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1. Introduction

Pure names have been extensively studied in the fields ofitseand mobility, because they can be used
to represent different entities widely used in them. Fotanse, names can represent communicating
channels inr-calculus terms, computing boundaries in the Ambient Gatcor ciphering keys in the
spi Calculus [14]. In previous works we have extended P/§ ndth a primitive to create fresh names,
definingr-PNs! Names are represented as tokens, that are no longer igdistiable. These tokens
can move along the places of the net and be used to restrifitittgeof some transitions, imposing for
instance that two certain names at the preconditions match.

In [19] we proved that-PNs are Well Structured Transition Systems (WSTS). For @81Ts pos-
sible to perform a backward analysis that computes th¢Bet"(1M) [1, 9], the set of predecessors of
an upward-closed sét)M . An effective representation of that set allows us to detidecoverability
problem, by checking whether the initial marking, € 7 Pre*(1M). However, the construction of such
sets is extremely expensive, with a non primitive recursiveplexity [24].

Very recently, Finkel and Goubault-Larrecq have laid thenfidation of a theory supporting forward
analysis of WSTS [11, 12], computingPost* (| M), the so callecoverof the transition system. The
cover provides a good over approximation of the set of rdalelstates, and its construction is generally
more efficient in practice than that ¢fPre* (7 M). However, it is not always possible to obtain an
effective representation of the cover [3]. The paper [113ldshes a theory for the completion wéll
guasi ordergwqos), so that we can always represent downward-closedgeheans of their least upper
bounds. There it is proved that the least completioX dthat contains an adequate domain of limits, in
the sense of [13]) is the so called ideal completiorXofor equivalently, the sobrification of [15].

We will see here that the ideal completion of the set of maykioan be effectively represented by
mapping markings to the domaittS(MS(P)) of finite multisets of finite multisets of places. For that
purpose we introduce the domainwimarkings (analogous to the classical notioweamharkings for P/T
nets). In anv-marking, not only some identifiers may appear an unboundecber of times in some
places, as happens in classicaimarkings, but also an unbounded number of different ifiergi may
occur in a marking.

Assuming a complete domain (thus containing an adequateaidorhlimits), a generic Karp-Miller
procedure to compute the cover is presented in [12]. Thisguhare is correct provided the WSTS is
oo-effective, which intuitively means that we can accelesiteple loops (flat loops, in the sense of [4]).
We will see thatv-PNs arexc-effective when we restrict the non-determinism arisindpiops, so that
we can apply to them the generic Karp-Miller procedure. iftately, the procedure is not guaranteed
to terminate forv-PN. We will see that this is unavoidable, since we can redupeoblem related to
boundedness which we call depth-boundedness, which iscidadde [23], to the computation of the
cover.

Data nets [17] are Petri nets in which tokens are taken fromeaily ordered and dense domain,
and capable of performing whole place operations, suchaasfers or resets. Transfer Data Nets is
the subclass of Data nets in which no resets are allowed, attdPata Nets is the subclass of Data
Nets (and of Transfer Data Nets) in which no whole-place ajp@n is allowed. Petri Data nets subsume
v-PNs [17], so that as a corollary, there cannot be an algoritbmputing (a finite basis of) the cover of
a Petri Data net, and therefore neither for a Transfer Datatmes answering negatively to a question

Actually, we used the term-APN, where the A stands fa@kbstract though we prefer to use this simpler acronym.
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posed in [12].

But even if there is no algorithm for the computation of thearpwe can use a slight modification
of the forward Karp-Miller procedure to decide width-boeddess oi-PNs [20, 5]. A net is width-
bounded if only a bounded number of different names appeaach reachable marking. The paper [5]
also establishes the decidability of width-boundednealie@ m-boundedness there), but we claim that
the algorithm presented there does not properly work ialkiases. This is because the algorithm stops
whenever unboundedness is detected. However, width-mdleolnets may be bounded or not, so that we
need to further explore the reachability graph to decidetwizbundedness. For that purpose, we need
ways to finitely represent downward-closed sets of reaehatarkings, outw-markings. We already
knew [20] that width-boundedness is decidable, but we olite result here as a simple application of
our forward analysis.

Finally, we identify some subclasses for which the procedioes terminate. Width-bounded nets
is one of such subclasses. We also prove that we can computevkr of depth-bounded nets, though
depth-boundedness is undecidable. Last, we consider eewfmkn of boundedness, that we call dw-
boundedness. A net is dw-bounded whenever only a boundet8erush names are allowed to appear
an unbounded number of times in each reachable marking.nAgai will see that we can compute the
cover of a dw-bounded net, though, as we will see, dw-boumekelis undecidable.

The rest of the paper is structured as follows. Section ddltces our notations and some basic
concepts. In Section 3 we preseAPNs. In Section 4 we show hawPNs fit in the general framework
for forward analysis of WSTS in [11, 12]. Section 5 proves tbility of a forward Karp-Miller
procedure for-PNs, and the non-computability of the cover. Section 6 iclams several subclasses of
v-PN: it proves decidability of width-boundedness, undabitity of dw-boundedness and computability
of the cover for all the subclasses. Finally, Section 7 prisseur conclusions and some directions for
further work.

2. Preliminaries

Well quasi orders, directed complete partial orders

A guasi ordeK is a reflexive and transitive binary relation on a&etA partial order is an antisymmetric
guasi order. A poset is a set endowed with a partial order. Wew< b if a < bandb £ a. A sequence
(ai)ieN is increasing ifa; < a;,1 for eachi € N, and strictly increasing i&; < a;.1 for eachi € N. A
quasi order is simply said well (wqo) [10], if for every infiaisequencey, a1, ... there are andj with
i < j suchthatu; < a;. Equivalently, an order is a wqo if every sequence has aeasing subsequence.
The downward closur¢ £ of £ C X is{y € X | y < z for somez € E}. A setis downward
closed iff | E = E. A basis of a downward closed sgtis a setA such thatf A = E. An element
x € X is an upper bound oF if y < z for all y € E. We write lub(E) to denote the least upper bound
of F, when it exists. An element € F is maximal ifx = y wheneverr < y € E; MazF is the set of
maximal elements of?. A subsetD of X is said to be directed #ub({x,y}) exists for allz,y € D. A
poset idirected completédcpo) if every directed subset has a least upper bound.rFanbétrary subset
E, Lub(E) = {lub(D) | D directed,D C E}. The setLub(E) can be thought of a& together with all
its limits. For a dcpaX, we writez < y whenevery < [ub(D) impliesz < z for somez € D, for all
directed subseb. X is continuous if for alk € X, z = lub{y € X |y < x}.
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Well Structured Transition Systems

A labelled transition system is a tuplé = (X, —, Act) with a setX of states,Act a set of actions

and a transition relatior-= |J %, with % C X x X. We denote by®* (resp. —*) the reflexive
a€Act

and transitive closure of> (resp. —). Post, n(M) (or just Post,(M)) is the set{ M’ | M-%M'}
of immediatea-successors of\/. Post*(M) = {M' | M —* M’} is the set of states reachable
from M. Both Post, and Post* are extended pointwise to sets of states. A Well Structuradsition
System (WSTS) is a tupl& = (X, —, Act, <), where(X, —, Act) is a labelled transition system,
and (X, <) is a wqo, satisfying the following monotonicity conditlon; > M,-% M implies the
existence of\/] such thatM;-% M| > M). Given a statél/, the coverof M is the set| Post*(M)
(or equivalently, | Post*(| M) because of monotonicity), and we will denote it Bpvery (M) (or
just Cover(M) if there is no confusion). Given an initial stafe,, the cover ofN is the cover of
My. N is said to beeffectiveif Post,(M) is finite and computable for all/, and < is decidable.
A WSTS (X, —, Act, <) is complete wheneverX, <) is a continuous dcpo and for evetye Act,
Post,(Lub(E)) = Lub(Post,(E)) for every sett.

An ideal is a downward closed directed subset. The ideal tetiop X of a wgo X is the set of
ideals of X, ordered by inclusion. Given a WST® = (X, —, Act, <), the ideal completion ofV is
the transition systenV = (X, —, Act), whereF % F' =|{s' | s=s', s € F}. (X, C) is a continuous
dcpo. However)N is not a WSTS in general. The Rado’s structure is thefset {(a,b) € N x N |
a < b} with the wqo<, given by(a1,b1) <, (a2,b2) < a1 = az andb; < bg, Ora; < az. Awqo is an
w?-wqo if it does not contain an isomorphic copy of the Rada'aatire, and an?-WSTS is a WSTS
with an underlyingo?-wqo [16]. Then,N is a WSTS iff NV is aw?-WSTS [12]. There is a finer notion
called better quasi order(bgo), whose definition is quitedate. For a detailed definition see [18]. Bqos
are closed under the multiset construction and theyar@qos [16].

Multisets

Given an arbitrary setl, we will denote byMS(A) the set of finite multisets ofl, that is, the mappings
m : A — N with finite support, meaning thet(m) = {a € A | m(a) > 0} is finite. When needed,
we identify each set with the multiset defined by its chargstie function, and use set notation for
multisets when convenient. We denotelbyl = > m(a) the cardinality ofm. Given two multisets
aeS(m)
mi,me € MS(A) we denote byn; + mq the multiset defined bym; + ms)(a) = mi(a) + ma(a).
We will write m; C mg if mi(a) < ma(a) for everya € A. Then, we can defingi, — m;, taking
(m2 —m1)(a) = ma(a) — mi(a). We will denote byl) € MS(A) the empty multiset. Iff : A — B
andm € MS(A), we definef (m) € MS(B) by f(m)(b) = 3 ¢(4)=pm(a).

Every partial ordex defined overd induces a partial order in the setMS(A) of multisets ofA,
given by{as,...,a,} C {b1, ..., by, } if there is an injective function: {1, ...,n} — {1,...,m} such that
a; < by for alli. If we do not demandto be injective we obtain the powerdomain oreié{r. We write
C, and<Y to stress the use of the mappingt is well known [18] that the multiset order induced by a
wgo is also a wqo.

2Different monotonicy notions are considered in [10].
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3. v-Petri Nets

In this section we presentPNSs; the reader is referrétb [21] for more details. In-PNs names can be
created, communicated and matched. We can use this merhianileal with authentication issues [19],
correlation or instance isolation [6]. We formalize namenagement by replacing ordinary tokens by
distinguishable tokens. We fix a skt of names, that can be carried by tokens of ar@N. In order to
handle these colors, we need matching variables labehlimauitcs of the nets, taken from a fixed $et-.
Moreover, we add a primitive capable of creating new nanm@sdlized by means of special variables
inasetY C Var, ranged by, v, ..., that can only be instantiated to fresh names.

As an example, the net in the top of Fig. 1 is a simplPN with a single transition. When fired,
it moves one token from; to ¢; (because of variable labelling both arcs), removes a token from
(variabley does not appear in any outgoing arc) and a new name is creejebecause of variable).
Instead, the net in the bottom of Fig. 1 uses the same variatiidabel the two arcs incoming its only
transition. In that case, the transition must take two tekearrying the same name fragmm andps, so
that the transition is not enabled.

Definition 3.1. A v-PNis atupleN = (P, T, F'), whereP andT are finite disjoint sets, and
F:(PxT)uU(T x P) — MS(Var)

is such that for every € T', Y N pre(t) = 0 andpost (t) \ T C pre(t), wherepre(t) = U,cp S(F(p,1))
andpost(t) = U,cp S(F(t,p)).

The set of pair§z, y) such thatF'(z,y) # 0 defines the set of arcs &f. We also takeVar(t) =
pre(t) Upost(t), fVar(t) = Var(t)NY andnfVar(t) = Var(t)\ fVar(t). To avoid tedious definitions,
along the paper we will consider a fixeePN N = (P, T, F).

Definition 3.2. A markingof NV is a functionM : P — MS(Id). We denote byd (M) the set of names
in M, thatis,Id(M) = U,cp S(M(p)).

Like for other classes of higher-order nets, transitiormsfaed with respect to a mode, that chooses
which tokens are taken from the preconditions and which areyihe postconditions. Given a transition
t of N, amode fot is an injectiors : Var(t) — Id that instantiates each variable to a different identifier.
Thus, by using the same variable we force the equality of saalen from preconditions, and because
modes are injections, we also check the inequality of nargassimg different variables. We will use
0,0’ 01... to range over modes.

Definition 3.3. Let M be a marking¢ a transition and- a mode fort. We sayt is enabled with mode
ifforall p € P,o(F(p,t)) C M(p) ando(v) ¢ Id(M) for all v € fVar(t). Themarking reached after
the firing oft with modes is M’, given by M’ (p) = (M (p) — o(F (p,t))) + o(F(t,p)) forall p € P.

In the definition of firing we demand that(v) ¢ Id(M), for every special variable, that is, that
every suclv is instantiated to a different fresh name, not in the curreatking. Moreover (and unlike
in [21]) we demand modes to be injective, which amounts tadpable to check for inequality of names

3We present here a more general version, that allows weiglaiss and check for inequality. The results in [19, 21, 28]
easily transferred to this extended version.
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Figure 1. Two simple,-PN

(not only for equality, by using the same variable in diffgrarcs). We will writeM -5 M7, M“—‘?M’,

M — M'and M>M' with 7 = t(01)--- t,(0,,), Saying thatr is a transition sequence, with their
obvious meanings.

Let us now define the natural order between markings, thateslthe coverability problem inPN.
We defineM; C, M, if there is an injection : Id(M;) — Id(Ms) such that(M;(p)) C Ms(p), for
all p € P. We take=,, asC,, N o2 and identify markings up te,,, that allows renaming of names.
The relationC,, is a wqo [19]. We will sometimes writé/; C, Ms to emphasize the use of

4. Forward analysis for v-PNs

The state space of a P/T net is the N&t However, that set is not complete. For instance, the iserea
ing chain(n)2° ; does not have a least upper boundNin For that purpose, the classical Karp-Miller
construction for P/T nets works instead with the donr@inJ {w})*, which is the completion ai*. In
particular, the least upper bound of the previous chainsitjuln general, a generic Karp-Miller proce-
dure needs to work with the completion of the domain of the \§ S case it is not already complete.

In this section we build the completion of the transitionteys defined by a-PN. In [11] it is
proved that the ideal completibiof a poset is effective (ideals can be finitely represented,iaclusion
is decidable) whenever the poset is built up from some badi type constructions, among which are
finite domains, with any order, and multisets of elements @domain with effective ideal completion.
Let us see that we can build our markings using these two wanisins.

The behavior ofv-PNs is invariant under, [19]. When working modula=,, we can represent
markings as multisets of multisets of places, where eacligatitepresents the projection of the marking
over some identifier. For instance, the markinggiven by M (p) = {a} and M (q) = {a,b} can be
equivalently represented by the multi§ép, ¢}, {¢}} in MS(MS(P)). In general, for a marking/,
its multiset representation is given KW/ | a € Id(M)}, whereM®(p) = M(p)(a). We can also
denote the previous multiset by the expressigr- ¢, wherepq represents the identifier, which is both
in p and ing, andq represents the identifiér, which is only ing. In the following, C will denote the
natural order oveMS(MS(P)) (induced by the equality i®).

Lemma 4.1. Let M; and M, be two markings, and/; and M, their multiset representation. Then we
haveM1 Ca My iff Ml C MQ.

“4Actually, the authors work with the equivalent concept dfrification.
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Proof:
M C, My &
v : Id(My) — Id(M>) injective such that(M;) C My <
o2 Id(My) — Id(My) injective such that for alb, «(M;(p)) C Ma(p) <
Ju: Id(My) — Id(M>) injective such that for alb andb = «(a), M“( ) < M(p) &
3z Id(My) — Id(My) injective such that for ab = c(a), M{ C M% < M, C M. O

In particular, M, =, Mo iff their multiset representations coincide. Since we aterested in the
abstract treatment of pure names, our set of configuratidhbenjust the set of finite multisets of finite
multisets of places

Next we definev-markings, the analogous concept of the classicatarkings of P/T nets in the
case ofv-PN. We use a terminology inspired by the Simple Regular &gions of [3]. We denote by
N, the sefN U {w}, and extend the natural order and the usual arithmefi€,toNext we will consider
a fixed enumeration of the places of the met= {p1, ..., pn }-

Definition 4.1. A productis an expres.siopi1 -opinwith iy, ..., i, € N,,. A sumis an expression of the
form Ey + ... + E,,, where eactt; is a product. Ano-markingis an expressiotd + oo(B), with A and
B sums.

Intuitively, w-markings are markings (moduls,) in which some identifiers may appear an un-
bounded number of times, and also an unbounded number efaiiff identifiers may appear. Notice
that each product corresponds to an ordinargnarking of a P/T net. For instance, themarking
pg” + oo(p¥) represents the marking in which an identifier appears ongeand infinitely often in
¢, and infinitely many other different identifiers appear iiéity often inp. We will say a product
plf -+ pin is bounded ifi; # w for everyj. Clearly, plain markings are a particular class.efarkings,
those in whichB is the empty sum and all the productsdnare bounded. Sometimes, for ammarking
M = A+ oco(B) we will refer to.A as the bounded part d¥ and toB as the unbounded part 8.

We denote by) the empty sum, and we will simply writd instead of4 + oo()) andoo(B) instead
of ) + oo(B). We will often omit place® with a null exponent, and expand exponential factors, mgiti
for instanceyq instead of%q? (assumingP = {p, ¢}).

We definepi' - - pin|, = [{k | ix, = w}|, and(pit - - pin)¥ = pi* .. -p%”, wherej;, = 0 if ik =0,
andj, = w otherwise (e.g.(ppq“)* = p“q¢*). Given two productd’; = plf copinandEy = pt - ply
we takeE| C Fy < i, < ji forall k € {1,...,n}, and we define®, @ E, = p?“l . -pl"“" and
wheneverE, C E|, E; & Ey = p' 7' ...pin~I" providedj, # w for all k € {1,...,n}. Finally,
(A+o00o(B)) + (A" + co(B)) is thew-marking (A + A') + co(B + B').

Let us now define the order betweermarkings, that extends the natural one for markings.

Definition 4.2. Given twow-markingsM = E; + ... + E,;, + 0o(Epy1 + ... + Ex) and M’ = E| +
+E +0o(Eyq1+ ... + Ey) we defineM T M ifthereise : {1,...,k} — {1,...,k'} such that:

e If 1(i) = «(j) andi(j) < m’ theni = j (itis partially injective),

e If i > mthen.(i) > m/,

®Notice that MS(P) is isomorphic toN/”!, so that alternatively we could have consider8dS(N'"!) instead of
MSE(MS(P)).
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o B;C E,;forallie{1,.. k}

As for multisets, we use a mappingo specify which product afM’ is used to bound each product
in M. Products in the bounded part.bf can be mapped to products in the bounded or in the unbounded
part of M’, though products in the unbounded part\ef can only be mapped to products that are also
in the unbounded part o¥1’. Intuitively, infinitely many copies of a product can only beunded by an
infinite number of products. Products in the bounded paftéftan only be used once to bound products
in M, while this is not the case for products in the unbounded pédternatively, we could have defined
A+ 0o(B) C A’ + co(B') if we can splitA into A; andAy so thak A; C A', Ay <¥ B/, andB <Y B.

The products in4; are mapped to the bounded part, while the oneddrand in8 are mapped to the
unbounded part. Notice that, in this case, we are using ther 619 since, intuitively, we have infinitely
many copies of the products Bf, so that we can choose any of them to bound as many sums asineede
so that the mapping needs not be injective. For instancaldishy + ¢ + qq + co(q) T pg + oo(qq)
because C pq, ¢ + qq <5 qq andq <§ qq.

We take= asC N O and identifyw-markings up ta=. We take ass-Markings the set af-markings
identified up to=. As for plain markings, we will also use the notation. When there is no confusion,
we will write (E;) instead ofF, ;). For instancep+qq+oo(q) C, p+o0o(qq) with «(p) = p, t(qq) = qq
and.(q) = qq. The following equivalences will be used along the rest efglaper.

Lemmad4.2. Let E; C Es.
o 1+ OO(EQ) = OO(EQ)
° OO(E1 + EQ) = OO(EQ)

Proof:

e Clearlyoco(Ey) C, E1 + oo(Es) with «(Ey) = E,. Conversely,E + oo(Eq) T, co(FEs) with
t(1) = ¢(2) = 2. The first two conditions in Def. 4.2 are trivially satisfieddause bothi and2
are mapped to the unbounded part. The other condition hgldgtothesis.

e Clearly,co(FE3) C co(Fy + Es). Conversely,(1) = «(2) = 2 satisfies the three conditions. In
particular,Ey C E,(1y = E» by hypothesis, and triviallys C E,3) = E.
O

Thus, for instance we have that- ¢ + co(pg) = co(pq) = co(p+ g+ pq). Thoughw-markings can
be intuitively seen as markings in which some identifierseapjnfinitely often, and in which an infinite
number of different identifiers can appear, technically ttepresent sets of markings, those bounded by
them as expressed by their denotations.

Definition 4.3. The denotation of a product = p’fl - pkn is the set of multisets of placdd’] =
{A € MS(P) | A(p;) < k;forall i = 1,...,n}. Thedenotation of a sumd = > " E; is given
by [A] = {{4: | Ai € [Ei],i € I} | I C {1,...,m}}. We define thedenotation of anu-marking
M = A+ oo(B) as the set of markinggM] = {M + 3% M; | k >0, M € [A], M; € [B]}.

Abusing notation, we are considering sums to be multisegsaructs.
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Take thew-markingpq + co(gqq). The denotation gbq is the sef(, p, ¢, pq}, and[qq] = {0, ¢, qq}.
Thus, [pg + oo(qq)] is the set of markings of the ford/ + ¢ + ... + ¢ + gg + ... + ggWith ny,n2 > 0

~\~ ~\~
ni n2

andM € [pq]. Notice that]M] is a downward closed and directed set, that is, an ideal.
With these notations we can effectively represent the cetigul of MS(MS(P)), as proved next.

Proposition 4.1. The ideal completion of the poseMS(MS(P)),C) can be effectively represented
as(w-Markings C).

Proof:
It is enough to consider that in our casemarkings are a friendly presentation of tieproducts of
®-products inP, which according to [11, Theorem 5.3] is the ideal completd MS(MS(P)). O

In particular, given twav-markingsM; and M, it holds thatM; C My < [M;] C [Ma], so
that (w-Markings[E) is a continuous dcpo.

Now we need to lift the transition relation to the completenéin ofw-markings. More precisely,
for eachw-marking M we need to effectively compute the sdtost([M]). First, let us introduce some
notations: Given a transitiohand a variabler, we will denote bypre, () the product?! - - - pir, with
i = F(pg,t)(z), andpost,(z) = p'' - - - pir, with iy, = F(t,pg)(x). In particular, the productgost, (v),
that correspond to the special variableg T, are the “fresh” products created by the transittofror
instance, the net in the bottom of Fig. 1 satisfies,(x) = p1pe, post,(x) = q1 andpost,(v) = go.

Definition 4.4. Let M = E; + -+ - + E,, + 00o(E41 + - - - + Ex) be anw-marking, and a transition.
An w-modefor ¢ is any mapping : nfVar(t) — N such that:

e If o(z) =0(y) ando(y) < mthenz =y, and

o prey(z) C B,y forallz € Var(t).
Then we Write/\/lt(—a>).,4 + oo(B), whereB = E,,, 11 + - -+ + Ey and
A= Y (Bo) © prey(x) ® posty () + D E; + Y post,(v)

zenfVar(t) i¢o(Var(t)) vefVar(t)
We definePost, (M) = {M" | M D M for someo }, and extend it pointwise to sets @fmarkings.
We will write o(z) = E to denote that the produdf is used by variable: in modes. For all
x € Var(t), we willwrite Vi (z) = (o(z) © pre,(x)) @ post,(z). Notice that ifv € fVar(t) thenV,(v)
is simply post,(v). We will also write M-S M/, M — M/, MSM andM —* M’ as with plain
markings, with their obvious meanings. Moreover, if theduet £ in M evolves toE” in M’ we will

also writeE"Y B/ or E — E'. With these notations;(:c)tg)vt(:c) holds for eachx € nfVar(t).

WheneverM — M’, the unbounded part of1 and M’ coincide. However, new products may

appear in the bounded part #8ft’, like those in the unbounded part #ff involved in the firing of the

transition. For instance, the net in Fig. 8 can fire oo(q)t&)p—k qq+ oo(q) with o(x) = q. Intuitively,

one of the infinitely many names inphas been chosen, and put twicejihy the transition.
Let us see that we can compute a finite representatio®aét, ([ M]). First, we rephrase the defini-
tion of firing of a transition when using the multiset reprats¢ion (for more details see for instance [19]).
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M Post(M)

Figure 2. Computation aPost([M])

Definition 4.5. Given a marking\/ = FE; + ... + E,,, a mode fort is an injectiono : nfVar(t) —
{1,...,m}. Thent is enabled forM with modeo if pre,(x) C Ey(,) for all z € Var(t). The reached
marking after the firing of with modeo is

M= 3" (o) ©prey()) ®post, () + Y post(v) + Y E

zenfVar(t) vefVar(t) i¢o(Var(t))

Let us now see that we can uBest, (M) to compute| Post([M]). For that purpose, we need the
following lemma. Moreover, we will denote just Bost;(M)] the set U [M1].
M’ €Post (M)

Lemma 4.3. The following conditions hold:
o If M € [M] andM-5M’ then we havel!’ € [Posty(M)].
o If M € [Post;(M)] then there aréd!” € [M] andM" € [Post;(M)] such thatM T M" and
M'LM

Proof:

o Let M = Ey + ..E,, + oo(Epm+1 + ...Ex) andM € [M]. By definition of denotation of an
w-marking,

M= A+ ..+ A%+ (Al + e F AR+ e + (AL + oo+ A})

with A{ € [E;]forall (i,5) e I = ({1,....m} x {0H) U ({m +1,....k} x {1,...,7}).
By hypothesis, there is a mode: nfVar(t) — I (injective) such thatlr"% 01’ By definition of
firing, we have the following:

— pre,(z) C A] if o(2) = (i.),

- M= 5 (Al epren) @posti (@) + N AL+ 3 post(v).
zenfVar(t) (4,7)¢0(nfVar(t)) vefVar(t)
o(x)=(4,7)

Let us define thes--moded : nfVar(t) — {1,...,k} asa(x) = i whenever (z) = (7, 7), which
is such thatM" Y M’ and 1 e [M’], thus concluding the proof.
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e We useA U B, when A and B are multisets, to denote the multiset given Y U B)(p) =
maz(A(p), B(p)). Let M = A+ oo(B) with A = E; + .. +E andB = Epq1 + ... + By,

ando : nfVar(t) — {1,...,k} anw-mode fort such thatM" @ M’ and M e [M']. Then,
M’ = A" + co(B), where

A = Z (Eg(z) © preq(z)) @ post,(r)) + Z E; + Z post, (V)

zenfVar(t) i¢o(nfVar(t)) vefVar(t)

SinceM € [M'],

M= Y E+ Y + > E’+ZM

zenfVar(t) igéa(anar(t)) VEfVar(t)
where £, € [(E, ) © prey(x)) @ post,(x)] for everyx € nfVar(t), E; € [E;] for every
i ¢ o(nfVar(t)), E,, € [post,(v)] for all v € fVar(t) andM; € [B] foralli € {1,...,1}.
Let us define, = E! U post,(z) for all x € Var(t), and define

M'= N B+ Y E+ > E+Y M

zenfVar(t) i¢o(nfVar(t)) vefVar(t)

The markingM” satisfiesM C M"” € [M']. Moreover, forM” there isM’ € [M] such that
M' — M". It suffices to consideE! = (E, © post,(z)) ® pre,(x) and to take

l

we S e Y meym
zenfVar(t) i¢o(nfVar(t)) i=1

O

The first part of the previous lemma states tRatt;([M]) C [Post.(M)]). For a better insight of
the second part, see Fig. 2. Both allow us to prove the foligwesult.

Proposition 4.2. | Post;([M]) = [Post;(M)]

Proof:
Let us see that both inclusions hold:

C Let M €] Posti([M]). Then there isM’ € Post,([M]) such thatd T M’. That means

that there isM” € [M] such tha "L M. By applying the first result of the previous lemma,
M’ € [Post;(M)], so that by downward-closure we conclude thate [Post;(M)].

D Let M € [Posti(M)]. By the second part of the previous lemma, there fec [M] and
M" € [Post,(M)] such thatM = M" andM’'-5M”. ThenM” € Post,([M]), and therefore
M €| Posti([M]).

0
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(M) Td(My)  Id(M3)  Td(My)

Id(My)  Id(Mz)  Id(M3)  Id(My) a2 b 2o b
L1 L2 3
a b c d
b a b a
b c d €
c d e f

Figure 3. Example of construction of the sequenegs?,

Corollary 4.1. The completionV of av-PN N is an effective complete WSTS.

Proof:

It is effective and complete by Prop. 4.1 and Prop. 4.2, soitloaly remains to see that it is a WSTS. It
is well known [2] that bgos are closed under the multiset tartion, and that bgos atg?-wqos [16].
Therefore, the ordeL is anw?-wqo, and by Theorem 1 in [12], we obtain thsitis a WSTS. O

For a complete WSTS, and a markidd, the clover [12] of M is defined byClover(M) =
Max Lub(Cover(M)). The clover of a state is finite because our order is well. ldithat| Clover (M) =
Lub(Cover(M)), so that the clover is a finite basis of the cover (togethen wlitthe limits). Moreover,
if IV is the completion ofV = (X, —, <) thenCover x (M) = Coverz(M)NX = | Cloverx(M)NX,
so that the clover of the completion is a basis of the covecdame remove the limits by intersecting
with X).

Now let us see that we can apply a forward Karp-Miller aldoritto compute the clover aV
(although, as we will see, it will not terminate in gener&pr that purpose, we will need to compute the
least upper bounds of all themarkings produced in a loop, that is, we need to accelevates|

5. Accelerations

In the previous section we have mostly seen heRRNs fit in the general framework of [11, 12]. In the
classic construction of the Karp-Miller tree for P/T netgery time a transition sequengesuch that
M5 M with M(p) < M'(p) for all p and M(q) < M'(q) for someg, we know that the transition
sequence- can be repeated arbitrarily often, so that the number ofitekeq can be considered to be
unbounded. In other words, we can replddé by the least upper bound of the markings obtained by
repeatingr an arbitrary number of times.

In order to translate the Karp-Miller procedureitd®Ns, we need to prove that the completion of a
v-PN is co-effective, meaning that we can compute the least upperdotithe markings obtained by
repeating a transition sequence, that is, that we can aatelops. In the previous section we have
shown how we can effectively represent the completed damamthat the limit of an increasing chain
(and more generally, of a directed set) always exists. Hewedkiedouble infinitenesin w-markings
makes the task of computing those limits a non trivial one. A& specify what will it mean in our
setting to repeat a transition sequence.

We will discuss the case in whichis a single transitiort, because the general case would only

obscure the presentation. Later we will see how the genasal can also be considered. Let us suppose

that/\/llt@)/\/lg andM; C,, M. Intuitively, because of monotonicity we can repeat thadrof¢ in
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M. However, the occurrence of a toketin p is bounded by the occurrence@fa) in p. Therefore, if
t used a tokem becauser; () = a for some variabler, then nowt must use(a) instead, thus taking
o9(x) = 1(a). We follow these intuitions in the next definition.

(o1
1

Definition 5.1. Let M; and M bew-markings such thaMlt )Mz andM; C,, Ms. We define the
sequenceér; ), (M;)2, and(s;):°, of w-modesw-markings and mappings, respectively, as follows:

e 0,11(x) = 1i(oi(x)), fori > 1,

o Mi"% My, fori > 1, and

E it P'YE andy(F) SV E for Fin M,

o 1i1(E) = E andE’ in the bounded part, fori > 1.
E  otherwise

o;+1 is defined following the previous intuitions: if a varialtas first instantiated by a produdi,
in the next step it is instantiated by(F). M, is simply obtained by letting\1; evolve with mode
o;. The definition of the mappings requires further explanations. The mappingsap products to
products, but their definition is better understood by abersing not the products themselves, but the
identifier that each product represents. Consider the &eftiside of the diagram in Fig. 3, wherds
mapped ta by ¢1, andb is mapped to a fresh identifier The definition of.o above simply states that
now (the product representing)is mapped to (the product representingbecause was mapped to
¢ by ¢1. Accordingly, since.; mappedb to a fresh identifier (represented by a prodéict= post,(v)
for somer € T), 12 must mape to another fresh identifier (which is represented by the sproduct
E = post,(v)). In the same way, ifZ is in the unbounded part 0¥1; then it is also in the unbounded
part of M1, ande;+1(E) = E.

We will denote byt(o;)* the sequenci(a) - - - t(o ), wherer is as above. In general, for a transition
sequence we can define as above the sequencesimfodesw-markings and mappings. This is because
we can always simulate the effect of the firing of a transisequence using some given modes with the
firing of a single transition.

Lemmab.1. Let 7 = ¢1(01)t2(02) be a transition sequence oéPN N = (P, T, F'). Then there is a
V-PNN' = (P, {f}, F') such that\; = M in N iff My" D M, in N’ for some modes of £,
Proof:

We assume without loss of generality tHéatr(¢1) N Var(t2) = 0. Lets : Var(ta) — Var(t1)U Var(ta)
be defined as

) x if o1(z) = o2(y) for somez € Var(ty)
S =
Y yif o1(x) # oo(y) for all z € Var(t)) ory € Y

Then we defind”’ as

F/(p,Z) = F(p7t1) + (S(F(p, t2));F(t17p))
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Figure 4. From transition sequences to transitions

F’(a p) = S(F(tg,p)) + (F(thp);S(F(p’ tg)))
O bl
o1(z) if x € Var(ty)

Then, for allz € Var(t), itis enough to take (z) = _
o9(x) otherwise

Now we generalize the previous result to transition segeent an arbitrary length.

Lemma 5.2. Let 7 be a transition sequence ofraPN N = (P, T, F). Then there is a-PN N’ =
(P, {£}, F') such that\; = M in N if and only if M, % M, in N’ for some mode of £,

Proof:
Let 7 = t1(o1)---tn(on) With n > 1 be a transition sequence. We proceed by inductiom orf
n = 1 there is nothing to prove. W > 1, let7 = ¢1(o1)--tn—1(0n—1). By induction there is

N" = (P,t,F") such that/\/lliMQ in IV if and only if Mlt(i)/\/lz for someo’. By the previous
lemma the thesis follows. O

We will call the netN’ given by the previous resultacontractionof N. We will also writer” to
denote the transition sequenie)”, wheret (o) is the only transition of its-contraction and is as in
Def. 5.1 . Consider for instance the net in Fig. 4 and the itianssequence = ¢1(o1)t2(02), where
o1(x) = a, 01(v) = ¢, o2(x) = b, 02(y) = c andos(z) = a. Ther-contraction of that net is the nét,
depicted in Fig. 5. Notice that the modesandos are such that; (x) = o2(z). Accordingly, since
puts oncer () in ¢, andts removesrs(z) from ¢, in N, the tokena is neither put nor removed from

We are now ready to define in our setting what it means to awtela simple loop. The sequence
(M;)52, is an increasing sequence, so that the following definitiakes sense.

Definition 5.2. Let N be the completion of a-PN N. We sayN is deterministicallyco-effectiveif it is
effective and whenevekt; =M, with M; C, M, we can compute

ace, (M1 M) = lub{M | My5M, n > 0}

Let us see that we can compute that least upper bound. In ghelice, we can compute the
contraction of the net, and work with it instead. Therefore can always assume that we want to
accelerate a single transition. Let us consider the Netand NV in Fig. 5. Notice that both nets can fire

the runp + qi>p + qq, andp + ¢ C, p + gq with «(p) = p and«(q) = ¢qq. However, the result of an
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rOo—=l—=0 rO—={—=0
T Yy Yy Y
Figure 5. w-accelerations and d-accelerations

acceleration in both cases is very different: A, every marking of the formp+¢™ is reachable; foV,,
every markingp + qq + g+ - - - + ¢ is reachable. Intuitively, the difference between bothatibns is that
in V7 each product is mapped to itself (the prodp@volves to.(p) = p and the product evolves to
t(q) = qq). However, that is not the case fdk, where the producj evolves ta.(p) = p. If we consider
not products, but the identifiers they represent, then tfierdihce becomes clearer. WMy botha andb
are mapped to themselves hywhile in N, a is mapped td, andb is mapped to a fresh identifier. We
formalize the behavior aV; in the following definition.

Definition 5.3. We say/\/llt(—o)MQ is properly increasingf M; C, M5 and for all productdr, in Mo
there are no different products andE] in the bounded part of1; such thatElt(—U>)E2 andu(E}) = Es.

The firingp + ql>p + qq is properly increasing iV, but not in Ny, because there is a prodycin
p+ qq, and two different products in+ ¢, namelyp andg, such thap is mapped te by +; andq evolves
to p. However, every increasing firing can be unrolled into a priypincreasing one. Indeed, consider
again the diagrams in Fig. 3. In both parts of the diagraneretiis a naturak so that each identifier
is mapped ink steps either to itself, or to a fresh identifier. In the lefbdiside, after two steps, both
andb are mapped to fresh identifiers. In the right handside, #ftee steps, both andb are mapped
to themselves, but is mapped to a fresh identifier. This happens in general, asilveee in the next
lemma.
Lemma5.3. If Mt(—‘i)/\/l’ andM C, M’ then there ig > 0 such that the firing of thgo)*-contraction
of N is properly increasing.

Proof:
It is a direct consequence of the following fact. ket +y : Iy — I; be an injection (with/y and Iy
finite). Let us define the sequence of finite skthor ¢ > 0 and the sequence of injections: I; — ;11

fori > 0, so that
vi(a if a € I
tiv1(a) = (@) ,
b¢ IyU..UI,, otherwise

Then there is a numbérsuch that that for all € I, either(c; o ---0¢1)(i) =i 0ri ¢ I;. Indeed,
letIp = (JoN 1) U{ay,....,antandly = (Ip N I;) U {by,...,by}. Letus consider the permutation

if € [ . . L
p, + Io — Ip such thatp,(a) = { Ha) i ua) € To . Sincep, is a permutation it has an order

a; if t(a) = b;
k = o(p,), SO thatpf = idy,. Then,k satisfies the conditions of the lemma. Moreovergan be
computed as the least common multiple of the lengths of tbkesyofp, . O

We call order of., that we will denote as(.), the naturalk given by the previous result, which
can be effectively computed. Moreover, we will writgr) instead Oft(a)f(b), when it is clear from the
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(o ag k . .
context. Clearlyach(Mlt(—)Mg) = ach(Mlt(—)>LM) for anyk > 0 so that, in particular, we can take

k = o(¢). Moreover, by Lemma 5.2 we can work with thr )-contraction of the net instead.

As an example, consider the nets in Fig. 5. Ni after one step each identifier can be mapped to
itself, that is,Mlt(—o}Mz with M1 C, My, t(a) = a andw(b) = b, so thato(:) = 1. In Ny we find
the situation in the left of Fig. 3, so thaf.) = 2. Thus, we need to consider the transition sequence
7 = t(o)t(c’), with ¢’(x) = bando’(y) = o(v). Inturn, in order to compute the acceleration we can
consider itsr-contraction, depicted in Fig. 6.

d-acceleration.

Using properly increasing sequences has the advantage/ltieaiever a produck, (with o(x) = E,)
evolves to some&”., in the range of,, then necessarilyy, = E!. Then, by repeating the firing af
we will obtain products of the fornk, @ A (x)*, for someincrementA;(z) (which will be formally
defined later in all cases), with least upper bouifjdd A;(x)“. This is the situation fofV; in Fig. 5 and

p+ qi>p + qq, that is properly increasing. Using the previous notatidiis = p and £, = ¢, so that
Ay(x) = D andAs(y) = q. Thereforeace, (p + qt(—g>)p +qq) =p+q~.

w-acceleration.

However, inN, we cannot apply the previous acceleration. In this casé(#pcontraction ofN; is
given by the net in Fig. 6. In it, every product is mapped toeslirone, and every marking of the form
pq+qq+q+...+qisreachable. If we takAl(x) = post,(v1)Spre,(x) andAi(y) = post,(v2)Opre,(y)

t(o
thenacc, (p + ¢"%p + ag) = pa + qq + 00() = post,(v1) + post, (1) + 0o(Aj(x) + Af(y)).

A simpler case in which a w-acceleration can be applied appeahe net in Fig. 8. The first firing
that takes place iﬁgp + ¢, so thatp C, p + ¢ with «(p) = p. Notice that there is a fresh product,
namely g, not in the range of, so that any marking of the form + ¢ + ... + ¢ is reachable, and

t
acc,(p=p +q) = p + 00(q).
Following these intuitions, iﬁ\/llt(—o?/\/lz is properly increasing we partitionfVar(t) as follows:

Vun  ={z € nfVar(t) | o(x) inthe unbounded part 0¥1, },
Va = {z € nfVar(t) | o(x )_‘i (o(2)},
|4 = {x € nfVar(t) | t(o(x)) = post,(v,) for v, € fVar(t)},

Vi = {o € nfVar(t) | o(x)) = Vi(y) for somey, € Vi }.

Moreover, we can define two injections;, : V), — fVar(t) andhy, : V,\" — V,, given by
hy(x) = v, and hyp(z) = y,. Letus writeVY = fVar(t) \ hy(V}Y), V¥ = Vip \ hun(VE™),
Vw =VE5 UV v, =V, UV, andV, = VY U V¥,

For allz € Vy,, o(z) is a product in the unbounded part. Foralle V;, the productsr(x) are
mapped to themselves byso thatV,(x) will be used instead in the following firing @f They will be
responsible for d-accelerations. Produets) with = € V/ are those mapped hyto fresh products.
Therefore,post,(v,.) will be used instead in the next firing, so that it will leaversngarbage that will
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141 Yy

Figure 6. Contraction of the néf, in Fig. 5

cause a w-acceleration. Other products of the fprat, () will not be used later, those with € V”,
so that they will also contribute to the w-acceleration.

Variables inV»™ and V,*" have an effect analogous to thoseliff and V;*. Productss(x) with
x € V,“™ are mapped by to a productV,(y,) that has evolved from a product in the unbounded part.
As before,V(y,.) will be used instead in the next firing, leaving again somd&dgge. Moreover, some
productsV,(y) that come from a product in the unbounded part (those withV,“™) will also remain
and contribute to the w-acceleration.

Definition 5.4. Let Mlt(—U»)Mg be a properly increasing sequence. We define the followinduuts,

that we will generically callncrements

e Forallz € V;, Ai(x) is any product such that(z )t(o) () & Ai(x),
e Forallz € Vi, Ai(z) = post,(h,(z)) © pre,(x),
e Forallz € VU, Al(z) = Vi(hun(z))) © o(z).

Finally, we are ready to prove the main result of this sec¢twimch determines which is the acceler-

ation of a properly increasing firing/llt@/\/lg. Therefore, after this result we will be able to state the
deterministicallyco-effectiveness of the completion ofaPN.

Proposition 5.1. If Mlt(—o)MQ is properly increasing wittM; T, M, then there isM such that
Mi= 3 o)+ ool 3 o(z)) + M, andace,(M; "D My) is thew-marking

zeVy rEVun
> o@)e(x +oo( > posty(x)@ALz)+ Y Vil@)@AL(z)+ D> Vil@)+ a(:c)) + M
z€Vy zeVY zeVun €V z€Vun

with M’ = M+ 3 (post,(h,(z))+ > (o(z)@®Al(x))+ > Vi(z). Moreover, the computation
zeVY TeVun €V

of the acceleration does not depend on the increm&p(s) chosen.

Proof:
In the first place M, = > o(x) + > o(z) + oo >, o(z)) + M, for somew-marking M that is

z€Vy €V mGVun
not involved in the firing ot (o). Let us assume that1 is the emptyw-marking; otherwise, we have to

sumM to all the computed,-markings.
Let us consider the following facts:

Y Vi@) @k - Az) = > o(x) @ (k+1) A(z),

zeVy x€VyY
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o 2 Vil@)= X Vilhun(z)) + 22 Vi(x)= > o(x) @ Ai(x) + > Vi(x),

z€Vun zeV ™ zeVEn zeEVuUn zeEVun

o X Viv)= 3 Vi(h(z))+ X Vi(v) = 3 prefm) ® A(z) + > Vi(v).

vefVar(t) zeVY veVy zeVy veVy

Let us definegR;, for k¥ > 2 as follows:

> Vilx) + ( (Y Vi(@) @ Ay(@)+ Y post,(x) & Ay(x —1)- > Vi(z)

€V mGV“” zeVY eV

It holds that

Rit+1 = Ri + Z Vi(z) @ Ay(x Z post,(x) & Ay(z Z Vi(zx Z post,(x)
zeVun zeVy eV un zeVY

Let us prove thaiM, is equivalent to
Za(x)@(k—l)-At(x)—i— Z x) @ A(z Zpret ) @ Ag(x) + oo Z o(x)) + Ry
eV, zeVun xeVY z€Vun
First we see it fok = 2. By definition of firing (see Def. 4.5)
= th(x) + Z Vi(x) + Z Vi(x) + Z post, (V) + oo( Z o(z))
zeVy €V z€Vun vefVar(t) z€Vun
By the previous comments,
Ma= 0@ @A(2)+ Y o(2) ® M) + D prey() @ Ag(x) +o0o( Y o(x)) +Ra
xzeVy zeVuyn zeVy zE€Vun
Fork > 2, and assuming that1,_ is equivalent to
do@) @ (k—2)-Az)+ D o) BA(x) + D pre(x) & A(z) +00( Y o(x)) + Ri1
zeVy revyn zeVy rEVun
it is enough to consider that it evolves to
th(x)@(k: Z Vi(z)® Az Zpost ) D A () 4+ 0o( Z o(x))+Rr-1
z€Vy zevyn zeVyY z€Vun
that, again, thanks to the previous comments, is equivébent
dYo@ek—1)-Az)+ Y ol@) @ A(z)+ Y pre,(x) @ Ay(z) +0o( > o(x)) + Ry
zeVy reVun zeVY zEVun

To finish, it is enough to consider that the least upper bodrheoset ofw-markings{ My, | £ > 2}
is indeed
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Procedurewidth-Clover (M)
© — {My}, bounded —true

grocedj\u;e010ver(M0) while Post(©) Z © and bounded do
— {Mo} Choose fairlyM € ©, 7 and: such thatM-S M’
Wh||e POSt(@) Z @ dO |f M Jz M/ then

Choose fairlyM € ©, 7 and. o HL@ UM}

such thatM S M’ else

if M Z, M’ then M — ace,(MSM')

/ L
eISGe —OU{M] if x-bounded(M’) then
; 0 —0u{M
© «— O U {acc, M—M")} else - M3

rewrn Max © bounded «—false
return (bounded,Max ©O)

Figure 7. Karp-Miller procedure (left) and algorithm ddoigl width-boundedness (right)

D (o) @ A(@)) + Y (post,(hu(@) + > (o(z) & Al(z)) + > Vi(a)+

zeVy zeVY zeVyun €V
oo( Y (post,(z) ® Aj(x))) + Y (V@) ® Af(w) + > Vi(z) + Y olx))
zeVy xeVun z€Vy z€Vun

The last remark is a consequence of the fact that any tworeiftencrements\;(z) and A}(z)
coincide in the places wheeg(z) is notw. Thereforeg () ® A(z)¥ ando(x) @ Aj(z)“ coincide in
every place. O

Corollary 5.1. The completion of a-PN is a deterministicallyo-effective (complete) WSTS.

Because it is deterministicallyo-effective, it makes sense to apply the procedtirever (M) in
the left of Fig. 7. Fairness in the choosing of the tufl&4, r, .) ensures that in every infinite run, every
such tuple will eventually be chosen at a later stage. We khaivthe cover is effectively representable,

so that there is a finite set afmarkings® such that| Post*(| My) = |J [M].
Meoe

Example 5.1. Let us see with detail how the algorithm behaves fori#keN N, in Fig. 5. The initial
w-marking isMy = p + ¢, that is,© = {M,}. The only possible mode that enables given by
o1(z) = pando(y) = ¢, which produces the-markingp + gq. Notice that:

e p+qLC, p+qq, Withu(p) = pandu(q) = qq,
¢ the producp in M disappears,
¢ the producty in Mg evolves tap,
e the produclyq in p + gq is fresh.

Therefore, the firing is not properly increasing, becausestlis a producp in p + ¢q, and two different
products inMg, hamelyp andgq, such thap is mapped t@ by .; andq evolves top. Actually, we are
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Figure 8. dw-accelerations

exactly in the situation of the diagram in the left of Fig. 3heFefore, we need to unroll the transition
sequence (o ), with contraction depicted in Fig. 6. There, the firing- ¢ — pg + gq can take place,
which is properly increasing. Moreovéry = V,,,, = V,“» = () andV}, = {x,y} with h,(z) = 14 and
hu(y) = 2.

o Ax(z) = postz(v1) © prez(z) = q,
o As(y) = posti(va) © pre;(y) = q,
o Vi(x) = (o(z) © preg(x)) & posty(x) =0,
o Vi(y) = (o(y) © preg(y)) @ posty(y) = 0.

Then, according to Prop. 5.1, the acceleratiopgis+ gq + oo(q + ¢) = pq + qq + oo(q) = My,
so that® = { M, M;}. Starting fromM; we could firet(c) with o(x) = pg ando(y) = qq, that
produces again the-marking.M;. We can also fire from M, with a different moder, with o (z) = pq
ando(y) = ¢, which yields thes-marking My = p+qq+ qq+ oo(q). SinceM; [Z M no acceleration
is performed, an® = { My, M1, M>}.

Let us now see what happens if we fire the transition startimg M. We could fire it using a mode
such tha(z) = p ando(y) = ¢q. The corresponding firing is increasing, but not propertyréasing.
As happened before, the order of the mappirgR, and the contraction of the unrolling is given again by
Fig. 6. The acceleration is analogous to the one obtained fr¢,, and produces again themarking
M;.

The other way in whicht can be fired fromM5 is more interesting, namely in a modewith
o(x) = pando(y) = ¢. Notice thaty is instantiated to a product in the unbounded pawv¢f. Using
that mode, the firing + ¢q + oo(q) — p + qq + qq + oo(q) can happen. Moreover, that firing is
properly increasing. Indeed(p) = p, t(qq) = qq (for both occurrences afg) and.(q) = ¢ and,
although the product(p) = p is the result of the evolution of a product different frgmnamelyyg,
that product is in the unbounded part. Now we h&ye= V} = V' = (, V,,, = {y}, V" =
{z} andV}¥ = {v}, with hy,(z) = y. Moreover,Al(z) = V,(z) = 0, so that the acceleration is
(P@0)+0+oc0(@@0+qq+q) +qq+qq = p+ 0o(qq) = Ms.

Similarly, from M3 we can obtain thes-marking My = pq + oo(qq), thus obtaining the set of
w-markings® = { Mg, M, My, M3, M4}. FromO, no otherw-marking can be obtained. Thus, the
algorithm returns the maximal-marking M, (becauseM; C M, for all ¢), so that the cover is the set
of markings[pq + co(gqq)]. In particular, every reachable marking has one identifies and a (possibly
empty) set of identifiergby, ..., b, } such thatV® C {p, ¢} andM? C {q,q}.

It is easy to see that the procedWeover (M) does not terminate in general. Consider the net
in Fig. 8. FirSt,pgp + ¢ and we can apply a w-acceleration as previously explairedy dbtaining
p+0oo(q). Now we can fire transitiong,p+oo(q)t—2>p+qq+oo(q). Notice thatp+oo(q) C, p+qq+o0(q)
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with .(p) = pand.(q) = ¢. The algorithm could then replage-qq+oo(q) by its acceleratiop+oco(qq).
In the same way, all the-markingsp + oo(¢™) are produced by the algorithm.

We could consider yet another type of acceleration, that euddccall dw-acceleration Instead of

firing to again using one of the infinitely mamys, we could fire it usingyq. If we repeat this process,
m

every marking + > ¢* + oo(q) becomes reachable, and their least upper boupe-iso(g®). We will

later make more pZ)relcise what we call a dw-acceleration.

It is true that dw-accelerations give a better approxinmaté the clover. However, they are not
enough, neither any other acceleration we could imaginegsin general, it is not possible to compute
the clover. To prove it, we will reduce the property of deptiundedness [20] to computability of the
clover. Intuitively, av-PN is depth-bounded if every name in every reachable mguipears a bounded
number of times. More preciselyy is depth-bounded if there is € N such that wheneveFE is a
product of a reachable marking thei| < n. In [23] we prove that depth-boundedness is undecidable
by reducing boundedness of reset nets (which is undecifi@plto it.

Proposition 5.2. N is depth-bounded iff every product in evesymarking of Clover(N) is bounded.

Proof:

If Vis depth-unbounded then for everye N there is)M,, with a productF,, such thatE,| > n. Since
v-PNs are finitely branching, by Konig's lemma we can assumaeW,, —* M, andF,, —* E, 1 for
eachn € N. Moreover, because of the wqo property, thereiate;j such thatV; C, M; andE; C Ej.

By Lemma 5.3 there is a properly increasing unrollingéf —* M, which satisfies(E;) = E;. By
Prop. 5.1acc,(M; —* Mj) contains a product of the form(z) & A(z)“ with A(z) = E; 6 E; # 0.
Sinceacc, (M; —* M;) T M for someM € Clover(N) we conclude. The converse is a consequence
of the definition of the clover of a net. O

Thus, just by inspection of the clover of a net, we can deciblether it is depth-bounded.

Corollary 5.2. There is av-PN for which the clover is not computable.

In particular, since Petri Data Nets [17] subsumEN, there is no procedure computing the cover of
a Petri Data Net, neither for a Transfer Data Net, thus aneg&egatively to a question posed in [12].

6. dw-bounded nets

We have proved that the cover is not computable in generathisnsection we identify a subclass of
v-PN for which the cover is computable, the class of dw-bodmugts. A net is dw-bounded whenever
only a bounded number of products can grow arbitrarily. Tendedness property is weaker than the
property of depth-boundedness we considered before, ghdtd net is depth-bounded then it is also
dw-bounded. Moreover, we will see that, as depth-boundegjriv-boundedness is undecidable.

We will also consider another property related to boundsslinealled width-boundedness in [20].
Intuitively, a net is width-bounded if only a bounded numbérdifferent names can appear in every
reachable marking. It is also the case that width-boundesl ave also dw-bounded. Moreover, we
will see that, unlike for depth-boundedness, we can useeherige Karp-Miller procedure (or a slight
variation) to decide width-boundedness.
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Definition 6.1. N is width-boundedf there isn € N such that for all reachabl&/, |Id(M)| < n.

Let us characterize width-boundedness in terms of.tlmearkings in the clover.
Proposition 6.1. A v-PN N is width-bounded iff every\t € Clover(N) if of the form A + co(().

Proof:
Suppose that every-marking in Clover(N) is of the formM = A + oo()). Letn be the maximum
number of products in-markings inClover(N'). Then for every reachable markind, |Id(M)| < n
and the net is width-bounded.

Conversely, suppose there isamarkingM,. = A+ co(B) andE # () is a product of3. For each
n € NletM,, =3 | E, which satisfies\,, C M_.. By definition of cover, for each € N there is a
reachable marking/,, with n products, so that the net is width-unbounded. O

Let us see that the forward analysis, though non-termigatigeneral, can decide width-boundedness.
Let us define the predicate owermarkingswidth-bounded, given bywidth-bounded(M) iff M =
A + oco((). To detect width-boundedness it is enough to stop whenever-marking M such that
—width-bounded(M) is found. In this way we can slightly modify the proced@kover, obtaining
the algorithm in the right of Fig. 7width-Clover(M,). The modified algorithm always terminates,
returning true iff the net is width-bounded, in which case tfover is computed.

Proposition 6.2. Width-boundedness is decidable iofPN. Moreover, ifN is a width-bounded -PN
then its clover is computable.

Proof:

Let us see thatidth-Clover (M) terminates and returns true iff the net is width-boundedN Ifs
width-unbounded, since the choice is fair, it will eventyéihd anw-marking M, a transition sequence
and a mappingsuch that-width-bounded(acc,(M--M'’)), and the algorithm will halt returning false,
which is correct by the previous result.Nf is width-bounded, let us see that it halts returning true.uise
suppose that it runs forever, building an increasingaef w-markings, so thatidth-bounded(M),
for all M € ©. By the wqo property, there is an infinite sequerige;) C © such thatM,;; =
acc(/\/ll-ﬂu\/lg). Since we havevidth-bounded(M; 1), the corresponding acceleration is only a d-
acceleration. By applying the notations in Prop. 5.1, weetthatV,, = V,. = V,,,, = 0. Therefore, there
is anm such thatM; = Ei + ... + E! for all M; € ©. Moreover, we can assume th&t; — M,
or, again by fairness, we would eventually havest(©) C O, thus halting. Then, for eache N, if
M; = B} + ..+ E,, and M, = E{"" + .. + Eif!, there arej and k such that(Ei) = E;*!
andE! C E;"'. SinceM,;1 = acce(M;—>M}) and because of Prop. 5.1, i = p?...p‘el‘;? and

Bt = pill...prg“ then there is ar such thate; # w ande, = w. Then we can build the strictly

increasing sequence of naturais= 37", |E§-|w which should be bounded by - | P|, thus reaching
a contradiction. To conclude, it is enough to consider tlodgh algorithms in Fig. 7 coincide for width-
bounded nets. O

Let us now define dw-boundedness. The following definitiogiven using the multiset representa-
tion of markings. Therefore, the produdis in the next definition are all bounded.
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Definition 6.2. N is dw-boundedf there areb, n € N such that for every marking/ reachableM =
Ei+ FEy+ ...+ Ey+ Epq1 + ... + En, such that foti > n, E; = pi' ---p;' with i; <bforj =1...1.

Intuitively, av-PN is dw-bounded if there is a bounded amount of names thatmaear as tokens an
arbitrary number of times in every reachable marking. Nextolvaracterize dw-boundedness in terms
of w-markings. First we prove the following lemma, that statest from an increasing sequence of
w-markings we can always build a properly increasing one.

Lemma6.1. Let (M;)?2, be an increasing sequencewimarkings such thatm; —* M, for all
i € N. Then there is a properly increasing seque¢ )2, such thatM; —* M , andM; C M;
forall i € N.

Proof:
We build such a properly increasing sequence by applyindolf@ving inductive rules:

o M| = M;.

e Foralli > 1, if M;ZM,,1, then ift;(c;) is the properly increasing contraction obtained by

Lemma 5.3 from the contraction ef, thenM;_ ; is the only markingM such thatA/lgti(—Uf)M.
To prove that this construction is correct it is enough tovprthatM; C M. for all i € N, because

in that caset;(o;) would be fireable fromM,. Let us prove it by induction: Obviousiy; C M.

Now suppose thaM;_; C M/ _,. Then, as/\/ll-_lti(—as")/\/l, whereM; C M, by monotonicityt;(o;) is
fireable fromM;_,, reaching a markingvt;, such thatM; C M T M. |
Proposition 6.3. N is dw-bounded if and only if eveng-marking M = A + oo(B) in Clover(N) is
such that all the products i are bounded.

Proof:
SupposéV is dw-bounded and let andb be the bounds of the definition of dw-boundedness\foNow
suppose that one of themarkings in its clover is of the form = A+ co(B), with B = Ey +... + E,
and there is an< {1...n} such that?; = p' - - - p;' with i, = w for somek € {1...1}. As E; is a product
in the sumiB, for eachj € N, we can fire a sequence of transitions\dfrom its initial marking reaching
a certain marking\{; such that there exists at leggproducts such that, for each of these products, there
is at least j tokens of the corresponding name in a place. efdrey, if we considern € N such that
m > n andm > b, then we have a reachable marking with m products with at lma®kens in one
place for each of these products, which is a contradiction.

Conversely, let us suppose thétis dw-unbounded. Then, there is a sequence of reachabléngsirk
M, Mo, ... such that for eache N, M; = By + Ex + ... + E; + E; 1 + ... + E¢, where for allj <7,
E; has more thamtokens. Because of the wgo property and Konig's lemma, weasaume that for all
i € N, M; C M; 1 andM; —* M,;,1. Now we can apply Lemma 6.1 to this sequence, so we can
suppose thatM;) is a properly increasing sequence. Suppose that the nurhpesducts inM; is n
andi > 2n + 1. Then, the number of products ikt; with at least2n + 1 tokens in a place is greater
than2n (if there are exactln products, then it could be the case that every produdifinis mapped
to a fresh product). Let us considgfc;) the contraction of the sequence of firing$; —* M;, which
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is properly increasing. By applying the notations in Prog, Sve have thal” # () because there is
at least one fresh product i; which is not inh, (V,}). Therefore,V,. # () and because of Prop. 5.1,
when we accelerate the transitioito; ), we obtain anv-marking with a product in the unbounded part,
which has at leasttokens in a place. Therefore, if we consider the previouslacation for alli’ > i,
we obtain a sequence ofmarkingsM, ..., M, ... such that for eachi € N, M; has a product in its
unbounded part with more thartokens in a place. Therefore, the clover must contaiw-anarking
with an unbounded product in its unbounded part, and we odecl O

Next, we use the previous result to prove the computabifithe clover for dw-bounded-PN and
finally, the undecidability of dw-boundedness f6PN.

Proposition 6.4. The clover is computable for dw-boundeePN.

Proof:

Let V be dw-bounded, and let us suppose that the procetiuseer(N/,) does not terminate falV.
Then there is an increasing $@tof w-markings of NV such thatPost(©) Z ©. SinceN is dw-bounded,
the unbounded part of every-marking in© is below some sun. By the wqo property, there is an
infinite sequence ab-markings in®, My, Mo, ..., such thatM,;; = acc(/\/liﬂu\/l;). Moreover, we
can take this sequence so that from some point on all.tihearkings are of the forro\l; = A; +
oo(B). We assume for the sake of readability that this propertghébr eachi (otherwise, we take
the corresponding subsequence). Moreover, we can ass@atneatth product ind; is not smaller or
equal than any product i8 (otherwise, they could be removed by Lemma 4.2). In that,csisee
A; + oo(B) C A; 41 + oo(B) holds, we also havel; C A, for all i. Then, one of the following facts
must hold:

e The number of products il; grows arbitrarily. For each € N, let (M]Zf) be a sequence of
markings withA; = lub{M} | 7 > 1} SinceM;f C M; and M; € ©, by definition of cover,

there.is atransition sequenceand a markingWé- € [M;] such tham_fézM;. By monotonicity,

MllM? with M]Zf C M;Z Letfé» be the transition of the;f-contraction ofN. Since the number
of products grows arbitrarily, there is€ N such that for any : Id(M;) — Id(M;f), some

variablev; € fVar(f;») is not in the range of the mappirtg induced by.. For eachj we fix some

¢; and consider the properly increasing sequence given by leelg By constructiony; € V,
andE; = V(v;) = post(v;) is a product not less or equal than any produdsiBy Prop. 5.1 the
corresponding acceleration adds to the unbounded part. By fairness for anthe acceleration
that addsFE; to the unbounded part will eventually be performed by thestlgm. SinceL);
converges to a product not belds (because the number of products is now fixed) we reach a
contradiction with the fact that the unbounded part of evemyarking obtained bglover(M))

is below or equal t&.

e Forallj > ithereisak > jsuchthatd;,_ = Fy + ... + E, and A, = E{ + ... + E/,, with

E; C Ejfor | < nand there aren, ¢ such thatf,, = pf’ ...p;f,E;n :p“f ...p;f,t <f.ep#w
ande; = w. Therefore we have an increasing amount of exponents inrdtupts of A set tow

so we have an increasing unbounded sum of products which is not possible, as we saw in the
proof of Prop. 6.2.
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Figure 9. From P/T nets to depth-bounde&N

Therefore, we reach a contradiction in both cases, so thgiricedur&€lover(My) must terminate.
0

As a consequence of the previous proposition we have thaafimlfy result:
Proposition 6.5. dw-boundedness is undecidable foPN.

Proof:

We reduce depth-boundedness, which is undecidable [28wtboundedness. L&Y be av-PN and

let us suppose we can decideNfis dw-bounded. IfV is dw-bounded then by the previous result we
can compute its clover, which gives us the answer to the eemtindedness problem (Prop. 5.2). On the
contrary, if N is dw-unbounded then it is also depth-unbounded. O

Summing up, the cover is computable for width, depth and dwabled nets, though only the first
property can be decided. Moreover, as one could expectpitguatation has non primitive recursive
complexity.

Proposition 6.6. The computation of the cover has non primitive recursive gewity for width-, depth-
and dw-bounded-PN.

Proof:

P/T nets are in particular width-boundedPN, so that the complexity of the decision procedure for
width-boundedness and for the computation of the cover fdthaboundedv-PN is non primitive re-
cursive [8]. Since width-boundegtPN are dw-bounded, so is for dw-bounded nets. The case tf-dep
boundedv-PN is not so straightforward, since P/T nets are not deptimtdedr-PN in general (only

if they are bounded). However, given a P/T @étwe can build in polynomial time a depth-bounded
v-PN N, so that the cover oV can be computed in polynomial time from the coverNdf Let N =
(P, T, F, M) be aPI/T net, and let, € Var \ T andy, € T be different variables for eaghe P (that

is, z, # x4 andy, # v, for p # ¢q). We build N’ = (P, T, F', M{)) (see Fig. 9), wheré” (p,t) = {z,}

if (p,t) € F,andF’(p,t) = 0, otherwise;F’(t,p) = {v,} if (t,p) € F, andF’(t,p) = (), otherwise.
For the initial marking, we build\/; by replacing each token if/, by a different identifier. Notice
that|M§| = 1 for eacha € Id(M,). Moreover, by construction this invariant holds in evergiaieable
marking. ThereforeN’ is depth-bounded. Leflover(N') = {M;,..., M }. By construction ofV’,
eachM; is of the formp{ + ... + pj, + co(gi + ... + ¢} ). Then, Clover(N) = {M, ..., M}, where

M; :pﬁpzl(qiqi)w O

dw-accelerations and non-determinism.

Let us now make precise what we meant in the previous secyiawkaccelerations.
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Figure 10. Accelerations and non-determinism

Proposition 6.7. Let M and M be two sums. lfice(Mo->My) = A+oo(B) and A’ +oo(My) T M
for someM € Clover(N) then there existdA’ € Clover(N) such thatd’ 4+ co(A + B) C M’

Proof:

Let M}, be as defined in Def. 5.1 starting framty. Then,lub{M;} = A+ oo(B). Let us show that
firing ¢ repeatedly fromA’ + co(M)), we can reach a set of markingd 1, | : € N} with [ub equal to
oo(A + B). If we firet from A’ + co(M) then we reach the-marking M) = A" + M + oo(My).
Then, if we firet two times from this new-marking we can reacM}, = A’ + My + M + co(My).
By repeating this procedure, we reach a sequencernfrkingsM), = A"+ M; + M;_1+...+ M1+
o0o(My) such thatub({ M} | i € N}) = A’ + oco(A + B), as we wanted to prove. 0

Using this result we could enrich the algorithm in order tdfgen dw-accelerations. More precisely,
it could be modified so as to choose faiymarkingsM = A + oo(B), then to accelerate starting from
B (actually, we could start from any number of copieg3dpfand then to add the-marking given by the
previous result. Notice that this-marking can have unbounded products in the unbounded Asudn
example, let us again consider thé’N in Fig. 8, for which we obtained after the first accelenatine

w-markingp + oo(q). It is easy to see thajthq, and accelerating this transition yields themarking
¢“, so that by the previous result it is correct to ad@tthe w-markingp + oco(g*).

In Def. 5.1 and Def. 5.2 we are fixing by means of the mappitige relation between names.ii;
and names ioM,. In particular, we are choosing among one of such possildéons, and forcing that
the chosen relation is kept between all the markings in theeigéed increasing chain. Thus, we are
removing part of the inherent non-determinismviPN that arises in the non-deterministic choosing of

consumed names by transitions. For instance, the net id@igan fire its only transitiopi>p + pp and
p C p + pp, but we can choose two different ways to map products to mtsgdanamely;(p) = p and
t2(p) = pp. In the first case, the result of accelerating isd¢hmarking M; = oo(pp) (we are always
consuming the just created name), while in the second casdtam M, = p* + co(p) (we are always
taking the name that appeared already in the initial majking

If we do not impose any particular relation between the nathes at any point any token could be
chosen, so that starting from the initial marking, any maglkof the formp™ + ... 4+ p™* can be reached,
with least upper boundo(p“). Therefore, any acceleration schema that does not impgs@apping:
relating names should compute(p®) as acceleration.

In general, if we can choose between several mappings, «x, because of monotonicity, in each of
the limits M1, ..., M, we can again choose between those mappings. Actually, ih@ese again the
mapping; starting fromM;, the obtained marking is againt;, by definition of acceleration. However,
we could use a different; to accelerate starting fromv1;, with ¢ # j. In our previous example, we
can again accelerate starting fro; = oo(pp) and fromMs, = p“ + co(p). In the case ofM,
we reachMs = ppp + oo(pp), andppp is obtained from one of the infinitely-many. If we apply a
dw-acceleration we obtaito(p”). Moreover, this is also what we obtain if we accelerate isigufrom
M.



F. Rosa-Velardo, M. Martos-Salgado, D. de Frutos-Escrig¢éierations for the coverability set ofPN 1027

In the previous example we have managed to accelerate (@wiragcelerations) without restricting
ourselves to a given mapping However, it remains to see that we can do it in general, fiahat we
can still accelerate any loop even if we remove the hyposhesaccelerating with respect to a given
mapping:. In this case the situation becomes much more complex. ticpkar, it is no longer true that
we can contract a sequence of transitions into a single algmt/transition.

7. Conclusions and future work

In this paper we have established a forward analysis/f&Ns, an extension of P/T nets with pure
name management and creation, with the goal of computingte Easis of its cover, that is, of the set
| Post*(My). For that purpose, we have applied the results and tectsiderseloped in [11, 12] for
WSTS. We have defined a friendly presentation of the conguiaif ar-PN by means of-markings, a
natural extension of the analogous concept for P/T nets. &¥e been that the transition relation, lifted
to the completion, is effective, that is, we can effectivebmpute successors. Moreover, we have seen
that if we restrict the non determinism, they areeffective (we can compute the least upper bounds of
the sets ofv-markings produced by simple loops). This ensures that Kemaense to apply a forward
Karp-Miller procedure. However, we have proved that sudtedure cannot terminate in general, or we
could decide the property of depth-boundedness, whichdecidable. As a corollary, a finite basis of
the cover is not computable for the class of Transfer Data Nt even for the class of Petri Data Nets.
Nevertheless, we can slightly modify that algorithm to gpt@cedure to decide width-boundedness and
to compute a finite basis of the cover of a width-bounded net.

The d-accelerations and w-accelerations in Sect. 5 apparatly when computing the least upper
bound of simple loops. We have identified a subclass-BiN, namely those that are dw-bounded, for
which those accelerations are enough to compute the colras, Tor dw-bounded nets (a property which
is in turn undecidable) we can decide for instance the pieeatdedness problem, which is undecidable
in general.

If we consider dw-accelerations, then we can also comp@tedkier of some dw-unbounded nets.
It would certainly be interesting to characterize the sabglofv-PN (larger than dw-bounded nets) for
which Clover terminates. In general, it would be interesting to see if a-deterministic version of
accelerations, in which we do not restrict the modes by tlatioa between the different names involved
represented by the mappings computable. More precisely, it would be interestingttmly the structure

of the set of markingg. M | MlﬁM} (without restricting the modes), to see if it is a directet] aad
computing its least upper bound in that case.
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