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cer a David las clases, conversaciones, ejercicios, presentaciones... que hemos

tenido en común este curso.

Quiero darle las gracias a No es Culpa Nuestra, y en especial a los habitantes

de cierto barrio: Gracias Steward, Irene, José, Julio, Rodrigo, Beatriz, Karol, Al-
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Abstract

Petri nets are an important formalism to specify concurrent and distributed sys-

tems. When Petri nets are used to model systems, we would like to be able to

verify certain properties about the modelled systems automatically, as is done

when other formalisms, as finite automata, are applied. This problem is called

the “model checking” problem. In this work, we present a compilation of the

main model checking results for plain Petri nets and two orthogonal monotonic

extensions: reset Petri nets and ν-Petri nets. We first introduce Petri nets and

its extensions, and summarize the main decidability results for them, which are

useful in proving decidability issues about model checking. An important part

of the work has been looking for model checking results about other formalisms

(in particular lossy VASS with inhibitor arcs) which are applicable to reset nets

and ν-Petri nets. Despite the fact that this work is eminently bibliographic, some

new results are proved here. In particular, a proof for the undecidability of the

repeated coverability problem for ν-Petri nets is given, and we use this result

to prove the undecidability of model checking certain temporal logic for ν-Petri

nets. Finally, as all the considered temporal logics for reset nets and ν-Petri nets

are undecidable, we discuss how to approach the model checking problem in the

undecidable case with two different techniques: unfolding and cover computation.

Keywords: Petri nets, reset nets, ν-PN, formal verification, model checking,

temporal logics, decidability.
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Resumen

Las redes de Petri son un importante formalismo para la especificación de sistemas

concurrentes y distribúıdos. Tal y como se hace con otros formalismos, como los

autómatas finitos, nos gustaŕıa poder verificar formal y automáticamente ciertas

propiedades sobre los sistemas representados mediante redes de Petri. Este proble-

ma se denomina “model checking” (o comprobación de modelos). En este trabajo

hemos hecho una recopilación de los principales resultados sobre model checking

para redes de Petri y dos de sus principales extensiones monótonas que son orto-

gonales: las redes reset y las ν-PNs. Comenzamos con una pequeña introducción

a las redes de Petri, sus extensiones y los principales resultados de decidibilidad

sobre estas, que sirven para demostrar cuestiones sobre model checking. Una de

las principales tareas realizadas en este trabajo ha sido identificar resultados sobre

model checking para otros formalismos y adaptarlos a las extensiones de redes de

Petri anteriormente citadas. A pesar de la naturaleza eminentemente bibliográfica

del trabajo, presentamos también algunos resultados originales. En particular, se

da una demostración de la indecidibilidad del recubrimiento repetido para ν-PNs

y de aqúı se deduce la indecidibilidad del problema de model-checking para cierta

lógica temporal para ν-Petri nets. Finalmente, al encontrarnos con que todas

las lógicas temporales consideradas son indecidibles para las redes reset y las ν-

PNs, discutimos cómo enfrentarnos al problema del model checking en el caso

indecidible, mediante dos técnicas diferentes: el unfolding y el cómputo del cover.

Palabras clave: Redes de Petri, redes reset, ν-PN, verificación formal, com-

probación de modelos, lógicas temporales, decidibilidad.
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Chapter 1

Introduction

Nowadays software is fundamental to our way of life. We need to trust in programs

very often: in transports, security, banks... That is why we need tools to verify the

properties of these systems we are interested in, and to find why our specifications

do not satisfy them, when that is the case. There are several available techniques

for this purpose, such as testing, which try to find errors by applying some test

cases to the programs, static analysis, or model checking, an automatic formal

verification procedure.

In this work we focus on model checking. Model checking is a set of techniques

for verifying correctness properties about systems. A model checking algorithm

provides a formal and automatic verification of the systems on study. Nowadays

model checking has been already used in some real systems. For example, in [56]

Lowe study how using a model checking algorithm, an error was discovered in

a cryptographic protocol designed by Needham and Schroeder [66], which was

thought to be correct during 17 years, until the error was discovered.

In this work we summarize the decidability results for model checking a specific

formalism: Petri nets, presenting also some new (modest) results in this area.

1.1 Concurrent and distributed systems

Now it is usual to find systems where several different tasks are performed simul-

taneously. For example, if you want to listen to music in your PC, you do not

need to stop typing your master project or surfing the web. These systems which

perform several tasks at the same time or perform several tasks for a common

objective, are called concurrent or distributed systems.

15
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Concurrent systems are those systems in which several (maybe interacting)

processes may be executed “simultaneously” or in parallel. Concurrent program-

ming is very frequent nowadays, and that is why many programming languages

admit concurrency, as Java, C++ or Ada. Unfortunately, to use concurrent pro-

gramming, we have to cope with several new and important difficulties, such as

blocking problems (deadlocks) or the use of shared resources. These difficulties

make the verification of concurrent systems a challenging problem.

A distributed system is a system in which several autonomous processes run

and interact with each others with a common goal. Distributed computing was

originally based on nets of computers which were separated geographically, but

nowadays distributed systems can have all their processes running in the same

computer. There are several important applications of distributed computing.

One of the most important applications is parallel computing. As the problems

to be computed have become larger and larger, it is usual to decompose them in

smaller parts whose solutions are somehow combined to obtain the solution of the

original problem. That is the fundamental concept of parallel computing. Nowa-

days parallel computing is the dominant technique in computer architectures, and

multi-core processors (like dual-core processors or quad-core processors) are be-

coming very common. Other applications of distributed computing are telephone

networks, computer networks as internet, peer-to-peer networks and distributed

databases.

These systems have become a very important part of the software in present-

day. That is why there are a lot of formalisms to specify these systems. Some of

the most important formalisms to specify concurrent and distributed systems are:

• Process algebra like CCS [63], CSP [43] or π-calculus[64], which model the

communication and interaction between independent processes.

• Vector addition systems [47], or VASS for short, that are a formalism which

consists on vectors of natural numbers which represent the states of the

system. VASS can be used to model concurrent systems.

• Petri nets [68], which are equivalent to VASS, but have an intuitive graphic

representation.

With concurrent and distributed systems, the complexity of systems is in-

creasing, and the modelers have to cope with a problem: they would like to use
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formalisms with a very high expressive power and with good decidability proper-

ties, but these two requirements are definitely contradictory. For example, on the

one hand, classical finite automata have very good decidability properties, but

they cannot model infinite state systems. On the other hand, Turing machines

are very expressive, but most of the interesting properties we would like to check

are undecidable for them.

In this work we focus on Petri nets, which is a formalism which can express

concurrency and infinite states, but has better decidability properties than Turing

machines.

1.2 Petri Nets

As we said in the previous section, Petri nets (PN for short) are a formalism to

model concurrent and distributed systems. The main differences between Petri

nets and the very well-known finite automata are that PNs can cope with an infi-

nite number of states and that the states of a PN are established in a distributed

way.

First of all, let us explain informally what a Petri net is. The main components

of a Petri net are the places, which contain tokens, and the transitions, which

connect them. States of Petri nets are usually called markings. A marking is

simply a function which determines how many tokens each place contains at the

current state. Graphically, places are represented as circles, and tokens are inside

them. The presence of tokens may enable some transitions, in that case, if any of

them is fired, then the marking of a Petri net changes by removing tokens from

some given places and adding tokens to some other. Each transition has given sets

of places from which to remove and to put tokens. If a transition cannot remove

the tokens from the appropriate places, then it cannot be fired. That is why we

call preconditions of a transition to the set of places that need to have a token

(at least) to fire the transition, while we call postconditions of a transition to the

set of places in which the transition puts a token when it is fired. Graphically, a

transition is represented by a rectangle, and its preconditions and postconditions

are identified by means of arrows. An arrow from a place to a transition represents

that the place is a precondition of the transition. Analogously, an arrow from a

transition to a place represents that the place is a postcondition of the transition.
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Figure 1.1: A Petri net modelling an online shop

Let us show a toy example to illustrate Petri nets. In figure 1.1 we can see a

Petri net which represents how products are sold in an online shop (of course, this

is a toy example without any practical use). To buy a product, a client has to

request it and to pay for it, and then the seller will prepare the product to send

it to the client, and send it.

Figure 1.2: Firing transitions

Tokens can represent paid products, requested products, products ready to

send to the customer, and sent products, depending on the place in which they

lie. At the initial marking, every place is empty because no products have been

paid, requested, prepared or sent. The transitions represent the actions of paying

a product, requesting a product, preparing a product and sending a product.

To know the preconditions and postconditions of the transitions, you only have
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to focus on the arrows. For example, to prepare a product, the product must

have been paid and requested, so there must be a token in the place “Requested

products” and a token in the place “paid products”; and to send a product, it is

necessary that the shop has a prepared product, so there must be a token in the

place “products to send”.

Even though this is a very simple example, it already shows how Petri nets

can model concurrency. The actions “Pay” and “Request” can be performed

concurrently. It does not matter which of them is fired before, they are indepen-

dent, though both of them must have been fired at least one time in order to fire

“Prepare product” later.

In figure 1.2 we show how a sequence of transitions is fired: The client requests

a product, he pays for it and then the seller prepares a product and sends it to

the client.

Figure 1.3: An automaton and its corresponding Petri net

Petri nets can be seen as a distributed generalization of finite state automata.

Suppose we would like to model a set of finite automata which are running con-

currently, and some of their transitions must synchronize in order to occur. Let

us explain how that set of automata could be modelled by a Petri net. The Petri

net we want to build has a place for each state of each automaton, and a token in

a place means that an automaton is in the corresponding state. The transitions

would represent the changes of states in automata, as in figure 1.3. When there is

a synchronization between two automata (or more), then they change their states

“at the same time”. With Petri nets we can model this synchronization too, by

using only one transition of the Petri net to model both changes of states, like in

figure 1.4 , where the changes of states labelled by t synchronize.
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Figure 1.4: Synchronization of two automata

Petri nets were first introduced by Carl Adam Petri1 in his PhD thesis, in

1962 [68]. Independently, since by the way the importance of the early works by

Petri was not recognized at all when it was developed, Karp and Miller introduced

vector addition systems in “Parallel program schemata”, in 1969 [47]. Later, it

was shown that both formalism are equivalent, so that the results obtained for

vector addition systems by Karp and Miller, can be translated to Petri nets, too.

Since then, Petri nets have been widely studied.

Since Petri nets are a formalism to specify concurrent systems, we would like

to be able to verify Petri nets, that is, to automatically guarantee that our systems

have the expected behavior. For example, in the previous example, we could be

interested in knowing if we can reach a marking in which there is a sent product,

or if we can pay infinitely many products without receiving any of them. As a

first step, we can ask ourselves whether there are algorithms which decide this

kind of questions, that is, whether certain problems are decidable or not. Some

decidability problems have been important for the development of the field, as the

decidability of the reachability problem [59], which was opened for a long time,

or the decidability of the coverability problem [47].

Although Petri nets are a good first approximation to concurrent systems

modeling, they do not really have all the expressive power we need to model some

systems. Let us show some examples about behaviors of the shop of figure 1.1

that we cannot model with plain Petri nets:

1Unfortunately Petri recently died when I was close to finish this work.
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• We could like to model how the seller gives the client his money back. Then,

the place “Payed products” should be emptied, but we cannot model that

behavior with a Petri net, because we cannot recognize when a place has

been fully emptied.

• Analogously, we could like to model how the shop sends all the remaining

products to the client at a time. All tokens in “Products to send” should be

transfered to “Received products”, but we cannot transfer all tokens from

a place to another with Petri nets.

• We could also like to model how several different clients ask for products.

Then we would like to have distinguishable tokens which would represent

the money paid, requested products, prepared products and sent products

for the different clients.

With these examples it is shown that there are many behaviors of concurrent

systems that cannot be modeled with plain Petri nets, so sometimes we need more

expressive formalisms nets in order to model the systems we consider. There are

numerous extensions of Petri nets in the literature. Some extensions are Turing-

complete, but fortunately there are some formalisms which extend Petri nets but

are not yet Turing-complete.

A problem that we find when we work with formalisms to model concurrent

systems, and in particular with Petri nets, is the fact that there exist a lot of very

diverse modeling formalisms, and some of them are equivalent (or equivalent in

some sense) to other formalisms which seem to be very different. For example,

Petri nets are equivalent to vector addition systems. Part of our work has been

to look for results on formalisms which can be applied to Petri nets or Petri net

extensions. Some results are obtained as consequences of analogous results on a

big variety of formalisms, such as vector addition systems, lossy vector addition

systems with inhibitor arcs or counter machines.

Finkel generalized Petri nets to well-structured transition systems [30] in or-

der to transfer some Petri nets decidability results to other formalisms, which are

more expressive than Petri nets, but preserve some common properties like mono-

tonicity. Finkel mainly studied the decidability of boundedness, termination and

coverability-set problems. Abdulla et al. gave another definition of well-structured

transition systems [1], based in their studies about lossy-channels systems and

other formalisms. They studied the decidability of covering, inevitability and



22 CHAPTER 1. INTRODUCTION

simulation problems. Since then, well-structured transition systems have been

widely studied in the literature [34], and they subsume important formalisms like

reset Petri nets or transfer Petri nets.

The extensions we consider in this work extend Petri nets in two different

ways: adding special arcs or extending the nature of tokens. Some of the main

Petri net extensions are:

• Affine well-structured nets [36] are nets which admit whole-place operations

such as emptying a place or transferring all tokens from one place to another,

in a homogeneous way. Reset and transfer nets, which are well structured

transition systems, are subsumed by this formalism.

• Nets within nets [78] is a paradigm which contains object nets [79] and

nested nets [55]. In this paradigm tokens themselves are Petri nets. Valk

introduced this idea in the context of task/flow systems, in which tokens

represent tasks which are formalized by Petri nets, and the whole system is

again a Petri net.

• Another important formalism is recursive nets [41], which was introduced

in order to manage the dynamical creation of objects. It is more expressive

than Petri nets, and still preserve good decidability properties.

• Coloured nets [46] are a Turing complete extension which combine Petri nets

with other languages. In coloured nets indistinguishable tokens are replaced

by data objects, and transitions can modify the data of these tokens. Tokens

can be of many different kinds of data so with Coloured Petri nets we can

model a lot of structures, as lists or even Turing machines. Data nets [52]

(nets in which an order holds between tokens and capable of performing

whole-place operations) and ν-Petri nets [73] (which have distinguishable

tokens and are capable of creating new names) are subsumed by coloured

nets.

As we said before, when we extend formalisms, and in particular when we ex-

tend Petri nets, we gain more expressive power, but we lose decidability properties.

For example, reachability is decidable for Petri nets, but not for reset, transfer

or ν-Petri nets. However, when we consider well-structured transition systems

some good decidability results, as the decidability of the coverability problem, are

ensured. That is why in this work we focus on well-structured transition systems,

and in particular on reset nets and ν-Petri nets.
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In this project we are going to focus on how to check some given properties

about a Petri net. In particular, we will mainly focus on model checking Petri

nets, and what to do if this is not possible in order to obtain some information

about the properties we want to check. In the following section we describe what

model checking is.

1.3 Model checking

As we have already mentioned, nowadays we have to trust in very complex systems

everyday. In many contexts, such as aeronautics or medical software, we even trust

human lifes to programs, so we need to be sure that these programs work correctly.

In other words, we would like to be sure of certain properties of programs. For

example, in the software of an aeroplane we would like to verify that the system

does not deadlock unexpectedly.

Model checking is a collection of techniques for automatic formal verification

of systems. It was first introduced by Clarke and Emerson in 1981 [11, 21],who

recently shared the 2007 Turing Award with J. Sifakis for their work on model

checking. Given a formal description A of the system we want to check, and

a property P to check, a model checking algorithm tells us if P holds at the

system specification or not. Model checking was first studied for finite state

systems and there are algorithms which solve the model checking problem for

finite state automata since a long time ago. Intuitively, the classic algorithms

consist on building an automaton ¬P which admits the language of all sequences

of transitions which do not satisfy the desired property. Then, the algorithms

compute the product automaton A × ¬P between ¬P and the automaton to

check. If the language which A×¬P admits is empty, then there is not any word

of our automaton A which satisfies the negation of P , that is, every running of

the system specification satisfies P .

To perform model checking we need to have a formal model to express the

specification of the system to check, but also a language to express the properties

that we want to check. In the online shop example, we could be interested in

checking properties such as “if a client pays for the product and requests a product

then in the future he will receive the product” or “a product is not received until

the client pays for it”. These properties are “temporal properties” in some sense.

We talk about events which will happen in the future, which will always happen,

which never happen, etc. In order to express this kind of properties temporal



24 CHAPTER 1. INTRODUCTION

logics were introduced by Pnueli2.

Temporal logics consider atomic predicates which express atomic (not tempo-

ral) properties, and several temporal operators and path quantifiers. The main

operators are: X (which means“at the next state”), F (at a future state) and

G(always) and the classic boolean operators. The main paths quantifiers are E

(which means that there exist a running from the current state in which a proper-

ty holds) and A (in all runnings from the current state a property holds). Using

combinations of the previous operators and path quantifiers one can express many

temporal properties. The way in which different temporal logics are obtained is

by considering different ways of combining these operators.

There are mainly two kinds of temporal logics: branching time logics and linear

time logics. While properties expressed in branching time logics are properties

about the different paths that are possible from an initial state, linear time logics

express properties about a single path of states (or a single running). The most

representative linear time logic is LTL [69, 70, 57, 58] and the most representative

branching time logic is CTL [5]. Model checking techniques for verifying these

logic properties for finite state systems have been widely studied.

Model checking finite state automata is decidable for all temporal logics as

we said before. From this point, a great deal of effort has been devoted to the

efficiency of the algorithms, since when we run naive model checking algorithms

usually the number of visited states grows exponentially with the size of the sys-

tem. This problem is called the state explosion problem, and is the main problem

we have to face when we check finite state systems. Several techniques have

been studied in order to palliate this problem, such as symbolic model checking

(which finds a better representation of the system graph), bounded model check-

ing (which checks the formula in a finite number of states), abstractions (which

firstly simplify the system) or unfoldings (which unroll the runnings of concurrent

systems).

Classic algorithms for model checking finite state systems visit the “inter-

esting” states to check the formula, which could even be all the states of the

automaton. As the number of states of the system is finite, the algorithms always

terminate. However, we cannot apply these algorithms to model check infinite

state systems, because in general their termination is not guaranteed. In par-

ticular, Petri nets are a formalism which admits infinite states, so other kind of

2Pnueli also died at the beginning of this year
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algorithms are needed to model check them. But the battle is not lost: decidabili-

ty issues for model checking Petri nets are usually reduced to classic problems

about Petri nets, as the reachability problem.

In this work we discuss the decidability of model checking for Petri nets and

some of its monotonic extensions in the literature, we give a few new results about

it and explain what can be done when the decidability results are negative. This

problem has been widely studied for Petri nets, but it has not been so thoroughly

studied for the extensions we consider here. Of course, the undecidability results

for Petri nets hold for extensions too, because the extensions we consider can

model a Petri net. But, what about the decidability results? There is not much

literature about it, and the literature that there exists is “hidden” in results for

other equivalent formalisms as vector addition systems. Unfortunately, we will

see that in most of the cases Petri nets decidability results for model checking

cannot be extended to Petri net extensions.

So, what can we do with the properties we cannot check because they are un-

decidable for the formalism we are considering? We can consider semialgorithms,

which cannot solve completely the problem, but can give us a partial answer, or

search for an answer finitely and perhaps find it. In particular, unfoldings are

used for these purposes. Unfoldings are a representation of the different possible

runnings of a concurrent system. So with unfoldings we can explore part of the

possible runnings of a system, and try to find the answer to our questions. In [29]

unfoldings for Petri nets are studied.

1.4 Contributions and outline of the work

Now we detail the outline of the work, which is basically a discussion about model

checking Petri nets:

The second chapter is an introduction to Petri nets and Petri nets extensions.

The fundamental concepts to understand the rest of the work are explained there.

In particular, we will see the definitions and intuitive examples of Petri nets, well

structured transition systems, reset nets, transfer nets and ν-Petri nets. The main

decidability results are summarized in the second chapter too.

In the third chapter we discuss the model checking problem for Petri nets.

Firstly we explain what model checking and temporal logics are. In a second

section we summarize the most important classic results about model checking
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Petri nets. Then, in the third section of this chapter we summarize the results for

Petri net extensions. Finally we explain a pair of techniques which can be used

in case of undecidability: unfolding and computation of the cover.

This work is mainly bibliographic, and the biggest part of it is a recompila-

tion of results in the literature. In some cases we have found that some results

for several formalisms (mainly lossy vector addition systems), are applicable to

Petri nets (mainly reset nets). Despite the fact that most part of the project is

bibliographic, there are some original and non trivial contributions:

• In chapter two we give a construction which proofs the undecidability of

repeated coverability for ν-Petri nets. In this construction we reduce the

problem of repeated coverability for reset nets, which is undecidable, to the

same problem for ν-Petri nets.

• In the third chapter, we give a construction which proofs the undecidability

of model checking certain temporal logics for ν and reset Petri nets.



Chapter 2

Petri nets and some monotonic

extensions

Petri nets are a mathematical formalism to model concurrent and distributed

systems, which was introduced by Carl Adam Petri in his doctoral dissertation,

in 1962 [68]. It is a very intuitive and simple formalism, because there are only two

basic elements: places which may contain tokens and transitions which consume

or produce tokens from the places. Petri nets have a very intuitive and easy

graphic representation which makes them easily-understandable.

Petri nets have several properties which make them a great formalism to model

concurrent and distributed real systems. The way Petri nets change from one

state to other (when a transition is fired) is very intuitive. In Petri nets, to

change the state some resources are consumed and other resources are produced.

This is a very intuitive representation because in many computational contexts

changes occur in this way, as in production processes, chemical systems or natural

processes. In addition, transitions are fired locally, which means that when a Petri

net changes from a state to another, only the part of the net which is related to

the transition which is fired is affected. That is why Petri nets are such a good

formalism to model concurrency.

Petri nets can also be formalised in other algebraic way using vectors which

represent the number of tokens which each place currently carries. Transitions can

also be represented as vectors. Then, matrix multiplication represents the firing

of transitions, and several algebraic techniques can be (and have been) applied to

study Petri nets. In the literature, the term “vector addition system” was used

for Petri nets for a while.

27
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Petri nets have become such an important model that most of the techniques

for the analysis of Petri nets are available in computer tools. There are tools for

modeling, tools for verifying properties about a Petri net, and even tools applicable

at specific fields, as business process management (workflow).

When we study a system, we would like to verify some properties about it, but

as we said before not all the problems are decidable for a certain formalism. This is

another good characteristic of Petri nets: Many interesting problems are decidable

for them, such as the reachability problem [59], the boundedness problem and the

coverability problem [47]. An important fact to study the model checking problem

for Petri nets is that they have an infinite number of states, so model checking

algorithms for finite state systems cannot be used for Petri nets. Fortunately, the

nice properties we summarized before give us ways to obtain algorithms for model

checking Petri nets.

The formalism of Petri nets can be extended for a better modeling of the

systems we want to model. That is why in the literature Petri nets are extended

by adding special firing rules or considering different types of tokens. In this

project we consider extensions of Petri nets of both kinds. Some of the extensions

are more expressive than Petri nets, and are not as expressive as Turing machines,

which means that they have intermediate properties and expressivity. Mainly, we

consider reset Petri nets [3] and ν-Petri nets [73]. When we extend a formalism,

some of the decidability properties that it has, are usually lost. For example, the

reachability problem is undecidable for Petri nets extended with Reset arcs [18]

or for ν-Petri nets [73].

Classic decidability problems, such as the problems mentioned before are im-

portant for the main purpose of this work: model checking Petri nets. So in this

chapter we explain the fundamental concepts to understand Petri nets and some

of its extensions, and we summarize some of the well known decidability results.

2.1 Place/Transition nets

In this section we present the definition of Place/Transition nets, and explain how

they work. From now on we will call place/transition nets (P/T for short) to Petri

nets without extensions, and the term Petri net will be used for the general case

of Petri nets, with or without extensions.
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Definition 1 (Place/Transition nets) A Place/Transition net is a tuple N =

(P, T, F ), where:

• P is a finite set of places,

• T is a finite set of transitions,

• P ∩ T = ∅,

• F ⊆ (P × T ) ∪ (T × P ) is the flow relation. The elements of F are called

arcs.

Figure 2.1: A place/transition net

Example 1 Figure 2.1 shows the graphic representation of a place/transition

net , with a set of places {p1, p2, p3, p4}, a set of transitions {t1, t2, t3} and arcs

{(t1, p1), (p1, t2), (p2, t2), (p2, t3), (p3, t1), (t2, p3), (t3, p3), (t3, p4)}. The places are

represented by circles, the transitions by squares and the arcs by arrows.

States in the field of place/transition nets are usually called markings. A

marking of a P/T is a mappingM : P → N, that is, a finite multiset of places. If

p ∈ P and M(p) = n, then we say that there are n tokens in the place p, so we

can consider a marking as a function that sets the number of tokens that there

are currently in each place of the net. A marking M enables a transition t ∈ T
(the transition t is enabled) if for every p ∈•t, M(p) > 1, ie, in p there is at least

one token, where:

•t = {p ∈ P | (p, t) ∈ F}.
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If a transition is enabled, then it can occur and we say that the transition can

be fired. As we said before, a marking is a multiset of places. Let us consider

+ and - the addition and the subtraction of multisets. That is, if A and B

are multisets of places, p is a place and A(p) and B(p) denote the number of

appearances of p in A and B, then A+B is the multiset of places where for every

place p, (A + B)(p) = A(p) + B(p) and if B ⊆ A, then A − B is the multiset of

places where for every place p, (A − B)(p) = A(p) − B(p). The occurrence of a

transition t leads to a new marking M′ (we denote M t−→M′) such that:

M′ = (M−• t) + t•

where t• = {p ∈ P | (t, p) ∈ F}. M−• t can be performed because to fire the

transition it have to be enabled, so •t ⊆ M. This means that when a transition

t is fired, a token is removed from each place in •t, and a token is added to each

place in t•.

Let us show an example of how a transition is fired:

Figure 2.2: Firing a transition

Example 2 Figure 2.2 (left) shows the P/T of Example 1, with a token in p2

and p4 that is, the P/T marked by a marking M in which M(pi) = 0 for i = 1, 3,

M(p2) = 1 and M(p4) = 1.

M enables t3, but does not enable t1 nor t2. If t3 is fired, then a token is

removed from p2 and a token is added to p3 and p4. In this way, we obtain the

marking represented by Figure 1.2 (right).

If we have a sequence of occurrences M1
t1−→ M2

t2−→ ...
tn−1−−−→ Mn then we

write M1
t1...tn−1−−−−−→Mn.
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Given a marking M0, we say that another marking M is reachable from M0 if

there exists a sequence t1...tn such that M0
t1...tn−−−→M.

Given a place/transition net N = (P, T, F ), an initial marking M0, and a

final marking M, we define the free language of N with respect to M0 and M
as:

L(N ,M0,M) = {ω | M0
ω−→M}

Figure 2.3: Place/transition nets with weight arcs

Sometimes we will assume that transitions are labelled by a labelling function

L : T → P . Then, to build the language of a Petri net we will consider the labels

of the fired transitions instead of the transitions themselves.

In the literature several similar formalisms are considered, like P/Ts with

arc weights. A place/transition net with arc weights is a P/T with a function

which assigns a weight (in N) to each arc. The weight of an arc (p, t) (or (t, p))

specifies the number of tokens to be removed from (or added to) p when firing the

transition.

Example 3 Figure 2.3A shows a Petri net with weight arcs. The labels of the

arrows represent the weights of the corresponding arcs. If an arrow is not labelled,

it means that the weight of the corresponding arc is 1. Transition t2 is enabled,

but transition t3 is not, because there are not four or more tokens in p2. If t2 is

fired, then the marking in figure 2.3B is reached.
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Place/transition nets with arc weights do not increase the expressive power

of place/transition nets. Indeed, given a P/T with arc weights N , you can build

a P/T N ′ (probably with much more places and transitions), such that N and

N ′ , have the same behavior. For more detail on this, see [71]. In the following,

we will use the most convenient formalism, P/Ts with or without arc weights, at

each time.

Another feature which does not increment the expressive power of P/T nets is

place capacities. The capacity of a place is the maximum number of tokens that

there can be at the place. That means that when a transition is fired, it has to

be enabled in the sense of P/T, but there must also be enough “space” to put the

created tokens at the postcondition places of the transition, so that if there is not

enough space, then the transition cannot be fired. If all the places of a P/T net

with capacities have a finite associated bound, then the system we are specifying

is finite-state.

P/T nets can simulate P/T nets with place capacities with an easy construc-

tion which consist on adding a place p′ for each place p (called complement places)

which will represent the number of tokens that we can still add to p. Then, for

every place p and for every reachable marking M, if p′ is the complement place

of p, then M(p) +M(p′) = c(p), where c(p) is the capacity of p. Let us show an

example:

Figure 2.4: Petri nets with weight arcs

Example 4 In figure 2.4 a P/T with place capacities is shown. It has two places

named p1 and p2 with capacities 2 and 3, respectively. If the place p2 were marked

with three tokens and the place p1 with a token, the transition t1 could not be fired,
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though it would be enabled in the sense of P/T, because there would not be space

in the place p2 for another token.

Next to the P/T with place capacities, there is a plain P/T. These two systems

have equivalent behaviors. To build this P/T, two places p1′ and p2′ have been

added in order to control the number of tokens of the places p1 and p2. Accordingly,

the flow relation is modified so that in order to put a token in a place p, one must

be able to remove a token from the complement place p′.

2.1.1 Decidability results for place/transition nets

As we said, place/transition nets have good decidability properties, which have

been useful to prove some facts about model checking. Let us summarize some of

them:

The reachability problem consists on deciding if, given a Petri net N , an

initial marking M0 and a final marking M, M can be reached from M0. This

problem was open for a long time [40], and it was not until 1981 when Mayr

demonstrated the decidability of the reachability problem [59]. Kosaraju and

Lambert simplified the proof in 1982 and 1992, respectively [49, 51]. In July 2010

Leroux gave an easier proof [53]. The exact complexity of reachability remains

open. While all the previous algorithms have non primitive recursive complexity

the best lower bound known is EXPSPACE [54]. Other decidability problems,

such as the liveness problem and the deadlock-freedom problem, are recursively

equivalent to reachability, so that they are also decidable [40]. Some of the model

checking problems we will discuss later have been reduced to the reachability

problem in the literature, too. That is why the decidability of reachability is

important for our purposes.

Let M and M′ be two markings. We say that M′ ≥ M if for every place

p in the considered Petri net, M′(p) ≥ M(p). The coverability problem consists

on, given a PN, an initial marking M0 and a final marking M, deciding if there

exists another markingM′ such thatM′ ≥M andM′ is reached fromM0. One

of the reasons why coverability is important is because it can be used to specify

safety properties, such as “it is impossible to do something bad”, because we can

specify that the preconditions to fire a bad transition can not be covered. That

makes coverability a crucial problem for model checking P/T nets.

The boundedness problem consists on deciding if the set of reachable markings

is finite. In fact, for every place p there is a finite bound b ∈ N such thatM(p) ≤ b
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for every reachable markingM, then the set of reachable markings is finite. That

is, the number of tokens in each place is bounded on the reachable markings if and

only if the net is bounded. That is so because if we have such a bound bi for each

place pi in a net with n places, then the highest number of possible reachable

markings there may be is
∏

1≤i≤n bi. Conversely, if we have a place p without

a bound for the number of tokens in it, that means that for every reachable

marking M, there is a greater marking M′ such that M(p) > M′(p) for some

place p. By an inductive reasoning, that lead us to the fact that there are infinite

many reachable markings. The importance of the boundedness problem to model

checking lies in the fact that if there is a finite number of reachable markings,

then the system we want to check is a finite states system, so we could apply the

classic techniques.

A problem closely related to the boundedness problem is the place-boundedness

problem. The place-boundedness problem consists on deciding, given a Petri net

N and a place p, if there is a bound for the number of tokens in p on for all reach-

able markings. One could think that this problem is equivalent to the boundedness

problem, but this is not the case. In fact, when place-boundedness is decidable,

boundedness is decidable too, because of the boundedness problem characteriza-

tion we explained before; but the fact that boundedness is decidable does not

mean place-boundedness is decidable too, by the way for several interesting Petri

net extensions the first problem is decidable, but not the second one.

Karp and Miller introduced in [47] a new construction: the coverability tree.

The coverability tree is an abstraction of the reachability tree which is precise

enough to decide some important problems: with this construction the coverabi-

lity, boundedness and place boundedness problems for P/T nets were shown to

be decidable.

Let us explain how to build the coverability tree: The nodes of the coverability

tree are vectors which represent sets of markings. The vectors have one component

for each place which represents the number of tokens in the place. The value of

the components may be a natural number or the symbol ω, which represents the

possibility to have an unbounded number of tokens in the place. The coverability

tree is built by applying the following rules:

• The root of the coverability tree is the initial marking.

• The sons of a node n are the markings which can be reached by firing a

transition from n.
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Figure 2.5: The coverability tree of a P/T net

• If a new node n repeats a marking of the path from the root to n, then n is

a terminal node (it does not have any child).

• If a new node n is greater than another node n′ of the path from the root

to n, then the values of n which are greater than the corresponding values

of n′ are replaced by ω.

• If a node n has an ω in some of its positions then its children will have an

ω at the same position, too.

Example 5 In figure 2.5 a P/T net and its corresponding coverability tree are

shown. Let us focus on the second and the third levels of the tree. When we fire

t3 from (0, 1, 0, 0), we reach the marking (0, 1, 1, 0). As (0, 1, 1, 0) ≥ (0, 1, 0, 0), in

the third level the child is (0, 1, ω, 0) instead of (0, 1, 1, 0). Then, the ω value is

carried until the terminal nodes.

We said before that a ω in a vector means that the corresponding place possibly

has an unbounded amount of tokens in this following branch. That is because
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when we reach a marking M from another marking M′ by firing a transition

sequence σ and M′ ⊆M, then the same sequence is enabled at M′, and we can

fire it again, reaching a marking which is greater than M. That is an important

property: monotonicity. In the next section we will explain why this is such an

important property.

With the coverability tree it is easy to know if a P/T net is unbounded or

not: the net is unbounded iff ω appears in the tree. A place is unbounded iff ω

appears in the corresponding component of a node of the tree. We can also check

the coverability of a marking M just by searching a node which covers M.

Example 6 The P/T of figure 2.5 is unbounded. In fact, only the place p1 is

bounded. That is because there is not any node in the tree with an ω in the first

component, and there is a node (0, w, w,w) in the tree.

Unfortunately, not every problem is decidable for P/T nets. Given two Petri

nets N1 = (P1, T1, F1) and N2 = (P2, T2, F2) with the same number of places, and

a bijection f : P1 → P2, then we have a natural bijection F between markings

of N1 and markings of N2. The containment problem consists on deciding if for

every reachable marking M of N1, F (M) is a reachable marking of N2. Hack

proved in [40] that the containment problem is undecidable for P/Ts.

2.1.2 Well-structured transition systems

Some of the decidability results of the previous subsection are due to the mono-

tonicity of place/transition nets and Dickson’s lemma. Finkel was the first one

who gave a definition of well-structured transition system (WSTS for short) [30],

which are essentially systems with the two previous properties (or analogous ones).

Then, some of the decidability results for P/Ts were generalized to WSTS [32], for

example, to reset nets. Let us see the fundamental concepts needed to understand

what is a WSTS:

A quasi ordering ≤ on a set X is a reflexive and transitive relation on X. If ≤
is also antisymmetric, then it is a partial ordering.

Given a quasi ordering ≤ on a set A, and a subset X of A, we define ↑ X =

{x′ | ∃x ∈ X,x′ ≥ x}. In particular, if x ∈ A, ↑ x = {x′ | x′ ≥ x}. An upward-

closed set U ∈ X is a set such that, for every u ∈ U , if there is an x ∈ X such
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that x ≥ u then x ∈ U . If U is an upward-closed set, then ↑ U = U . For every

x ∈ X, ↑ x is an upward-closed set. A basis of an upward-closed set U is a set B

such that U = ∪x∈B ↑ x =↑ B.

Definition 2 A well quasi ordering (we will denote wqo for short) is a quasi

ordering such that for any infinite sequence x1, x2, ... ∈ X, there are i, j ∈ N with

i < j and xi ≤ xj.

Next we recall the definition of transition system, in order to define monotone

transition systems and, finally, well-structured transition systems:

Definition 3 A (labelled) transition system is tuple T = (S,L,→, s0) where S is

a possibly infinite set of states, L is a set of transition labels, → is a transition

relation →⊆ S × L× S and s0 ∈ S is the initial state.

We will write s1
l−→ s2 instead of (s1, l, s2) ∈→. If there exist s1, s2, ..., sn ∈

S and l1, l2, ..., ln−1 ∈ L such that s1
l1−→ s2

l2−→ s3
l3−→ ...

ln−1−−−→ sn, and w =

l1l2l3...ln−1 then we write s1
w−→ sn

The immediate predecessors (resp. successors) of a state s of a transition

system is the set Pre(s) = {s′ ∈ S | s′ → s} (resp. Post(s) = {s′ ∈ S | s→ s′}).
A transition system T = (S,L,→, s0) has effective successor if there exists an

algorithm such that, given an state s ∈ S, calculates Post(s). A transition system

has effective-Pred basis if there is an algorithm that given a state s of the system,

calculates a finite basis for ↑ Pre(↑ s).

Given a state s of a transition system S, we call Post∗(s) (resp. Pre∗(s)

to the set of states s′ of this transition system such that there exists a chain of

transitions α such that s
α→ s′ (resp. s′

α→ s).

Figure 2.6: Monotonicity
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A labelled transition system T = (S,L,→, s0) is monotone with respect to ≤
if for every s1, s2, s

′
1 ∈ S such that s1

l−→ s2 and s1 ≤ s′1, there exists an s′2 ∈ S
such that s′1

l−→ s′2 and s2 ≤ s′2 (see Figure 2.6). An ordering < is a quasi ordering

such that, given to elements s1 and s2 of a set, then s1 < s2 ⇔ s1 ≤ s2 and s2��≤s1.
If the quasi ordering ≤ is replaced by the (partial) ordering <, then the transition

system is strictly monotone.

Definition 4 (Well-structured transition system) A transition system

T = (S,L,→, s0) is a well-structured transition system with respect to an ordering

≤ on S, if:

• T is monotone with respect to ≤.

• ≤ is a well-quasi order.

A WSTS is strict if it is a well-structured transition system and is strictly

monotone.

The finite reachability tree [32] of a WSTS T = (S,L,→, s0) (FRT for short)

is un unordered tree which has states of the system as nodes. There are live and

dead nodes. The root of the tree is the state s0, and it is live. A dead node

does not have any child. A live node has one child for each of its successors. If

along the path from s0 to a node s there exists another node s′ such that s ≥ s′,
then we say that the node s′ is subsumed by the node s, and the node s is dead.

Otherwise, the node is live.

Figure 2.7: The reachability tree of a PN

Example 7 Figure 2.7 shows a place/transition net and its corresponding reacha-

bility tree. The nodes of the tree are vectors which have four elements, representing
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the number of tokens at each place in a marking. The initial marking is the mark-

ing with one token in p1 and no token at the rest of the places. The corresponding

node is the root of the tree and it is live.

At this marking, only t1 can be fired, so the root only has a child: (0, 1, 0, 0).

The child is live and has two childs: (0, 1, 1, 0) (by firing t3) and (0, 0, 0, 1) (by

firing t2). The first child is dead, because his parent (0, 1, 0, 0) is subsumed by it;

so it does not have any child. (0, 0, 0, 1) is live, but does not have any child. Now

there is not any other node to visit, so the tree is completed.

The reachability tree of a WSTS has been shown to be always finite. That

is because, applying König’s lemma it suffices to prove that there cannot be an

infinite branch and the quasi order in a WSTS is a well-quasi order, so given an

infinite sequence of markings (the nodes of the branches of our tree), there are

two markings such that one subsumes the other. So considering the way the trees

are constructed, there cannot be any infinite branch.

Finkel and Schnoebelen showed that a WSTS has a non-terminating compu-

tation iff its FRT contains a subsumed node, so termination has been shown to

be decidable for any WSTS with a decidable ordering and an effective Succ [34].

Therefore, the termination problem for WSTS is equivalent to ask if there is a

dead node in the corresponding reachability tree. That is because if there is not

any dead node, then all the branches of the tree end at a live node. That is, all

firing sequences end at a state from which any transition cannot be fired, so the

system terminates for any running.

Conversely, if there is a dead node n, then this node subsumes another node n′

which is its ancestor. That means that n ≥ n′ and there exists a firing sequence σ

such that n′
σ→ n. WSTS are monotone, so the firing sequence σ can be fired from

n, reaching a state n1 such that n ≤ n1, so the same sequence can be fired from

n1. By an inductive reasoning we can conclude that there is a infinite transition

sequence and the system does not terminate.

There is another problem we can solve with the finite reachability tree: the

boundedness problem for WSTS with strict monotonicity. A WSTS with strict

monotonicity is unbounded if and only if there exists a dead node n such that its

subsumed node n′ is strictly smaller than itself. That is because if we have a dead

node n, and its subsumed node n′ such that n′ < n and n′
σ→ n then, because

of the strict monotonicity, σ can be fired from n reaching an state n1 such that

n < n1, ans then by a trivial inductive reasoning we obtain that σ can be fired
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infinitely many times from n1 reaching bigger states every time. That means that

the system is unbounded.

Conversely, if there is not any subsumed node with the previous property then

the branches of the tree may end in a live node without childs (so the sequence

of transitions ends and is finite), or in a dead node n such that its subsumed

node n′ is n′ = n. In that case, the corresponding sequence of transitions can be

fired again from n, but in this case no new markings are added. Therefore, the

reachable states are those which appear as nodes of the reachability tree, that is

a finite amount of nodes, so the number of states of the system is finite, and the

system is bounded.

The coverability problem was shown to be decidable for P/T nets by Karp

and Miller in [47]. The algorithm constructs the Karp Miller (K-M for short)

tree, which is a finite representation of ↓ Post∗(↓ s), where s is a state of the

system. These ideas can be used in the general case [38, 39]. For any WSTS we

call cover of the state s to the downward closure of the reachability set of a Petri

net with s as initial state. If we want to solve the coverability problem for a given

state s, and we can compute the cover of the initial state of a net, then it is easy

to solve the problem just by checking if s is in the cover. We say that this method

works forward, because the successors of a state are computed. Unfortunately,

the cover of a system is not computable in general, so this method of solving the

coverability problem cannot be applied in all the cases.

A method which works backwards (computing the predecessors of the state

we want to check if it is coverable) was proposed later. Although the previous

forward algorithm did not always work, coverability is shown to be decidable

for WSTS under very general effectiveness hypothesis. More precisely, whenever

there are an effective Pred-basis and a decidable ordering a new algorithm is

proposed [1, 33]. Specifically, given a state s and an initial state s0, the algorithm

that decides whether s can be covered from s0 computes ↑ Pred∗(↑ s), the set

of states from which s can be covered. This set is computed as the limit of the

sequence I0 ⊆ I1 ⊆ I2... where I0 = ↑ s and In+1 = In ∪ Pred(In). This sequence

is computable because the considered systems have effective Pred-basis, and it

is finite because ≤ being a well-quasi ordering implies that infinite increasing

sequences of upward-closed sets eventually stabilize, and indeed for all i ∈ N, Ii is

upward-closed because of monotonicity. To solve the problem of coverability we

only have to check if s0 is in ↑ Pred∗(↑ s) or not.
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Let us explain why Place/transition nets are WSTSs. To do that we have

to explain why the already defined quasi ordering for P/T nets is a well-quasi

ordering and why Petri nets are monotone with respect to this order.

First we are going to explain why the quasi ordering “≤” is a well-quasi or-

dering, that is, why for any infinite sequence of markings M1,M2..., there are

i, j ∈ N such that i < j and Mi ≤Mj . The markings of a net with n places can

be seen as vectors of natural numbers with n components, that is, elements of Nn.

Consider the following quasi ordering in Nk: given two vectors of the same size

n ∈ N , then “u ≤ v ⇔ u(i) ≤ v(i)” for all i ≤ n where u(i) and v(i) are the i-th

components of the vectors. As the previous quasi order is a well-quasi ordering

for Nn (Dickson’s lemma), and markings and their defined order can be seen as

vectors of Nn with the previous notion of ordering, the ordering of markings is a

well-quasi ordering.

Now, we explain why P/T are monotone with respect to ≤. LetM1,M2 and

M′1 be three markings of a P/T such that M1
t→M2 and M1 ≤ M′1. M′1 has

in each place, as less, the same number of tokens as M1 (because of how the

ordering is defined), so if t is enabled atM1, then t is enabled atM′1 too, that is,

for every p ∈ •t, M′1(p) > 1, because M1(p) > 1 and M1(p) ≤M′1(p). When we

fire the transition t from M1, we reach the marking M2 = (M1 −• t) + t•, and

when we fire it from M′1, we reach the marking M′2 = (M′1 −• t) + t•. Then, as

M1 ≤M′1,

M2 = (M1 −• t) + t• ≤ (M′1 −• t) + t• =M′2
Therefore, M2 ≤M′2, and the monotonicity of P/T nets is proved.

In the following section we explain some of the extensions of place/transition

nets that have been defined in literature. Some of these extensions are WSTSs

too, so they satisfy the properties above, which are very useful for model checking.

In the next two sections some extensions of place/transition nets, which will

increment the expressive power of Petri nets, are presented. We focus on signifi-

cant extensions with a simple definition which preserve monotonicity.

2.2 Special firing rules

In the literature there are several ways of extending place/transition nets. The

first way we are going to consider is by adding special firing rules. Special arcs are



42 CHAPTER 2. PETRI NETS AND SOME MONOTONIC EXTENSIONS

added and these arcs, intuitively, will empty places (reset arcs) or transfer tokens

from one place to another (transfer arcs). There are more ways of extending

place/transition nets by adding special rules, but we consider reset and transfer

arcs because they preserve monotonicity, which brings good properties as we said

before, for example the decidability of the coverability problem.

A non monotone extension is Petri nets with inhibitor arcs. Intuitively, what

an inhibitor arc pointing to a place does is to check if in the place there is some

token. If there is a token, the transition cannot be fired. If the place is empty and

the transition is enabled, then it can be fired. With inhibitor arcs the expressive

power of P/T nets is greatly increased. In fact, Petri nets with two inhibitor arcs

have the same expressive power as Turing machine, because they can simulate

Minsky machines with two counters. [65].

Reset nets were first introduced by T. Araki and T. Kasami in [3], and their

properties have been extensively studied since then [3, 18, 6, 10, 48]. What makes

reset nets interesting is that their transitions can empty places. That increments

the expressive power of P/T nets, so they are more suitable to model several

systems which cannot be modelled by P/T nets. The formal definition of a reset

Petri net (or Petri net with reset arcs) is the following:

Definition 5 (Petri net with reset arcs) A Petri net with reset arcs is a tuple

(P, T, F,R), where (P, T, F ) is a P/T net and R ⊆ P ×T is a relation containing

the so called reset arcs.

Figure 2.8: Firing a transition with a reset arc

Reset arcs do not affect the notion of enabled transition, but when a transition
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t is fired, and there is a reset arc (p, t) ∈ R, from p to t, then the new marking

M that is reached, is such that:

• M(p) = 1, if (t, p) ∈ F .

• M(p) = 0, otherwise.

The new marking is set as for plain nets at the rest of the places. That means

that a reset arc (p, t) empties the place p when the transition t is fired.

When one sees the definition of reset nets for the first time, one could ask

himself in what way they have more expressive power than P/T. In fact, to empty

a place it seems it is enough to have a transition which removes one token at a

time from the place we want to empty. The problem of this approach is that we

do not know when the place we are emptying is indeed empty, so we do not know

when to stop removing tokens. We would need to be able to check if a place is

empty to apply the previous reasoning to empty this place, and this is not possible

in a P/T. That is why we cannot simulate a reset net with a P/N.

Example 8 Figure 2.8A shows a Petri net with a reset arc (p1, t2), represented

by ⇒. If t2 is fired, then p1 is emptied, and the marking showed in figure 2.8B

is reached.

Next we present Petri nets with transfer arcs, which is another important

extension of Petri nets which have been studied in the literature [73, 18] and it

is quite useful for the modelling of broadcast [26].

We explained in our introduction how Petri nets can be seen as a generalization

of finite state automata. We showed how to model nets of automata running

concurrently, which synchronized in some transitions. Now we want to model a

new kind of communication between the different parts of the net: broadcasting.

Broadcasting is a way of message-passing in which one component (a process)

of the system sends information to all the rest of components, simultaneously.

Intuitively, Petri nets are a good approach to model this behavior, because of

how transitions works (it is easy to model the sending of information from one

place to as many places as we want). The problem is that when we want to model

broadcast, we need to be able to perform whole-place operations, and in particular

to transfer all the information of one token to some others. That is why P/T nets

are not enough. We need a more expressive formalism: Transfer nets.
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Definition 6 (Petri net with transfer arcs) A Petri net with transfer arcs is

a tuple (P, T, F, Tr), where (P, T, F ) is a P/T and Tr ⊆ P × T × P is a relation

defining the transfer arcs.

Figure 2.9: Firing a transition with a transfer arc

Let us suppose that we have a Petri net with transfer arcs N = (P, T, F, Tr),

and a markingM. Here the enabled transitions are the same as for the place/transition

net (P, T, F ), but when we fire a transition t ∈ T , then the new reached marking

M′ is such that, if (p, t, p′) is a transfer arc, then:

• M′(p) = 1, if (t, p) ∈ F .

• M′(p) = 0, otherwise.

and

• M′(p′) =M(p′) +M(p) + 1, if p′ ∈ t• and p′ /∈ •t.

• M′(p′) =M(p′) +M(p)− 1, if p′ /∈ t• and p′ ∈ •t.

• M′(p′) =M(p′) +M(p), otherwise.

The markings of the rest of the places are modified as for plain Petri nets.

The intuitive meaning of a transfer arc is that they are able to transfer all the

tokens at some place to another.

Example 9 Figure 2.9A shows a Petri net with a transfer arc (represented by a

black arrow). If transition t2 is fired, then p2 is emptied, and its three tokens are

added to p3. Then, the marking showed in figure 2.9B is reached.
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The reason P/T cannot transfer all tokens from a place to another in a correct

way is similar to the reason they cannot empty places as reset arcs need. We

could think that having a transition which translates a token from one place to

another is enough to transfer all tokens from the first place to the second one, but

this is not true. As in the case of reset nets, we would need to check when the

first place is empty, but we cannot do that in a P/T. Therefore, we do not know

when we could stop firing the transition.

Reset and transfer Petri nets are subsumed by another formalism: affine well-

structured nets. Affine well-structured nets (AWNs) were first introduced by

Finkel, McKenzie and Picaronny in [36]. Basically, an AWN is a generalization

of P/Ts, reset and transfer nets in which the firing of a transition consists on

three steps (the first and the last steps are the same as in a P/Ts): In the first

step tokens are removed from the proper places; in the second one, whole-place

operations, such as reseting a place or transferring all tokens of a place to another,

take place; and in the last one, tokens are added to the proper places.

As P/Ts can be defined as vectors which represent the markings and the

transitions consist on the addition of a vector to the marking, AWNs are frequently

defined algebraically too: affine nets can be seen as a set of affine functions (that

is why they are called affine!). In [36] affine nets are defined as follows:

Definition 7 An affine net A with p places is a tuple (T, P,M,H), where T is

a set of transition labels, C and H are vectors of size p, labelled by elements of

T , and M is a matrix of size p × p, labelled by elements of T, too. Given two

markings M and M′, the transition relation is defined as follows:

M t→M′ ⇔ (M≥ Pt) ∧ (M′ = Mt ∗ (M− Pt) +Ht).

where markings are seen as vectors and Pt, Mt and Ht are the components of P ,

M and H labelled by t.

In fact, Pt can be seen as the vector which gives us the preconditions of t, and

Ht as the vector which gives us the postconditions of t. The matrix M determines

the whole-place operations of the net. In fact, if we add certain constraints to M

we obtain different extensions. For example, if M = {Id}, then the affine net is a

P/T. If the matrices are diagonal with only zero and one values the net is a reset

net (a zero in a position of the diagonal of the matrix of a transition correspond

to a place which will be emptied if the transition is fired). And if the matrices

contain only zero and ones, then the net is a transfer net.
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In [36] it is proved that affine nets are effective well-structured transition

systems, so coverability and termination are decidable. In the next section the

main decidability results for reset and transfer nets are summarized.

Decidability results for Petri nets with special firing rules

It is useful to know some of the decidability results of transfer and reset PN, in

order to face our main purpose: model checking Petri nets. So let us summarize

some of these decidability (or undecidability) properties: coverability, termination,

boundedness, place boundedness and reachability.

First of all, let us explain why transfer and reset Petri nets are WSTS: We

consider the same ordering on the markings “≥” as for P/T systems, which is

a well-quasi order. Reset and transfer nets are monotone with respect to “≥”,

because if we have two markings M1 and M2 such that M2 ≥ M1, then if we

fire a transition t from M1, reaching a marking M′1, then we can fire t from M2

because M2 ≥ M1. When we fire t from M2 we reach a marking M′2 which

satisfies M′2 ≥M′1. That is because:

• If t does not have reset or transfer arcs, then when we fire it every thing

works like in P/Ts, which are monotone.

• If t has a reset arc then all the tokens of the corresponding place p are

removed when we fire t from M1 or M2. The normal arcs have the same

effect as in P/Ts. Therefore, M′1(p) =M′2(p) and M′2(p′) ≥M′1(p′) for all

p′ 6= p.

• If t has a transfer arc then when we fire t from M1 or M2 all the tokens of

the corresponding place p1 are moved to the proper place p2. The normal

arcs have the same effect as in P/Ts. So M′1(p1) = M′2(p1), M′1(p2) =

M1(p1) ≥M2(p1) =M′2(p2) and M′2(p′) ≥M′1(p′) for all p′ 6= p.

So reset and transfer nets preserve monotonicity, and are WSTSs. As we said

before, coverability has been shown to be decidable for WSTS, so coverability is

decidable for transfer and reset nets. In [32] Finkel gave a proof of the decidability

of termination for certain kind of WSTSs, as we recalled in a previous section,

and this result is also applicable to transfer and reset nets.

Let us focus in another problem, which we will use later to prove some model

checking undecidability results: the repeated coverability problem. Given a Petri
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net N with an initial marking M and a marking M′, the problem of deciding if

M′ can be repeatedly covered fromM, that is, if there exists an infinite sequence

of fireable transitions from M such that M′ is covered infinitely often, is called

the repeated coverability problem. This problem is decidable for P/T nets, but it

has been shown to be undecidable for transfer nets, by reducing to it the halting

problem for counter machines [28]. Repeated coverability is undecidable for reset

nets too [20].

The problem of boundedness is a tricky problem. Actually, it was erroneously

proved to be decidable for reset nets in [48]. Boundedness had always been linked

to the problem of coverability until undecidability of boundedness was proved

in [18]. Reset nets are not strictly monotonic, so we cannot use any algorithm

based in this property to solve the boundedness problem. This result is surprising,

since boundedness is decidable for transfer-nets, which are supposed to be more

powerful than reset nets [33]. In [19] it was shown that boundedness is decidable

for reset nets with two reseteable places, but it is undecidable for reset nets with

three reset arcs.

The problem of place-boundedness is undecidable for reset nets, because if it

was decidable, boundedness would be decidable for reset nets, too. It was shown

in [18] that place-boundedness is undecidable for transfer nets too, by reducing

boundedness for reset nets to place-boundedness for transfer nets. In fact, it is

easy to simulate a reset net by a transfer net, only by adding to the transfer net

we want to build a dummy place to transfer there the tokens of a place when

this place is supposed to be reseted. This was an important result because it

was the first time that a formalism had decidable boundedness and undecidable

place-boundedness.

The reachability problem is undecidable for transfer and reset Petri nets having

two extended arcs. In [18] Dufourd , Finkel and Schnoebelen reduce reachability

for nets with inhibitor arcs to the reachability problem for reset or transfer nets.

Reachability is undecidable for nets with inhibitor arcs with two or more inhibitor

arcs. Using the construction in [18], undecidability of reachability is shown for

transfer and reset Petri nets which have two or more extended arcs.
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2.3 Extended tokens

Another way in which P/Ts are extended in the literature is by considering dis-

tinguishable tokens. One of the most important cases of Petri nets with extended

tokens is coloured Petri nets [46]. Coloured Petri nets combine Petri nets with

the functional programming language Standard ML. The result is a very powerful

language which is, in fact, Turing complete. In coloured nets indistinguishable

tokens are replaced by data objects, and transitions can modify the data of these

tokens. Tokens can be of many different kinds of data, so with Coloured Petri

nets we can model many structures, as lists or even Turing machines.

Two of the main extensions of P/T nets with distinguishable tokens that are

subsumed by coloured Petri nets are ν-PN [73] and Data nets [52]. Data nets are

nets where tokens carry a datum taken from a linearly ordered domain and capable

of performing whole-place operations and broadcasting. In ν-PNs tokens are not

ordered, but they are distinguishable. In this formalism there is a mechanism to

create fresh pure names [67]. ν-PNs have been used in the literature for different

purposes [17, 42, 72, 74]. The nets with extended tokens we are going to consider

in this project are ν-PN nets, which are not Turing complete (unlike coloured PN)

and preserve monotonicity. We do not consider Data nets for simplicity, since they

have an intricate definition.

Definition 8 (ν-Petri net) Let V ar be a set of variables, including ν. A ν-

Petri net (ν-PN for short) is a tuple N = (P, T, F ), where P is a set of places,

T is a set of transitions such that P ∩ T = ∅ and F : (P × T ) ∪ (T × P ) → V ar

, is a partial function such that for all t ∈ T , {F (t, p) | p ∈ t•}\{ν} ⊆ {F (p, t) |
p ∈•t} and ν /∈ {F (p, t) | p ∈•t}, where t• = {p ∈ P | F (t, p) is defined} and
•t = {p ∈ P | F (p, t) is defined}

Here, F is a partial function that labels each arc with a of variable. An arc

of the form (p, t), with p ∈ P and t ∈ T , cannot be labelled by ν, because ν will

be reserved to create fresh names. Given t ∈ T , we denote by V ar(t) the set of

variables that label the arcs of the form (p, t) or (t, p), with p ∈ P .

Example 10 In Figure 2.10 we can see a ν-PN. The arcs are labelled with vari-

ables (x, y or ν).
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Figure 2.10: A ν-PN

Figure 2.11: Firing a transition in a ν-PN

Let us consider Id a set of names, and SId the set of multisets of Id. In a

ν-PN a marking M : P → SId is a function which assigns a multiset of Id to

each place.

Given a transition t ∈ T of a ν-PN, a mode σ : V ar(t) → Id is an injection

that instantiates each variable of V ar(t) to a name of Id.

We say that a transition t is enabled with a mode σ for a markingM, if for all

p ∈ P , σ(F (p, t)) ⊆ M(p) and σ(ν) /∈ S(M), where S(M) is the set of names in

the marking M, that is S(M) = {n ∈ Id | ∃p ∈ P such that n ∈M(p)}. Then,

t can be fired, and a new marking M′ is reached, where M′ is such that, for all

p ∈ P :

M′(p) = (M(p)− σ(F (p, t))) + σ(F (t, p)).
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In ν-Petri nets names are distinguishable, but can only be compared in terms

of equality or inequality, not as in Data nets, in which tokens are ordered. Modes

make the comparison of tokens possible in ν-Petri nets. Intuitively, when we are

modelling a system with a ν-Petri net and we want that two arcs of a transition add

or remove tokens of the same name, that is, to ensure the equality of these names,

then we have to label both arcs by the same variable. Then, if the transition

is fired at a mode, the tokens of both arcs will be tokens of the same name,

which is the name that the mode assigns to the variable which labels both arcs.

Reciprocally, if we want that two arcs of the same transition add or remove tokens

of different names, then we have to label them with different variables. Then, if

the transition is fired at a mode, the tokens which the two arcs add or remove will

be of different names. That is because modes are injections, so the names assigned

by the mode to each of the two different variables are different. Reciprocally, if

we want that two arcs of the same transition add or remove tokens of different

names, then we have to label them with different variables. Then, if the transition

is fired at a mode, the tokens which the two arcs add or remove will be of different

names because modes are injections.

Example 11 In Figure 2.11A t3 is enabled with a mode σ, such that σ(x) = b

and σ(y) = a. It is also enabled with a mode σ′ such that σ′(x) = a and σ′(y) = b.

Transitions t1 and t2 are not enabled with any mode. We consider mode σ. If

we fire t3, we reach the new marking in figure 2.11. Firing t3, the arc (t3, p3),

labelled by ν creates the new name e in p3.

Before explaining the most important decidability issues about ν-Petri nets,

let us focus on the fact that they are WSTSs. First of all, we have to consider

an order on the markings that we have not explained yet. When one starts to

imagine a quasi order on the marking of a ν-Petri net, one tends to think of the

following notion of order:

M1 ≤M2 ⇒M1(p) ⊆M2(p) for all p ∈ P .

The problem of this intuitive approach is that, in fact, this is not a well-quasi

order, that is, there exists an infinite sequence of incomparable markings. For

example, consider a chain of markings Mi such that for all place p ∈ P and for

all i ∈ N,Mi(p) = {ai}, with ai ∈ Id and ai 6= aj for all i 6= j . This is an infinite

chain of incomparable markings, so the quasi order we are considering is not a

well-quasi order.
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The previous quasi order is in fact too restrictive, because it does not take into

account that the names of a ν-Petri net are pure, so they should mean the same

if we rename them. In [73] a notion of equivalence of markings is explained in

order to define the proper quasi order. They define the relation ≡α as the smaller

equivalence relation between markings such that M≡αM [η/η′] with η ∈ S(M)

and η /∈ S(M), that is, the smaller equivalence relation in which a marking M is

equivalent to all markings such that are M renamed. They also proof that the

behavior of a ν-Petri net does not change when it is correctly renamed. That is

because in a ν-Petri net tokens are distinguishable only in terms of equality and

inequality, as we said before.

Finally, the notion of order they consider is the following. We say that M v
M′ ⇔M(p) ⊆M′(p) for all p ∈ P . Then:

M1 vαM2 ⇔ there exists a marking M′1 such that M′1 ≡αM1 and

M′1 vαM2.

Figure 2.12: Order of ν-PN

Example 12 Figure 2.12 shows the same ν-PN with two different markings. The

second marking is greater than the first one. That is because is we rename the

first marking, replacing b by d, then we obtain a marking which is contained in

the second marking in the sense of v .

In [73] it is proved that vα is a well quasi order, and that the transition relation

in ν-PNs is strictly monotone. Therefore, ν-PNs are WSTSs. Decidability of

properties of ν-Petri nets have been studied in the literature. Let us explain some

of the most important results.
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• In [73] it is proved the undecidability of the reachability problem. The way

this result is proved is by giving a construction in which the reachability

of a counter machine with two counters is reduced to the reachability of

a marking of a ν-Petri net. The reachability problem is undecidable for

counter machines with two counters, so it is undecidable for ν-Petri nets

too.

• As we said before, ν-PN are strictly well structured, so that coverability, ter-

mination and boundedness are decidable. Again, the fact that boundedness

is decidable is important for model checking purposes, because if the system

is bounded, then we can apply standard model checking results for finite

systems. The coverability problem is the same as for P/T nets but taking

the new defined order (if we did not consider this order, then we could not

deduce the decidability of the problem from the fact that the formalism is

a WSTS).

• Repeated coverability is undecidable. This is a new result, so we are going

to prove it in detail.

In order to prove the undecidability of the repeated coverability for ν-Petri

nets, we are going to simulate a reset Petri net by means of a ν-PN, strongly

enough to reduce repeated coverability for reset nets to the same problem for ν

Petri nets. Since this problem is undecidable for reset nets, the construction will

prove that the problem is undecidable for ν-Petri nets, too.

Intuitively, the construction will divide each transition of the reset net into

three transitions: in the first and the third transitions tokens will be added to and

removed from the proper places, like in P/Ts, and in the second transition the

places which have to be reseted will be emptied. For each transition there will be

two places associated with each place, and one global place, representing in what

phase of the transition the net is, in order to be sure that a different transition

does not start until the current transition has ended. We model emptying a place

as follows. Intuitively, each place p will have another related place c(p) in which

there is always one single token. This name will represent the “real tokens” of

the place p. That is, p will have tokens of several names, but only the tokens that

are of the same name as the token in c(p) will be considered “real”. Therefore,

to empty a place p, we only have to remove the token in c(p) and create a new

name, adding it to c(p). As the name is new, there is no token with this name in

p, so this place does not have any “real” token.
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Figure 2.13: A reset net

Figure 2.14: The corresponding ν-PN

Let us show how the construction proceeds:

Definition 9 Given a reset net N = (P, T, F,R) we build a ν-Petri net F(N ) =

(P ′, T ′, F ′) such that:

• P ′ = P ∪ {c(p) | p ∈ P} ∪ {s1} ∪ {s2t | t ∈ T} ∪ {s3t | t ∈ T}.

• T ′ = {t1, t2, t3 | t ∈ T}.

• – F ′(s1, t1) = F ′(s2t, t2) = F ′(s3t, t3) = F ′(t1, s2t) = F ′(t2, s3t) =

F ′(t3, s1) = x, for all t ∈ T .

– F ′(p, t1) = F ′(c(p), t1) = F ′(t1, c(p)) = yp, for all p ∈ P and for all

t ∈ T such that (p, t) ∈ F .

– F ′(t3, p) = F ′(c(p), t3) = F ′(t3, c(p)) = yp, for all p ∈ P and for all

t ∈ T such that (t, p) ∈ F .

– F ′(c(p), t2) = r, for all p ∈ P and for all t ∈ T such that (p, t) ∈ R.

– F ′(t2, c(p)) = ν, for all p ∈ P and for all t ∈ T such that (p, t) ∈ R.

– F ′ is undefined in the rest of the cases.
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We assume that x is different to any other variable.

Given a place p of a ν-Petri net and η ∈ Id, let M(p)(η) denote the number

of tokens carrying name η in p. Given a marking M of the reset net we want to

simulate, we have to define the corresponding marking of the ν-Petri net that we

build, that will representM. In fact, we are going to define a corresponding set of

markings instead of a single marking, because we do not need to make precise the

trash which is created when a place is reset. We defineM∗ as the set of markings

of the net F(N ) such that, if for all p ∈ P , cp ∈ Id are pairwise distinct, and

• ∈ Id, then, if M′ ∈M∗ then:

• M′(s1) = {•}.

• M′(s2t) =M′(s3t) = ∅ for all t ∈ T .

• M′(c(p)) = {cp}.

• M′(p)(cp) =M(p)

At M′ there could be some tokens with other names at each place p, which

would correspond to the created trash. The concrete value of cp does not rea-

lly matter, since names are abstract, so renaming the net does not change its

behavior.

Example 13 Figure 2.13 shows a reset net with a transition with three arcs. The

arc (l, t) is a reset arc. Figure 2.14 shows the ν-Petri net obtained by applying

the previous construction to simulate that reset net.

We have explained intuitively how the construction works, but does it really

works? Let us show that ifM1 andM2 are markings of the considered reset net,

then ifM1 →∗M2 then for allM′1 ∈M∗1, there exists a markingM′2 ∈M∗2 such

that M′1 →∗M′2; and for all M′1 ∈ M∗1 and M′2 ∈ M∗2, M1 →∗M2 ⇒M1 →∗

M2 .

Proposition 10 Given a reset net N = (P, T, F,R) and the corresponding ν-

Petri net F(N ) = (P ′, T ′, F ′) obtained by the application of the construction

detailed above, then for all t ∈ T , we have

• If M1
t→N M2 then, for all M′1 ∈ M∗1 there exists a marking M′2 ∈ M∗2

such that M′1
t1t2t3−→ F(N )M′2
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• Given two markings M1 and M2 of N , if there exist M′1 ∈M∗1 and M′2 ∈
M∗2 such that M′1

t1t2t3−→ F(N )M′2, then M1
t→N M2.

Proof:

• First, let us suppose thatM1
t→N M2, and let us prove that given a marking

M′1 ∈M∗1, there exists M′2 ∈M∗2 such that M′1
t1t2t3−→ F(N )M′2.

At the marking M′1 the transition t1 is enabled. That is because s1 is

marked with one token at M′1, c(p) is marked with one token too, and all

the places p which are preconditions of t are marked inM′1 with a token (or

more) with the same name as the token in c(p). That is because t is enabled

in the reset net, so the places which are preconditions of t are marked, so

the corresponding places has to be marked too, taking into account how the

construction was defined.

When t1 is fired from M′1, the net F(N ) reaches a marking M′′
such that:

– M′′
(s2t) = {•}.

– M′′
(s1) =M′′

(s3t) = ∅.

– M′′
(p)(cp) =M′(p)(cp)− 1, where p ∈ •t.

– The rest of the places remain the same as in M′1.

At this new marking, the only fireable transition is t2, because the rest of the

transitions are not enabled, since the “s” places that are their preconditions

are not marked. The only preconditions for t2 are s2t and c(l), for each

place l which is a place with a reset arc reaching t. At M′′
c(p) is marked

for all p ∈ P , and s2t is marked too, so t2 is fireable. When we fire t2 we

reach a marking M′′′
such that:

– M′′′
(s3t) = {•}.

– M′′′
(s1) =M′′′

(s2t) = ∅.

– M′′′
(c(l))(cl) = 0 and M′′′

(c(l))(cl1) = 1, where cl1 ∈ Id is a new

name, for all l such that (l, t) ∈ R.

– The rest of the places remain the same as in M′′
1 .

Again, at this new marking only a transition is fireable: t3. The reason is

analogous to the previous case. When we fire this transition from M′′′
we

reach a new marking M′′′′
such that:
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– M′′′′
(s1) = {•}.

– M′′′′
(s3t) =M′′′′

(s2t) = ∅.

– M′′′
(p)(cp) = M′′′

(p)(cp) + 1, for all p ∈ t•, where cp is the colour of

the token in c(p).

– The rest of the places remain the same as in M′′′
1 .

We have reached a marking M′′′′
. Let us check explain why M′′′′ ∈ M∗2.

The marking M2 is such that:

– If (p, t) ∈ R and (t, p) ∈ F then M2(p) = 1, so for every M2∗ ∈ M∗2,
M2∗(p)(cp) = 1, where cp is the colour in c(p).

– If (p, t) ∈ R and (t, p) /∈ F then M2(p) = 0, so for every M2∗ ∈ M∗2,
M2∗(p)(cp) = 0, where cp is the colour in c(p).

– If (p, t) /∈ R and (p, t) ∈ F and (t, p) /∈ F then M2(p) = M1(p) − 1,

so for every M2∗ ∈ M∗2, M2∗(p)(cp) =M1(p) − 1 =M1∗(p)(cp′) − 1,

where cp and cp′ are the colours in c(p) at the marking M2∗ and M1∗

respectively, and M1∗ ∈M∗1.

– If (p, t) /∈ R and (p, t) /∈ F and (t, p) ∈ F ) then M2(p) = M1(p) + 1,

so for every M2∗ ∈ M∗2, M2∗(p)(cp) =M1(p) + 1 =M1∗(p)(cp′) + 1,

where cp and cp′ are the colours in c(p) at the markingsM2∗ andM1∗

respectively, and M1∗ ∈M∗1.

– Otherwise M2(p) = M1(p), so for every M2∗ ∈ M∗2, M2∗(p)(cp) =

M1(p) = M1∗(p)(cp′), where cp and cp′ are the colours in c(p) at the

markings M2∗ and M1∗ respectively, and M1∗ ∈M∗1.

Let us check that M′′′′ ∈M∗2

– The place s1 is marked inM′′′′
with a token of a name which is different

to all the other names in the marking, as the markings in M∗2.

– For all t ∈ T , s2t and s3t are not marked in M′′′′
, as the markings in

M∗2.

– For all p ∈ P , in the markingM′′′′
each place c(p) is marked by a token

of a different name cp, which is not necessarily the same name as the

name at the marking M′1.

– If (p, t) ∈ R and (t, p) ∈ F then the name of the token in c(p) has

changed for a new name when the second transition has been fired.
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Then, M′′′′
(p)(cp) = 1, where cp is the (new) colour of the token in

c(p), as in the markings in M∗2.

– If (p, t) ∈ R and (t, p) /∈ F then, as in the previous case, the name of the

token in c(p) has changed for a new name when the second transition

has been fired. This time in the third transition no token has been

added to p. Then,M′′′′
(p)(cp) = 0, where cp is the (new) colour of the

token in c(p), as in the markings in M∗2.

– If (p, t) /∈ R and (p, t) ∈ F and (t, p) /∈ F ) then M′′′′
(p)(cp) =

M∗1(p)(cp) − 1, where cp is the colour of the token in c(p), as in the

markings in M∗2.

– If (p, t) /∈ R and (p, t) /∈ F and (t, p) ∈ F ) then M′′′′
(p)(cp) =

M∗1(p)(cp) + 1, where cp is the colour of the token in c(p), as in the

markings in M∗2.

– Otherwise M′′′′
(p)(cp) = M′1(p)(c′p), where cp and c′p are the colours

in c(p) at the markings M′′′′
and M′1, as in the markings in M∗2.

The new reached markingM′′′′
perhaps has more tokens of different colours

than the tokens that we enumerated before, but these tokens are in the

places p and their colours are different to the colour of the token cp, so these

tokens do not affect the behavior of the net.

Then, we have proved that ifM1
t→N M2, then for all markingM′1 ∈M∗1,

there exists M′2 ∈M∗2 such that M′1
t1t2t3−→ F(N )M′2.

• Now, suppose that M′1
t1t2t3−→ F(N ) M′2, where M′1 ∈ M∗1 and M′2 ∈ M∗2. If

t1 is enabled at M′1 then for every p such that (p, t) ∈ F , M′1(p)(cp) ≥ 1,

where cp is the colour of the token in c(p). As M′1 ∈ M∗1, for every p such

that (p, t) ∈ F , M1(p) ≥ 1, so t is enabled at M1.

Now we know that we can fire t fromM1. Suppose thatM1
t→M. IsM =

M2? As M′2 ∈ M∗2, we have to see if for every p ∈ P , M(p) =M′2(p)(cp),
where cp is the colour of the token in c(p) at the markingM′2. We consider

different cases, depending on how t affects the different places:

– If (p, t) ∈ R and (t, p) ∈ F then M′2(p)(cp) = 1 = M(p), where cp is

the colour of the token in c(p) at the marking M′2.

– If (p, t) ∈ R and (t, p) /∈ F then M′2(p)(cp) = 0 = M(p), where cp is

the colour of the token in c(p) at the marking M′2.
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– If (p, t) /∈ R and (p, t) ∈ F and (t, p) /∈ F thenM′2(p)(cp) =M′1(p)(c′p)−
1 =M1(p)− 1 =M2(p), where cp and c′p are the colours of the token

in the place c(p) at the markings M′2 and M′1 respectively.

– If (p, t) /∈ R and (p, t) /∈ F and (t, p) ∈ F thenM′2(p)(cp) =M′1(p)(c′p)+
1 =M1(p) + 1 =M2(p), where cp and c′p are the colours of the token

in the place c(p) at the markings M′2 and M′1 respectively.

– Otherwise M′2(p)(cp) = M′1(p)(c′p) = M1(p) = M2(p), where cp and

c′p are the colours of the token in the place c(p) at the markings M′2
and M′1 respectively.

As for every p ∈ P , M(p) =M′2(p)(cp), where cp is the colour of the token

in c(p) at the marking M′2 then M1
t→N M2.

�

Given a reset net N , and its corresponding ν-Petri net F(N ), if the place

s1 of F(N ) is marked at a marking M, then for all t ∈ T , s2t and s3t are not

marked. Therefore, atM the only enabled transitions are that of the kind t1, for

a transition t, reaching a state in which s2t is marked, but s1, s2t′ , s3t and s2t′

are not marked, for every t′ ∈ T . Because of similar reasons, when a transition

of the kind t1 is fired, the two transitions that must be fired next are t2 and t3,

reaching a marking in which the place s1 of FN is marked again. Therefore, all

the transition sequences of F(N ) are of the form t11, t
1
2, t

1
3, t

2
1, t

2
2, t

2
3, t

3
1..., for tij ∈ P ′.

Therefore, we have the following corollary:

Corollary 11 Given a reset net N and the corresponding ν-Petri net F(N ),

given two markings of N , M1 and M2, then

• If M1 →N M2 then, for all M′1 ∈ M∗1 there exists a marking M′2 ∈ M∗2
such that M′1 →F(N )M′2

• If there exist M′1 ∈ M∗1 and M′2 ∈ M∗2 such that M′1 →F(N ) M′2, then

M1 →N M2.

Finally, we apply the last corollary to prove the undecidability of the repeated

coverability problem for ν-Petri nets.

Corollary 12 Repeated coverability is undecidable for ν-Petri nets.
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Proof: Suppose that we could decide the repeated coverability problem for ν-

Petri nets. Suppose that we wanted to solve the repeated coverability problem

for a reset net N and a marking M. Then, to solve this problem it would be

enough to solve the repeated coverability problem for the corresponding ν-Petri

net F(N ) and the marking M′, which is the marking in M∗ without any trash,

that is, the marking in M∗ in which the places p are marked with tokens of one

single colour. Repeated coverability is undecidable for reset Petri nets so, so we

have found a contradiction. Therefore, repeated coverability is undecidable for

ν-Petri nets.

�

In this chapter we have summarized all the important definitions and results

we need to continue with this work: We know what a Petri net is, and what are

the extensions we consider in the following chapters: mainly reset nets and ν-

Petri nets. We also know some of the important decidability results we use later.

Now we are ready to face the main content of this project: the issues related to

decidability (or undecidability) of model checking for Petri nets and its extensions.
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Chapter 3

Model checking Petri nets

In this chapter address the main purpose of this project: model checking Petri

nets. We start by explaining what is model checking and some basics about it.

3.1 Basics of model checking

When we specify systems, we would like to know if the specification we are giving

satisfies certain properties. Model checking is a collection of automatic techniques

to verify properties of a system specification. Clarke and Emerson introduced

model checking in 1981 [11, 21]. Since then, a great amount of work about model

checking has been done, not only for theoretical purposes, but also for verifying

industrial systems [8, 13].

Standard model checking algorithms are based in an exhaustive visit to all the

reachable states of the specification we want to check. Therefore, these techniques

are useful to check finite state systems, but not infinite ones. That is why the

boundedness problem of Petri nets is important to model checking issues about

them, because if the net is bounded then standard model checking techniques can

be used to check it.

If we want to decide if some properties hold or not at a system specification,

we have to be able to express these properties on a formal logic. The logics

that are usually used in model checking are temporal logics, which let us express

properties like “this property holds in a reachable state”, “there is a path in which

this property always holds” or “this property holds in every reachable state”. Now

we are going to give a short introduction to temporal logics.

Temporal logics consider a set of atomic propositions (which express atomic

61
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properties) and several temporal operators and path quantifiers, which allow us to

express temporal properties. We consider two types of formulas: state formulas,

which are true or false in a specific state; and path formulas, which are true or false

along a specific path, starting at a specific states. Given a system specification T ,

if a state S of this system satisfies a state formula ϕ, then we denote T ,S � ϕ. If

a computation path π satisfies a path formula, then we write T , π � ϕ.

Some of the main temporal operators used in temporal logics are X, G, F and

U. These operators describe properties which may hold or not in a path of states.

We are going to explain the semantics of these temporal operators informally,

before doing it formally:

Let ϕ be a temporal logic formula, and T a transition system and a compu-

tation path π with an initial state S. Then:

• T , π � Xϕ (next) holds if the property ϕ holds in the state that follows S.

• T , π � Gϕ (globally) holds if the property ϕ holds in every state of π.

• T , π � Fϕ (eventually) holds if the property ϕ holds in some state of π.

• T , π � ϕUψ (until) holds if there is a state of the path π such that ψ holds

in that state, and at every preceding state on the path ϕ holds.

To define the previous operators we have considered a path of states, but not

the possibly different paths of reachable states from an initial state. The path

quantifiers are the operators which consider them. We explain informally two of

these operators:

• T ,S � Eϕ if there is a path starting at S in which ϕ holds.

• T ,S � Aϕ if for all paths starting at S, ϕ holds.

In the next definition, πi denotes the suffix of the path π starting by the

i-th state si. We suppose that the states of a system are labelled by the atomic

propositions that they satisfy, that is, if a state s satisfies an atomic proposition

p, then p ∈ L(s), where L(s) represents the labels of s. Let f1 and f2 be two state

formulas, and g1 and g2 two path formulas. The formal definition of the previous

operators and path quantifiers is inductively defined as [14]:

• T , s � p⇔ p ∈ L(s).

• T , s � ¬f1 ⇔ T , s 2 f1.
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• T , s � f1 ∨ f2 ⇔ T , s � f1 or T , s � f2.

• T , s � f1 ∧ f2 ⇔ T , s � f1 and T , s � f2.

• T , s � Eg1 ⇔ there is a path π from s such that T , π � g1.

• T , s � Ag1 ⇔ for every path π starting from s, T , π � g1.

• T , π � f1 ⇔ s is the first state of π and T , s � f1.

• T , π � ¬g1 ⇔ T , π 2 g1.

• T , π � g1 ∨ g2 ⇔ T , π � g1 or T , π � g2.

• T , π � g1 ∧ g2 ⇔ T , π � g1 and T , π � g2.

• T , π � Xg1 ⇔ T , π1 � g1.

• T , π � Fg1 ⇔ there exists a k ≥ 0 such that T , πk � g1.

• T , π � Gg1 ⇔ for all i ≥ 0, T , πi � g1.

• T , π � g1Ug2 ⇔ there exists a k ≥ 0 such that T , πk � g2 and for all

0 ≤ j < k, T , πj � g1.

Figure 3.1: An automata modelling a vending machine
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Let us give an example of the use of the previous operators, to clarify their

meanings:

Example 14 Let us consider the automaton in figure 3.1 which represents a very

simplified model of a vending machine. There are some properties which can hold

or not in the states of the automaton:

• I: The machine is in an initial state, where nobody has introduced any coin

and nobody has pressed any button.

• M: In the machine there is a (proper) amount of money to get a product.

• PB: The user has pressed the button to request to be given his money back.

• R: The user has pressed the button to request a product.

• GP: The machine has given a product to the user.

The previous properties are the atomic propositions we are going to consider.

Now, we would like to express several temporal properties:

• “If there is money in the machine, and the user has not pressed the but-

ton “request”, then the user has the possibility to ask for his money back”:

M∧¬R⇒ EFPB.

• “If the user has introduced the proper money in the machine, and pushed

the button for requesting a product, then he will be given a product in the

future”: M∧R⇒ FGP.

• “If the machine has given a product, then the next state has to be the initial

state”:GP⇒ XIN.

Using different combinations of the previously defined operators, we can build

different temporal logics. There are mainly two kinds of logics: linear time logics

and branching time logics. The difference between these two kinds of logics is that

the properties that are expressed in branching time logics are properties about the

different paths that are possible from an initial state [5], and in linear time logics

the properties that are expressed are properties about a single path [69, 70, 57, 58].

Though linear time logics express properties about a single path, we say that a

system satisfies a formula of a linear time logic iff there is a running (a path)

of the systems which satisfies the formula. In other works it is considered that



3.1. BASICS OF MODEL CHECKING 65

a system satisfies a formula of a linear time logic iff all runnings of the system

satisfy the property, but we have considered the other notion because most of

model checking Petri nets results in the literature are expressed this way. Let us

describe several of the most temporal important logics:

The most representative example of a linear lime logic is LTL. An LTL formula

is a formula of the form Aφ where φ is a path formula. A path formula of LTL

is an atomic proposition or a formula of the form ¬ϕ, ϕ∧ ψ, ϕ∨ ψ, Xϕ, Fϕ, Gϕ

or ϕUψ, where ϕ and ψ are path formulas.

The most representative example of a branching time logic is CTL. In CTL

each temporal operator must be immediately preceded by a path quantifier, so

the combinations of operators used in CTL are: AX, EX, AF, EF, AG, EG,

AU and EU. All these combinations of operators are used with ¬, ∨ and ∧ to

form CTL formulas.

CTL and LTL can express different properties, that is, they have different

expressive power [12]. CTL∗ is a logic which contains both LTL and CTL, so it

has more expressive power than them. It was defined in order to have a frame

in which study properties of the two logics. Therefore model checking techniques

have been applied to LTL and CTL more often than to CTL∗. There is another

important logic which contains CTL, LTL and CTL∗: the modal µcalculus, which

is not defined in terms of the operators explained before. Modal µ-calculus is

defined in terms of a fix point operator. For detail see [50].

We have explained the temporal operators and path quantifiers, but what are

the atomic propositions we consider for model checking Petri nets? We use three

atomic propositions (which we will call atomic predicates):

• cov(M), whereM is a marking of the considered net. The fact that cov(M)

holds at a marking M′ of a PN, means that M′ covers M. Sometimes the

equivalent operator ge(p, n), where p ∈ P and n ∈ N, is considered instead

of cov(M). ge(p, n) holds at a marking M if M(p) ≥ n. In this work we

consider cov for simplicity.

• first(t), where t is a transition of the considered net. A path satisfies

first(t) (for a maximal path), if the first fired transition in the path is t.

• en(t), where t is a transition of the considered net. A marking M satisfies

en(t) if t is enabled at M.
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Let us show an example to illustrate what the previous atomic predicates

mean:

Figure 3.2: A P/T net modelling a vending machine

Example 15 Figure 3.2 shows a P/T which represents a vending machine. In

the initial marking the client can insert as many coins as he wants. When the

client inserts a coin, the transition “Insert coin” is fired, and a token is added to

the place “Coins”, which represent the amount of coins inside the machine.

Then, when the transition “Change to request” is fired, the client can request as

many products as coins he has inserted. When the client pushes the proper button,

the transition request is fired, and a token is added to the place “Requests”.

When the transition “Change to give products” is fired, then the vending ma-

chine can give as many products as the client has requested to the client, by firing

the transition “Give product”. Then, a token is removed from “Coins” and from

“Requests”.

Finally, the client can ask for his money back when there is a token in “Ask

for money back”. If the client asks for money back, then a token is removed from

“Coins”. The machine gives one coin back each time the client push “Money

back”.
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Let us use this P/T to show what the previous atomic predicates mean. We

consider formulas of a linear time logic which are interpreted over paths of occur-

rences, so we consider a path on the P/T. Some of the properties we can express

with the defined atomic predicates are:

• If the first fired transition in the considered path is “Change to request” and

there are coins in the machine, then in the next marking the client requests

a product:

first(Change to request) ∧ cov(C)⇒ X en(Request), where C is the

marking such that C(Coins) = 1 and C(p) = 0, for every place p 6= Coins.

• If there is a coin in the machine in the first marking of the path, then

sometime in the future the machine will give a product:

cov(C)⇒ F first(Give product), where C is as in the previous case.

Model checking finite systems is clearly decidable, but the algorithms for model

checking linear time logics and branching time logics on finite systems suffer from

the so called state explosion problem: the number of states that need to be checked

grows exponentially on the size of the system. To alleviate this problem there are

techniques such as symbolic model checking [62] and abstractions which decrease

the state space needed to check systems. Another important technique to this

purpose in the setting of concurrent systems is unfolding. Unfolding was first

introduced by McMillan [61, 62]. An unfolding is a compact representation of the

different computations of a system(interleavings). With it, we can obtain model

checking results needing less state space. Unfolding techniques have been well

studied in literature [24, 62].

Most model checking techniques consists on visiting all (or perhaps some)

states and verifying some required properties. That is why these techniques are

useful for finite systems, in which you have to visit a finite number of states, but

not enough for infinite systems such as Petri nets and its extensions. In fact,

model checking often becomes undecidable for infinite state systems.

In the following sections we summarize the facts we know until today about

model checking Petri nets and its extensions, and we give a few more results.
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3.2 Model checking Place/Transition nets

In this section we summarize some of the classic decidability (or undecidability)

results in model checking place/transition Nets.

3.2.1 Branching time logics

First, we focus on branching time logics, in particular we consider EF (also called

UB−), which is less expressive than the most used branching logics CTL and

CTL∗.

EF is a branching logic which have as basic predicates, predicates of the form

cov(M). EF also includes the boolean connectives ¬, ∧, ∨ and two operators:

EXϕ, which means that given a marking, there exists an enabled transition such

that if we fire it, we reach a marking that satisfies the propertie ϕ; and EFϕ, which

means that, given an initial marking M, there exists an enabled path starting at

M that reaches a marking that satisfies ϕ.

Example 16 Let us show some of the properties you can express with the branch-

ing logic EF about the P/T of figure 3.1:

• If there is one or more coins in the machine then, a product is eventually

given: cov(C)⇒ EF cov(G), where C is the marking such that C(Coins) =

1 and C(p) = 0, for every place p 6= Coins and G is the marking such that

G(Given products) = 1 and G(p) = 0, for every place p 6= Given products..

• You can eventually reach a marking with one token in the place “Initial

state” from the current marking: EF cov(I), where I is the marking such

that I(Initial marking) = 1 and I(p) = 0, for every place p 6= Initial state.

• If there is a token in the place “Initial state”, then any transition reaches

a marking in which there is a token in the place “Give products state”:

cov(I)⇒ EX cov(GS), where GS is the marking such that GS(Give products

state) = 1 and GS(p) = 0, for every place p 6= Give products state.

Esparza proved in [23] that model checking EF in place/transition nets is

undecidable by reducing the containment problem to model checking a formula

of EF: Given two P/Ts N1 and N2 which are an instance of the containment

problem with a bijection f , Esparza builds a new P/T net that combines both

P/Ts, and adds some places and transitions in order to reduce the containment

problem to the model checking problem of a formula of EF on the new P/T.



3.2. MODEL CHECKING PLACE/TRANSITION NETS 69

UB, CTL and CTL∗ are more expressive than EF, so model checking UB,

CTL and CTL∗ in place/transition nets is undecidable too. That means that

model checking the most common branching logics is undecidable for Petri nets.

3.2.2 Linear time logics

Now we consider linear time logics. Let us remember that these logics are in-

terpreted on the markings of the maximal paths of a Petri net, so a Petri net

satisfies a formula if all its maximal paths satisfy it. We add the other two basic

predicates defined in the previous section: first(t) and en(t), and we consider

different linear time logics, built depending on which predicates and operators we

consider.

We focus on four logics: linear time µ-calculus with only first(t) as basic

predicate, linear time µ-calculus with first(t) and cov(M) as basic predicates, the

fragment in which negation is only applied to basic predicates (not to operators),

and the operators are F, ∧ and ∨, and the fragment in which the only allowed

composed operator is GF, the operators are F, ∨ and ∧m and negation is only

applied to basic predicates. Let us summarize some of the results about model

checking the lineal time logics built as we explained before:

• Esparza proved that model checking Linear time µ-calculus with only first(t)

as basic predicate is decidable for P/Ts. Here is a sketch of the proof that

Esparza gives, you can see the complete demonstration in [23].

Esparza consider a construction of Dam [16] in which, given a formula φ of

a different version of the linear time µ calculus, an automaton such that its

accepting language is the language of all the words in which φ holds is built.

This construction is adapted to the version of the linear time µ calculus

which Esparza consider. Next, given an automaton, Esparza shows how to

build a P/T which accepts the same language as the automaton. So given a

formula φ, the corresponding P/T can be built. The P/T corresponding to

the negation of the formula we want to check is built. In fact, two P/Ts are

built in the construction: one automaton A which admits the finite words

of the language and another B which admits the infinite words. So now we

have our original P/T to be tested N and the two P/Ts A and B, which

admits the words in which the negation of the property we want to check



70 CHAPTER 3. MODEL CHECKING PETRI NETS

holds. So if L(N )∩L(A) = ∅ and L(N )∩L(B) = ∅, then the property holds

in N .

Then, it is defined a product “×” between two place/transition nets, similar

to the product of automata. Finally, Esparza shows that deciding if L(N )∩
L(A) = ∅ and L(N ) ∩ L(B) = ∅ is equivalent to deciding if the products

N ×A and N × B satisfy some decidable properties:

- In particular, L(N ) ∩ L(A) 6= ∅ holds iff there exists a reachable dead

marking of N ×A which puts a token in a final state of A. This property

is decidable, because it can be decided by solving an exponential number of

instances of the submarking reachability problem, which is decidable [40].

- Similarly, L(N ) ∩ L(B) 6= ∅ holds iff N × B has a path of occurrences

which contains infinite occurrences of a transition in a special set of final

transitions (see [23] for detail). This condition is decidable too [77].

The last construction solves the problem of deciding if a property expressed

in Linear time µ-calculus with only first(t) holds or not in a P/T, so the

problem is decidable. It has been shown that the same logic adding the

basic predicate cov(M) becomes undecidable.

• Model checking the fragment in which negation is only applied to basic

predicates (not to operators), and the operators are F, X, ∧ and ∨ is reduced

in polynomial time to the reachability problem. As we said before, the

reachability problem is decidable for P/Ts, so model checking this fragment

is decidable (see [44]).

Example 17 In this fragment we can express properties like “Sometime in

the future the machine will give a product”, which is F first(Give product),

but we cannot express properties like “The client has always the possibility

to insert coins”, which is expressed as G en(Insert coin); or “The machine

will give a product to the client infinitely often”: GF first(Give product).

That is because, to obtain the operator G in terms of F, negation must be

applied to F.

• Model checking the fragment in which the only allowed composed operator

is GF, the operators are F, ∨ and ∧ and negation is only applied to basic



3.2. MODEL CHECKING PLACE/TRANSITION NETS 71

predicates, can be reduced to an exponential number of instances of the

reachability problem, so it is decidable (see [45]).

Example 18 With this fragment you can express “The machine will give

a product to the client infinitely often”: GF first(Give product), but not

“If the client inserts a coin infinitely often, then the machine will give a

product sometime in the future”: GF first(Give product)⇒ F first(Give

product). That is because if we replace ⇒ by its definition, then a negation

is applied to the operator GF.

• In 1992 Yen gave a logic [80] (which later has been called Yen’s path logic) for

place/transition nets in order to obtain a uniform approach for deciding and

studying the complexity of many Petri nets problems. This logic consists

on path formulae of the form:

∃M1, ...,Mn∃σ1, ..., σn((M0
σ1→M1

σ2→ ...
σn−1→ Mn−1

σn→
Mn) ∧ φ(M1, ...,Mn, σ1, ..., σn)).

that means that any marking Mi (i ∈ N) is reachable from Mi−1 by firing

the sequence of transitions σi, and that the path formula φ(M1, ...,Mn, σ1, ..., σn)

holds. With more detail, a path formula consists on [80]:

– Variables of two types: marking variablesM1, ...,Mm... and transition

sequences variables σ1, ..., σn.

– Recursively defined terms:

∗ ∀c ∈ Nk, where k is the number of places of the considered net, c

is a term.

∗ ∀j > i, Mj −Mi is a term.

∗ If T1 and T2 are terms, then T1 + T2 and T1 − T2 are terms too.

– Atomic predicates. In [80] Yen defined two kinds of atomic predicates:

transition and marking predicates, but he proved that to consider only

marking predicates was enough to obtain the same expressive power

that is obtained by considering the two kinds of atomic predicates.

Therefore, we consider only marking predicates, which are of two types:

∗ If M is a marking and c ∈ N is a constant, then M(i) ≥ c and

M(i) ≥ c are predicates.
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∗ If T1 and T2 are terms and 1 ≤ i, j ≤ k, where k is the number

of states of the considered net, then T1(i) = T2(j) and T1(i) <

T2(j), T1(i) < T2(j) are predicates, where T1(i) represents the i-th

component of T1 and T2(j) represents the j-th component of T2.

If φ1 and φ2 are predicates then φ1 ∨ φ2 and φ1 ∧ φ2 are predicates.

Let us show some examples of what kind of properties you can express with

this logic:

Example 19 Let us focus on the P/T system of figure 3.2, which represents

a vending machine. With this logic we can express properties such as:

– ∃M∃σ((M0
σ→M)∧(M(6) ≥ 1), where the sixth place is “Given prod-

ucts”, and M0 is the initial marking. That formula expresses that there

exists a computation in which the machine gives one or more products.

This formula expresses the same as EFcov(G). In fact, every instance

of the coverability problem can be expressed in terms of formulae of this

logic.

– ∃M1,M2∃σ1, σ2((M0
σ1→ M1

σ2→ M2) ∧ (M2(4) > M1(4)), where the

fourth place is “Coins”, and M0 is the initial marking. That formula

express that there exists a computation in which the number of coins

that the machine contains grows infinitely. Actually, the boundedness

problem can be expressed in terms of formulae of this logic too.

In [4] M. Faouzi Atig and P. Habermehl show that Yen’s path logic can be

reduced to the reachability problem, and the reachability problem can be

reduced to model checking Yen’s path logic. The reachability problem is

decidable for P/Ts, so model checking Yen’s path logic is decidable too.

3.3 Towards model-checking Petri net extensions

As we said before, if we have a formalism we would like to be able to check some

properties about the systems we specify using it, that is, model checking these

systems. In the previous chapter we explained some Petri net extensions which

are defined in the literature in order to increment the expressive power of P/T

nets and be able to model more systems. Now we would like to know whether we

can keep some of the decidability results we saw in the previous section. In this
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section we are going to compile some of the existing results about model checking

the Petri net extensions we are considering in this work, and we will also give

some new results. We are going to focus on two Petri net extensions: reset nets

and ν-Petri nets.

As the extensions we are going to consider can simulate a place-transition

net, the undecidability results that we have for P/Ts are inherited by reset and

ν-Petri nets. Let us summarize the undecidability properties that we explained

in the previous section in order to keep in mind that for reset and ν-PN these

properties hold too:

• UB is undecidable for P/T nets, so CTL and CTL∗ are undecidable too.

• The fragments of UB, EF and EG are undecidable.

• µ-calculus with the operators first and cov is undecidable.

In the last section we explained some (positive) decidability results for P/T

nets. To prove them, the results were mostly reduced to instances of the reacha-

bility problem. For example, model checking the fragment in which negation is

only applied to basic predicates, and the operators are F, ∧ and ∨ is reduced

to the reachability problem, and model checking the fragment in which the only

allowed composed operator is GF, the operators are F, ∨ and ∧ and negation

is only applied to basic predicates, can be reduced to an exponential number of

instances of the reachability problem. As the reachability problem is decidable

for P/T nets, these problems are decidable for them too. However, as we have

already pointed out reachability is not decidable for reset and ν-PN. Therefore

we cannot adapt the proofs for model checking P/T nets to the extensions we

consider. In fact, we will see that all of the decidable model checking problems

for P/T that we are going to study for P/T extensions, are not decidable for the

considered extensions.

In order to proof decidability issues about model checking Petri net one has

to bear in mind the decidability results that there are in the literature, in order

to reduce model checking problems to other solved problems. Let us summarize

the results we explained in the previous chapter:

• Reachability is undecidable for reset and ν-Petri nets.

• Coverability and termination are decidable for both extensions.



74 CHAPTER 3. MODEL CHECKING PETRI NETS

• Repeated coverability is undecidable for resets and ν-Petri nets.

• Boundedness is decidable for ν-Petri nets but undecidable for reset Petri

nets.

Some of the previous properties can be expressed in some of the temporal logics

that we are going to study, so for the undecidable properties, model checking the

corresponding logic will be undecidable. Let us explain some results about model

checking the Petri nets extensions we are considering: reset- Petri nets and ν-Petri

nets.

3.3.1 Model checking reset Petri nets

Before we start studying the decidability or undecidability of model checking reset

nets, let us show a toy example to show that in some cases we need to use reset

nets in order to model systems instead of P/T.

Figure 3.3: A reset net modelling a vending machine

Example 20 In a previous example we showed a P/T which represented a vend-

ing machine. In that machine, if the client wanted to ask for his money back, then

he had to press the button “money back” one time for each coin he had inserted.
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That is because in P/T nets we cannot atomically empty a place, as we explained

in the previous chapter. If we model a vending machine, we would like to express

that when the client pushes “money back” the machine gives him all his money

back. With reset nets we can model it.

Figure 3.3 shows a reset net which represents a vending machine. The be-

havior of this vending machine is similar to the behavior of the machine in the

previous example, except for the fact that when this machine changes from the

“give products” state to the “initial” state, it gives the client all his money back

without pressing any button, and it cancels all the requests. That actions occurs

when the transition “reset” is fired, and the two reset arcs in the net empty the

corresponding places.

As in the P/T example, here we would like to check some properties too, as

“Every time the machine is in the initial state, does it have no requested products?”

or “Does the machine always return to the initial state?”. Once again, these

questions are expressible in temporal logics, so solving these questions is solving

an instance of some model checking problem.

Despite the fact that reset nets have been widely studied in the literature, it is

sometimes difficult to find certain model checking results for them because in some

cases they are “hidden” in results for other formalisms which are equivalent in

some sense to reset nets. More precisely, in order to summarize the model checking

issues for reset nets in the literature, we have looked for results about lossy vector

addition systems with inhibitory arcs, also called lossy counter machines [60].

We consider two logics which were decidable for P/T nets, and we will see

that both fragments are undecidable for reset nets. In particular the considered

fragments are µ-calculus with first and the fragment in which the only allowed

composed operator is GF, the operators are F, ∨ and ∧ and negation is only

applied to basic predicates.

In [7] the model checking problem is studied for lossy vector addition system

(lossy VASS). In particular, they consider lossy vector addition systems with

inhibitory arcs, which consists on vector addition systems which may lose tokens

every time a transition is fired and can test for zero. Intuitively, this formalism is

like Petri nets with inhibitory arcs which may lose some tokens when a transition

is fired. This formalism was introduced in order to model systems in which part of

the information may be lost, as communication systems with unreliable channels.
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There is an important issue we need to take into account when we use lossy

vector addition systems to study Petri nets. In “lossy” formalisms, that is, in

formalisms in which the state can be spontaneously decreased, the coverability

and the reachability are put on the same level. If a marking M is reachable then

it is, clearly, coverable. Conversely if it is coverable, then there is a reachable

markingM′ such thatM⊆M′, and because of lossinessM′ can lose the proper

tokens to becomeM, so thatM is also reachable. In the same line, some decidable

problems for lossy vector addition systems are undecidable for P/T nets.

Due to the facts of the previous paragraph, we cannot apply all model check-

ing decidability results of lossy vector addition systems to Petri nets. But, in

particular, we can apply lossy VASS with inhibitory arcs undecidability results

to reset nets. That is because a reset nets can simulate the behavior of a lossy

VASS with inhibitor arcs, because when we are in a lossy system testing for zero

is equivalent to reseting a place, so reset nets can simulate tests for zero in this

case. More precisely, given a lossy VASS with inhibitory arcs L, there is a reset

net R such that if s1 and s2 are states of L and s1 →L s2 and s1 →R s2 denotes

that s1 → s2 in L and R respectively, then

s1 →L s2 ⇒ ∃s2′ ≥ s2 such that s1 →R s2
′ and

s1 →R s2 ⇒ s1 →L s2.

In [7] it is proved that model checking LTL is undecidable for lossy VASS

with inhibitory arcs. The proof consists on reducing the problem of deciding if

there is an initial configuration such that there is an infinite run of the system

starting with it, which is undecidable for lossy VASS with inhibitory arcs, to the

LTL model checking problem. As we said before, this undecidability result can

be applied to reset nets, so model checking LTL is undecidable for reset nets.

Despite the fact that model checking µ-calculus with first as the only operator

is decidable for P/T, LTL is less expressive than it, so model checking this logic

is undecidable for reset nets.

The fragment in which the only allowed composed operator is GF, the ope-

rators are F, ∨ and ∧ and negation is only applied to basic predicates is also

undecidable for reset Petri nets. The reason is that we can reduce the repeated

coverability problem for reset nets, which is undecidable, to model checking this

fragment. In particular, if the considered fragment were decidable then, given a

marking M, model checking the formula GFcov(M) would be enough to decide

the repeated coverability problem forM. As repeated coverability is undecidable
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for reset nets, the fragment in which the only allowed composed operator is GF,

the operators are F, ∨ and ∧ and negation is only applied to basic predicates, is

also undecidable for them.

3.3.2 Model checking ν-Petri nets

Let us give a toy example to illustrate why it is important to be able to use ν-Petri

nets instead of P/Ts in order to model more kind systems and why would one like

to model check ν-Petri nets.

Figure 3.4: A ν-PN modelling a vending machine

Example 21 The P/T of the example of the previous sections modelled a vend-

ing machine. Imagine that now we wish to have an online-vending machine, so

that we want to add to the machine the possibility several clients to buy products

simultaneously, without a bound on the number of clients. In the last P/T the

machine was only able to interact with one client. Now, we are going to build

a ν-Petri net which will represent a vending machine which will satisfy the new

requirement. Different names will correspond to different clients, so that to rep-

resent the money, the requests, the state... of a client tokens with the same name
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will be used. In order to model the admission of a new client, there will be a

transition with a ν arc, which creates a new name.

Figure 3.4 shows a ν-Petri net which represents the vending machine we want

to model. When a client is admitted the transition “New client” is fired, creating

a new name which will represent all the tokens in the net which are referred to

this client. When a transition is fired in this net, all added and removed tokens

have to be tokens of the same name (of the same client). That is why all arcs are

labelled by an x, so different names do not synchronize in this net.

Now that we have the net representing the vending machine we desired, we

will probably want to check some properties about the net, as “Does a client reach

the final state every time a new client is admitted?” or “Does the machine give

all the money back every time a client asks for it?”.

There is not much literature about model checking ν-Petri nets. In fact, when

one sees the last example, one tends to think that the temporal logics that there

exist are not very suitable for ν-Petri nets. In fact, we would like to ask questions

related to what happens with all tokens of a name (about the behavior of the

machine about the issues related to one client), but the logics we are studying

cannot express such questions since they are logics thought for P/T nets, which

do not have distinguishable tokens. This could be a future work to do, because

in this work we focus on studying model checking for temporal logics that are

already defined in the literature.

As we said before, model checking ν-Petri nets has not been studied in the

literature. That is why we do not have much results about it. The two results

we give here are original from this work: the undecidability of model checking

two logics which are µ-calculus with first and the fragment in which the only

allowed composed operator is GF, the operators are F, ∨ and ∧ and negation is

only applied to basic predicates. In fact, the work we do consists on translating

the undecidability results about reset nets to ν-Petri nets.

The fact that µ-calculus with first is undecidable is due to the fact that

we can simulate a reset net with a ν-PN net by using the construction of the

proof of the undecidability of the repeated coverability of ν-PN that we gave

previously. The only problem there could be in the construction is that the trash

that is generated (the tokens which we do not consider anymore) could affect the

formulas of the logic, but this is not the case, because the logic is built based on

the operator first, which is related with the transitions that are fired, and not



3.4. BEYOND UNDECIDABILITY 79

with the particular tokens in the places. Therefore, if µ-calculus with first were

decidable for ν-PN, it would be decidable for reset nets too. As µ-calculus with

first is undecidable for reset-Petri nets, it is undecidable too for ν-PN.

Now we are going to prove that model checking the fragment in which the only

allowed composed operator is GF, the operators are F, ∨ and ∧ and negation is

only applied to basic predicates is undecidable for ν-Petri nets. For that purpose

we will reduce the repeated coverability problem (which is undecidable for ν-PNs)

to model checking an specific formula of this logic.

Proposition 13 Model checking the fragment in which the only allowed composed

operator is GF, the operators are F, ∨ and ∧ and negation is only applied to basic

predicates is undecidable for ν-Petri nets

Proof: Suppose the considered fragment were decidable for ν-Petri nets.

Then, given a ν-Petri net N and a marking M, model checking the formula

GFcov(M) would be enough to decide the repeated coverability problem for the

marking M and the net N . As repeated coverability is undecidable for ν-Petri

nets, model checking the considered fragment is undecidable.

�

Unfortunately, all the model checking problems that we have studied for Petri

nets extensions are undecidable. In the next section we will explain what can be

done when model checking is undecidable in order to try to obtain some informa-

tion about the properties to check.

3.4 Beyond undecidability

In the previous sections we saw that many model checking problems are undeci-

dable. We can only decide if a formula holds or not at a Petri net if the formula is

expressed in some very restricted temporal logics, which are not very expressive.

That means that there is no algorithm to decide the satisfiability of a formula for

most of the useful temporal logics for Petri nets. Although this is not the goal of

our work, we are going to give some bibliographic details about what can be done

beyond undecidability and how to address efficiency issues.
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3.4.1 Unfoldings

Let us recall another important problem that we saw in Section 3.1: the state

space explosion problem. Even for finite systems, when we want to apply a model

checking algorithm, the number of states grows exponentially with the size of the

system. 1

In order to palliate the previous problem we can use unfoldings. An unfolding

is a compact representation of the different interleavings of a concurrent sys-

tem [61, 24]. The following example intuitively illustrates how an unfolding of a

Petri net is built:

Figure 3.5: A PN and a prefix of its unfolding

Example 22 Figure 3.5 shows a Petri net and a finite prefix of its unfolding.

The nodes of an unfolding are called “conditions” and “events”. They represent

the occurrences of places and transitions of the corresponding net. Therefore, each

place or transition can be represented by more than one condition or event, because

they can be reached from different runnings. In the unfolding of Figure 3.5 the

transition t2 is represented by two different events, because it can be fired following

different transition sequences. We start building the unfolding of a Petri net by

adding the conditions that represent the places which are marked at the initial

marking. In this example these initial conditions are c1 and c2. Then, we process

(with the help of a queue) all events which can be fired from the initial marking,

until no more events can be added (or until we want to finish the unfolding), as

follows:

• Remove the first event in the queue.

1Actually, finite automata model checking for LTL is already PSPACE-complete.
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• Add the event and its postset (the postset of the transition it represents) to

the unfolding.

• Identify the new possible events and insert them to the queue. Intuitively, the

possibly events are those whose preconditions are in the unfolding and can

be marked “simultaneously”. For example, the transition t7 does not appear

in the unfolding because its preconditions cannot be marked simultaneously.

Let us explain how to perform the last step of the previous algorithm. More

precisely, we are going to explain how to know if the preconditions of an event

can be marked simultaneously. There are two fundamental concepts we have

to explain: configurations and local configuration of an event. A configuration

represents a partial running of a net. It is a set of events such that:

• If an event is in the configuration then all of its ancestors are in the config-

uration too.

• If e1 and e2 are two different events of a configuration, then •e1 ∩ •e2 = ∅.

For example, the set of events {e1, e2, e4} in the unfolding of figure 3.5 is a

configuration. The local configuration of an event is the set composed of all of

its ancestors (including itself). Then, a set of conditions can be simultaneously

marked if the union of the local configurations of their presets form a configuration.

For instance, in the previous example the configurations c7 and c8 can be marked

simultaneously, because the set {e3, e6, e1, e5} is a configuration.

Unfoldings are useful to explore the different runnings of a Petri net, so we can

check some interesting properties. Petri nets have infinite states, so unfoldings

of Petri nets are infinite, but McMillan identified the possibility of building a

finite prefix of a Petri net unfolding which could give us enough information

to solve several problems. The expensive part of the algorithm that McMillan

proposed is the computation of the possible events to add to the unfolding, which

is exponential in the maximal size of the presets of the transitions [27] (it is better

than the complexity of the classic model checking algorithms).

The initial unfolding algorithms only allowed us to check reachability or dead-

lock, but these algorithms have been extended and now we can even check almost

every property that is expressible in LTL [29]. More recently, in [2] P.A.Abdulla

considers the coverability problem, and gives an algorithm to build a finite back-

wards unfolding of an unbounded Petri net. There are few cases in which unfold-
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ing techniques has been applied to Petri net extensions. Recently, unfolding for

coloured Petri nets has been studied for instance in [9].

3.4.2 Computation of the cover

Another technique which can be used in order to obtain a semialgorithm to model

check certain properties of Petri nets is getting information from the so called

cover, ↓ Post∗(↓ s), of a WSTS. The cover is not computable in general for well-

structured transition systems, and in particular it is not computable for reset nets

or for ν-Petri nets.

As we said before, given a Petri net with initial state s, ↓ Post∗(↓ s) gives

us information about coverability and boundedness of the Petri net, and it can

also be used to check some properties of certain temporal logics, as the logic F

with the three basic operators (which we do not know if it is decidable or not for

ν-PNs and reset nets, yet). Despite the fact that the algorithm to compute the

cover does not terminate for ν-PNs and reset nets, so we cannot have complete

algorithms based on the cover, if we want to model-check a formula of one of

these temporal logics, we can start computing the cover until we find the answer

to the problem we want to check (or until we consider we have spent too much

time looking for an answer). This gives us a semi-algorithm for some logics, which

could be useful in case of undecidability, but does not always terminate.



Chapter 4

Conclusions and future work

In this project we have discussed the existing results about model checking Petri

nets and some of its monotonic extensions that exist in the literature. The next

table summarizes the results on model checking for P/T nets, reset nets and

ν-Petri nets. By “+” (resp. -) we denote that the logic we are considering is

decidable (resp. undecidable). “?” denotes an open problem. In some cases, the

references of the results are not given. In that case, the results follow directly

from other results of the table, or are new. In particular, in this work we have

proved the undecidability of the fragment GF+F+first + cov + en for ν-Petri

nets.

P/T nets Reset nets ν-PN

UB - [23] - -

EF - [23] - -

EG - [25] - -

YEN + [80] ? ?

µ-calculus + first (LTL) + [23] - [7] -

µ-calculus + first + cov - [23] - -

F + first + cov + en + [44] ? ?

GF + F + first + cov + en + [45] - -

The table shows that all the model checking problems for reset nets and ν-PNs

that have been studied in this project are undecidable. That exposes that more

research in that issues is needed, not only to complete the table, but also to define
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new logics and study them. More precisely, to find other temporal logics which

would be decidable for the considered extensions and could express interesting

properties would be interesting. In particular, defining new logics for ν-Petri nets

in order to be able to express properties depending on their token names would

be very useful, because in this extension the possibility of creating new names is

added to P/T nets, so we would like to check properties related to the names.

Recently, a new reachability logic for lossy counter machines has been studied

in [76].

In the literature, most model checking problems are reduced to classical decid-

ability results as the decidability of the reachability problem. A new result which

is useful to prove the undecidability of certain logics for ν-PNs has been given in

this project: the undecidability of the repeated coverability problem for ν-Petri

nets. The proof consists on reducing the same problem for reset nets, which is

undecidable, to ν-Petri nets. In fact, some of the proofs of undecidability in ν-

Petri nets have been done by transferring reset net results to ν-PNs. Language

theory was used to prove the difference of expressiveness between reset nets and

ν-Petri nets in [75]. In this sense, it would certainly be interesting to find a logic

which distinguishes between reset nets and ν-Petri nets.

As we have found that the model checking all the considered logics is unde-

cidable for ν-Petri nets and reset nets, an important direction of research is the

study of techniques that provide us with useful semialgorithms that try to answer

to questions that are undecidable. One of these techniques is the computation of

the so called cover, the set of markings ↓ Post∗(↓ s), where s is the initial marking

of a net. In general, the cover of a well-structured transition system gives us a

great deal of information about it, so we could use its computation as a semial-

gorithm for model checking certain properties whenever model checking them is

undecidable. Regarding efficiency, unfolding techniques have been applied to P/T

nets, and could be applied to reset nets and ν-Petri nets.
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