the cost-threshold-reachability problem for PPN with negative
costs, and price arity 1, which is undecidable [11]. A PPN with arity 1 is a
P/T net (P, T, F ), endowed with a function C : P ∪ T → Z associating costs
to transitions and places. Moreover, T is the disjoint union of T0, the set of
instantaneous transitions, and T1, the set of timed transitions. The cost of firing

t ∈ T0 in any marking is just C(t). The cost of m
t

−→m′ with t ∈ T1 is C(t) +
∑

p∈P C(p) ·m(p). The cost of a run is the sum of all the transitions costs in it.
The cost-threshold-reachability problem consists in, given mf and b ∈ N, decide

whether there is a run σ with m0
σ

−→mf such that C(σ) ≤ b. It is proved in [11]
that this problem is undecidable.

Given a PPN N = (P, T, F, C) and b ∈ N, let us build a pwf-net N ′ as follows.
First, we add two new places, in and out, a transition t0 that removes a token
from in and sets the initial marking of N , and a transition tf that has mf as
precondition and puts a token in out. The new places have no storage cost, t0
has firing cost b + 1 and tf has firing cost 0. For every t ∈ T we take −C(t) as
the firing cost of t in N ′. Moreover, if t is an instantaneous transition we set
S(p, t) = 0 for every p ∈ P , and if it is a timed transition we take S(p, t) = −C(p)
for every p ∈ P .

By construction, if σ is a run in N with cost c, then t0 · σ is a run in
N ′ with cost b + 1 − c. Let us see that there exists a run r of N such that
m0

r
−→m ≥ mf with C(r) ≤ b iff N ′ is not 0-p-safe. Let r be a run such that

m0
r

−→m ≥ mf and C(r) ≤ b. Let us call r′ = t0rtf the corresponding run of
N ′. Then, C(r′) = 1 + b − C(r) ≥ 1. Therefore, N ′ is not 0-p-safe. Conversely,

suppose that for every run r of N with m0
r

−→mf , C(r) > b. Then, for every run
r′ of N ′ reaching mout, necessarily of the form t0rtf , C(r′) = 1 + b − C(r) ≤ 0.
Therefore, N ′ is b-p-sound. ⊓⊔

Proposition 8. Let b ∈ Nk
ω and N a Max (b)-p-safe prcwf-net. Then, N is also

Av(b)-p-safe and Dsλ(λ ∗ b/(1− λ))-p-safe. In particular, N is Ds1/2(b)-p-safe.

Proof. Let A be a multiset of prices satisfying Max (b), ie, x ≤ b for all x ∈ A.
Let m = max (A). Then,

∑

x∈A x/n ≤ (n ∗ m)/n = m ≤ b and therefore A
satisfies Av(b). Moreover, if 0 < λ < 1 and A = x1...xn is a word of prices,
then

∑n
i=1 λi ∗ xi ≤

∑n
i=1 λi ∗ m ≤

∑n
i=1 λi ∗ b = λ ∗ b/(1 − λ), so A satisfies

Dsλ(b′). ⊓⊔


