On the decidability of model checking LTL fragments in monotonic
extensions of Petri nets

Mar ia Martos-Salgadd and Fernando Rosa-Velardg*

I mrmartos@ucm.es
Universidad Complutense de Madrid

2 fernandorosa@sip.ucm.es
Universidad Complutense de Madrid

Abstract: We study the model checking problem for monotonic extensions of Petri
Nets, namely for two extensions of Petri nets: reset nets (nets in whicksptao be
emptied by the firing of a transition with a reset arc) anBetri nets (nets in which
tokens are pure names that can be matched with equality and dynamicallygreate
We consider several fragments of LTL for which model checking is @dxelfor

P/T nets. We first show that model checking those logics is undecidabtedet
nets. We transfer those results to the case-#fetri nets. In order to cope with
these negative results, we define a weaker fragment of LTL, in whightios is

not allowed. We prove that model checking that fragment is decidabldtotbset
nets and/-Petri nets, though with a non primitive recursive complexity. Finally, we
prove that model checking a version of that fragment with universaidrdeation is
undecidable even for P/T nets.

Keywords: LTL, model checking, Petri nets, decidability, complexity

1 Introduction

Temporal logics4] have been established as a very expressive formalism for the spgaoifiof
properties of computational concurrent systems. The model checlaobtepn is the problem of
checking if a given system satisfies a given formula.

For infinite state systems the model checking problem is undecidable in ggitgrad very
well known formalism for infinite state concurrent systems is that of Petsi[6g Among them,
place/Transition nets (P/T nets) are potentially infinite state, but their exprgssver is below
Minsky machines (e.g., reachability is decidable for th&iih [Decidability and complexity of
the model checking problem for P/T nets are well studied, and the cords decidability
frontiers are well settledl3, 9, 12, 8]. Roughly speaking, model checking any branching-time
logic is undecidable for them, while for linear time logics, “event-based” LTldésidable,
though “state-based” LTL is undecidable.

In the last two decades, several monotonic extensions of Petri netappeared in the lit-
erature. These extensions usually consist either on the extension afiibedie of P/T nets,

* Authors supported by the Spanish projects STRONGSOFT TIN201213@®4-04 and PROMETIDOS
S2009/TIC-1465.

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets 1/ 17

mailto:mrmartos@ucm.es
mailto:fernandorosa@sip.ucm.es

or on the use of colours, that is, distinguishable tokens. We considerinmpdesextensions of

P/T nets, one in each group: reset n&lsgnd v-Petri nets ¢-PN) [21]. In reset nets the firing

of a transition can empty some places. Their modeling capabilities are disdossestance

in [14]. Tokens inv-PNs are pure names, that can be created fresh, moved along thednet an
used to restrict the firing of transitions with name matching. Names can be sg@o@ess
identifiers [L9], so thatv-PN can serve as the basis of models in which an unbounded number
of components (which are in turn unbounded) synchronize. For exammgl can be used to
model resource-constrained workflow nets, an extension of workfkte/ in which an arbitrary
number of instances of the workflow can be executed concurretit]y lin [5], they are used to

give a semantics to an extension of BPH|[with instance isolation.

In this paper we study the decidability of the model checking problem foetinexlels. More
precisely, we consider the logics for which model checking is decidablAD nets, and we
study their decidability for the two extensions. In particular, we st@i ¢, which is the frag-
ment of LTL that uses onlyirst as basic predicate®], .Z(F), the fragment of LTL in which
negation is only applied to basic predicates (not to operators), and thetazeareX (next), F
(eventually) A andV [12]; and.Z (GF), which is the fragment of LTL in which the only allowed
composed operator IGF (globally future), the operators afeé v and A and negation is only
applied to basic predicate$d].

Unfortunately, we conclude that the decidability results for P/T nets cammatdapted, so
that model checking any of the logics considered is undecidable. Inylariieve reduce model
checkingLT L; for lossy inhibitor nets, which is undecidable, to model checkilmd; for reset
nets. Moreover, we prove that repeated coverability and reachabilitghvare undecidable for
reset nets, can be expressedAiGF) and.Z (F) respectively.

As a first step to mitigate the previous undecidability result, we consider méaigof LTL
weaker than all the logics considered so far in which, in particular, weotlaliow negations.
We call that logid¢o,. We prove that model checking this logic is decidable for both models.

In some of the subclasses of LTL considered in the literatii8e12] a formula is said to be
satisfied if there exists one run that satisfies it, as opposed to the morerdtdefiaition of LTL
in which all runs are required to satisfy the formula. Even though the twopirgttions are
equivalent when negation can be used without restriction, this is not ffeefeathe considered
subclasses of LTL, neither fdf.,. We justify this definition by proving that already for P/T
nets, model checkinBcoy is undecidable under the universal interpretation.

Outline: The rest of the paper is structured as follows. Secipresents some basic results and
notations we use throughout the paper. Secsigmoves undecidability of model checking the
considered logics for reset nets amdPN. Section? definesFo, and proves decidability of the
model checking problem for reset nets ar®N, and undecidability for P/T nets in the universal
case. In Sectiob we present our conclusions.

2 Preliminaries

A quasi order(qo) is a reflexive and transitive binary relation. For agowe writea < b if
a<bandb <« a.

Labelled transition systems. A transition systenis a tuple.” = (SL,—,%), whereSis a

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets 2 /17

P (O—t—(d PO—Tt—®0

R

Figure 1: The firing of a transition in a P/T net.

(possibly infinite) set of states, is a set of labelssyy € Sis the initial state and=C SxL x S
We writes; - s, instead of(s;,a,s) €—, ands; —» s if 4 s, for somea € L.We denote by
—* the reflexive and transitive closure of and by—™ the transitive closure ofs. A run 1t
of . is any sequencs, 'l Sy 't S... such thats & s.1 fori > 0. Thereachability problem
consists in deciding for a given staagwhethersy —* s¢. If Sis endowed with a gec we can
define thecoverability problemthat consists in deciding, givem € S, whether some > s;, is
reachable. Then, we say thetoverss;. Therepeated coverability problems the problem of
deciding whether a given state is covered infinitely often in some infinite rahjghif givens
there is an infinite ruisg =+ s; =™ s, = ... such thas < s for all i > 1.

Multisets. Given a (possibly infinite) arbitrary sét we denote byA® the set of finite multisets
overA, thatis, the mappings: A— N for whichsupgm) = {a€ A| m(a) > 0} is finite. When
needed, we identify each conventional set with the multiset defined by itaatkéistic function,
and use set notation for multisets when convenient, with repetitions to adoountiltiplicities
greater than one. Given two multisets, m, € A® we denote byn, + mp the multiset defined by
(my 4+ mp)(a) = my(a) + my(a). We define multiset inclusion as; C my if my(a) < mp(a) for
allae A If m C mp, we can definen, — my, taking (mp, —my) (a) = mp(a) —m(a). We denote
by 0 € A® the empty multiset, given by(@) = 0 for alla € A.

Petri nets. A Place/Transition ne(P/T net for short) is a tuplsl = (P, T,F) whereP is a finite

set of placesT is a finite set of transitions (WitRNT = 0) andF : (Px T)U(T xP) — Nis

the flow function. Givert € T, the multiset of preconditions ¢fis *t € P® given by (*t)(p) =
F(p,t). Analogously, the postconditions bfre given by(t*)(p) = F(t,p). A marking is any

m e P®. For Petri nets we consider the order between markings given by multdasiion.
This order defines the standard coverability problem for Petri nets.ayéhat a transitiom is
enabled at a markinm if for eachp € P, m(p) > F(p,t). In that caset can be fired fronm,
reaching a new markingy, which is denoted byn- nv, wherent is given by (p) = (m(p) —
F(p,t)) + F(t, p). The reachability, the coverability and the repeated coverability probleens ar
all decidable for P/T nets]. In figures, we represent places as circles, transitions as rectangle
the flow function as arrows and markings as tokens inside places.

Examplel In the P/T net in the left-hand side of Fig, transitiont is enabled, so it can be
fired reaching the marking depicted in the right-hand side. Tokens havedssisumed from
andr, and a token has been produced|irAs there is not a priority order over transitions, note
that from the marking represented in the left-hand side, the other trangititeh ltave been fired
instead of, reaching a marking with a token in each place of the net.

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets 3/ 17

P O—t—(d PO—Tt—®0

R S

Figure 2: The firing of a transition in a reset net.

Now, we explain two extensions of P/T nets, namely reset nets and inhibitar Beth of
them are defined from P/T nets by adding special arcs: reset arcsh) empty a place, and
inhibitor arcs, which add to the enabling conditions the requirement thataircplace is empty.
For both extensions, the concepts of preconditions, postconditions akihghare analogous to
those for P/T nets.

A reset neis a tupleN = (P, T,F,R), where(P, T,F) isa P/T netandRC P x T is a relation
containing the so callegeset arcs The enabled transitions at a marking are defined as for P/T
nets. An enabled transitidrcan be fired from a marking reaching given by:

(m(p) —F(p,t)) +F(t,p) if (p,t) ¢R
(P = { F(t.p) i (p.t) €R

Notice that if(p,t) € RandF(t,p) = 0 (i.e.,t does not put any token ip) then p has no
tokens after the firing df (hencep is reset).

Example2 Focus on Fig2. The double arc represents a reset arc from plaicet, that is,

(r,t) € R. Then, transition is enabled in the marking represented in the net in the left-hand side
of the figure, and it can be fired, reaching the marking depicted in the #dhibkens in place

r has been consumed in the firingtafue to the presence of the reset arc.

An inhibitor netis a tupleN = (P, T,F,I) whereN = (P,T,F)isaP/Tnet,anl CPx T isa
relation containing thenhibitor arcs(also called zero tests). We say that a transitisrenabled
at a markingnif for eachp € P, m(p) > F(p,t) and for eact{q,t) € I, m(q) = 0. Thent can be
fired fromm, reaching the markingY given bym'(p) = (m(p) — F(p,t)) + F(t, p) (as for P/T
nets)®. Inhibitor nets with two inhibitor arcs are already Turing complét§,[though, interest-
ingly, inhibitor nets with only one inhibitor arc are ndtg]. In figures, we represent inhibitor
arcs by arcs with a circle in the place which is tested.

v-PN. Another way in which P/T nets are extended in the literature is by considdstigglish-
able tokens. Perhaps the most simple extension of P/T nets with (arbitrarily) aiatigguish-
able tokens are@-Petri Nets P1], that encompass unboundedly many names (via a mechanism
for fresh name creation) and the unbounded occurrence of each name

LetVar be a set of variables, anficC Var a set of special variables for fresh name creation. A
v-Petri Ne{v-PN for short) is a tupl&l = (P, T,F), whereP andT are finite disjoint sets, and

1 Actually, it is straightforward to simulate a reset arc using inhibitor arcs Jimy preserving reachability, cover-
ability and repeated coverability.

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets 4/ 17

Figure 3: A simplev-PN

F:(PxT)U(T xP) — Var® labels every arc by a multiset of variables. We dengt) =
UpepSUpfF (p,t)) (the set of variables in pre-arcs) apds{t) = UpcpSUpPAF(t, p)) (the set
of variables in post-arcs). We also takar(t) = pre(t) U postt).

Let Id be an infinite set of names. markingof a v-PN is a mappindv : P — Id® assigning
to each place the multiset of tokens currently in it. We také/) = UycpSUPAM(pP)), that is,
the set of names iNl.

Given atransition € T of av-PN, amodefor t is any injectiono : Var(t) — |d. Being modes
injections, we can match names with equality (just by using the same variable raarertbe)
and with inequality (by using different variables). We say that a transitisrenabled with a
modeo for a markingM, if for all p€ P, o(F(p,t)) € M(p) and ifv € Y, thena(v) ¢ Id(M).
Then,t can be fired, and a new markily is reached, given bW’ (p) = (M(p) — a(F(p,t))) +
o(F(t,p)) for all p € P. In that case we writ L

Example3 Fig. 3 depicts thev-PN N given byN = ({p1, p2, 3, P4}, {t},F) with F(py,t) =
{Xy}, F(p2,t) = {y}, F(t,p3) = {X,v1}, F(t,pa) = {v1,v2}, andF (n,m) = O elsewhere. We
assume that,,v, € Y. The initial marking is given byo(p1) = {a,b}, Mo(p2) = {b,c} and
Mo(ps) = Mo(pa) = 0. The transition is fired with respect to a modegiven by o(x) = a,
o(y) =b, o(v1) =d anda(v,) = e. Note that nameg ande are not in the initial marking, and
therefore they are created new.

Intuitively, each name in a marking ofilaPN can represent a different process running in the
same net. Therefore, we can represent the synchronization betwammssges and the creation
of new ones. _ _

We say thaM C M’ < there is a renaminlyl of M such thaM (p) € M’(p) for all p € P. With
this order, coverability is decidable forPN, though reachability is undecidable for thei]|

Exampled The markingM given byM(p1) =0, M(p2) =0, M(p3) = {a,d}, M(ps) = {a,c}

is covered by the markingl’ on the right-hand side of Fig. Note that, although there is not a
token of name in placepa, with the order we have defingd, is covered byM’ by considering
the renamingx, such thatr(a) =d, a(d) =aanda(e) = c.

Finally, note that both models induce labelled transition systems in the obvious way

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets 5/ 17

3 Model checking Petri net extensions

Temporal logics are used to specify dynamic properties of systems. dhsider a set of atomic
formulae (which express atomic properties) and several temporaltopgesaad path quantifiers,
which allow us to express temporal properties. There are mainly two kingsygdoral logics:
linear time logics and branching time logics. The properties that are expgredsenching time
logics are about the computation trég Wwhile the ones expressed in linear time logics are about
the runs 1L7]. In this paper we focus on linear time logics because model checking B Tvith
branching time logics is undecidable, even for very simple fragméhts [

The basic temporal operators used in temporal logicXaFeandU?. The most representative
example of a linear time logic is LTL.

Definition 1 An LTL formula is either an atomic formula or a formula of the fornp, ¢ A b,
dVY, X, Fo, orpUy, wheregp andy are LTL formulae.

First, we explain the semantics of the temporal operators informally. LTL flaenare inter-
preted over maximal runs, i.e., runs that are either infinite, or end in a déastite. Letp be
an LTL formula,.# a transition system armda maximal run starting is. We write. | 1T= ¢ to
denote thatt satisfiesp:

o . 1TE X¢ (next) holds if the propertg holds in the state that followsin 7.
e ., E F¢ (eventually) holds if the property holds in some state of.

o . 1k ¢UY (until) holds if there is a state of the pathsuch thaty holds in that state,
and¢ holds at every preceding state on the path.

We also definés (globally) asG¢ = —-F—¢, so that¥, m= G¢ holds if ¢ holds in every state
of .

Now, we give the formal semantics of temporal operators ri-etsy % 5% .. andr denote
the suffix of the patht starting by the-th states. We suppose that the states and the actions
of a system are labelled by the atomic propositions that they satisfy, that istates (or an
actiona) satisfies an atomic propositign thenp € L(s) (p € L(a) resp.), wheré.(s) represents
the labels ofs (L(a) represents the labels aj. The formal definition of the semantics of the
previous operators is inductively defined &k [

o 7, MEp& peL(sp)VpeL(a).

o 7. MME 1< T, TF ¢1.

T, MTE 1V o= T, 1TE ¢1 0r T, TTF Po.
T, MEGiANr & T, 1TF ¢ and. T, TE ¢».

o T MEXP1 o T, E ¢y

2 Even thoug!F can be defined in terms &f, we prefer to include it as a primitive temporal quantifier, since we will
later disallowU.

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets 6/ 17

e 7,mE F¢1 < there exists & > 0 such that7, i = ;.

o 7, MEGH < foralli>0,7,1E ¢.

o 7,1F ¢1U¢, < there exists & > 0 such that7, i ¢» and forall 0< j < k, .7, 10 E ¢1.
The atomic formulae usually considered for P/T nets, are given by the foljopvedicates:

e cov(m), wheremis a marking:coum) holds inrtif the first marking inrt coversm.

o first(t), wheret is a transitionfirst(t) holds inrtif the first transition fired inTis t.

Some works consider the atomic predicagesp,n) anden(t). The first one expresses that
there are at leasttokens in placep, and the second states thad enabled. We will not consider
them since they are equivalentdov{ p, o p}) andcov(*t), respectively.

According to the standard definition, a systet satisfies an LTL formulap, denoted by
< = ¢ iff every maximal run of the system satisfies it (universal interpretatidije model
checking problem consists in deciding, givefiand ¢, whether |= ¢. The model checking
problem is equivalent to deciding the existence of one run satisfying theufa (existential in-
terpretation), provided negation can be used without restriction, Sipe¢ (under the universal
interpretation) iffS~ —¢ (under the existential interpretation).

We consider different LTL fragments, built depending on which predigand operators we
consider.

Definition 2 We consider the following fragments of LTL:
e LTL;, the fragment of LTL that uses onfyst as basic predicaté],

e Z(F), the fragment of LTL in which negation is only applied to basic predicatest(no
operators), and the operators &rel, A andv [12],

e Z(GF), the fragment of LTL in which the only allowed composed operatdgks the
operators ar€&, vV andA and negation is only applied to basic predicated.|

Example5 e The formulaFfirst(t), which expresses thats eventually fired, is inZ (F),
but Gfirst(t) = —=F—first(t), which expresses thats always fired, is not.

e The formuldfirst(t) — GFfirst(t) is in £ (GF), but Ffirst(t) — GFfirst(t) = =Ffirst(t) v
GFiirst(t), which expresses thattifis eventually fired, then it is fired infinitely often, is
not.

In LT L¢ negation can be used without restriction, so that the universal andithergial inter-
pretations are equivalent (i.e., their model checking decision problenegjanaalent). However,
this is not the case fo’(F) and.Z(GF). Actually, they are defined using the existential inter-
pretation in L2, 13]. For the subclasses of LTL considered, we have the following results.

e Model checking LTL is undecidable (with bofinst andcov), but model checking T L; is
decidable (withcovonly) [9].

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets 7 / 17

e Model checkingZ (F) is decidable 12] (with existential interpretation),

e Model checkingZ (GF) is decidable 13] (with existential interpretation).

3.1 Model checking reset nets

Let us see that the three logics which are decidable for P/T nets becoraeidednle for reset
nets. Let us first considdrTL;. In [3] the model checking problem dfT Ls is studied for
lossy vector addition systems (lossy VAS) with tests for zero, which is prtvbe undecidable.
Let us see that we can adapt that result for reset nets. Let usdfisedhe lossy version of a
transition system in general.

Definition 3 Given a transition systeny’ = (S,—,) and a quasi-ordex overS, thelossy
versionof . is A = (S, —,%), wheres; — s, ifand only ifs; > s; — s, > 5. A lossy Petri
netis the lossy version of some Petri net.

In the lossy version of a transition system, states can be spontaneousigsiat: In the case
of Petri nets, tokens may be lost just before or after a transition is fired.

Example6 Focus on Fig2. In the lossy version of the P/T net obtained by replacing the reset
arc by a plain arc, despiteis not reseted by any reset arctofthe second marking could be
reached from the first one by first losing a token froand then firing.

Reset nets can simulate lossy inhibitor nets, as we prove next. This faetisguhe proof of
the next result.

Proposition 1 Model checking LT Lis undecidable for reset nets.

Proof. We reduce model checkingr L; for lossy inhibitor nets, which is undecidablg],[to

the same problem for reset nets. Iet= (P, T,F, 1) be an inhibitor net. We define the reset net
N’ = (P, T,F,1). Notice that sinc&\’ is a reset net, checks for zero have been replaced by resets.
The following holds:

° m1i>mz in N = there is am, > mp such tha’mlim{2 in N’: the preconditions and effects
of the firings oft in N andN’ are the same, except for the lossiness and the inhibitor arcs.
Therefore, ift has no inhibitor arc, anm1i>mz in N, t is enabled amy in N/, and it can
be fired reaching a marking greater or equal thranbecause some token may have been
lost in the firing inN.

Now, suppose thdathas some inhibitor arcs, amﬂlim\z in N. First of all, note that if a
transition is enabled ifN, it is enabled ilN’, so thatt is enabled ifN’ too. Moreover, the
places with inhibitor arcs leading tare empty in that marking. Therefore, whids fired
frommy in N/, these places are reset (hence staying empty). Therefore, the dalgdies

in the effects of the firing of in both nets come because of lossiness. In particular, since
may loose tokens i, but not inN’, mlim'{2 in N, with mi, > mp.

For example, focus on the left-hand side of Fig. The markingm, in the first lossy

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets 8 /17

Bl
S

Q0010 | &0-0- a0l

Figure 4: From lossy inhibitor nets to reset nets

inhibitor net in A1 may evolve tony1 or mp» (Mp2 has lost the token). The corresponding
reset net, depicted in A2 can only evolve t the marking However, note that, covers
bothmy; andmp..

° m1i>mz inN = m1i>mz in N: In particular, ifN’ resets a placé\ can first loose tokens,
thus emptying it, and then test for zero in that place. Therefore, the transtioeable
in N (because the preconditions of the firingd af N andN’ are the same, except for the
lossiness and the inhibitor arcs) and the place is empty at the end of botk.firing

Focus on the right-hand side of Fig. Transitiont is fireable from the markingy in
the reset net in B1, reaching the markimg. Despitet is not fireable fronm?, = my, the
lossy inhibitor net may lose tokens, reachimiy,, from whicht can be fired, reaching the

markingsm,; or .

Therefore, there is a surjective function between the ruhsaridN’ that preserves the sequence
of labels of runs. Note that this holds because reset nets are monotwtransitions which are
fired inN at a markingmwhich has lost tokens, can be fired from the corresponding marking
of N’, without loss of tokens, becaus# > m. Since the only atomic predicate T L+ is first,

N E ¢ iff N’ = ¢ and we conclude. O

Let us now focus on the two other fragments of LTL. The casef¢GF) is straightforward:
Proposition 2 Model checkingZ (GF) for reset nets is undecidable.

Proof. It is enough to consider th&FcoM), which is a formula inZ(GF), expresses the
repeated coverability problem, which is undecidable for reset Ggts [O

However, not only that fragment, but the weaker fragmet{f), which is decidable for P/T
nets [L2], is undecidable for reset nets. The following proof uses ideas fid@mnih which model
checkingZ (F) is reduced to reachability for P/T nets.

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets 9/ 17

Proposition 3 Model checkingZ (F) for reset nets is undecidable.

Proof. We reduce reachability, which is undecidable for reset ridf¢q model checking some
formulain.Z(F). LetN = (P, T,F,R) be a reset net and a marking ofN. We can compute the
set of the least markings greater thrai Indeed, that set is jugmp | p € P}, wheremj is given

by mp(q) = m(q) for g # p andmy(p) = m(p) + 1. For example, the set of the least markings
greater than the marking depicted in the net in the left-hand side o2 Bd.m,, mq,m }, where

my = {p,p,r,r}, my={p,q,r,r} andm, = {p,r,r,r}. Then,mis reachable iM iff there is a
reachable markingY that coveram, but does not cover anyy, because this would imply that
in each placep, m has exactlym(p) tokens (because it does not covey). Therefore,mis
reachable iN iff the formulaF(coum) A A pep ~cOMMy)) is satisfied. O

The previous proof is based on obtaining a formula which expressesabkability problem.
In order to obtain this formula, there is an important property that resetsaéfy. Given a
markingm, we are able to compute a finite set of markiiggs {m,...,m,} such that for each
m, € S m D mand ifm D m, then there isn; € Ssuch that’ © my. Intuitively, we can compute
the finite set of “the smallest markings greater tha@n As we can build that set, a marking;
coincides withmif and only if m; coversmandm; does not cover any marking &f

3.2 Model checkingv-PN

We first recall from 1] how v-PN can simulate reset nets (see Eig.For each place of N we
consider a new placg’ in N’. The main idea of the construction is to store in plata single
token of the colour inp that we consider valid in the current marking. That is, the tokerns in
of the colour of the token ip’ will be considered valid, and the rest of the tokenpiwill be
considered garbage. For example, in theN of Fig.5, there are two valid tokens in place
because the colour of the tokenrins b.

The construction oN’ guarantees that eagh contains a single token at any time. The firing
of any transition ensures that the token being usep @oincides with that inp’ (by labelling
both arcs with the same variabtg). Every time a transition resets a plagethe token inp’ is
replaced by a fresh one, so that no token remainingéan be used from then on. For example,
suppose we fire transitidnin Fig. 5. Then, a new colour is put iff, and therefore the tokens of
nameb in r cannot be used anymore.

Therefore, this simulation can introduce some garbage tokens (thgs&/len p is reset).
Given a markingnwe definem’ by arbitrarily choosing a different nanag < Id for eachp € P,
and takingn (p') = {ap}, andnf(p) = {ap, P, a,}. Then, ifmg is the initial marking oN, N’
with initial markingny, simulatesN. The previous simulation preserves all behavioral properties.
Then, the following is a straightforward consequence of Ptop.

Corollary 1 Model checking LT Lis undecidable fow-PN.

The previous simulation also preserves coverability. More precisely, iftkingamis cover-
able in the reset né, then the markingn’ of N’ defined above is coverable too. The markings

3 In order theory that set is called the covemafthough we prefer not to overload that term here.

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets10/ 17

PO—Tt—0)

Figure 5: A reset net and the correspondingN. The double arrow represents a reset arc

in the simulation may contain some garbage, which is created when we simulaténthefia
reset, because instead of removing all tokens of some placze change the name of the token

in p/, making all tokens ip become garbage. However, the presence of that garbage is irtelevan
for coverability. In particular, we have the following.

Proposition 4 Repeated coverability is undecidable ioiPN.

Proof. It is enough to consider that repeated coverability is undecidable fet ness P], and
that the previous simulation preserves repeated coverability. Indesah be repeatedly covered
from mg in N iff M’ can be repeatedly covered frang in N'. Indeed, ifmis repeatedly covered
there is a rummg —* my —* mp —* ... of N such thatm; > mfor all i > 1. By construction
of N/, there is a rum, -+ My =% My = ... of N’ such thatVj > m{ > m' for all i > 1, so
m is repeatedly covered. MoreoveV; coincides withm{ when considering only the “valid
tokens” of M; (and after possibly renaming the names carried by the tokens). Therserige
analogous. O

Once we know that repeated coverability is undecidable, undecidability dehuhecking
Z(GF) is trivial.

Corollary 2 Model checkingZ (GF) for v-PN is undecidable.
Next, we see the undecidability of model checki#t{F) for v-PN.
Proposition 5 Model checkingZ (F) for v-PN is undecidable.

Proof. The proof is analogous to the one of the same result for reset nets diereeachability

in v-PN, which is undecidable[l], to model checking some formulai#' (F). LetN = (P, T,F)

be av-PN. Given a markingv, we can compute the finite set of the least markings greater
thanM. Indeed, giverp € P andc € Id(M) U {b}, with b ¢ Id(M), we defineMy. given by
Mpc(a) = M(q) if p+# qandMpc(p) = M(p) +{c}. Then, the set we are looking for {$/ |
pePceld(M)u{b}}. For example, consider a net with two plageandq, and a marking

M with one tokerain p and empty irg. The set of the least markings greater than this marking
is {Mpa, Mpb, Mga, Mgp}, whereMpa(p) = {a a}, Mpa(a) = 0, Mpb(p) = {a,b}, Mpp(q) = 0,
Mga(p) = {a}, Mga(a) = {a}, Mgn(p) = {b} andMqy(q) = {a}. ThereforeM is reachable iN

iff N |= F(co M) A A c~CoUMpc)), and we conclude. O

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets11 /17

4 A decidable fragment

In the previous section we have proved the undecidability of model chpoiset nets and-PN

for some logics, whose model checking problem is known to be decidabRTonets. In this
section we define a restriction ¢&f (F), thus obtaining a fragment that is less expressive than all
the logics considered here.

Definition 4 Foyis the fragment ofZ’(F) in which negation is not allowed.

In this logic we can express bounded repeated coverability. HowEygrcannot express
properties like~coM). In particular, the formuldE(coMM) A Apcp—COMMp)) which ex-
presses reachability, is not a formulaFafy. As for Z(F), we consider existential interpretation,
so that a formula is satisfied if some maximal run satisfies it. We will see that meekiog
Fcov is decidable both for reset nets and f6PN. Later, we will consideYFqy, the version of
Fcov With universal interpretation, and we will prove that model checkifg,y, is undecidable
even for P/T nets.

Proposition 6 Model checking the fragmeft,, is decidable for reset nets.

Proof. LetN = (P, T,F,R) be a reset net angl a formula inF¢o,. We proceed by induction on
the nesting of operatofsin @. If @ is a boolean combination of formulae of the fooomm), it
is trivial to decide whetheg is satisfied because multiset inclusion is decidable.

Let us suppose that we can check each formula with at mps0 nested operators. Let
@ be a boolean combination of formulae of the foooMm) and F¢, where$ has at most
n nestedF operators, and let us see that we can decide whether each of thosdaeF¢
is satisfied (and hence, whethgris satisfied). Using standard techniques, we can vix@e
asF(Vi((AjcoMmyj)) A (AcFoik))), wheregi are formulae ofco, with at mostn — 1 nested
operators. That formula is equivalent to the formytd((A; coMm;j)) A (AcFoix)), that is, a
disjunction of formulae of the forrfr(coumy) A ... Acoumy) AF@1 A ... AF¢r), whereq andr
are not simultaneously zero, and edghhas at mosh — 1 nested operators. Let us distinguish
the following two cases:
(a) If g= 0 the formula is of the fornk(F¢1 A ... AF¢y), which is equivalent t&-¢1 A ... AF¢y.
Hence, we can apply the induction hypothesis to dagghand we are done.
(b) If g > 0, we modifyN, thus obtainingN’, by adding transitionsy, ..., tq,t4+1 and places
Pos P1, .-, Pq as follows. We adgby as precondition/postcondition of every transitiominMore-
over,ti moves a token fronpi_; to p;, providedm is covered. Finallylq1 can be fired only
one time (for which we add a new place with a single token initially, as precondifity1 1),
setting again a token ipg, and havingpg as precondition and postcondition. This construction
is represented in Fidh, for g= 2. Then,N’ behaves a8l, but when everyn; can be covered,
it can sequentially firéy, ...,tq,tq+1. Hence, everyn can be simultaneously coverednhiff pq
can be covered iN’. We consider the following two sub-cases:
(b.1) If r = 0 then the formula is of the forfA(covimy) A ... Acomg)) and hence equivalent to
Fcou{pq}), which expresses a coverability problem, so that it can be decided.
(b.2) Consider now that> 0. For any formulap, we definep’ as follows:

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets12 / 17

Paux

B (*)

N nmy

Figure 6: Construction df’ in Prop.6

e If ¢ =cov(m) then¢’ =covm+{pq}).
o If ¢ =1/ ¢athend’ = @1 A @5 Analogously, ifp = ¢1V ¢o thend’ = @1V 5.
o If ¢ =F¢;thend’ = F¢..

Then,F(coumy) A... Acomg) AF@1 A ... AF¢,) holds inN iff F(F¢; A... AF¢/) holds in
N’. Notice that the number of nesté&dbperators is the same f@g and¢,. Then, by (a) we are
done. O

The proof of the same result forPNs is analogous to the previous dne.
Proposition 7 Model checkind- oy is decidable fowv-PN.

Proof. The construction fow-PN is the same as the previous one. The only difference is that
the names in the markings of the formulae need to be handled corredtly by choosing a
different variable for each name in a marking to label the arcs. O

Since in particulaFcoy, allows us to express coverability, which has a non primitive recursive
complexity for reset netp] and forv-PN [21], we have the following:

Proposition 8 The complexity of model checkifgoy iS non primitive recursive for reset nets
and forv-PN.

To conclude, let us see that the versiornFg§, with universal interpretation, that we denote
by VFcow is undecidable even for P/T nets. Intuitively, formulae/Fyo, are global properties
of some trace, or equivalently, eventuality properties of every trace. instance,Fcov M)
expresses that every run eventually cowdrs

We reduce control-state reachability for Two Counter Machines, whichdseidable 15]. A
Two Counter MachinéTCM for short) is a tupl€ = (Q, {c1,C2}, Ins, o), whereQ is a finite set
of control states;; andc; are the two counter$nsis a set of instructions argh € Q is the initial
state. An instruction can be of the following three forrre(p,i,q), Dedp,i,q) or Zero(p,i,q),

4 Actually, the same is true for any model that belongs to the class of WeltStad Transitions Systems, with fairly
minor conditions.

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets13 /17

wherep,q € Q andi € {1, 2}, for the increasing of the countey, the decreasing af, or check
for zero ofc; respectively. A configuration @ is given by a tupl€qg,c; = ng,c; = ny), where

g € Q is the current state, anmah,n, € N are the current values of the counters. The initial
configuration is(gp,c; = 0,c, = 0).

In a configuration(p,c; = ny,c2 = nz), we may executénc(p,i,q) € Ins, reaching(g,c; =
M, C2 = ,), wheren, = nj+ 1 andng_; = nz_j. If n; > 0 we may execut®edp,i,q) € Ins,
reaching(q,c1 = My, ¢ = n,), wheren = n; — 1 andn;_; = nz_;. Finally, if n, =0, we can
executeZero(p,i,q) € Ins, reaching(q,c; = n1, 2 = ny). The control-state reachability problem
consists in deciding, giveq € Q, whether a configuration of the forrig, c; = n;,c; = ny) is
reachable. It is well-known that this is an undecidable probl&sh [

Example7 Considerthe TCMC = (Q, {c1,C2},Ins, p), withQ={p,q,r} andins= {Inc(p,c1,q),
Inc(q,cz, p),Zera(p,cy,r)}. In order to reach a configuration with statehe first instruction to
be executed must lera(p, cy,r). Otherwise, the two first executed instructionsla p, ¢y, q)
andinc(q,cz, p), SO we reach a configuration with = c; = 1. As there is not ®ecinstruction
in this machine, after executing this instructions we cannot reach a caatfiguwithc, = 0
anymore, and therefore we cannot reach stateymore.

We consider only deterministic TCM, that is, TCM such that at each reéelainfigura-
tion there is at most one instruction that can be executed. Moreover, witdssudf generality
we assume that Zera(p,i,q) € Ins then there is no other instruction of the fotmc(p/, j,q),
Dedp,j,q) or Zerap, j,q) in Ins, that is,q can only be reached by that instructigy).(In-
deed, for each instruction= Zero(p,i,q) € Inswe can add two states, gy, and replacé by
Zera(p,i,qu), Inc(qy,i,q), Dedqp,i,q).”> The control-state reachability problem for determin-
istic TCM is still undecidable.

Proposition 9 Model checking/F oy is undecidable for P/T nets.

Proof. We reduce the control-state reachability problem for deterministic TCM to theemod
checking problem of a formula iMFco,. LetC = (Q,{ci1,Cz2},Ins,qo) be a deterministic TCM

and peng € Q. We use the standard simulation of a TCM by means of a P/T net. We define
N = (Qu{cl,c2},Ins F), where:

e F(p,Inc(p,i,q)) = 1,F(Inc(p,i,q),q) = 1,and
F(Inc(p,i,q),c) = 1 (a token is moved fromp to g, and a token is added).

e F(p,Dedp,i,q)) =1,F(Dedp,i,q),q) =1, andF (¢, Ded p,i,q)) = 1 (a token is moved
from p to g, and a token is removed frog)).

e F(p,Zera(p,i,q)) =1 andF(Zerq(p,i,q),q) = 1 (a token is moved frorp to g).

Moreover,F (n,m) = 0 elsewhere, and the initial marking Nfis {go}. In N, the number of
tokens inc; represent the value of the countgiin C. Increasing and decreasing transitions are

5 If we allow instructions that do not modify the counter then it is enough tozasidgle statel; and an instruction
changing the state froup to g.

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets14 /17

Zera(p,co.r)| [Inc(a,co, p)}—()c2

o

Figure 7: Construction of Prop.for the TCM of Ex.7

simulated faithfully. However, the simulation of a transitidaro(p,i,q) can “cheat”, whenever
itis fired with tokens irt;. In that case, notice that the markifig, g} can be covered. Moreover,
because cannot be reached using a different instruction (requirenfémtove), we know that
if such marking is covered then the current simulation has cheated. Fackg o7, which
represents the net built from the TCM of EX. Note that transitiorZero(p, cz,r) can be fired
even after firingnc(p, c1,q) andinc(qg, ¢y, p), whenc;, is not empty. In this case, this simulation
has cheated.

We considep = F(cou Pend) V VimejcoMm)), whered = {{ci,q} | Zero(p,i,q) € Ins}. Notice
that all the cheating runs satisfy We prove thapeng can be reached i@ if and only if N = ¢.
For the if part, ifC reache9eng then the non-cheating run of eventually covergeng, S0 that
it satisfiesg. Since cheating runs always satigfy every run ofN satisfiesp. Conversely, iiC
does not reaclpenqg then the non-cheating run df does not satisfy. O

5 Conclusions and future work

Tablel summarizes the results on model checking P/T nets, reset netsRNdG. By “+”

(resp. -) we denote that model checking the considered logic is decigabfe undecidable). If
the references of the results are not given, then the result is eitheom@lows directly from
other results of the table. In particular, in this work we have proved thecidability of the
fragmentd.T L¢, £ (GF) and_Z (F) for reset nets and-PN.

We have definedr¢o,, a very simple restriction of LTL that does not allow negations, for
which model checking reset nets andPN is decidable. Actually, we claim this is the case for
any model in the class of Well Structured Transition Systetfisuinder fairly minor conditions,
since model checking can be reduced to a finite number of coverabilitygonsb Moreover, we
have proved that if we require that every run satisfies a formula, tremfev the simple case of
Fcovand P/T nets, the corresponding model checking problem is undecidable.

Further study, in order to define more expressive logics for which the lnsbhdeking problem
is decidable, is needed. A possible direction in such study could be thé&idafwof logics with
atomic predicates that are more specific of the particular model. Such dirkcksmvith the so
called Yen's logics for P/T nets. In the casewPN, the corresponding logic should be able to
express properties about the names in the marking.

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets15/ 17

] | PIT | Reset | v-PN

LTL | -[9] - -
LTL; | +[9] 131 -
Z(GF) | +[13 - -
ZF) | +[12 - -
Fcov + + +
Yooy | - : :

Table 1: Summary of results

Language theory was used to prove the difference of expressivératween reset nets and
v-PNs in 20]. In this sense, it would certainly be interesting to find a logic which distingasish
between reset nets amadPNs.

Finally, we have proved that the complexity of model checligg is non primitive recursive
for reset nets and fov-PN. However, it would be interesting to perform a finer complexity
analysis.

Bibliography

[1]

(2]

M. Ben-Ari, Z. Manna and A. Pnuelt:The Temporal Logic of Branching Time"Acta
Informatica 20, 207-226(1983).

R. Bonnet.“Theory of Well-Structured Transition Systems and Extended Vectditiéuwl
Systems!” These de doctorat, Laboratoire &jification et \erification, ENS Cachan,
France (2013).

[3] A. Bouajjani and R. Mayr."Model Checking Lossy Vector Addition System#iterna-

[4]

[5]

tional Symposium on Theoretical Aspects of Computer Science, LNCS568,823-333
(1999).

E. M. Clarke, O. Grumberg, and D. A. PeletModel Checking” MIT Press Cam-
bridge(1999).

G. Decker, M. Weske'Instance Isolation Analysis for Service-Oriented Architectures”
Proceedings of the 2008 IEEE International Conference on Ser@ioeguting, 1, 249-
256 (2008).

[6] J. Desel and W. Reisig?lace/transition petri nets_ectures on Petri Nets |: Basic Models,

[7]

LNCS vol. 1491, pp.122-173. Springer, 1998.

C. Dufourd, A. Finkel, and Ph. SchnoebeléReset Nets Between Decidability and Unde-
cidability”. International Colloquium on Automata Languages and Programming, LNCS
vol. 1443, 103-115 (1998).

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets16 / 17

[8] J. Esparza and M. NielsefiDecidability Issues for Petri Nets” BRICS Report Series,
RS-94-8 (1994).

[9] J. Esparza“On the decidability of model checking for seveyaicalculi and Petri nets”
Colloquium on Trees in Algebra and Programming, LNCS vol. 787, 115(1294).

[10] A.Finkel, and P.Schnoebelewell-Structured Transition Systems Everywhé&ieéoretical
Computer Science 256(1-2):63-92 (2001).

[11] K. van Hee, A. Serebrenik, N. Sidorova and M. VoorhoeS8eundness of Resource-
Constrained Workflow Netépplications and Theory of Petri Nets, LNCS vol. 3536, 250-
267 (2005)

[12] R. Howell, L. Rosier and H. YerfA taxonomy of fairness and temporal logic problems for
Petri nets”. Theoretical Computer Science 82, 341-372 (1991).

[13] P. Jariar.“Decidability of a Temporal Logic Problem for Petri Nets.Theoretical Com-
puter Science 74, 71-93 (1990).

[14] C. Lakos, S. ChristenseA. General Systematic Approach to Arc Extensions for Coloured
Petri Nets Applications and Theory of Petri Nets. LNCS vol. 815, pp. 338-35B{)9

[15] M. L. Minsky. “Computation: Finite and Infinite MachinesPrentice-Hall (1967).

[16] OASIS Web Services Business Process Execution Languag®i&.0. OASIS Standard
(2007).http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[17] A. Pnueli.“The Temporal Semantics of Concurrent ProgranTdieoretical Computer Sci-
ence, 13, 1-20(1981).

[18] Klaus Reinhardt‘Reachability in Petri Nets with Inhibitor Arcs™Electr. Notes Theor.
Comput. Sci. 223: 239-264 (2008).

[19] F. Rosa-Velardo and D. de Frutos-Escrig. Name creation vicatdipn in Petri Net sys-
tems.Fundamenta Informatica®8(3). I0S Press (2008) 329-356.

[20] F. Rosa-Velardo and G. Delzanrfhanguage-based Comparison of Nets with Black To-
kens, Pure Names and Ordered Datditernational Conference on Language and Au-
tomata Theory and Applications, LNCS vol. 6031, pp. 524-535. Spri(Rf¥0)

[21] F. Rosa-Velardo and D. de Frutos-Esciipcidability and Complexity of Petri Nets with
Unordered DataTheoretical Computer Science 412(34): 4439-4451 (2011)

[22] Ph. SchnoebelefiRevisiting Ackermann-Hardness for Lossy Counter Machines andtRes
Petri Nets”. Theoretical Computer Science, LNCS vol. 6281, pp. 616,628 (2010).

On the decidability of model checking LTL fragments in monotonic extensions of Petri nets17 / 17

 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

	Introduction
	Preliminaries
	Model checking Petri net extensions
	Model checking reset nets
	Model checking -PN

	A decidable fragment
	Conclusions and future work

