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Abstract. Maude 3.0 includes as a new feature an object-level strategy language. Rewrit-
ing strategies can now be used to easily specify how rules should be applied and restrict
the rewriting systems behavior. This new specification layer would not be useful if there
were no tools to execute, analyze and verify its creatures. For that reason, we extended the
Maude LTL model checker to systems controlled by strategies, after studying their model-
checking problem. Now, we widen the range of properties that can be checked in Maude
models, both strategy-aware and strategy-free, by implementing a module for the language-
independent model checker LTSmin that supports logics like CTL* and 𝜇-calculus.

1 Introduction

The Maude [9] specification language has recently reached its 3.0 version, integrating new fea-
tures developed during the last years and including a full implementation of the Maude strategy
language. Although rewriting logic owes its natural representation of concurrency to the pos-
sibility that different rules can be executed in different positions at each step of the rewriting
process, there are situations in which it is convenient to control such nondeterminism. This is
the purpose of strategies, which have traditionally been expressed in Maude at the metalevel
by means of its reflective features [11, 10, 25], but since the complexity and learning curve of
programming metalevel computations is hard, an object-level strategy language design was pro-
posed [19, 14], exercised with different examples [28, 24, 20, 26, …], and finally added to the Core
Maude functionality. Strategies can be described compositionally using strategy modules on top
of system modules, and different commands are provided to rewrite a term following a strategy.

However, this new feature would be worthless without convenient tools to analyze the spec-
ifications using it. One of the most useful tools for verifying regular Maude modules is its LTL
model checker [15]. In a previous work [23], we have studied the model-checking problem for
rewriting systems controlled by strategies and presented an extension of the model checker to
deal with them. However, since the original Maude model checker is limited to LTL properties,
these are the only ones that our extension can handle and the discussion was mainly centered on
linear-time properties. In this paper, we further discuss branching-time properties and show an
implementation of a language plugin for the language-independent model checker LTSmin [16]
that widens the range of logics in which properties can be expressed to CTL* and 𝜇-calculus,
for both the strategy-aware specifications and the regular ones. It can be downloaded from
http://maude.ucm.es/strategies.

In the following sections, we briefly introduce the strategy language, the model-checking prob-
lem in this context, and the plugin we have developed. But let us first introduce a motivational
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example: the river crossing puzzle. In this classical game, a shepherd needs to cross a river carry-
ing a wolf, a goat and a cabbage. The only way to cross it is using a boat that only the shepherd
can operate and with room for only one more being. The shepherd could ship their companions
to the other side one by one, but the wolf would eat the goat and the goat would eat the cabbage
as soon as the shepherd is not present to impede it. The Maude signature of the problem is
specified in a functional module:

fmod RIVER i s
so r t s River Side Group .
subsort Side < Group .

op _|_ : Group Group → River [ctor comm] .
ops left right : → Side [ctor] .
ops shepherd wolf goat cabbage : → Group [ctor] .
ops __ : Group Group → Group [ctor assoc comm] .

op initial : → River .
eq initial = left shepherd wolf goat cabbage | right .

endfm

The system module RIVER-CROSSING completes the equational specification with rules: alone,
wolf, goat and cabbage cause the shepherd to cross the river with the mentioned passenger,
while wolf-eats and goat-eats make such animal eat its prey, which vanishes from the scene.

mod RIVER-CROSSING i s
protect ing RIVER .

vars G G' : Group .

r l [wolf-eats] : goat wolf G | G' shepherd ⇒
wolf G | G' shepherd .

r l [goat-eats] : cabbage goat G | G' shepherd ⇒
goat G | G' shepherd .

r l [alone] : shepherd G | G' ⇒
G | G' shepherd .

r l [wolf] : shepherd wolf G | G' ⇒
G | G' shepherd wolf .

r l [goat] : shepherd goat G | G' ⇒
G | G' shepherd goat .

r l [cabbage] : shepherd cabbage G | G' ⇒
G | G' shepherd cabbage .

endm

The rules of the game tell that the predator will not miss the chance to claim their prey, so
the eating rules must be applied before any other crossing if possible. This is not guaranteed in
the system module, but expressing this restriction using strategies is easy, and we will see how
in the following section.

In a previous specification of this problem in Maude [22], the eating rules were written as
equations. While this alternative also ensures the discussed property according to the operational
semantics of the Maude rewriting engine, it yields a rewrite theory where rules and equations
are not coherent1.
1 A rewrite theory is coherent if for all term 𝑡 rewritten by a rule to a term 𝑡′, its canonical form 𝑢
modulo equations and axioms can be rewritten to a term 𝑢′ that is equationally equivalent to 𝑡′, see [9,
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2 The Maude strategy language

As we have said in the Introduction, the Maude strategy language was born to allow expressing
rewriting strategies without the difficulties of the metalevel. Its design is based on the experience
with reflective computations, and on earlier strategy languages like ELAN [4] and Stratego [6].

A strategy 𝛼 can be seen, if we look at its results, as a transformation from a term 𝑡 into
a set of terms, since the rewriting process controlled by 𝛼 may still be nondeterministic. These
results can be obtained within the interpreter using the srewrite 𝑡 using 𝛼 command. The most
elementary strategy is rule application

top(𝑙𝑎𝑏𝑒𝑙[𝑥1 <- 𝑡1,… ,𝑥𝑛 <- 𝑡𝑛]{𝛼1,… ,𝛼𝑚}),

that executes any available rules with label 𝑙𝑎𝑏𝑒𝑙 on any subterm of the subject term. An optional
substitution can be specified between brackets to instantiate any occurrence of the variables 𝑥𝑘 in
the rule and its condition with 𝑡𝑘 before matching, and to apply rules with rewriting conditions,
strategies 𝛼𝑙 must be provided to control each rewriting condition fragment. To restrict the
application of the rule to the top of the subject term, top is available. A more powerful tool for
selecting to which subterm a strategy is applied is the matchrew operator

matchrew 𝑃 s.t. 𝐶 by 𝑥1 using 𝛼1 , …, 𝑥𝑛 using 𝛼𝑛

It matches the pattern 𝑃 on top of the subject term, and for each match satisfying the condi-
tion 𝐶, the subterms corresponding to the variables 𝑥1, … , 𝑥𝑛 are rewritten using the strategies
𝛼1, … , 𝛼𝑛, and reassembled again. The matchrew keyword can be prefixed by a to match any-
where within the term or x to match modulo structural axioms. The same variants exist for the
tests match 𝑃 s.t. 𝐶, to check if 𝑃 matches the subject term and satisfies 𝐶. Regular expres-
sions are included in the strategy language by means of the alternation 𝛼|𝛽, the concatenation
𝛼;𝛽, the Kleene star 𝛼∗, and the constants idle and fail. A conditional strategy 𝛼 ?𝛽 : 𝛾 is also
available. It executes 𝛼 and then 𝛽 on its results, but if 𝛼 does not produce any, it applies 𝛾 to
the initial term. The language includes some other derived operators like 𝛼 or−else 𝛽 defined as
𝛼 ? idle : 𝛽 or not(𝛼) as 𝛼 ? fail : idle.

Using these combinators, we can guarantee that eating happens eagerly before traveling in
the river crossing puzzle with the following strategy:
((wolf-eats | goat-eats) or−else (alone | cabbage | goat | wolf)) *

In each step of the iteration, which can stop nondeterministically at any time, the or−else
combinator ensures that the crossing rules of its second argument are tried only if the eat-
ing rules in its first argument do not succeed. However, when strategies become more complex,
writing long self-contained expressions is not practical. For example, the previous will be eas-
ier to understand if we name the first union of the expression as eating and the second as
oneCrossing, (eating or−else oneCrossing) *. Strategy modules allow defining strategies,
which can take parameters and call themselves recursively, extending the expressive power of
the language. They are introduced by the smod keyword and may contain strategy declarations
strat sname : T1 ... Tn @ T specifying its name and signature, and (possibly conditional) strat-
egy definitions like sd sname(𝑡1, … , 𝑡𝑛) := 𝛼. A strategy call will execute all strategy definitions
whose left-hand side matches the call term, instantiating the right-hand side expression with the
variables bound in the left-hand side and the optional condition.

The following strategy module gives some strategy definitions for the river crossing problem:

§5.3]. Coherence is assumed by Maude, which reduces terms to their canonical forms before applying
a rule, not to miss any rewrite.
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smod RIVER-CROSSING-STRAT i s
protect ing RIVER-CROSSING .

var G : Group .

s t r a t s oneCrossing eating @ River .
sd oneCrossing ≔ alone | wolf | goat | cabbage .
sd eating ≔ wolf-eats | goat-eats .

s t r a t s solution eagerEating safe @ River .

sd solution ≔ goat ; alone ; cabbage ; goat ;
wolf ; alone ; goat .

sd eagerEating ≔ match left | G cabbage goat ? idle
: ((eating or−else oneCrossing) ; eagerEating) .

sd safe ≔ match left | G ? idle
: (oneCrossing ; not(eating) ; safe) .

endsm

In addition to the oneCrossing and eating strategies described before, there is also a determin-
istic strategy solution that simply applies a choice of steps that are known to solve the problem.
The eagerEating strategy recursively executes a rule respecting their precedence, indefinitely or
until a solution is found. Observe that the definition is recursive and nonterminating. This will
not pose a problem since the execution engine and the model checker will be able to detect this
loop and finish, and it is a useful resource to specify the behavior of reactive systems. The last
strategy safe discards all rewriting paths where some being can be swallowed by concatenating
the not(eating) strategy that fails whenever eating succeeds. Note that the stop condition
only checks whether the left side of the river is empty, which is enough provided no one dies,
while in eagerEating it is necessary to check that the goat and cabbage are still alive. We can
execute the strategy to see how the solution is reached:
Maude> srew initial using safe .

Solution 1
rewrites: 33
result River: left | right shepherd wolf goat cabbage

No more solutions.
rewrites: 33

More details about the strategy language and examples can be found in its chapter in the
Maude manual [9], in [12], and the strategy language website [13].

3 Model checking

Model checking [7, 8] is an automated verification technique based on the exhaustive exploration
of a system model to check a property describing aspects of its intended behavior. Multiple
variants and algorithms exist, but traditionally the model is represented as a state and transition
system, and the property in some temporal logic.

A transition system or abstract reduction system is a set of states 𝑆 endowed with a binary
transition relation (→) ⊆ 𝑆 × 𝑆. It is usually required that every state has at least a successor
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to avoid dealing with finite executions. In the abstract context of an 𝒜 = (𝑆, →), strategies can
be seen as subsets 𝐸 of the set of all execution paths Γ𝜔

𝒜 = {(𝑠𝑛)∞
𝑛=0 ∶ 𝑠𝑛 → 𝑠𝑛+1} of the system.

In the following, we will write Γ𝜔
𝒜,𝑠 for the set of executions starting at 𝑠 ∈ 𝑆 and Γ∗

𝒜 for the set
of finite executions. This definition of strategy is sometimes called abstract or extensional [5] in
contrast with an intensional characterization in terms of partial functions 𝜆 ∶ Γ∗

𝒜 → 𝒫(𝑆) that
limits the possible next steps for a given execution prefix. Although these two definitions are not
equivalent [5, 23], most common strategies can be expressed intensionally.

The properties about the system are expressed in terms of some tags declared for each state.
This yields a Kripke structure 𝒦 = (𝑆, →, 𝐴𝑃 , 𝐼, ℓ) with a finite set of such atomic propositions
𝐴𝑃 , a finite set of initial states 𝐼 ⊆ 𝑆, and a labeling function ℓ ∶ 𝑆 → 𝒫(𝐴𝑃). Temporal
logics combine these properties with operators that describe how they occur in time. Well-known
examples of such logics are CTL* and its sublogics LTL (Linear Temporal Logic) and CTL
(Computational Tree Logic).

However, some other logics like the 𝜇-calculus do not only refer to state properties but also
to the transitions. The abstract setting needs then to be enriched with labels for them: labeled
transition systems (LTS) are defined as triples (𝑆, 𝐴, 𝑅) where 𝐴 is a set of edge labels or actions
and 𝑅 ⊆ 𝑆 × 𝐴 × 𝑆 is a tagged relation. Strategies and executions are defined similarly, but in
this case interleaving states with edge labels, i.e., Γ𝜔

𝒜,𝑠0
= {𝑠0(𝑎𝑛𝑠𝑛)∞

𝑛=1 ∶ 𝑠𝑛 →𝑎𝑛+1 𝑠𝑛+1}.
Maude supports on-the-fly LTL model checking since its 2.0 version [15]. The mapping of

a rewriting system to the model-checking framework is natural: its states are its terms and its
transitions are rule applications. All executions are assumed to be infinite, by repeating the
last state of finite executions, adding a loop transition to deadlock states, like in Spin and
other verification tools. In order to prepare a Maude module for model checking, users need
to extend it including the predefined SATISFACTION module, declaring the state sort, and the
atomic propositions as regular Maude operators of sort Prop, and defining them equationally for
all terms using the satisfaction relation symbol _|=_. Here is an example for the river crossing
puzzle:

mod RIVER-CROSSING-PREDS i s
protect ing RIVER-CROSSING .
i n c lud ing SATISFACTION .

subsort River < State .

ops goal death bad : → Prop [ctor] .

var R : River .
vars G G' : Group .

eq left | G goat cabbage |= goal = true .
eq R |= goal = false [owise] .

eq cabbage G | G' goat |= death = false .
eq cabbage goat G | G' |= death = false .
eq R |= death = true [owise] .

eq wolf goat G | G' shepherd |= bad = true .
eq goat cabbage G | G' shepherd |= bad = true .
eq R |= bad = false [owise] .

endm
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Three properties are defined: goal that is only satisfied by the puzzle solution, death that
tags states where someone has already been eaten, and bad that signals states in which eating is
possible but not yet accomplished. Finally, the user should import the predefined MODEL-CHECKER
module giving access to a special operator modelCheck that reduces to the verification result,
assuming some decidability requirements [15].
Maude> red modelCheck(initial, [] (bad → <> death)) .
rewrites: 44
result ModelCheckResult: counterexample(

{right | left shepherd wolf goat cabbage,'alone}
...

{left shepherd cabbage | right wolf goat,'cabbage},
{left | right shepherd wolf goat cabbage,'alone}
{left shepherd | right wolf goat cabbage,'alone})

In this case, the property is not satisfied and a counterexample execution is obtained, described
by a cycle and a path to it.

Recently, we have extended the model checker to rewrite theories controlled by strategies [23].
From an abstract point of view, a system 𝒦 controlled by a strategy 𝐸 ⊆ Γ𝜔

𝒦 is said to satisfy
a linear property 𝜑 if 𝒦, 𝜋 ⊨ 𝜑 for all 𝜋 ∈ 𝐸. This definition is natural and almost unavoidable,
since linear-time properties refer to individual executions quantified universally. The fundamental
question is which are the executions 𝐸 allowed by a Maude strategy language expression 𝛼.

This question has been answered by defining a nondeterministic structural operational se-
mantics for the strategy language. Its execution states 𝑞 ∈ 𝒳𝒮 are terms augmented with a
continuation for the strategy execution, and its step 𝑞 ↠ 𝑞′ correspond to single rule rewrites
cterm(𝑞) →1

𝑅 cterm(𝑞′) on the underlying terms, denoted by cterm(𝑞). States are usually of the
form 𝑡@ 𝑠 where 𝑠 is a stack of strategy expressions whose execution is pending and substitutions
defining the variable contexts of the active strategy calls, but more complex constructs are re-
quired for operators involving subsearches. Projecting the term part of the semantics executions
leads to well-defined abstract strategies for the underlying system,

𝐸(𝛼, 𝑡) = {(cterm(𝑞𝑛))∞
𝑛=0 ∶ 𝑞0 = 𝑡@𝛼, 𝑞𝑛 ↠ 𝑞𝑛+1}.

Moreover, the abstract definition of model checking for this 𝐸(𝛼, 𝑡) is equivalent to model checking
the Kripke structure given by the semantics graph

ℬ ≔ (𝒳𝒮, ↠, {𝑡@𝛼}, 𝐴𝑃 , ℓ ∘ cterm)
under some decidability assumptions [23].

The strategy-aware model checker shares a great part of its infrastructure with the strategy
execution engine and the original model checker. Their usage is similar, but in this case the
STRATEGY-MODEL-CHECKER module, whose modelCheck symbol receives an additional argument
to indicate the name of the strategy that controls the system, should be imported instead.
Maude> red modelCheck(initial, [] ~ bad, 'safe) .
rewrites: 54
result Bool: true

Maude> red modelCheck(initial, [] (bad → O death),
'eagerEating) .

rewrites: 121
result Bool: true

A version of Maude including this model checker, its source code, and detailed documentation
can be downloaded from [13].
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4 Model checking branching-time properties

While the abstract definition for checking linear-time properties using strategies was very simple,
the case of branching-time properties is not so clear. The main difficulty can be observed in the
following example of a vending machine, which admits one-euro coins e and sells apples a and
cakes c for one and two euros respectively. According to the semantics, the execution tree of the
strategy 𝛼 ≡ (put1 ; apple) | (put1 ; put1 ; cake) from the term e e [empty] is:

e e [empty] @ 𝛼
e [e] @ apple

e [e] @ put1 ; cake

e a [empty] @ 𝜀

empty [e e] @ cake c [empty] @ 𝜀

e e [empty] e [e]
empty [e e]

e a [empty]

c [empty]

cterm

We can see that the tree structure is not preserved by the projection. Its effects are observed
in the satisfaction of the CTL property A○E ⋄ ℎ𝑎𝑠𝐴𝑝𝑝𝑙𝑒 where ℎ𝑎𝑠𝐴𝑝𝑝𝑙𝑒 is only satisfied if an
apple has been bought. Moreover, expressions denoting the same abstract strategy, like put1 ;
(apple | put1 ; cake) and the previous one, would satisfy different properties. Fortunately,
the problem can be solved by simply merging successor states whose terms coincide, like e [e]
@ apple and e [e] @ put1 ; cake in the example above.

In abstract terms, we suggested in [23] that the satisfaction of a branching-time property
𝜑 on a system 𝒜 controlled by a strategy can be understood as the satisfaction of 𝜑 in its
unwinding, the transition system whose states are the finite executions Γ∗

𝒜,𝑠 of the model and
whose transitions are those allowed by the (intensional) strategy. However, since this construct is
not finite, the practical usage of this definition goes through finding a bisimilar finite transition
system. For the Maude strategy language, this can be the one derived from its nondeterministic
semantics (ℬ) after merging states. We define it formally as ℳ ≔ (𝒫(𝒳𝒮), [↠], {{𝑡0 @𝛼}}, 𝐴𝑃 , ℓ∘
cterm) where

𝑄[↠]𝑄′ ⟺ ∃ 𝑡 ∈ 𝑇Σ 𝑄′ = {𝑞′ ∶ 𝑞 ↠ 𝑞′, cterm(𝑞′) = 𝑡, 𝑞 ∈ 𝑄}.
When considering the labeled transition system, a slightly different Kripke structure ℳ′ should
be defined, in which only the successors for a given rule label are included in each 𝑄′ state. The
following proposition states that ℳ is bisimilar to the strategy expansion:

Notation: Let 𝒦 = (𝑆, →, 𝐼, 𝐴𝑃 , ℓ) be a Kripke structure. Γ𝜔
𝒦,𝑠 ≔ {(𝑠𝑛)𝑛∈ℕ ∶ 𝑠0 = 𝑠, 𝑠𝑛 → 𝑠𝑛+1}

is the set of non-terminating executions on 𝒦 starting at 𝑠, and Γ𝜔
𝒦 = ⋃𝑠∈𝑆 Γ𝜔

𝒦,𝑠 is the set of
all non-terminating executions. Γ∗

𝒦,𝑠 and Γ∗
𝒦 are defined similarly for finite executions, and the

union of both are Γ𝒦,𝑠 and Γ𝒦. An abstract strategy 𝐸 is a subset of Γ𝒦. For any strategy 𝐸,
a function can be defined 𝜆 ∶ 𝑆+ → 𝒫(𝑆) as 𝜆(𝑤) ≔ {𝑠 ∈ 𝑆 ∶ ∃𝑤′ ∈ 𝑆∞ 𝑤𝑠𝑤′ ∈ 𝐸}. A strategy
is intensional2 if 𝐸 = 𝐸(𝜆) where 𝐸(𝜆) ≔ {(𝑠𝑘)∞

𝑘=1 ∶ 𝑠𝑘+1 ∈ 𝜆(𝑠𝑘)}. In general, we assume that
all strategies we deal with are intensional.

Definition 1. Given a Kripke structure 𝒦 = (𝑆, →, 𝐼, 𝐴𝑃 , ℓ) and a strategy 𝐸 = 𝐸(𝜆), we
define its unrolling 𝒰(𝐸) = (𝑆+, 𝑈, 𝐼, 𝐴𝑃 , ℓlast) where (𝑤, 𝑤𝑠) ∈ 𝑈 if 𝑠 ∈ 𝜆(𝑤) for all 𝑤 ∈ 𝑆+

and ℓlast(𝑤𝑠) = ℓ(𝑠) for all 𝑤 ∈ 𝑆∗.
2 The abstract strategy 𝐸(𝜆) generated by an intensional one 𝜆 is defined in a more complicated way in
previous papers to represent finite executions faithfully. Here, we neglect this without consequences,
since we assume that all executions are infinite for CTL* and 𝜇-calculus does not distinguish them.
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Notice that the executions in 𝒰(𝐸) are of the form (𝑤𝑠0)(𝑤𝑠0𝑠1)(𝑤𝑠0𝑠1𝑠2) ⋯. We will be
interested in flattening them to executions of the underlying system 𝒦 (in fact, in the strategy
𝐸). Hence, we write

flat((𝑤𝑠0)(𝑤𝑠0𝑠1)(𝑤𝑠0𝑠1𝑠2) ⋯) ≔ 𝑠0𝑠1𝑠2 ⋯

Lemma 1. For every 𝑤 ∈ 𝑆+ prefix in 𝐸, 𝐸 ↾ 𝑤 = {flat(𝜋) ∶ 𝜋 ∈ Γ𝒰(𝐸),𝑤}.

Proof. For arbitrary Γ𝒰(𝐸),𝑤𝑠0
∋ 𝜋 = (𝑤𝑠0)(𝑤𝑠0𝑠1)(𝑤𝑠0𝑠1𝑠2) ⋯, flat(𝜋) = 𝑠0𝑠1𝑠2 ⋯ and 𝑤𝑠0𝑠1𝑠2 ⋯ ∈

𝐸 since 𝑠𝑛+1 ∈ 𝜆(𝑠𝑛). Hence flat(𝜋) = 𝑠0𝑠1 ⋯ ∈ 𝐸 ↾ 𝑤 by definition. Reciprocally, for arbitrary
𝑠0𝑠1 ⋯ ∈ 𝐸 ↾ 𝑤, 𝑤𝑠0𝑠1 ⋯ ∈ 𝐸, so 𝜋 = (𝑤𝑠0)(𝑤𝑠0𝑠1) ⋯ ∈ Γ𝒰(𝐸),𝑤 and flat(𝜋) = 𝑠0𝑠1 ⋯.

Usually we are only interested in a subgraph of a Kripke structure that is reachable from a
given state. For 𝒦 and 𝑠 ∈ 𝑆, we write 𝒦𝑠 = (𝑅, 𝑈|𝑅, {𝑠}, ℓ|𝑅) where 𝑅 = {𝑠′ ∈ 𝑆 ∶ 𝑠 →∗ 𝑠′}.

Proposition 1. Given an expression 𝛼 of the Maude strategy language, there is a bisimulation
𝑅 between 𝒰(𝐸(𝛼))𝑡 and ℳ𝑡@𝛼. Moreover, if (𝑤, 𝑄) ∈ 𝑅 then ℓlast(𝑤) = ℓ(cterm(𝑄)).

Proof. Let 𝑓 ∶ 𝑆+ → 𝒫(𝒳𝒮) be 𝑓(𝑠1 ⋯ 𝑠𝑛) = {𝑞𝑛 ∈ 𝒳𝒮 ∶ 𝑞1 ↠ ⋯ ↠ 𝑞𝑛, cterm(𝑞𝑘) = 𝑠𝑘}. Our goal
is proving that the graph of this function, (𝑤, 𝑄) ∈ 𝑅 iff 𝑓(𝑤) = 𝑄, is the required bisimulation.
Clearly, ℓlast(𝑤𝑠) = ℓ(𝑠) = ℓ(cterm(𝑄)) if (𝑤𝑠, 𝑄) ∈ 𝑅.

First, we claim that 𝑓(𝑤) [↠] 𝑓(𝑤𝑠) for all 𝑤 ∈ 𝑆+ and 𝑠 ∈ 𝑆 if 𝑓(𝑤) ≠ ∅ ≠ 𝑓(𝑤𝑠). In fact,
for 𝑤 = 𝑠1 ⋯ 𝑠𝑛,

𝑓(𝑤𝑠) = {𝑞 ∈ 𝒳𝒮 ∶ 𝑞1 ↠ ⋯ ↠ 𝑞𝑛 ↠ 𝑞, cterm(𝑞) = 𝑠}
= {𝑞 ∈ 𝒳𝒮 ∶ 𝑞𝑛 ↠ 𝑞, 𝑞𝑛 ∈ 𝑓(𝑤), cterm(𝑞) = 𝑠}

and this is the definition of 𝑓(𝑤) [↠] 𝑓(𝑤𝑠) whenever 𝑓(𝑤𝑠) ≠ ∅. Let 𝑀 be the set of states
of ℳ𝑡@𝛼 and 𝐸∗ = {𝑤 ∶ ∃𝑤′ ∈ 𝑆𝜔 𝑤𝑤′ ∈ 𝐸} the finite prefixes of the executions in 𝐸, then
we known 𝑓(𝐸∗) ⊆ 𝑀 . In order to prove 𝑀 ⊆ 𝑓(𝐸∗), suppose 𝑄1 = {𝑡@𝛼} [↠] ⋯ [↠]𝑄𝑛, we
will see 𝑄𝑛 = 𝑓(cterm(𝑄1) ⋯ cterm(𝑄𝑛)) by induction. In the base case 𝑛 = 1, 𝑄𝑛 = {𝑡@𝛼}
and coincides with 𝑓(𝑡). Otherwise, we have 𝑄𝑛−1 [↠] 𝑄𝑛 and by induction hypothesis 𝑄𝑛−1 =
𝑓(cterm(𝑄1) ⋯ cterm(𝑄𝑛−1)). By [↠], there is a term 𝑡 such that 𝑄𝑛 = {𝑞′ ∈ 𝒳𝒮 ∶ 𝑞 ↠ 𝑞′, 𝑞 ∈
𝑄𝑛−1, cterm(𝑞′) = 𝑡}, but from the equality above, this is 𝑓(cterm(𝑄1) ⋯ cterm(𝑄𝑛−1)𝑡) and
𝑡 = cterm(𝑄𝑛).

Since the previous paragraph states that 𝑓(𝐸∗) = 𝑀 , the relation 𝑅 given by its graph is
well-defined in 𝐸∗ × 𝑀 . Moreover, if the successors of 𝑤 ∈ 𝐸∗ are 𝑤𝑠 ∈ 𝐸∗ for some 𝑠 ∈ 𝑆, the
successors of 𝑓(𝑤) ∈ 𝒫(𝒳𝒮) are 𝑓(𝑤𝑠) for the same states 𝑠. In fact, we know 𝑓(𝑤) [↠] 𝑓(𝑤𝑠)
and that every 𝑄 such that 𝑓(𝑤) [↠] 𝑄 is 𝑓(𝑤𝑠) for some 𝑠 ∈ 𝑆. Thus, 𝑅 is a bisimulation.

Hence, to model check state-based properties of system controlled by strategies, we propose
applying standard algorithms on ℳ. A similar proposition holds for the labeled variant ℳ′ and
𝒰′ = ((𝑆 ∪ 𝐴)∗, 𝑈 ′) where (𝑤𝑡) 𝑈 ′ (𝑤𝑡𝑎𝑡′) iff ∃𝑤′ ∈ (𝑆 ∪ 𝐴)𝜔 𝑤𝑡𝑎𝑡′𝑤′ ∈ 𝐸labeled(𝛼, 𝑠). For action-
based or doubly-labeled logics, we propose using ℳ′ instead. In the following sections, to justify
that the proposed procedure is meaningful, we give reasonable generalizations of two specific
branching-time logics for strategy-controlled systems, and show how their notions of satisfaction
coincide. CTL* and 𝜇-calculus are chosen because they are well-known and because the tool used
only handles those, but the procedure is general and can be applied to other logics.
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4.1 CTL*

The proposed generalized definition is similar to those we can find in most reference textbooks [7,
8] and coincides with a previous definition for trees [27]. We identify abstract strategies with
trees since they are in univocal relation as long as trees only branch to distinct children, as it
is the case. For an execution 𝜋 = (𝜋𝑛)∞

𝑛=0, we denote the suffix that starts at the position 𝑘 by
𝜋𝑘 = (𝜋𝑘+𝑛)∞

𝑛=0, the prefix that stops at 𝑘 by 𝜋−𝑘 = 𝜋0 ⋯ 𝜋𝑘, and all the executions of a given
abstract strategy 𝐸 continuing a given prefix by 𝐸 ↾ 𝑤𝑠 = {𝑠𝜋 ∶ 𝑤𝑠𝜋 ∈ 𝐸} for all 𝑤 ∈ 𝑆∗ and
𝑠 ∈ 𝑆.

1. 𝐸 ⊨ 𝑝 iff ∀ 𝜋 ∈ 𝐸 𝑝 ∈ ℓ(𝜋0)
2. 𝐸 ⊨ ¬Φ iff 𝐸 ⊭ Φ
3. 𝐸 ⊨ Φ1 ∧ Φ2 iff 𝐸 ⊨ Φ1 and 𝐸 ⊨ Φ2
4. 𝐸 ⊨ A𝜙 iff ∀ 𝜋 ∈ 𝐸 𝐸 ↾ 𝜋0, 𝜋 ⊨ 𝜙
5. 𝐸 ⊨ E𝜙 iff ∃ 𝜋 ∈ 𝐸 𝐸 ↾ 𝜋0, 𝜋 ⊨ 𝜙
6. 𝐸, 𝜋 ⊨ Φ iff 𝐸 ⊨ Φ
7. 𝐸, 𝜋 ⊨ ¬𝜑 iff 𝐸, 𝜋 ⊭ 𝜑
8. 𝐸, 𝜋 ⊨ 𝜑1 ∧ 𝜑2 iff 𝐸, 𝜋 ⊨ 𝜑1 and 𝐸, 𝜋 ⊨ 𝜑2
9. 𝐸, 𝜋 ⊨ ○ 𝜑 iff 𝐸 ↾ 𝜋0𝜋1, 𝜋1 ⊨ 𝜑
10. 𝐸, 𝜋 ⊨ ⋄ 𝜑 iff ∃ 𝑛 ≥ 0 𝐸 ↾ 𝜋−𝑛, 𝜋𝑛 ⊨ 𝜑
11. 𝐸, 𝜋 ⊨ □ 𝜑 iff ∀ 𝑛 ≥ 0 𝐸 ↾ 𝜋−𝑛, 𝜋𝑛 ⊨ 𝜑
12. 𝐸, 𝜋 ⊨ 𝜑1 U𝜑2 iff ∃ 𝑛 ≥ 0 𝐸 ↾ 𝜋−𝑛, 𝜋𝑛 ⊨ 𝜑2 ∧ ∀ 0 ≤ 𝑘 < 𝑛 𝐸 ↾ 𝜋−𝑘, 𝜋𝑘 ⊨ 𝜑1

Observe that it only differs from the classical definition in the fact that the strategy is carried
on. Path formulae 𝜑 are understood similarly, but here, a state property Φ does not only depend
on the state but on the full state history. The extended and classical relations are linked by the
following essential property:

Proposition 2. Given a CTL* formula 𝜑, 𝒦, 𝑠 ⊨ 𝜑 iff 𝒦, Γ𝜔
𝑠 ⊨ 𝜑.

Proof. Since the executions are unrestricted, Γ𝜔
𝑠 ↾ (𝑠 ⋯ 𝑠′) = Γ𝜔

𝑠′ . Using this fact and other im-
mediate arguments, the definition for strategies coincides almost syntactically with the standard
one.

The following proposition justifies that model checking can be solved by the classical proce-
dures applied on ℳ:

Proposition 3. 𝐸(𝛼, 𝑡) ⊨ 𝜑 ⟺ ℳ, {𝑡@𝛼} ⊨ 𝜑

Proof. We will show an inductive proof on the structure of CTL* formulae of the more general
property 𝒰(𝐸), 𝑤 ⊨ 𝜑 iff 𝒦, 𝐸 ↾ 𝑤 ⊨ 𝜑 for all 𝑤 ∈ 𝑆+. We need to handle path formulae
simultaneously, so the inductive property also includes 𝒰(𝐸), 𝜋 ⊨ 𝜑 iff 𝒦, 𝐸 ↾ 𝜋0, flat(𝜋) ⊨ 𝜑.
Notice that in the left-hand side executions are successions of growing 𝑆+ words while in the
right-hand side they are successions of 𝑆 states. To facilitate reading, we will omit the 𝒰(𝐸) and
𝒦 prefix when writing the satisfaction relations.

– (𝑝, atomic propositions) By definition, 𝑤𝑠 ⊨ 𝑝 iff 𝑝 ∈ ℓ(𝑠), and 𝐸 ↾ 𝑤𝑠 ⊨ 𝑝 iff 𝑝 ∈ ℓ(𝑠′) for all
𝑠′𝑤′ ∈ 𝐸 ↾ 𝑤𝑠 = {𝑠𝑤″ ∶ 𝑤𝑠𝑤″ ∈ 𝐸}. Then, 𝑠′ can only be 𝑠 and both conditions coincide.

– (Φ1 ∧ Φ2) In the standard side, the conjunction is satisfied iff 𝑤 ⊨ Φ𝑖 for both 𝑖 = 1, 2. In the
strategy side, this happens iff 𝐸 ↾ 𝑤 ⊨ Φ𝑖. By induction hypothesis on Φ𝑖 the equivalence
holds.

– (¬Φ) The same inductive argument can be used for negation.
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– (A𝜑) This formula is satisfied iff 𝜋 ⊨ 𝜑 for all 𝜋 ∈ Γ𝜔
𝒰(𝐸),𝑤 in the 𝒰(𝐸) side. In the strategy

side, this is 𝐸 ↾ 𝑤, 𝜌 ⊨ 𝜑 for all 𝜌 ∈ 𝐸 ↾ 𝑤. Using Lemma 1, all these 𝜌 are exactly those flat(𝜋),
and applying the induction hypothesis on 𝜑, we get that both statements are equivalent.

Let 𝜋 be (𝑤𝑠0)(𝑤𝑠0𝑠1) ⋯, we then target the path satisfaction cases:

– (○ 𝜑) We should prove that 𝜋 ⊨ ○ 𝜑 is equivalent to 𝐸 ↾ 𝑤𝑠0, 𝑠0𝑠1 ⋯ ⊨ ○ 𝜑. Their definitions
translate these to 𝜋1 ⊨ 𝜑 and (𝐸 ↾ 𝑤𝑠0) ↾ 𝑠0𝑠1, (𝑠0𝑠1 ⋯)1 ⊨ 𝜑. But they are equivalent by
induction hypothesis on 𝜑, since (𝐸 ↾ 𝑤𝑠0) ↾ 𝑠0𝑠1 = 𝐸 ↾ 𝑤𝑠0𝑠1 = 𝐸 ↾ 𝜋1 = 𝐸 ↾ (𝜋1)0 and
(𝑠0𝑠1 ⋯)1 = 𝑠1𝑠2 ⋯ = flat(𝜋1).

– (𝜑1 𝒰 𝜑2) The formula holds in the standard sense if there is an 𝑛 ∈ ℕ such that 𝜋𝑛 ⊨ 𝜑2
and for all 𝑘 such that 0 ≤ 𝑘 < 𝑛 then 𝜋𝑘 ⊨ 𝜑1. In the strategy side, the formula holds if
again there is an 𝑛 ∈ ℕ such that (𝐸 ↾ 𝑤𝑠0) ↾ 𝑠1𝑠2 ⋯ 𝑠𝑛, 𝑠𝑛𝑠𝑛+1 ⋯ ⊨ 𝜑2 and (𝐸 ↾ 𝑤𝑠0) ↾
𝑠0𝑠1 ⋯ 𝑠𝑘, 𝑠𝑘𝑠𝑘+1 ⋯ ⊨ 𝜑1 for all 0 ≤ 𝑘 < 𝑛. Since (𝐸 ↾ 𝑤𝑠0) ↾ 𝑠0𝑠1 ⋯ 𝑠𝑘 = 𝐸 ↾ 𝑤𝑠0𝑠1 ⋯ 𝑠𝑘 =
𝐸 ↾ (𝜋𝑘)0 and 𝑠𝑘𝑠𝑘+1 ⋯ = flat(𝜋𝑘) for all 𝑘 ∈ ℕ, the induction hypothesis can be applied to
𝜑1 and 𝜑2 to conclude the property for 𝜑1 𝒰 𝜑2.

– (Φ) 𝜋 ⊨ Φ is defined as 𝜋0 ⊨ Φ in the standard sense, and 𝐸 ↾ 𝑤𝑠0, 𝑠0𝑠1 ⋯ ⊨ Φ is 𝐸 ↾ 𝑤𝑠0 ⊨ Φ
in the strategy case. Since 𝜋0 = 𝑤𝑠0, both statements are related as in the induction property.
We can apply the hypothesis on Φ itself considering that state satisfaction is below path
satisfaction (we never apply this argument in reverse), and then they are equivalent.

Only a complete subset of CTL* constructors has been handled in the proof, but simple
propositional and first-order properties let us conclude that the following well-know semantic
equivalences are also satisfied by the given extended CTL* definition for strategies:

– Φ1 ∨ Φ2 ≡ ¬(¬Φ1 ∧ ¬Φ2) for any state or path formula Φ.
– E𝜑 ≡ ¬(A¬𝜑) for any path formula 𝜑.
– ⋄ 𝜑 ≡ ⊤ 𝒰 𝜑 for any path formula 𝜑.
– □ 𝜑 ≡ ¬(⋄ ¬𝜑) for any path formula 𝜑.

4.2 𝜇-calculus

We present a generalized definition of 𝜇-calculus for strategies that mimics the original one.
While in the original 𝜇-calculus a valid formula 𝜑 is given meaning ⟦𝜑⟧𝜂 as the set of states in
which it is satisfied, here, a formula will denote instead a set ⟪𝜑⟫𝜂 of subtrees (in other words,
strategies) in which 𝜑 is satisfied. Let 𝜂 be an assignment from variables 𝑍 in the formula to
subsets of 𝒫(Γ𝜔

𝒦):

1. ⟪𝑝⟫𝜂 = {𝑇 ⊆ Γ𝜔
𝒦 ∶ ∀𝑠𝑎𝜋 ∈ 𝑇 𝑝 ∈ ℓ(𝑠)}

2. ⟪¬𝜑⟫𝜂 = 𝒫(Γ𝜔
𝒦)\⟪𝜑⟫𝜂

3. ⟪𝜑1 ∧ 𝜑2⟫𝜂 = ⟪𝜑1⟫𝜂 ∩ ⟪𝜑2⟫𝜂
4. ⟪𝑍⟫𝜂 = 𝜂(𝑍)
5. ⟪⟨𝑎⟩𝜑⟫𝜂 = {𝑇 ⊆ Γ𝜔

𝒜 ∶ ∃ 𝑠𝑎𝜋 ∈ 𝑇 𝑇 ↾ 𝑠𝑎𝜋0 ∈ ⟪𝜑⟫𝜂}
6. ⟪𝜈𝑍.𝜑⟫𝜂 = ⋃ {𝐹 ⊆ 𝒫(Γ𝜔

𝒜) ∶ 𝐹 ⊆ ⟪𝜑⟫𝜂[𝑍/𝐹]}

Other constructors like [𝑎]𝜑 and 𝜇𝑍.𝜑 are defined by their usual equivalences to these. Provided
that every variable is under an even number of negations, the definition is monotone and the
fixpoints are well-defined. When the formula 𝜑 is ground, i.e. it does not have free variables, we
omit the valuation subscript 𝜂. This generalization is connected with the original definition by
the property:
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Proposition 4. Given a ground 𝜇-calculus formula 𝜑, ⟪𝜑⟫𝒦,𝜂 ∋ 𝑠 iff Γ𝒦,𝑠 ∈ ⟪𝜑⟫𝒦,𝜂 for any 𝜂
and 𝜉.
Proof. This property can be proven inductively, adding to the inductive property the premise
that 𝜂(𝑍) ∋ 𝑠 iff Γ𝑠 ∈ 𝜉(𝑍) for all variable 𝑍. For the initial 𝜑, this premise is trivially satisfied
since we can take 𝜂(𝑍) = ∅ = 𝜉(𝑍) regardless of the given two, since the formula is closed. We
will not detail some trivial cases:

– (𝑝) By definition, 𝑠 ∈ ⟪𝑝⟫𝜂 is 𝑝 ∈ ℓ(𝑠) and Γ𝑠 ∈ ⟪𝑝⟫𝜉 is ∀𝜋 ∈ Γ𝑠 𝑝 ∈ ℓ(𝜋0). Since Γ𝑠 are the
executions of 𝒦 starting at 𝑠, 𝜋0 = 𝑠 and both statements are equivalent.

– (⟨𝑎⟩𝜑) 𝑠 ∈ ⟪⟨𝑎⟩𝜑⟫𝜂 if there is a 𝑠′ ∈ 𝑆 such that 𝑠 →𝑎 𝑠′ and 𝑠′ ∈ ⟪𝜑⟫𝜂. On the other side,
Γ𝑠 ∈ ⟪⟨𝑎⟩𝜑⟫𝜉 holds iff there is 𝑠𝑎𝑤 ∈ Γ𝑠 such that Γ𝑠 ↾ 𝑠𝑎𝑤0 = Γ𝑤0

∈ ⟪𝜑⟫𝜉. The induction
hypothesis taking 𝑠′ = 𝑤0 let us conclude the property.

– (𝜈𝑍.𝜑) 𝑠 ∈ ⟪𝜈𝑍.𝜑⟫𝜂 if there is a set 𝑉 such that 𝑠 ∈ 𝑉 and 𝑉 ⊆ ⟪𝜑⟫𝜂[𝑍/𝑉 ]. In the strategy
side, Γ𝑠 ∈ ⟪𝜈𝑍.𝜑⟫𝜉 iff there is an 𝐹 such that Γ𝑠 ∈ 𝐹 and 𝐹 ⊆ ⟪𝜑⟫𝜉[𝑍/𝐹]. Both implications
of the equivalence can be proven like in the previous proposition, but taking 𝐹 = {Γ𝑠 ∶ 𝑠 ∈ 𝑉 }
for a given 𝑉 , and 𝑉 = {𝑠 ∈ 𝑆 ∶ Γ𝑠 ∈ 𝐹} for a given 𝐹 .

As for CTL*, the following proposition claims that a formula is satisfied for a strategy in
the generalized sense iff it is satisfied in the merged labeled transition system generated by the
nondeterministic semantics:

Proposition 5. Given a ground 𝜇-calculus formula 𝜑, ⟦𝜑⟧𝒰′(𝐸),𝜉 ∋ 𝑡@𝛼 iff 𝐸 ∈ ⟪𝜑⟫𝒦,𝜂 for any
𝜂 and 𝜉.
Proof. We will prove the more general property that ⟪𝜑⟫𝜂 ∋ 𝑤 iff 𝐸 ↾ 𝑤 ∈ ⟪𝜑⟫𝜉 provided that
𝜂(𝑍) ∋ 𝑤 iff 𝐸 ↾ 𝑤 ∈ 𝜉(𝑍) for all variable 𝑍.

– (𝑝) By definition, 𝑤𝑠 ∈ ⟪𝜑⟫𝜂 iff 𝑝 ∈ ℓ(𝑠). On the other side, 𝐸 ↾ 𝑤𝑠 ∈ ⟪𝜑⟫𝜉 iff 𝑝 ∈ ℓ(𝜋0) for
all 𝜋 ∈ 𝐸 ↾ 𝑤𝑠. However, 𝜋0 must be 𝑠 since 𝐸 ↾ 𝑤𝑠 = {𝑠𝑤′ ∶ 𝑤𝑠𝑤′ ∈ 𝐸}, so both sides are
equivalent.

– (𝑍) The value of 𝑍 in both contexts is respectively 𝜂(𝑍) and 𝜉(𝑍), so the property directly
follows from the assumption over these two functions.

– (𝜑1 ∧ 𝜑2) The standard definition says ⟪𝜑1 ∧ 𝜑2⟫𝜂 = ⟪𝜑1⟫𝜂 ∩ ⟪𝜑2⟫𝜂 and the strategy one is
⟪𝜑1 ∧ 𝜑2⟫𝜉 = ⟪𝜑1⟫𝜉 ∩ ⟪𝜑2⟫𝜉. Hence, the property holds by induction hypothesis on 𝜑1 and
𝜑2.

– (¬𝜑) By definition, ⟪¬𝜑⟫𝜂 = 𝑆+\⟪𝜑⟫𝜂 and ⟪¬𝜑⟫𝜉 = 𝒫(Γ𝒦)\⟪𝜑⟫𝜉, so the property holds by
induction hypothesis on 𝜑.

– (⟨𝑎⟩𝜑) 𝑤𝑠 ∈ ⟪⟨𝑎⟩𝜑⟫𝜂 iff there is an (𝑎, 𝑠′) ∈ 𝜆(𝑤𝑠) such that 𝑤𝑠𝑎𝑠′ ∈ ⟪𝜑⟫𝜂 according to the
standard definition of 𝜇-calculus and the transition relation on 𝒰′(𝐸). On the other side,
𝐸 ↾ 𝑤𝑠 ∈ ⟪⟨𝑎⟩𝜑⟫𝜉 if there is a 𝑤′ ∈ (𝑆 ∪ 𝐴)∞ such that 𝑠𝑎𝑤′ ∈ 𝐸 ↾ 𝑤𝑠 and (𝐸 ↾ 𝑤𝑠) ↾
𝑠𝑎𝑤′

0 = 𝐸 ↾ 𝑤𝑠𝑎𝑤′
0 ∈ ⟪𝜑⟫𝜉.

By definition of 𝜆 and 𝐸(𝜆), there is a 𝑤′ ∈ (𝑆∪𝐴)∞ such that 𝑤𝑠𝑎𝑤′ ∈ 𝐸 iff (𝑎, 𝑤′
0) ∈ 𝜆(𝑤𝑠).

Hence, by induction hypothesis on 𝜑 and taking 𝑤′
0 = 𝑠′, we conclude that the property holds.

– (𝜈𝑍.𝜑) According to the standard definition, 𝑤𝑠 ∈ ⟪𝜈𝑍.𝜑⟫𝜂 if there is a 𝑉 ⊆ 𝑆+ such that
𝑉 ⊆ ⟪𝜑⟫𝜂[𝑍/𝑉 ] and 𝑤𝑠 ∈ 𝑉 . According to our definition for strategies, 𝐸 ↾ 𝑤𝑠 ∈ ⟪𝜈𝑍.𝜑⟫𝜉 iff
there is an 𝐹 ⊆ 𝒫(Γ𝒦) such that 𝐹 ⊆ ⟪𝜑⟫𝜉[𝑍/𝐹] and 𝐸 ↾ 𝑤𝑠 ∈ 𝐹 .
Assuming there exists a 𝑉 with these properties (⇒), consider 𝐹 = {𝐸 ↾ 𝑤 ∶ 𝑤 ∈ 𝑉 }. The
definition is precisely 𝑤 ∈ 𝑉 iff 𝐸 ↾ 𝑤 ∈ 𝐹 , so 𝜂[𝑍/𝑉 ] and 𝜉[𝑍/𝐹 ] are properly related.
Hence, by induction hypothesis on 𝜑, 𝐸 ↾ 𝑤 ∈ ⟪𝜑⟫𝜉[𝑍/𝐹] iff 𝑤 ∈ ⟪𝜑⟫𝜂[𝑍/𝑉 ], so 𝐹 ⊆ ⟪𝜑⟫𝜉[𝑍/𝐹]
as we wanted to prove. In the opposite direction (⇐), assuming the existence of an 𝐹 with
the mentioned properties, consider 𝑉 = {𝑤 ∈ 𝑆+ ∶ 𝐸 ↾ 𝑤 ∈ 𝐹} and the proof is the same.
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5 The Maude language module for LTSmin

According to the previous section, to check CTL* or 𝜇-calculus properties on Maude specifica-
tions we should take the Kripke structure ℬ, already generated for the LTL model checker, merge
its states as in ℳ or ℳ′ and apply the standard algorithms on them. To avoid programming
these algorithms for scratch, we have developed instead a language module for the language-
independent model checker LTSmin [16]. Oversimplifying, this software allows defining language
frontends that expose programs in a specification language like Maude as a labeled transition
system to some builtin algorithmic backends, including model checkers for different logics. The
Kripke-like C interface is called PINS (Partitioned Next State Interface) and promotes sharing
additional information about the internal structure of the models to speed up algorithms. Fron-
tends are included for various modeling formalisms like Promela, PNML, DIVINE, UPPAAL,
etc., and custom language modules, like ours, can also be loaded by the LTSmin tools using the
POSIX’s dlopen API.

Maude LTSmin

libmaude.so libmaudemc.so PINS

next_state
state_label
Edge labels

Fig. 1. Architecture of the Maude LTSmin plugin

The language module is the C library libmaudemc.so illustrated in Fig. 1. On the one hand,
the module is linked with the C++ implementation of Maude 3.0 including the extended LTL
model checker for strategy-controlled systems, which processes the Maude files and gives access
to the transition system used for LTL model checking. On the other hand, the plugin implements
the PINS interface by exporting some C functions that the LTSmin model-checking algorithms
will call to introspect the model3: the next_state function provides the successors of a given
state, including their edge labels, and state_label tests whether an atomic proposition holds in
a state. The module itself takes care of merging states as required for CTL* and 𝜇-calculus, and
also removes states in which the strategy has failed, which were ignored automatically by the
nested depth-first search of LTL model checking, but must be explicitly purged here. LTSmin lets
frontend designers represent states as vectors of integers, which can be partitioned and whose
dependencies can be declared as matrices that the algorithms may use to improve their efficiency
and allow distributed implementations. However, in our case the state is a single integer that
represents an internal state of the Maude model checker, since partitioning and inferring relations
about arbitrary Maude specifications seems unpractical.

LTSmin includes different commands like pins2lts-seq for explicit state LTL model check-
ing or pins2lts-sym for symbolic CTL/CTL*/𝜇-calculus that, once our module is loaded with
--loader=libmaudemc.so, are ready to handle Maude specifications. The Maude source file, the
initial term, and an optional strategy expression have to be provided as arguments to the com-
mand. A helper script maude2lts has been written to call the appropriate tool and configuration

3 LTSmin loads libmaudemc.so using the dlopen API, which allows loading dynamic libraries at run-
time, accessing their symbols, and calling their C functions.
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for the appropriate formula among those supported by LTSmin: invariant, ctl, ctl-star and
mu, which are documented in its webpage.

For example, after downloading the plugin from http://maude.ucm.es/strategies and
LTSmin from https://ltsmin.utwente.nl, we can check the CTL property that every state of
the river crossing puzzle can be continued to a solution A□E ⋄ 𝑔𝑜𝑎𝑙. This formula is satisfied
when the system is controlled by the safe strategy, but not when using the eagerEating strategy
or when the system runs uncontrolled.

$ maude2lts river.maude initial --strat safe
--aprops=goal --ctl 'A [] E <> goal'

maude-mc: selected module is RIVER-CROSSING -SCHECK
pins2lts-sym: Formula A [] E <> goal holds

for the initial state
maude-mc: 16 system states explored , 110 rewrites

$ maude2lts river.maude initial --strat eagerEating
--aprops goal --ctl 'A [] E <> goal'

pins2lts-sym: Formula ... does not hold ...
maude-mc: 43 system states explored , 314 rewrites

$ maude2lts river.maude initial
--aprops goal --ctl 'A [] E <> goal'

pins2lts-sym: Formula ... does not hold ...
maude-mc: 36 system states explored , 322 rewrites

However, the property A□ (𝑏𝑎𝑑 ∨ 𝑑𝑒𝑎𝑡ℎ ∨ E ⋄ 𝑔𝑜𝑎𝑙) holds under the eagerEating strategy.

$ maude2lts river.maude initial --strat eagerEating
--aprops goal:bad:death
--ctl 'A [] (bad || death || E <> goal)'

pins2lts-sym: Formula ... holds ...
maude-mc: 43 system states explored , 658 rewrites

Since LTL properties can be checked both directly from Maude or using the LTSmin plugin.
Against the model-checking examples available in our web page [13], LTSmin is 10,73% slower in
average (or 11,21% using its builtin caching) and requires more memory. However, the commu-
nication costs and the partially redundant representation of the state can explain this difference.
Moreover, since the PINS interface asks for all the successors of a state at once, the on-the-fly
state space expansion is lazier in Maude and the order in which children are processed is reversed.
The size of the property automata generated from the formulae by both tools coincide, except
in one case when Maude’s is one state smaller.

Other alternatives to bring CTL* and 𝜇-calculus model checking to Maude have been con-
sidered like generating an equivalent model for a specific tool or exporting it to a somehow
standard representation. For example, the Model Checking Contest uses the Petri Net Markup
Language (PNML) to state the problems for all the competitor tools. In fact, we first wrote a
metalevel prototype that outputs a model for the NuSMV model checker. Finally, we decided to
use LTSmin because its interface is closer to our description of the transition system, and because
of its live connection that allows generating the space state and checking propositions on the fly.
Only LTL model checking, which was already covered, can benefit from the first advantage, but
the second is always useful.
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6 Related work

We have already commented in each section on related work for each topic, but we should also
mention that other model checkers have been developed for Maude specifications, like a timed
CTL model checker for Real-Time Maude [18], another for the more expressive Linear Temporal
Logic of Rewriting [3] (LTLR), and an abstract logical model checker [2] using narrowing instead
of rewriting.

The combination of strategies and model checking is not original. In the field of multiplayer
games, various logics like ATL* [1] and strategy logic [21] have been proposed to reason about
player strategies. Other logics like mCTL* [17] are extended to take past actions into account.
However, our approach is different, since strategies are part of the specification of the model,
keeping the property specification unaltered.

7 Conclusions

In this paper, the study of model checking for systems controlled by strategies is extended to
branching-time properties, and a tool is presented to widen the range of properties that can be
checked against standard Maude specifications and strategy-controlled ones. In a more general
sense, this work aims to make strategies a more useful and convenient choice to specify and verify
systems. While strategy-free models can be fully explored at the metalevel using the metaXApply
function, there were no resources in the current metalevel to follow step by step the execution
of a strategy, without implementing them from scratch. Our plugin exposes these Maude models
to external tools for verification, visualization and other types of analysis.
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