
The semantics of the Maude strategy language
Technical report SIC 21/01 — August, 2021

Rubén Rubio, Narciso Martí-Oliet, Isabel Pita, Alberto Verdejo
Facultad de Informática, Universidad Complutense de Madrid, Spain

{rubenrub,narciso,ipandreu,jalberto}@ucm.es

1 Strategy language syntax
Given a rewrite theory ℛ = (Σ, 𝐸 ⊎ 𝐴𝑥, 𝑅) and a set Ω of strategy identifiers, we define Stratℛ,Ω as the set
of terms generated from the non-terminal 𝑆𝑡𝑟𝑎𝑡 of the following grammar:

⟨Strat⟩ ::= idle | fail
| ⟨BasicStrat⟩
| top(⟨BasicStrat⟩)
| ⟨Strat⟩ ? ⟨Strat⟩ : ⟨Strat⟩
| ⟨Test⟩
| ⟨Strat⟩ ; ⟨Strat⟩
| ⟨Strat⟩ | ⟨Strat⟩
| ⟨Strat⟩ *
| ⟨Matchrew⟩
| ⟨SCall⟩
| one(⟨Strat⟩)

⟨BasicStrat⟩ ::= ⟨Label⟩ | all
| ⟨Label⟩ [[⟨Substitution⟩]] [{ ⟨StratList⟩ }]

⟨StratList⟩ ::= ⟨Strat⟩
| ⟨Strat⟩ , ⟨StratList⟩

⟨Substitution⟩ ::= ⟨Variable⟩ <- ⟨Term⟩
| ⟨Substitution⟩ , ⟨Substitution⟩

⟨SCall⟩ ::= ⟨SLabel⟩
| ⟨SLabel⟩ (⟨TermList⟩)

⟨TermList⟩ ::= ⟨Term⟩
| ⟨Term⟩ , ⟨TermList⟩

where Term can be any element of 𝑇Σ(𝑋), Label any label in 𝑅, SLabel any element of Ω and Type any type
of the rewriting theory.

⟨TestVariant⟩ ::= amatch
| match
| xmatch

⟨MrewVariant⟩ ::= amatchrew
| matchrew
| xmatchrew

⟨Condition⟩ ::= ⟨Term⟩ = ⟨Term⟩
| ⟨Term⟩ := ⟨Term⟩
| ⟨Term⟩ : ⟨Type⟩

⟨RuleCondition⟩ ::= ⟨Condition⟩
| ⟨Term⟩ => ⟨Term⟩

⟨Test⟩ ::= ⟨TestVariant⟩ ⟨Term⟩ [s.t. ⟨Condition⟩]

⟨Matchrew⟩ ::= ⟨MrewVariant⟩ ⟨Term⟩ [s.t. ⟨Condition⟩] by ⟨VarStratList⟩

⟨VarStratList⟩ ::= ⟨Variable⟩ using ⟨Strat⟩
| ⟨Variable⟩ using ⟨Strat⟩ , ⟨VarStratList⟩

While the previous constructions contain all the expressiveness of the language, some meaningful deriva-
tives can be defined.

⟨Strat⟩ ::= […]
| ⟨Strat⟩ + 𝛼+ ≡ 𝛼 ;𝛼∗

| ⟨Strat⟩ or-else ⟨Strat⟩ 𝛼 or-elese 𝛽 ≡ 𝛼 ? idle : 𝛽
| not(⟨Strat⟩) not(𝛼) ≡ 𝛼 ? fail : idle
| ⟨Strat⟩ ! 𝛼! ≡ 𝛼∗ ; not(𝛼)
| try(⟨Strat⟩) try(𝛼) ≡ 𝛼 ? idle : idle
| test(⟨Strat⟩) test(𝛼) ≡ not(not(𝛼))

A strategy module starts with smod and ends with endsm, and it can import other modules and contain
strategy declarations and definitions:

1

⟨StratDecl⟩ ::= strat ⟨SLabel⟩+ @ ⟨Type⟩ .
| strat ⟨SLabel⟩+ : ⟨Type⟩* @ ⟨Type⟩ .

⟨StratDef ⟩ ::= sd ⟨SCall⟩ := ⟨Strat⟩ .
| csd ⟨SCall⟩ := ⟨Strat⟩ if ⟨Condition⟩ .

Strategy modules are encoded in two sets: the set of named strategies or strategy declarations Ω and the
set of strategy definitions 𝐷. Like the symbols of the signature, strategies can be overloaded by the type
of their arguments so that each named strategy is identified by both its label and its argument kinds. The
strategy definitions can be seen as 𝐷 ⊆ 𝑙𝑎𝑏𝑒𝑙(Ω) × 𝑇Σ(𝑋)∗ × Stratℛ,Ω × 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛. Some restrictions on
types, arities and scopes must be checked:

• For each strategy call 𝑠𝑙(𝑡1, … , 𝑡𝑛) there must be a strategy declaration in Ω with label 𝑠𝑙 and argument
kinds 𝑘1, … , 𝑘𝑚 such that 𝑚 = 𝑛 and 𝑡𝑖 ∈ 𝑇Σ,𝑘𝑖

(𝑋) for all 𝑖 between 1 and 𝑛.
• Two strategy declarations whose arguments fall in the same connected components declare the same

named strategy, as in Σ. It usually does not make sense to write two declarations in that situation.
However, it may be useful, for example, to extend the argument or subject type of the strategy in an
extending module.

• All variable occurrences must be bound except when they appear in the pattern of a match or matchrew
construct, in the left-hand side of an assignment condition fragment, or in the left-hand side of a strategy
definition.
Variables in a pattern are bound in the corresponding condition and in each matchrew’s substrategy.
Variables in assignment condition fragments are bound in the following fragments and in the matchrew’s
substrategies, if applicable. Variables in the VarStratList of matchrew must be distinct and appear in
its pattern. Any other variable in strategy definitions must appear in the left-hand side or in the
condition.

2 Semantics infrastructure
The execution of a strategy, like free rewriting, is not necessarily deterministic. The number of solutions
yielded by the strategy may be zero if the strategy fails, any positive number, or even an infinite one.
Moreover, as recursion is allowed in strategy modules, the rewriting process may not terminate, even if it has
already produced some results. Hence, if we are interested in describing the results of a strategy computation,
we are bound to use sets of terms with an explicit representation of non-termination. This motivates the
following definition:
▶ Definition. For any set 𝑀 we define

𝒫⊥(𝑀) ≔ 𝒫(𝑀 ∪ {⊥})
∼ 𝐴 ∼ 𝐵 ⟺ 𝐴 = 𝐵 ∨ (𝐴 is not finite and 𝐴 ⊕ 𝐵 = {⊥})

The additional element ⊥ indicates non-termination or temporary undefinedness, and ⊕ is the symmetric
difference of two sets. The equivalence relation ∼ states that we do not care about infinite sets containing
⊥, because the calculation of an infinite set of solutions never terminates. In simpler words, 𝒫⊥(𝑀) is 𝒫(𝑀)
with an additional copy of the finite sets, marked by ⊥. In practice, we will usually confuse equivalence
classes and sets, writing ⊥ ∈ 𝐴 if 𝐴 contains ⊥ or 𝐴 is infinite. Unions are well defined and 𝐴\{⊥} is always
an unambiguous subset of 𝑀 .

In our semantic setting, sets containing ⊥ (or infinite sets) are mean to be still open in the sense that the
undefinedness behind ⊥ can be solved during execution to add further results. On the contrary, sets without
⊥ are supposed to be already complete. This idea of extension of solution sets gives sense to the following
order relation:
▶ Definition. For any set 𝑀 , the order relation ≤ in 𝒫⊥(𝑀) is defined as

𝐴 ≤ 𝐵 ⟺ {𝐴\{⊥} ⊆ 𝐵 if ⊥ ∈ 𝐴
𝐴 = 𝐵 if ⊥ ∉ 𝐴

In Appendix A.1, we prove (𝒫⊥(𝑀), ≤) is a chain-complete partially ordered set, whose minimum is {⊥}.
Directly dealing with this indeterminate symbol is cumbersome, so we define the following notation:

2

▶ Definition. For any sets 𝑀 and 𝑁 , 𝐴 ∈ 𝒫⊥(𝑀) and 𝐵𝑥 ∈ 𝒫⊥(𝑁) for every 𝑥 ∈ 𝑀 , we define

let 𝑥 ↢ 𝐴 ∶ 𝐵𝑥 ≔ { {⊥} ∪ ⋃𝑥∈𝐴\{⊥} 𝐵𝑥 if ⊥ ∈ 𝐴
⋃𝑥∈𝐴 𝐵𝑥 if ⊥ ∉ 𝐴

Formally, let is a function 𝒫⊥(𝑀) × (𝑀 → 𝒫⊥(𝑁)) → 𝒫⊥(𝑁) where 𝐵(𝑥) = 𝐵𝑥.

2.1 Basic operations of rewriting logic

Given a rewrite theory ℛ = (Σ, 𝐸⊎𝐴𝑥, 𝑅) with set of variables 𝑋 and strategies given by (Ω, 𝐷), the semantic
function for a strategy 𝛼 ∈ Stratℛ,Ω can take the form

⟦𝛼⟧ ∶ (𝑋 → 𝑇Σ(𝑋)) × 𝑇Σ(𝑋) → 𝒫⊥(𝑇Σ(𝑋))

It receives a substitution and a term, and produce the set of all terms obtained by rewriting according to
𝛼, including ⊥ if the calculation does not terminate. To improve legibility we write VEnv for 𝑋 → 𝑇Σ(𝑋)
and call this functional class SFun and its domain SDom. Using the let function introduced above, the
composition of semantic functions can be defined

∘ ∶ SFun × SFun → SFun
(𝑔, 𝑓) ↦ 𝑔 ∘ 𝑓 (𝑔 ∘ 𝑓)(𝜃, 𝑡) = let 𝑡′ ↢ 𝑓(𝜃, 𝑡) ∶ 𝑔(𝜃, 𝑡′)

And we write for any 𝑓 ∈ SFun, 𝑓 0(𝜃, 𝑡) = {𝑡} and 𝑓 𝑛+1 = 𝑓 ∘ 𝑓 𝑛. The composition of substitutions 𝜎2 ∘ 𝜎1
is defined by (𝜎2 ∘ 𝜎1)(𝑥) = 𝜎2(𝜎1(𝑥)) where 𝜎 ∶ 𝑇Σ(𝑋) → 𝑇Σ(𝑋) is the inductive extension to terms of a
substitution 𝜎. The property 𝜎2 ∘ 𝜎1 = 𝜎2 ∘ 𝜎1 holds in the usual functional sense.

In order to properly define the various semantics in this document, we have to refer to some auxiliary
functions for matching and checking conditions. We assume matching functions are already defined

match ∶ 𝑇Σ(𝑋) × 𝑇Σ(𝑋) → 𝒫(VEnv)

The basic match(𝑝, 𝑡) provides a (finite) set of substitutions such that the pattern 𝑝 matches 𝑡 on top.
Variables which do not occur in 𝑝 are mapped to themselves (i.e. are not bound). For matching anywhere or
with extension, the function result also includes a context

amatch, xmatch ∶ 𝑇Σ(𝑋) × 𝑇Σ(𝑋) → 𝒫(VEnv × 𝑇Σ(𝑋))

The context 𝑐 ∈ 𝑇Σ(𝑋) is a term with single special fresh variable ⊝ occurring once, called the hole. We will
usually use 𝑐 as a function that replaces the hole by its argument.

Conditions syntax is defined in [1, §19.1]. Since rewriting conditions can now be controlled by strategies,
we need to redefine condition checking. The function

check ∶ 𝑅𝑢𝑙𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 × VEnv × Strat∗
ℛ,Ω × VEnv → 𝒫⊥(VEnv)

will provide the set of (most general) substitutions check(𝐶, 𝜃, 𝛼1 ⋯ 𝛼𝑚, 𝜃𝑠) such that the condition 𝐶 holds
preserving the bindings from 𝜃 and using 𝛼1 to 𝛼𝑚 (whose variables are bound by 𝜃𝑠) to restrict rewriting in
the 𝑚 rewriting condition fragments of 𝐶. That reads the recursive definition below

check(true, 𝜃; 𝛼, 𝜃𝑠) = {𝜃}
check(𝑙 = 𝑟 ∧ 𝐶, 𝜃; 𝛼, 𝜃𝑠) = check(𝐶, 𝜃; 𝛼, 𝜃𝑠) if 𝜃(𝑙) = 𝜃(𝑟) else ∅
check(𝑡 : 𝑠 ∧ 𝐶, 𝜃, 𝛼, 𝜃𝑠) = check(𝐶, 𝜃; 𝛼, 𝜃𝑠) if 𝜃(𝑡) ∈ 𝑇Σ,𝑠(𝑋) else ∅

check(𝑙 := 𝑟 ∧ 𝐶, 𝜃; 𝛼, 𝜃𝑠) = ∪ {check(𝐶, 𝜎 ∘ 𝜃, 𝛼, 𝜃𝑠) ∶ 𝜎 ∈ xmatch(𝜃(𝑙), 𝜃(𝑟))}
check(𝑙 => 𝑟 ∧ 𝐶, 𝜃; 𝛼𝛼, 𝜃𝑠) = let 𝑡 ↢ ⟦𝛼⟧(𝜃𝑠, 𝜃(𝑙)) ∶ ∪ {check(𝐶, 𝜎 ∘ 𝜃; 𝛼, 𝜃𝑠) ∶ 𝜎 ∈ xmatch(𝜃(𝑟), 𝑡)}

For this definition to make sense, 𝑚 must be greater or equal than the number of rewriting condition fragments
in 𝐶. The function nrewf ∶ 𝑅𝑢𝑙𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → ℕ denotes this number. When applying this function to an
equational condition, when nrewf(𝐶) = 0, ⊥ will not appear and strategies are not needed. Then we drop
the last two parameters.

check ∶ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 × VEnv → 𝒫⊥(VEnv) check(𝐶, 𝜃) = check(𝐶, 𝜃; 𝜀, id)

3

Matching and condition checks often appear together, so the following definitions will be used for read-
ability and space-saving. Their signature is

𝑇Σ(𝑋) × 𝑇Σ(𝑋) × 𝑅𝑢𝑙𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 × VEnv × Strat∗
ℛ,Ω × VEnv → 𝒫⊥(VEnv)

where
mcheck(𝑝, 𝑡, 𝐶, 𝜃; 𝛼, 𝜃𝑠) = ⋃

𝜎 ∈ match(𝜃(𝑝),𝑡)
check(𝐶, 𝜎 ∘ 𝜃; 𝛼, 𝜃𝑠)

amcheck is defined similarly but adding the context to the result. As usual, we drop the strategies when not
needed. With all this we can define rule application as

ruleApply(𝑡, 𝑟𝑙, 𝜃; 𝛼1 ⋯ 𝛼𝑛, 𝜃𝑠) = ⋃
(𝑟𝑙,𝑙,𝑟,𝐶)∈𝑅
nrewf(𝐶)=𝑛

let (𝜎, 𝑐) ↢ amcheck(𝑙, 𝑡, 𝐶, 𝜃; 𝛼1 ⋯ 𝛼𝑛, 𝜃𝑠) ∶ {𝑐(𝜎(𝑟))},

changing amcheck by mcheck if only applying on top.
Our last shortcut definition is a vectorized match function vmatch that provides the simultaneous substi-

tutions for a vector of patterns in a vector of terms.

vmatch((𝑝1, … , 𝑝𝑛), (𝑡1, … , 𝑡𝑛), 𝐶) =
{𝜎 ∶ 𝜎1 ∈ match(𝑝1, 𝑡1), 𝜎2 ∈ match(𝜎1(𝑝1), 𝑡2) ∘ 𝜎1, … , 𝜎𝑛 ∈ match(𝜎𝑛−1(𝑝𝑛), 𝑡𝑛) ∘ 𝜎𝑛−1, 𝜎 ∈ check(𝐶, 𝜎𝑛)}
Sometimes we would like to unbind some variables in a substitution. If 𝜃 ∈ VEnv and 𝑌 ⊆ 𝑋 is a subset

of variables, 𝜃−𝑌 is the substitution which removes the binding for the variables in 𝑌 , i.e.

𝜃−𝑌 (𝑥) = { 𝑥 if 𝑥 ∈ 𝑌
𝜃(𝑥) otherwise

The set 𝑌 will usually be the set of variables that occur in a term ocurr(𝑡) or the unbound variables of a
matching pattern and condition. We define the latter for 𝐶𝑖 ∈ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 without assignment fragments as

𝑢𝑛𝑏𝑜𝑢𝑛𝑑(𝑃 , 𝐶1 ∧ 𝑙1 := 𝑟1 ∧ ⋯ ∧ 𝐶𝑛 ∧ 𝑙𝑛 := 𝑟𝑛 ∧ 𝐶𝑛+1) = ocurr(𝑃) ∪ ocurr(𝑙1) ∪ ⋯ ∪ ocurr(𝑙𝑛)

3 Denotational semantics
The complete definition of the denotational semantics of Stratℛ,Ω is given in Figure 1. Despite not being
made explicit, the semantics depend on the named strategies defined in the module. Let 𝑚 be the size of
definitions set |𝐷|, and suppose strategy definitions are numbered (𝑠𝑙𝑖, ⃗𝑝𝑖, 𝛿𝑖, 𝐶𝑖) ∈ 𝐷 from 1 to 𝑚. As we will
see, the order is irrelevant for the semantics, but it is useful for the presentation. For simplicity, we confuse
𝑠𝑙 ∈ Ω with the plain syntactical label 𝑠𝑙 that appear in strategy terms. This can be done without loss
of generality since overloaded strategy names in an expression must have been resolved before considering
semantics.

For each strategy definition 𝑖 ∈ {1, … , 𝑚}, we consider a semantic function variable 𝑑𝑖. The semantics
of any strategy expression can be described as a function SFun𝑚 → SFun on these variables, so we can
construct the function 𝐹 ∶ SFun𝑚 → SFun𝑚, whose least fixed point let us instantiate 𝑑𝑖 so that it equals
⟦𝛿𝑖⟧Δ,

𝐹(𝑑1, … , 𝑑𝑚) = (⟦𝛿1⟧Δ, … , ⟦𝛿𝑚⟧Δ) (𝑑1, … , 𝑑𝑚) ≔ FIX 𝐹
Formally, the following two results ensure the correctness of the semantic definitions. Their proofs can be

found in Appendix A.2.

▶ Theorem 1. Given a rewrite theory ℛ = (Σ, 𝐸⊎𝐴𝑥, 𝑅) with strategies (Ω, 𝐷), the functional 𝐹 ∶ SFun𝑚 →
SFun𝑚 given by

𝐹(𝑑1, … , 𝑑𝑚) ≔ (⟦𝛿1⟧(𝑑1,…,𝑑𝑚), … , ⟦𝛿𝑚⟧(𝑑1,…,𝑑𝑚))
is well defined, monotonic and continuous. Then 𝐹 has a least fixed point

FIX 𝐹 = sup {𝐹 𝑛({⊥}, … , {⊥}) ∶ 𝑛 ∈ ℕ}

▶ Corollary 2. Given a rewrite theory with strategies as in the previous theorem, the semantics of any
strategy term is well defined and 𝑑𝑖 = ⟦𝛿𝑖⟧Δ.

4

Base cases

⟦idle⟧Δ(𝜃, 𝑡) = {𝑡}
⟦fail⟧Δ(𝜃, 𝑡) = ∅ ⟦match 𝑃 s.t 𝐶⟧Δ(𝜃, 𝑡) = {{𝑡} if mcheck(𝑃 , 𝑡, 𝐶, 𝜃) ≠ ∅

∅ otherwise

Recursive cases

⟦𝛼 ;𝛽⟧Δ = ⟦𝛽⟧Δ ∘ ⟦𝛼⟧Δ ⟦𝛼|𝛽⟧Δ(𝜃, 𝑡) = ⟦𝛼⟧Δ(𝜃, 𝑡) ∪ ⟦𝛽⟧Δ(𝜃, 𝑡)

⟦𝛼∗⟧Δ(𝜃, 𝑡) =
∞
⋃
𝑛=0

⟦𝛼⟧𝑛
Δ(𝜃, 𝑡) ∪ {⊥ ∶ ⟦𝛼⟧𝑛

Δ(𝜃, 𝑡) ≠ ∅ for all 𝑛 ∈ ℕ}

⟦𝛼 ? 𝛽 : 𝛾 ⟧Δ(𝜃, 𝑡) = {⟦𝛾⟧Δ(𝜃, 𝑡) if ⟦𝛼⟧Δ(𝜃, 𝑡) = ∅
⟦𝛽⟧Δ ∘ ⟦𝛼⟧Δ(𝜃, 𝑡) otherwise

⟦matchrew 𝑃 s.t 𝐶 by 𝑥1 using 𝛼1, … , 𝑥𝑛 using 𝛼𝑛⟧Δ(𝜃, 𝑡) =
⋃

𝜎∈mcheck(𝑃,𝑡,𝐶,𝜃)
let 𝑡1 ↢ ⟦𝛼1⟧Δ(𝜎, 𝜎(𝑥1)), … , 𝑡𝑛 ↢ ⟦𝛼𝑛⟧Δ(𝜎, 𝜎(𝑥𝑛)) ∶ {𝜎[𝑥1/𝑡1, … , 𝑥𝑛/𝑡𝑛](𝑃)}

⟦𝑟𝑙[𝑥1 <- 𝑡1, … , 𝑥𝑛 <- 𝑡𝑛]{𝛼1, … , 𝛼𝑚}⟧Δ(𝜃, 𝑡) =
ruleApply(𝑡, 𝑟𝑙, id[𝑥1/𝜃(𝑡1), … , 𝑥𝑛/𝜃(𝑡𝑛)]; 𝛼1 ⋯ 𝛼𝑚, 𝜃)

⟦𝑠𝑙(𝑡1, … , 𝑡𝑛)⟧Δ(𝜃, 𝑡) = 𝑓𝑠𝑙,Δ(𝜃(𝑡1), … , 𝜃(𝑡𝑛), 𝑡)

where
𝑓𝑠𝑙,Δ(⃗𝑠, 𝑡) = ⋃

(𝑠𝑙,𝑝⃗𝑖,𝛿𝑖,𝐶𝑖)∈𝐷
⋃ {𝑑𝑖(𝜎, 𝑡) ∶ 𝜎 ∈ vmatch(⃗𝑝𝑖, ⃗𝑠, 𝐶𝑖)}

Figure 1: Denotational semantics of the Maude strategy language

5

3.1 A semantics without scopes
In the first articles describing the Maude strategy language [8, 2, 7], the results of a strategy were described us-
ing a set-theoretic semantics without scopes, in which the one in this document is based. However, these early
descriptions did not consider variable bindings and formal equations for their semantics were not provided.
Still, it is possible to define an equivalent semantics without explicit mention to a variable environment, by
applying the substitution directly to the strategy expressions. Some care should be taken with the matchrew
operators, since their variables naming subterms to be rewritten cannot be vanished. Hence, the definition
of substitution application to strategy expressions could not be a straightforward variable substitution.
▶ Definition. Given a rewrite theory ℛ with strategies, the application of a substitution 𝜃 ∶ 𝑋 → 𝑇Σ(𝑋) to
a strategy expressions ̃𝜃 ∶ Stratℛ,Ω → Stratℛ,Ω and conditions ̂𝜃 ∶ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 → 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is defined by

1. ̃𝜃(fail) = fail

2. ̃𝜃(idle) = idle

3. ̃𝜃(𝛼 ;𝛽) = ̃𝜃(𝛼) ; ̃𝜃(𝛽)
4. ̃𝜃(𝛼|𝛽) = ̃𝜃(𝛼) | ̃𝜃(𝛽)

5. ̃𝜃(𝛼∗) = ̃𝜃(𝛼)∗

6. ̃𝜃(𝛼 ? 𝛽 : 𝛾) = ̃𝜃(𝛼) ? ̃𝜃(𝛽) : ̃𝜃(𝛾) .

7. ̃𝜃(match 𝑃 s.t 𝐶) = match 𝜃(𝑃) s.t ̂𝜃(𝐶).

8. ̃𝜃(𝑟𝑙[𝑥1 <- 𝑡1, … , 𝑥𝑛 <- 𝑡𝑛]{𝛼1, … , 𝛼𝑚}) = 𝑟𝑙[𝑥1 <- 𝜃(𝑡1), … , 𝑥𝑛 <- 𝜃(𝑡𝑛)]{ ̃𝜃(𝛼1), … , ̃𝜃(𝛼𝑚)}

9. ̃𝜃(matchrew 𝑃 s.t 𝐶 by 𝑥1 using 𝛼1, … , 𝑥𝑛 using 𝛼𝑛) = matchrew 𝜃−{𝑥1,…,𝑥𝑛}(𝑃)
s.t. 𝑥𝑘1

= 𝜃(𝑥𝑘1
) ∧ ⋯ ∧ 𝑥𝑘𝑚

= 𝜃(𝑥𝑘𝑚
) ∧ ̂𝜃(𝐶) by 𝑥1 using ̃𝜃(𝛼1), … , 𝑥𝑛 using ̃𝜃(𝛼𝑛)

where 𝑥𝑘1
, … , 𝑥𝑘𝑚

are the subset of variables in 𝑥1, … , 𝑥𝑛 such that 𝜃(𝑥) ≠ 𝑥.
More precisely, these variables should be replaced in the pattern, condition and substrategies by fresh
variables disjoint from those which may appear in substitutions, so that subsequent substitutions do
not instantiate them with alternative values.

10. ̃𝜃(𝑠𝑙(𝑡1, … , 𝑡𝑛)) = 𝑠𝑙(𝜃(𝑡1), … , 𝜃(𝑡𝑛))

and

1. ̂𝜃(true) = true.

2. ̂𝜃(𝑙 = 𝑟 ∧ 𝐶) = 𝜃(𝑙) = 𝜃(𝑟) ∧ ̂𝜃(𝐶).
3. ̂𝜃(𝑙 := 𝑟 ∧ 𝐶) = 𝜃(𝑙) := 𝜃(𝑟) ∧ ̂𝜃(𝐶).

4. ̂𝜃(𝑡 : 𝑠 ∧ 𝐶) = 𝜃(𝑡) : 𝑠 ∧ ̂𝜃(𝐶).

5. ̂𝜃(𝑙 => 𝑟 ∧ 𝐶) = 𝜃(𝑙) => 𝜃(𝑟) ∧ ̂𝜃(𝐶).

In the following, we will simply write 𝜃 instead of ̃𝜃 or ̂𝜃, as we already do for the extension of substitutions
to terms. Regarding semantics, a natural property must be satisfied: the value of any strategy expression 𝛼
in a context 𝜃 must be the same as the value of 𝜃(𝛼) in the empty context. It is formally expressed in the
following proposition.

▶ Proposition 3. Given a rewrite theory with strategies ℛ. For any strategy 𝛼 ∈ Stratℛ,Ω, substitution
𝜃 ∶ 𝑋 → 𝑇Σ(𝑋) and term 𝑡 ∈ 𝑇Σ(𝑋)

⟦𝛼⟧Δ(𝜃, 𝑡) = ⟦𝜃(𝛼)⟧Δ(id, 𝑡)

Using this property, the semantics definition could be rewritten so that no variable bindings are passed
on. This yields an extension of the old set-theoretic semantics [8, 2, 7], that we can also define in terms of
the new semantics, and whose equations we can prove and complete.
▶ Definition. Given a rewrite theory with strategies ℛ = (Σ, 𝐸⊎𝐴𝑥, 𝑅; Ω, 𝐷), the old set-theoretic semantics
is defined as

⟦∙@ •⟧ ∶ Stratℛ,Ω × 𝑇Σ(𝑋) → 𝒫⊥(𝑇Σ(𝑋)) ⟦𝛼@ 𝑡⟧ ≔ ⟦𝛼⟧(id, 𝑡)

▶ Proposition 4. Given a rewrite theory with strategies ℛ = (Σ, 𝐸, 𝑅; Ω, 𝐷), and 𝛼, 𝛽, 𝛾 ∈ Stratℛ,Ω

6

1. ⟦idle@ 𝑡⟧ = {𝑡}
2. ⟦fail@ 𝑡⟧ = ∅
3. ⟦𝛼|𝛽 @ 𝑡⟧ = ⟦𝛼@ 𝑡⟧ ∪ ⟦𝛽 @ 𝑡⟧

4. ⟦𝛼 ;𝛽 @ 𝑡⟧ = let 𝑡′ ↢ ⟦𝛼@ 𝑡⟧ ∶ ⟦𝛽 @ 𝑡′⟧

5. ⟦𝛼 ? 𝛽 : 𝛾 @ 𝑡⟧ = { ⟦𝛼 ;𝛽 @ 𝑡⟧ si ⟦𝛼@ 𝑡⟧ ≠ ∅
⟦𝛾 @ 𝑡⟧ si ⟦𝛼@ 𝑡⟧ = ∅

6. ⟦𝑠𝑙(𝑡1, … , 𝑡𝑛)@ 𝑡⟧ = ⋃𝑚𝑠𝑙
𝑖=1 ⋃𝜃∈vmatch(𝑠𝑑𝑝𝑠𝑙,𝑖,(𝑡1,…,𝑡𝑛),𝐶𝑠𝑙,𝑖)⟦𝜃(𝛿𝑠𝑙,𝑖)@ 𝑡⟧.

4 Operational semantics
The denotational semantics in the previous section characterizes the results of the strategy computations.
However, we are also interested in the process, in the intermediate steps [10, 12, 11]. The following non-
deterministic operational semantics fills that gap, but we have to define a more complex class of intermediate
states:
▶ Definition. A context stack is a word in Stack = (Stratℛ,Ω ∪ VEnv)∗. An execution state 𝒳𝑆ℛ is:

1. A pair 𝑡@ 𝑠 composed of a term 𝑡 ∈ 𝑇Σ(𝑋) and a context stack 𝑠 ∈ Stack.

2. An expression of the form
subterm(𝑥1 ∶ 𝑞1, … , 𝑥𝑛 ∶ 𝑞𝑛; 𝑡)@ 𝑠

where 𝑥1, … , 𝑥𝑛 ∈ 𝑋, 𝑞1, … , 𝑞𝑛 ∈ 𝒳𝑆ℛ, 𝑡 ∈ 𝑇Σ(𝑋) and 𝑠 ∈ Stack.

3. An expression of the form
rewc(𝑝 ∶ 𝑞, 𝜎, 𝐶, ⃗𝛼, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝑠

where 𝑝, 𝑡, 𝑟 ∈ 𝑇Σ(𝑋), 𝑞 ∈ 𝒳𝑆ℛ, ⃗𝛼 ∈ Strat∗
ℛ,Ω, a context 𝑐, 𝜎, 𝜃𝑠 ∈ VEnv, 𝐶 a rule condition, and

𝑠 ∈ Stack.

The stack will be used to store the pending strategies and the nested variable contexts. Item 2 represents
parallel matchrew executions, and item 3 condition fragment rewriting when applying rules. States of the
form 𝑡@ 𝜀 are called solutions. All these states host information both about the subject term being rewritten
and the progress of the strategy execution. In particular, they are uniquely associated to a term:
▶ Definition. The current term of an execution state cterm ∶ 𝒳𝑆ℛ → 𝑇Σ(𝑋) is

1. cterm(𝑡@ 𝑠) = 𝑡.
2. cterm(subterm(𝑥1 ∶ 𝑞1, … , 𝑥𝑛 ∶ 𝑞𝑛; 𝑡)@ 𝑠) = 𝑡[𝑥1/cterm(𝑞1), … , 𝑥𝑛/cterm(𝑞𝑛)].
3. cterm(rewc(𝑝 ∶ 𝑞, 𝜎, 𝐶, ⃗𝛼, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝑠) = 𝑡.

▶ Definition. The current variable context of a context stack vctx ∶ Stack → VEnv is

vctx(𝜀) = id vctx(𝛼 𝑠) = vctx(𝑠) vctx(𝜎 𝑠) = 𝜎

for 𝛼 ∈ Stratℛ,Ω and 𝜎 ∈ VEnv.

Two small-step relations are defined for two distinct levels: system behavior (rewriting with rules) and
strategy control (auxiliary tasks to manage strategy execution). In the following, →𝑠 is the system relation
and →𝑐 the control relation. When the distinction is not necessary, we use the union of both →𝑠,𝑐 = →𝑠 ∪ →𝑐.
Another relation ↠ = →𝑠 ∘ →∗

𝑐 includes a single rule rewrite and all the previous work needed to apply it.
This relation is particularly meaningful because whenever 𝑞1 ↠ 𝑞2 ↠ … ↠ 𝑞𝑛 ↠ … the rewriting system
controlled by the strategy evolves

cterm(𝑞1) →1
ℛ cterm(𝑞2) →1

ℛ … →1
ℛ cterm(𝑞𝑛) →1

ℛ …

The operational semantics is given in Figures 2 and 3. There, 𝛼, 𝛽, 𝛾 ∈ Stratℛ,Ω, 𝑠 ∈ Stack, 𝐶, 𝐶′ are
rule conditions, and 𝐶0 an equational condition. 𝜃 ∈ VEnv always refer to vctx(𝑠). The rules for the a and

7

𝑡@ (𝛼 ;𝛽) 𝑠 →𝑐 𝑡@𝛼𝛽 𝑠 𝑡@ 𝜃 𝑠 →𝑐 𝑡@ 𝑠
𝑡@ (𝛼|𝛽) 𝑠 →𝑐 𝑡@𝛼 𝑠 𝑡@ (𝛼|𝛽) 𝑠 →𝑐 𝑡@𝛽 𝑠

𝑡@𝛼∗ 𝑠 →𝑐 𝑡@ 𝑠 𝑡@𝛼∗ 𝑠 →𝑐 𝑡@𝛼𝛼∗ 𝑠
𝑡@ (𝛼 ? 𝛽 : 𝛾) 𝑠 →𝑐 𝑡@𝛼𝛽 𝑠 𝑡@ idle 𝑠 →𝑐 𝑡@ 𝑠

𝑡@ (match 𝑃 s.t 𝐶) 𝑠 →𝑐 𝑡@ 𝑠 if mcheck(𝑃 , 𝑡, 𝐶, 𝜃) ≠ ∅

𝑡@ sl(𝑡1, … , 𝑡𝑛) 𝑠 →𝑐 𝑡@ 𝛿𝑖 𝜎 𝑠 if 𝜎 ∈ vmatch(⃗𝑝𝑖, (𝜃(𝑡1), … , 𝜃(𝑡𝑛)), 𝐶𝑖) and (sl, ⃗𝑝𝑖, 𝛿𝑖, 𝐶𝑖) ∈ 𝐷

[else] if all executions from 𝑡@𝛼 𝜃 are finite without solutions𝑡@𝛼 ? 𝛽 : 𝛾 𝑠 →𝑐 𝑡@ 𝛾 𝑠

Rewriting of subterms

𝑡@ (matchrew 𝑃 s.t 𝐶 by 𝑥1 using 𝛼1, … , 𝑥𝑛 using 𝛼𝑛) 𝑠
→𝑐 subterm(𝑥1 ∶ 𝜎(𝑥1)@𝛼1 𝜎, … , 𝑥𝑛 ∶ 𝜎(𝑥𝑛)@𝛼𝑛 𝜎; 𝜎−{𝑥1,…,𝑥𝑛}(𝑃))@ 𝑠

if 𝜎 ∈ mcheck(𝑃 , 𝑡, 𝐶, 𝜃)

subterm(𝑥1 ∶ 𝑡1 @ 𝜀, … , 𝑥𝑛 ∶ 𝑡𝑛 @ 𝜀; 𝑡)@ 𝑠 →𝑐 𝑡[𝑥1/𝑡1, … , 𝑥𝑛/𝑡𝑛]@ 𝑠

𝑞𝑖 →𝑐 𝑞′
𝑖[prl𝑐] subterm(… , 𝑥𝑖 ∶ 𝑞𝑖, … ; 𝑡)@ 𝑠 →𝑐 subterm(… , 𝑥𝑖 ∶ 𝑞′

𝑖 , … ; 𝑡)@ 𝑠

Rewriting conditions

𝑞 →𝑐 𝑞′
[rewc𝑐] rewc(𝑝 ∶ 𝑞, 𝜎, 𝐶, ⃗𝛼, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝑠 →𝑐 rewc(𝑝 ∶ 𝑞′, 𝜎, 𝐶, ⃗𝛼, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝑠

𝑞 →𝑠 𝑞′
[rewc𝑠] rewc(𝑝 ∶ 𝑞, 𝜎, 𝐶, ⃗𝛼, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝑠 →𝑐 rewc(𝑝 ∶ 𝑞′, 𝜎, 𝐶, ⃗𝛼, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝑠

rewc(𝑝 ∶ 𝑡′ @ 𝜀, 𝜎, 𝐶0 ∧ 𝑙 => 𝑝′ ∧ 𝐶, 𝛼 ⃗𝛼, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝑠 →𝑐 rewc(𝑝′ ∶ 𝜎′(𝑙)@𝛼 𝜃𝑠, 𝜎′, 𝐶, ⃗𝛼, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝑠

if 𝜎′ ∈ mcheck(𝑝, 𝑡′, 𝐶0, 𝜎)

Figure 2: Operational semantics for the Maude strategy language (control)

8

𝑡@ 𝑟𝑙[𝑥1 <- 𝑡1, … , 𝑥𝑛 <- 𝑡𝑛] 𝑠 →𝑠 𝑡′ @ 𝑠 if 𝑡′ ∈ ruleApply(𝑡, 𝑟𝑙, id[𝑥1/𝜃(𝑡1), … , 𝑥𝑛/𝜃(𝑡𝑛)])

𝑡@ 𝑟𝑙[𝑥1 <- 𝑡1, … , 𝑥𝑛 <- 𝑡𝑛]{𝛼1, … , 𝛼𝑘} 𝑠 →𝑐 rewc(𝑝 ∶ 𝜎(𝑡0)@𝛼1𝜃𝑠, 𝜎, 𝐶′, 𝛼2 ⋯ 𝛼𝑘, 𝜃, 𝑟, 𝑐; 𝑡)@ 𝑠
if (𝑟𝑙, 𝑙, 𝑟, 𝐶) ∈ 𝑅, nrewf(𝐶) = 𝑘, 𝐶 = 𝐶0 ∧ 𝑡0 => 𝑝 ∧ 𝐶′, 𝜃 = vctx(𝑠),

and (𝜎, 𝑐) ∈ amcheck(𝑙, 𝑡, 𝐶0, id[𝑥1/𝜃(𝑡1), … , 𝑥𝑛/𝜃(𝑡𝑛)])

𝑞𝑖 →𝑠 𝑞′
𝑖[prl𝑠] subterm(… , 𝑥𝑖 ∶ 𝑞𝑖, … ; 𝑡)@ 𝑠 →𝑠 subterm(… , 𝑥𝑖 ∶ 𝑞′

𝑖 , … ; 𝑡)@ 𝑠

rewc(𝑝 ∶ 𝑡′ @ 𝜀, 𝜎, 𝐶0, ⃗𝛼, 𝑟, 𝑐; 𝑡)@ 𝑠 →𝑠 𝑐(𝜎′(𝑟))@ 𝑠
if 𝜎′ ∈ mcheck(𝑝, 𝑡′, 𝐶0, 𝜎)

Figure 3: Operational semantics for the Maude strategy language (system)

x variants of match and matchrew are omitted as they are too similar. Only note that in the first matchrew
rule, the context 𝑐 must be applied to the last entry of the subterm state, 𝑐(𝜎−{𝑥1,…,𝑥𝑛}(𝑃)).

Both →𝑐 and →𝑠 are not deterministic: they may decide between different alternatives and loose solutions
on each step. Executions can be seen in different ways: executions or execution sequences are finite or infinite
sequences of states like

𝑡@ (𝑟𝑙1|𝑟𝑙2) 𝑠 →𝑐 𝑡@ 𝑟𝑙1 𝑠 →𝑠 𝑡1 @ 𝑠
Executions may get stuck or arrive to a solution 𝑡@ 𝜀. They consider only one of the possible successors.
When all of them are considered, we refer to an execution tree

𝑡@ (𝑟𝑙1|𝑟𝑙2) 𝑠
𝑡@ 𝑟𝑙1 𝑠

𝑡@ 𝑟𝑙2 𝑠

𝑡1 @ 𝑠

𝑡2 @ 𝑠

c

c

s

s

But there is another tree in the picture: the proof tree for a single step of the semantics. For example, when
rewriting subterms

𝑡@ (𝑟𝑙1|𝑟𝑙2) 𝑠 →𝑐 𝑡@ 𝑟𝑙1 using [prl𝑐]subterm(𝑥1 ∶ 𝑡@ (𝑟𝑙1|𝑟𝑙2) 𝑠; 𝑡)@ 𝑠′ →𝑐 subterm(𝑥1 ∶ 𝑡@ 𝑟𝑙1 𝑠; 𝑡)@ 𝑠′

The condition of the [else] rule refers to the execution tree from 𝑡@𝛼 𝜃. It is the translation of ⟦𝛼⟧(𝜃, 𝑡) = ∅
for the denotational semantics. Note that the evaluation of this condition may not finish. Thus, →𝑐 is
undecidable and so →𝑠,𝑐 and ↠ are.

While derivations are linear, proofs almost never are. The main rules are usually applied to substates by
using [prl𝑐], [prl𝑠], [rewc𝑐] or [rewc𝑠]. In the case of [else], all derivations from the condition must be proved
to finish and fail. However, a practical execution of these rules is easier. For example, the information about
the execution of 𝑡@𝛼 in the tentative execution of the positive branch by 𝑡@𝛼 ? 𝛽 : 𝛾 →𝑐 𝑡@𝛼𝛽 can be
used to trigger the [else] rule if all attempts from 𝑡@𝛼 have failed.

4.1 Some properties
An important property of the new semantics is that it is equivalent to the previous denotational semantics
in the following way:

9

▶ Theorem 1. For all 𝑡, 𝑡′ ∈ 𝑇Σ(𝑋), 𝛼 ∈ Stratℛ,Ω and 𝜃 ∈ VEnv

𝑡′ ∈ ⟦𝛼⟧(𝜃, 𝑡) ⟺ 𝑡@𝛼 𝜃 →∗
𝑠,𝑐 𝑡′ @ 𝜀

and ⊥ ∈ ⟦𝛼⟧(𝜃, 𝑡) iff there is an infinite derivation from 𝑡@𝛼 𝜃.

The novelty of the operational semantics, apart from the details about the intermediate states of the
rewriting process, is that non-termination is not only a binary condition, but provides valuable information
in the form of infinite execution sequences.

▶ Definition. For any 𝑞0 ∈ 𝒳𝑆ℛ

1. The reachable states from 𝑞0 are {𝑞 ∶ 𝑞0 →∗
𝑠,𝑐 𝑞}.

2. The reachable terms from 𝑞0 are ∪𝑞 ∶ 𝑞0→∗𝑠,𝑐𝑞terms(𝑞) where

terms(𝑞) = cterm(𝑞) ∪
⎧{
⎨{⎩

terms(𝑞1) ∪ ⋯ ∪ terms(𝑞𝑛) if 𝑞 = subterm(𝑥1 ∶ 𝑞1, … , 𝑥𝑛 ∶ 𝑞𝑛; 𝑡)
terms(𝑞′) if 𝑞 = rewc(𝑥 ∶ 𝑞′, …)
{vctx(𝑠)(𝑡1), … , vctx(𝑠)(𝑡𝑛)} if 𝑞 = 𝑡@ sl (𝑡1, … , 𝑡𝑛) 𝑠

▶ Proposition 2. For any 𝛼 ∈ Stratℛ,Ω and 𝑡 ∈ 𝑇Σ/𝐸, the set of reachable states from 𝑡@𝛼 is finite if any
of the following condition holds:

1. 𝛼 does not contain iterations or recursive function calls.

2. The reachable terms from 𝑡@𝛼, in rewriting conditions, and subterm rewritings are finitely many;
strategy call arguments only takes a finite number of values; and all recusive calls in strategy definitions
are tail.
We must also consider that variable environments are replaced instead of pushed to the stack when
other substitution is on top. This optimization does not affect the semantics.

The following definitions will be used to fix the concept of abstract strategy [5, 4] for any strategy expression
𝛼, as a language of all allowed execution traces. Strategies are used both to express computations and to
describe the behavior of reactive systems, for which finite length and infinite words are respectively relevant,
so neither of them should be omitted. Moreover, not all finite executions are interesting: some lead to a
failure or deadlock state, and do not correspond to solutions for the denotational semantics.
▶ Definition.

1. The language of infinite executions from 𝑞0 is

Ex𝜔(𝑞0) = {𝑞0 𝑞1 ⋯ 𝑞𝑛 ⋯ ∣ 𝑞0 ↠ 𝑞1 ↠ ⋯ ↠ 𝑞𝑛 ↠ ⋯}

2. The language of finite (complete) executions from 𝑞0 is

Exfin(𝑞0) = {𝑞0 𝑞1 ⋯ 𝑞𝑛 ∣ 𝑞0 ↠ 𝑞1 ↠ ⋯ ↠ 𝑞𝑛 ∧ 𝑞𝑛 is an end }

and 𝑞 is an end if 𝑞 →∗
𝑠,𝑐 cterm(𝑞)@ 𝜀 or 𝑞 ↠ 𝑞′ never holds for 𝑞′ ∈ 𝒳𝑆ℛ.

3. The language of successful executions from 𝑞0 is

Exsucc(𝑞0) = {𝑞0 ⋯ 𝑞𝑛 ∣ 𝑞0 ↠ ⋯ ↠ 𝑞𝑛 →∗
𝑐 cterm(𝑞𝑛)@ 𝜀}

Execution states are only an artifice to maintain the required control data for the execution of a strategy.
We are interested in the evolution of the underlying rewriting system, in terms of 𝑇Σ/𝐸 and →1

ℛ. Abusing
of notation, a function 𝑓 ∶ 𝑋 → 𝑌 may be extended to 𝑓 ∶ 𝑋∗ → 𝑌 ∗ by 𝑓(𝑥1 ⋯ 𝑥𝑛) ≔ 𝑓(𝑥1) ⋯ 𝑓(𝑥𝑛), and to
𝑓 ∶ 𝑋𝜔 → 𝑌 𝜔 similarly. The application of 𝑓 to a subset of 𝑋 is standard, the image of a set by a function.

10

▶ Definition.

1. The language of infinite execution traces from 𝑞0 is 𝑇𝜔(𝑞0) = cterm(Ex𝜔(𝑞0)).
2. The language of finite execution traces from 𝑞0 is 𝑇fin(𝑞0) = cterm(Exfin(𝑞0)).
3. The language of successful execution traces from 𝑞0 is 𝑇succ(𝑞0) = cterm(Exsucc(𝑞0)).

▶ Definition. For any 𝛼 ∈ Stratℛ,Ω and 𝐼 ⊆ 𝑇Σ(𝑋) the abstract strategy 𝛼 from states in 𝐼 is

𝐸(𝛼, 𝐼) = ⋃
𝑡∈𝐼

𝑇𝜔(𝑡@𝛼) ∪ 𝑇succ(𝑡@𝛼)

For some applications, it is convenient to consider strategies as pure 𝜔-languages. This can be done
completing ↠ to be total with 𝑞 ↠ cterm(𝑞)@ 𝜀 if 𝑞 →∗

𝑐 cterm(𝑞)@ 𝜀, for all state 𝑞. In this case the
definition is as simple as

𝐸(𝛼, 𝐼) = {cterm(𝑞0) cterm(𝑞1) ⋯ cterm(𝑞𝑛) ⋯ ∣ 𝑞0 ↠ 𝑞1 ↠ ⋯ ↠ 𝑞𝑛 ↠ ⋯}

Equivalently, successful traces can be extended by repeating the last state forever. The next propositions
relate regular languages and reachable states cardinality:

▶ Proposition 3. For any 𝛼 ∈ Stratℛ,Ω and 𝐼 ⊆ 𝑇Σ(𝑋) finite, if the reachable states from 𝑡@𝛼 are finite for
𝑡 ∈ 𝐼 , the extended abstract strategy 𝐸(𝛼, 𝐼) is an 𝜔-regular language, and a Büchi automaton for 𝐸(𝛼, 𝐼) is
𝒜 = (𝑄, cterm(𝑄), 𝛿, {start}, 𝑄) where 𝑄 = {start} ∪ {𝑞 ∈ 𝒳𝑆ℛ ∣ 𝑡 ∈ 𝐼 ∧ 𝑡@𝛼 ↠∗ 𝑞} and

𝛿(start, 𝑡) = { 𝑡@𝛼 } if 𝑡 ∈ 𝐼
𝛿(start, 𝑡) = ∅ if 𝑡 ∉ 𝐼

𝛿(𝑞, 𝑡) = { 𝑞′ ∶ 𝑞 ↠ 𝑞′ ∧ cterm(𝑞′) = 𝑡 } for 𝑞 ∈ 𝑄\{start}
∪ { 𝑡@ 𝜀 ∶ if 𝑞 →∗

𝑐 𝑡@ 𝜀 }

Nevertheless, the reciprocal does not hold, the language 𝐸(𝛼, 𝐼) can be 𝜔-regular and the reachable states
from 𝛼 be infinitely many. In a strategy module with sd st(X) := fail | st(s(X)) consider 𝛼 ≔ st(0).
No matter the rewriting theory, 𝑡@𝛼 cannot be continued by ↠. So 𝐸(𝛼, 𝐼) = ∅, which is 𝜔-regular. But
infinite states of the form 𝑡@ fail[𝑥 ↦ 𝑁] … [𝑥 ↦ 1][𝑥 ↦ 0] are reachable from the origin.

Moreover, the automaton 𝒜 for 𝐸(𝛼, 𝐼) has always trivial Büchi conditions. Hence, abstract strategies
whose strategy expression generator is executed in a finite number of states are a restricted subclass of 𝜔-
regular languages. In the following section, an alternative abstract strategy definition will be proposed, such
that they cover the whole space of 𝜔-regular languages.

4.2 Another definition for strategies
The interpretation of 𝛼 as an abstract strategy has some downsides related to infinite traces. For example,

• The semantics of regular expressions, included in the language, is not completely respected, because
iterations can be executed infinitely, against the usual meaning of the Kleene star.

• Subterm states with failed substrategies can appear in infinite traces.

For instance, being id an identity rule, matchrew f(X, Y) by X using id*, Y using fail can lead to an
infinite execution. The second problem is not much interesting and relatively easy to solve, so we will focus
on the first problem. Avoiding infinite iteration will require more attention and computational cost.

For any state 𝑞 ∈ 𝒳𝑆ℛ, a position 𝑝 ∈ ℕ∗ allows selecting a substate 𝑞|𝑝 inside 𝑞. The empty position 𝜀
refers to the whole state 𝑞, and if 𝑞 is a subterm state with 𝑛 substrategies, 0 to 𝑛 − 1 point to the substates
that rewrite against them. Nested positions are combined by juxtaposition, the outer index first.

11

▶ Definition. Given an execution 𝑞0 ⋯ 𝑞𝑛 ⋯ ∈ Ex𝜔(𝑞0), we define

1. The states where an iteration of 𝛼 starts at position 𝑝 and with base stack 𝑠,

Iter(𝑝, 𝛼, 𝑠) = { 𝑘 ∈ ℕ ∶ 𝑞𝑘|𝑝 →∗
𝑐 𝑡𝑘 @𝛼∗𝑠, 𝑞𝑘+1|𝑝 = 𝑡𝑘+1 @ 𝑠′𝛼∗𝑠, 𝑡𝑘 @𝛼 vctx(𝑠) ↠ 𝑡𝑘+1 @ 𝑠′𝜃 }

2. The states where an iteration of 𝛼 ends at position 𝑝 with base stack 𝑠,

Leave(𝑝, 𝛼, 𝑠) = { 𝑘 ∈ ℕ ∶ 𝑞𝑘|𝑝 →∗
𝑐 𝑡𝑘 @𝛼∗𝑠, 𝑡𝑘 @ 𝑠 ↠ 𝑞𝑘+1|𝑝 }

3. The consecutive iterations from the state 𝑛 at position 𝑝,

ConsIter(𝑛, 𝑝) = { { 𝑘 ∈ Iter(𝑝, 𝛼, 𝑠) ∶ ∀𝑗 𝑛 ≤ 𝑗 ≤ 𝑘 𝑗 ∉ Leave(𝑝, 𝛼, 𝑠) } if 𝑞𝑛|𝑝 →∗
𝑐 𝑡𝑛 @𝛼∗𝑠

∅ otherwise

Leave and ConsIter are introduced to be more specific and only purge infinite consecutive iterations.
There is no problem if an iteration 𝛼∗𝑠 is initiated infinitely many times but it iterates only finitely each.
However, this cannot happen, as we will later prove, unless the optimization of Proposition 2 is applied.
▶ Definition. An infinite execution 𝜋 ∈ Ex𝜔(𝑞0) iterates finitely if for all 𝑛 ∈ ℕ and position 𝑝 inside 𝑞𝑛,
ConsIter(𝑛, 𝑝) is finite.

▶ Proposition 4. Given 𝜋 = 𝑞0 ⋯ 𝑞𝑛 ⋯ ∈ Ex𝜔(𝑞0), the following conditions are equivalent:

1. For all 𝑛 ∈ ℕ and position 𝑝 in 𝑞𝑛 such that 𝑞𝑛|𝑝 →∗
𝑐 𝑡𝑛 @𝛼∗𝑠, Iter(𝑝, 𝛼, 𝑠) is finite.

2. 𝜋 iterates finitely.

3. For any 𝑛 ∈ ℕ and position 𝑝 in 𝑞𝑛 such that 𝑞𝑛|𝑝 →∗
𝑐 𝑡𝑛 @𝛼∗𝑠, Iter(𝑝, 𝛼, 𝑠) is finite or Leave(𝑝, 𝛼𝑠) is

infinite.

And the last two conditions are equivalent even with the optimization of Proposition 2.

When only finite iterations are allowed, the only available resource to produce infinite executions is non-
terminating recursive strategies. Moreover, any infinite execution iterating finitely visits an infinite number
of execution states, unless the optimization is applied. Likewise, it makes an infinite number of strategy calls,
as stated in the following proposition where cdepth refers to the number of nested call contexts in a state,
formally defined in the appendices.

▶ Proposition. Given an execution 𝜋 ∈ Ex𝜔(𝑞0) that iterates finitely, cdepth(𝜋𝑛) → ∞ when 𝑛 → ∞.

▶ Definition. For any 𝑞0 ∈ Stratℛ,Ω the set of infinite executions (new definition) is

Ex′
𝜔(𝑞) = { 𝜋 ∈ Ex𝜔(𝑞) ∶ 𝜋 iterates finitely }

and the set of infinite traces is 𝑇 ′
𝜔(𝑞0) = cterm(Ex′

𝜔(𝑞0)).

▶ Definition. For any 𝛼 ∈ Stratℛ,Ω and 𝐼 ⊆ 𝑇Σ(𝑋) the abstract strategy (new definition) 𝛼 from states in 𝐼
is

𝐸(𝛼, 𝐼) = ⋃
𝑡∈𝐼

𝑇 ′
𝜔(𝑡@𝛼) ∪ 𝑇succ(𝑡@𝛼)

For the rest of the section, we will study how to construct an 𝜔-regular automaton for 𝐸(𝛼, 𝐼) when
the reachable states are finitely many. Using the third condition of Proposition 4, we will provide some
acceptance condition, so that the automaton proposed for the previous definition can be used for the new
one. Streett acceptance conditions are pairs {(𝐴1, 𝐵1), … , (𝐴𝑘, 𝐵𝑘)} ⊆ 𝑞2 where 𝑞 is the set of states, and a
run 𝜋 is accepted if inf(𝜋) ∩ 𝐴𝑖 = ∅ or inf(𝜋) ∩ 𝐵𝑖 ≠ ∅ for all 1 ≤ 𝑖 ≤ 𝑘. In our case, the 𝐴𝑖 will be some
Iter(𝑝, 𝛼, 𝑠) and 𝐵𝑖 will be Leave(𝑝, 𝛼, 𝑠).

12

▶ Proposition 5. For any 𝛼 ∈ Stratℛ,Ω and 𝐼 ⊆ 𝑇Σ(𝑋) finite, if the reachable states from 𝑡@𝛼 are finitely
many for 𝑡 ∈ 𝐼 , the extended abstract strategy 𝐸(𝛼, 𝐼) is an 𝜔-regular language, and a Streett automaton for
it is 𝒜 = (𝑄2, cterm(𝑄 \ {start}), 𝛿, {start} × 𝐼, 𝑆) where

𝑄 = {start} ∪ {𝑞 ∈ 𝒳𝑆ℛ ∣ 𝑡 ∈ 𝐼 ∧ 𝑡@𝛼 ↠∗ 𝑞},

the Streett conditions are 𝑆 = { (𝐴𝑝,𝛼,𝑠, 𝐵𝑝,𝛼,𝑠) ∶ (𝑝, 𝛼, 𝑠) ∈ 𝐽 } for

𝐽 = { (𝑝, 𝛼, 𝑠) ∶ ∃ 𝑞 ∈ 𝑄, 𝑡 ∈ 𝑇Σ/𝐸 𝑞|𝑝 →∗
𝑐 𝑡@𝛼∗𝑠 }

𝐴𝑝,𝛼,𝑠 = { (𝑞, 𝑞′) ∈ 𝑄2 ∶ 𝑞|𝑝 →∗
𝑠,𝑐 𝑡@𝛼𝛼∗𝑠 ↠ 𝑞′|𝑝, 𝑡 ∈ 𝑇Σ/𝐸 }

𝐵𝑝,𝛼,𝑠 = { (𝑞, 𝑞′) ∈ 𝑄2 ∶ 𝑞|𝑝 →∗
𝑠,𝑐 𝑡@ 𝑠 ↠ 𝑞′|𝑝, 𝑡 ∈ 𝑇Σ/𝐸 },

and
𝛿((𝑞, 𝑞′), 𝑡) = { (𝑞′, 𝑞″) ∈ 𝑄2 ∶ 𝑞′ ↠ 𝑞″ ∧ cterm(𝑞′) = 𝑡 } ∪ { (𝑞′, 𝑡@ 𝜀) ∶ if 𝑞′ →∗

𝑐 𝑡@ 𝜀 }
This automaton is valid both with or without the optimization of Proposition 2.

While the states of the automaton are defined as pairs of execution states, the size of the automaton
does not need to grow quadratically in practice. Since it is possible to arrive to the same execution state by
transitions that enter or leave different iterations, the first state of the tuple is convenient to disambiguate
these situations. However, this is only possible with subterm states, and the first entry can be safely removed
otherwise. Moreover, Streett automata can be translated to Büchi automata, but paying a blow up of
𝑛(1 + 𝑘2𝑘) in the worst case, where 𝑛 is the number of states, and 𝑘 the automaton index, i.e. the number of
Streett conditions, which coincides with the number of reachable iteration expressions. Hence, reducing 𝑘 or
imposing simpler conditions is convenient.

• If the optimization of Proposition 2 is disabled, the first statement of Proposition 4 can be used instead
of the third (or as a particular case of the third) to define the acceptance conditions. Thus, 𝐸(𝛼, 𝐼) is
accepted by a co-Büchi automaton whose acceptance set is the union of all 𝐴𝑝,𝛼,𝑠.

• Some iterations will not iterate forever due to its own semantics. This is the usual case when iterations
are used to reduce something until it is not further possible. So, we only have to impose Streett (or
co-Büchi) conditions to those iterations in the automata that generate cycles.

• The effect of optimization is only observed inside tail function calls. For all iterations whose base stack
𝑠 has not been optimized, 𝐵 can be ∅, i.e. a co-Büchi condition is enough.

As we have seen, the are many situations where we can simplify, reduce, and even omit the acceptance
conditions. However, acceptance condition are essential in some cases, as the following proposition confesses.

As we have seen in the previous section, if 𝐸(𝛼, 𝐼) is an 𝜔-language, the reachable states from 𝑡0 @𝛼
do not need to be a finite set, for any 𝑡0 ∈ 𝐼 . But, in this section, we can find a substitute 𝛽 such that
𝐸(𝛽, 𝐼) = 𝐸(𝛼, 𝐼) and the reachable states are finitely many.

▶ Proposition 6. If 𝑆 ⊆ 𝑇Σ(𝑋) finite and 𝐿 ⊆ 𝑆𝜔 is a regular language and 𝑤𝑖 →1
ℛ 𝑤𝑖+1 for all 𝑤 ∈ 𝐿,

there is a strategy 𝛼 and a set 𝐼 ⊆ 𝑇Σ(𝑋) such that 𝐸(𝛼, 𝐼) = 𝐿 and the reachable states from 𝑡@𝛼 with
optimization are finitely many for any 𝑡 ∈ 𝑇Σ(𝑋).

Reaching an infinite number of states cannot be always avoided by choosing a convenient strategy, since
the strategy language is able to express any recursive enumerable abstract strategy. An easy example of
non-regular language is that of the paired parenthesis. For a sort with three symbols (,) and z, we can
define a module like this:

rl [open] : X => (.
rl [close] : X =>) .
rl [rest] : X => z .

strat paren : Nat @ Symbols .
sd paren(0) := open ; paren(1) | rest .
sd paren(s(N)) := close ; paren(N) | open ; paren(N + 2) .

And then the strategy paren(0) is not 𝜔-regular.

13

5 Rewriting semantics
This section presents an updated and improved version of a rewriting-based semantics [7] that transforms a
pair (𝑀, 𝑆𝑀), i.e. a system module 𝑀 along with a strategy module that defines strategies for 𝑀 , into a
rewrite theory 𝒮(𝑀, 𝑆𝑀) where strategy expressions can be written and applied to terms. The transformed
module implements the syntax of the strategy language and the infrastructure and rules to apply them. For
this purpose, some function definitions and rules should be added to the transformed module for each strategy
construct. First of all, the signature of the transformed module should include some auxiliary infrastructure
for substitutions and matching. Declarations with a type annotation like 𝑆 are generated for each sort in 𝑀 .
sort Substitution .

op _<-_ : Var𝑆 𝑆 -> Substitution [ctor] .
op none : -> Substitution [ctor] .
op _,_ : Substitution Substitution -> Substitution [ctor assoc id: none] .

op _·_ : 𝑆 Substitution -> 𝑆 .

A substitution is defined as a list of variable-to-term bindings, and an infix dot operator represents the
application of a substitution to a term.
sorts Match MatchSet .
subsort Match < MatchSet .
op <_,_> : Substitution 𝑆 -> Match [ctor] .
op none : -> MatchSet [ctor] .
op __ : MatchSet MatchSet -> MatchSet [ctor assoc comm id: none] .

op [] : -> 𝑆 [ctor] .

op getMatch : 𝑆 𝑆 EqCondition -> MatchSet .
op getAmatch : 𝑆 𝑆′ EqCondition -> MatchSet .
op getXmatch : 𝑆 𝑆 EqCondition -> MatchSet .

Each of the last three operators returns all matches of its second argument into the first, respectively on top,
anywhere, or on top with extension. A match is described by a pair containing a substitution and a context.
The context hole is indicated by means of an overloaded constant [].
sorts Condition EqCondition .
subsort EqCondition < Condition .

op trueC : -> EqCondition [ctor] .
op _=_ : 𝑆 𝑆 -> EqCondition [ctor] .
op _:=_ : 𝑆 𝑆 -> EqCondition [ctor] .
op _: 𝑆 : 𝑆 -> EqCondition [ctor] .
op _=>_ : 𝑆 𝑆 -> Condition [ctor] .

op _/_ : Condition Condition -> Condition [ctor assoc id: trueC] .
op _/_ : EqCondition EqCondition -> EqCondition [ditto] .

op _·_ : Condition Substitution -> Condition .

Equational and rule conditions are defined with the usual syntax, and a substitution can also be recursively
applied to them.

Second, strategy language constructs are expressed as Maude operators. Its signature is similar to the
meta-representation of strategies in [1, §17.3] but applied to the object level. Hence, we only include some
as an example.
sorts RuleApp Strat StratCall .
subsorts RuleApp StratCall < Strat < StratList .

op _[_]{_} : Label Substitution StratList -> RuleApp [ctor] .
op match_s.t._ : 𝑆 EqCondition -> Strat [ctor] .
op _;_ : Strat Strat -> Strat [ctor] .
*** and more

op _·_ : Strat Substitution -> Strat .

14

Substitutions can be applied to strategy expressions too. The equational definition is straightforward except
for the case of the matchrew. Pattern variables that designate subterms to be rewritten cannot be replaced
syntactically because the reference will be lost. However, the conflicting substitution assignment can be
translated into an equality condition fragment to be added to the strategy expression. In order to avoid
problems with successive substitutions, we should use fresh variables for these new condition fragments,
albeit this situation does not happen in practice.
ceq matchrew(P:𝑆, C, VSL) · Sb =

matchrew(P:𝑆 · SSb, SCond /\ C · Sb, VSL · Sb)
if { SSb ; SCond } := splitSubs(Sb, VSL) .

eq splitSubs(X:𝑆 <- T:𝑆 ; Sb, X:𝑆 using E) = { Sb ; X:𝑆 = T:𝑆 } .
eq splitSubs(Sb, X:𝑆 using E) = { Sb ; nil } [owise] .
ceq splitSubs(X:𝑆 <- T:𝑆 ; Sb, (X:𝑆 using E, VSL)) =

{ Sb' ; C /\ X:𝑆 = T:𝑆) if { Sb' ; C } := splitSubs(Sb, VSL) .
eq splitSubs(Sb, (X:𝑆 using E, VSL)) = splitSubs(Sb, VSL) [owise} .

Third, the strategy execution infrastructure is based on a series of tasks and continuations.
sorts Task Tasks Cont .
subsort Task < Tasks .
op none : -> Tasks [ctor] .
op __ : Tasks Tasks -> Tasks [ctor assoc comm id: none] .
eq T:Task T:Task = T:Task .

op <_@_> : Strat 𝑆 -> Task [ctor] .
op sol : 𝑆 -> Task [ctor] .
op <_;_> : Tasks Cont -> Task [ctor] .

op chkrw : Condition StratList 𝑆 𝑆 -> Cont [ctor] .
op seq : Strat -> Cont [ctor] .
op ifc : Strat Strat 𝑆 -> Cont [ctor] .
op mrew : 𝑆 𝑆′ Substitution VarStratList -> Cont [ctor] .
op onec : -> Cont [ctor] .

The application of a strategy 𝛼 to a term 𝑡 is represented by a task < 𝛼 @ 𝑡 >, and solutions are captured
in sol(𝑡) tasks. Tasks can be rewritten and fork new tasks, which represent different search states. They
are all gathered in an associative and commutative soap of sort Tasks. Nested searches are represented by
the <_;_> constructor, which additionally contains a continuation that the results from the inner search must
execute to be a solution for the outer execution level. Continuations are specified as terms of sort Cont.

Idle and fail. The idle and fail meaning is given by the following rules that convert the idle task to a
solution, and remove the fail task.
rl < idle @ T:𝑆 > => sol(T:𝑆) .
rl < fail @ T:𝑆 > => none .

Rule application. For each unconditional rule or each conditional rule without rewriting fragments 𝑙 => 𝑟
with label label in 𝑀 , a rule as below is appended to the transformed module:
crl < label[Sb]{empty} @ T:𝑆 > => gen-sols(MAT, 𝑟 · Sb)
if MAT := getAmatch(𝑙 · Sb, T:𝑆, C) .

eq gen-sols(none, T:𝑆′) = none .
eq gen-sols(< Sb, Cx:𝑆 > MAT, T:𝑆′) =

sol(replace(Cx:𝑆, T:𝑆′ · Sb)) gen-sols(MAT, T:𝑆′) .

Both rule sides are applied the substitution Sb from the application expression, which may be empty. Then
the partially instantiated lefthand side is matched against the subject term, and their matches are passed
to the gen-sols function. This function traverses the set generating a solution task for each match, by
instantiating the righthand side of the rule with the matching substitution, and building up the context with
replace.

The treatment of rewriting conditions is much more involved because they must be rewritten according
to the given strategies. To handle this situation, we make use of a continuation. Consider a rule

15

rl [𝑙𝑎𝑏𝑒𝑙] : 𝑙 => 𝑟 if 𝐶0 /\ 𝑢1 => 𝑣1 /\ 𝐶1 /\ … /\ 𝐶𝑛−1 /\ 𝑢𝑛 => 𝑣𝑛 /\ 𝐶𝑛 .

where 𝐶𝑘 are equational conditions, which may be empty. Let 𝑅𝐶 be the condition fragments from 𝐶1 to
𝐶𝑛. For each such rule, we generate
var C : EqCondition .
var RC : Condition .

crl < 𝑙𝑎𝑏𝑒𝑙[Sb]{E1, …, En} @ T:𝑆 >
=> gen-rw-tks(MAT, 𝑢1 · Sb, (𝑢1 => 𝑣1 /\ 𝑅𝐶) · Sb,

E1 … En, 𝑟 · Sb)
if MAT := getAmatch(𝑙 · Sb, T:𝑆, 𝐶0) .

eq gen-rw-tks(none, U:𝑆′, RC, EL, Rhs:𝑆″) = none .
eq gen-rw-tks(< Sb, Cx:𝑆 > MAT, T:𝑆′, RC, (E, EL), Rhs:𝑆″) =

< < E @ T:𝑆′ · Sb > ; chkrw(RC · Sb, (E, EL), Rhs:𝑆″ · Sb, Cx:𝑆) >
gen-rw-tks(MAT, T:𝑆′, RC, (E, EL), Rhs:𝑆″) .

The function gen-rw-tks traverses the set of matches like gen-sols, but a continuation task is generated
for each match. Its nested computation applies the first given strategy to the lefthand side of the first
rewriting fragment instantiated by the matching substitution. Its chkrw continuation stores the condition,
the pending controlling strategies, the rule righthand side and the subterm context. This allows checking
the condition recursively and stepwise. When a solution is obtained in the nested computation, it must be
matched against the fragment righthand side and all the matches must be continued as potentially different
condition solutions.
crl < sol(R:𝑆) TS ;

chkrw(U:𝑆 => V:𝑆 /\ C /\ U':𝑆′ => V':𝑆′ /\ RC,
(E, E', EL), Rhs:𝑆″, Cx:𝑆″) >

=> < TS ; chkrw(U:𝑆 => V:𝑆 /\ C /\ U':𝑆′ => V':𝑆′ /\ RC,
(E, E', EL), Rhs:𝑆″, Cx:𝑆‴) >

gen-rw-tks2(MAT, U':𝑆′, (U':𝑆′ => V':𝑆′ /\ RC),
(E', EL), Rhs:𝑆″, Cx:𝑆‴)

if MAT := getMatch(V:𝑆, R:𝑆, C) .

eq gen-rw-tks2(none, T:𝑆′, RC, EL, Rhs:𝑆″, Cx:𝑆‴) = none .
eq gen-rw-tks2(< Sb, Cx:𝑆 > MAT, T:𝑆′, RC, (E, EL), Rhs:𝑆″, Cx:𝑆‴) =

< < E @ T:𝑆′ · Sb > ;
chkrw(RC · Sb, (E, EL), Rhs:𝑆″ · Sb, Cx:𝑆‴) >

gen-rw-tks2(MAT, T:𝑆′, RC, (E, EL), Rhs:𝑆″, Cx:𝑆‴) .

Here, gen-rw-tks2 walks over the matches for the righthand side of the previous condition fragment, and
generates continuation tasks that evaluate the next condition fragment as already done for the initial one.
Clearly, the base case of this process is reached when no rewriting fragment remains.
crl < sol(R:𝑆) TS ; chkrw(U:𝑆 => V:𝑆 /\ C, E, Rhs:𝑆′, Cx:𝑆″) >
=> < TS ; chkrw(U:𝑆 => V:𝑆 /\ C, E, Rhs:𝑆′, Cx:𝑆″) >

gen-sols2(MAT, Rhs:𝑆′, Cx:𝑆″)
if MAT := getMatch(V:𝑆, R:𝑆, C) .

eq gen-sols2(none, Rhs:𝑆, Cx:𝑆′) = none .
eq gen-sols2(< Sb, Cx':𝑆″ > MAT, Rhs:𝑆, Cx:𝑆′)
= sol(replace(Cx:𝑆′, Rhs:𝑆 · Sb)) gen-sols2(MAT, Rhs:𝑆, Cx:𝑆′) .

The function gen-sols2 finally composes the solutions of the rule application by rebuilding the term using
the successively instantiated righthand side of the rule. In case any of the nested strategy evaluations fails,
the whole rule application fails.
rl < none ; chkrw(RC, EL, Rhs:𝑆′, Cx:𝑆) > => none .

Tests. As described before, tests behave like idle if there is a match satisfying the condition, and like a
fail if there is none.
crl < match P:𝑆 s.t. C @ T:𝑆 > => sol(T:𝑆)
if < Sb, Cx:𝑆 > MAT := getMatch(P, T:𝑆, C) .

16

crl < match P:𝑆 s.t. C @ T:𝑆 > => none
if getMatch(P:𝑆, T:𝑆, C) = none .

The amatch and xmatch variants are defined by similar pairs of rules. The only difference is the search func-
tion, getAmatch and getXmatch, which can be implemented in Maude by means of the family of metaMatch
functions.

Regular expressions. Regular expressions can be handled by a series of simple rules:
rl < E | E' @ T:𝑆 > => < E @ T:𝑆 > < E' @ T:𝑆 > .
rl < E ; E' @ T:𝑆 > => < < E @ T:𝑆 > ; seq(E') > .
rl < sol(R:𝑆) TS ; seq(E') > => < E' @ R:𝑆 > < TS ; seq(E') > .
rl < none ; seq(E') > => none .
rl < E * @ T:𝑆 > => sol(T:𝑆) < E ; (E *) @ T:𝑆 > .
eq E + = E ; E * .

The rule for alternation splits the task in two that continue each with one of the alternatives. The concatena-
tion creates a nested task to evaluate the first of the concatenated strategies and leaves the second strategy
pending using the seq continuation. Each solution found in the nested search is then continued using the
strategy in this continuation. When the subsearch runs out of tasks, the task is discarded. The iteration rule,
following its recursive definition, produces both a solution for the empty iteration, and a task that evaluates
the iteration body concatenated with the iteration itself. The non-empty iteration is equationally reduced to
this equivalent expression.

Conditionals. The semantics of the conditional is also expressed by a continuation and a subsearch for
the strategy condition. The ifc continuation maintains the strategies for both branches of the conditional
and the initial term, which will be used if the negative branch has to be evaluated.
rl < E ? E' : E'' @ T:𝑆 > => < < E @ T:𝑆 > ; ifc(E', E'', T:𝑆) > .
rl < sol(R:𝑆) TS ; ifc(E', E'', T:𝑆) > => < E' @ R:𝑆 > < TS ; seq(E') > .
rl < none ; ifc(E', E'', T:𝑆) > => < E'' @ T:𝑆 > .

When a solution is found for the condition, the result is given a task to be continued by the positive branch
strategy. Moreover, the conditional ifc continuation is transformed in a seq continuation, since the execution
of the negative branch is already discarded. On the contrary, if the tasks in the subcomputation get exhausted,
the negative branch is evaluated in the initial term by means of a new task.

The semantics of the derived operators is implicitly given by equationally translating them to their
equivalent expressions:
eq E or-else E' = E ? idle : E' .
eq not(E) = E ? fail : idle .
eq try(E) = E ? idle : idle .
eq test(E) = not(not(E)) .

Rewriting of subterms. The rewriting of subterms operator rewrites the matched subterms by the given
strategies. Like for rewriting conditions, this is handled using a continuation mrew(P, Sb, Cx, X, VSL)
that holds the main pattern P, the substitution Sb and the context Cx where it occurs in the subject term,
the variable whose subterm is currently being rewritten, and the list of pending term-using-strat pairs.
crl < amatchrew(P:𝑆, C, VSL) @ T:𝑆0 > => gen-mrew(MAT, P:𝑆, VSL)
if MAT := getAmatch(P:𝑆, T:𝑆0, C) .

eq gen-mrew(none, P:𝑆, VSL) = none .
ceq gen-mrew(< Sb, Cx:𝑆0 > MAT, P:𝑆, VSL) =

< < E · Sb @ X:𝑆′ · Sb > ; mrew(P:𝑆, Cx:𝑆0, Sb, VSL) >
gen-mrew(MAT, P:𝑆, VSL)

if X:𝑆′ using E := firstPair(VSL) .

For every match of the main pattern in the subject term, a continuation task is created and it starts to
evaluate the first strategy in the matched subterm, which is recovered by X:𝑆′ · Sb. The strategy is also
applied the substitution Sb since it is allowed to contain free occurrences of the matching variables.

17

When the evaluation of a subterm gives a solution, the mrew task is split into two: the first one keeps
looking for other solutions for the same subterm, and another one continues with the evaluation of the next
subterm. The creation of the last task is similar to the initial case, but the information is obtained from
the continuation instead. The result of the subterm rewriting is substituted in the copy of the main pattern
carried by the continuation. Like this, when all the subterms have been processed, the copy of the pattern
will have the initial subterms replaced by some results, so that the rest of the variables can be instantiated
with the initial substitution, and the initial term rebuilt by means of the context stored in the continuation.
crl < sol(T:𝑆′) TS ; mrew(P:𝑆, Cx:𝑆0, Sb, (X:𝑆′ using E', VSL)) > =>

< TS ; mrew(P:𝑆, Cx:𝑆0, Sb, (X:𝑆′ using E', VSL)) >
< < E · Sb @ Y:𝑆″ · Sb > ; mrew(P:𝑆 · (X:𝑆′ <- T:𝑆′), Cx:𝑆0, Sb, VSL) >

if Y:𝑆″ using E := firstPair(VSL) .

rl < sol(T:𝑆′) TS ; mrew(P:𝑆, Cx:𝑆0, Sb, X:𝑆′ using E) > =>
< TS ; mrew(P:𝑆, Cx:𝑆0, Sb, X:𝑆′ using E) >
sol(replace(Cx:𝑆0, P · (X:𝑆′ <- T:𝑆′)) · Sb) .

rl < none ; mrew(P:𝑆, Cx:𝑆0, Sb, VSL) > => none .

When the subterm search tasks are exhausted, the whole amatchrew execution is discarded. Identical rules
are used for the other variants, matchrew and xmatchrew, except for the initial one, where genAmatch should
be replaced by the appropriate function.

Pruning of solutions. The semantics of the one combinator can be expressed using a trivial continuation
onec:
rl < one(E) @ T:𝑆 > => < < E @ T:𝑆 > ; onec > .
rl < sol(T:𝑆) TS ; onec > => sol(T:𝑆) .
rl < none ; onec > => none .

Which solution is selected depends on the internal strategy of the rewriting engine for applying rules and
ordering matches. Using the search command, every possible solution will be selected in some rewriting
branch. The better performance is obtained if the second rule above is run just after the first solution appears
inside the task, so that no unnecessary work is done. This is a situation where strategies are valuable.

Strategy modules and calls. Strategy modules, their declarations and definitions, can be represented as
Maude terms, as already done for the metalevel in [1, §17.3]. For simplifying this presentation, we assume
that the strategy definitions are collected in a definition set DEFS.
eq DEFS = (𝑠𝑙𝑎𝑏𝑒𝑙(𝑝1, …, 𝑝𝑛), 𝛿, 𝐶) , … .

rl < SC:StratCall @ T:𝑆 > => find-defs(DEFS, SC:StratCall , T:𝑆) .

eq find-defs(none, SC, T:𝑆) = none .
ceq find-defs((Slhs, Def, C) Defs, SC, T:𝑆) =

find-defs2(MAT, T:𝑆, Def) find-defs(Defs, SC, T:𝑆)
if MAT := getMatch(Slhs, SC, C) .

eq find-defs2(none, T:𝑆, Def) = none .
eq find-defs2(< Sb, Cx:𝑆 > MAT, T:𝑆, Def) =

< Def · Sb @ T:𝑆 > find-defs2(MAT, T:𝑆, Def) .

The function find-defs traverses all the strategy definitions in DEFS and tries to match the strategy call
term with their lefthand sides, and check their equational conditions. The strategy find-defs2 takes these
matches and produces a task < Def · Sb @ T:𝑆 > for each of them, to continue rewriting T with the definition
strategy, whose free variables are bound according to the matching substitution.

5.1 Relation with the other semantics
This semantics is equivalent to the denotational semantics in the sense specified in the following proposition,
i.e. they produce the same solutions and terminate for the same input data.

18

▶ Theorem 1. In any module (𝑀, 𝑆𝑀), for any term 𝑡 ∈ 𝑇Σ/𝐸, and for any strategy expression 𝛼, 𝑡′ ∈
⟦𝛼⟧Δ(θ, 𝑡) iff < 𝛼 @ 𝑡 > →∗

𝒮(𝑀,𝑆𝑀) sol(𝑡′) 𝑇𝑆 for some 𝑇𝑆 of sort Tasks. Moreover, ⊥ ∈ ⟦𝛼⟧Δ(θ, 𝑡) iff there is
an infinite derivation from < 𝛼 @ 𝑡 > in 𝒮(𝑀, 𝑆𝑀).

Moreover, since the denotational semantics is in turn equivalent to the small-step operational semantics,
the following corollary holds.

▶ Corollary 2. In any module (𝑀, 𝑆𝑀), for any term 𝑡 ∈ 𝑇Σ/𝐸, and for any strategy expression 𝛼, 𝑡@𝛼 →∗
𝑠,𝑐

𝑡′ @ 𝜀 iff < 𝛼 @ 𝑡 > →∗
𝒮(𝑀,𝑆𝑀) sol(𝑡′) 𝑇𝑆 for some 𝑇𝑆 of sort Tasks. Moreover, there is an infinite derivation

from 𝑡@𝛼 by →𝑠,𝑐 iff there is an infinite derivation from < 𝛼 @ 𝑡 > in 𝒮(𝑀, 𝑆𝑀).

19

A Proofs
A.1 Proofs for the semantic infrastructure
In this section, we prove that the infrastructure used to define the semantics is well defined. This covers the
definitions and properties in Section 2.

▶ Proposition 1. For any set 𝑀 , 𝒫⊥(𝑀) and ≤ are well defined. Classes are finite subsets of 𝑀 ∪ {⊥} or
pairs of infinite subsets {⊥} ∪ 𝐴 and 𝐴\{⊥}. The expressions 𝐴 ∪ 𝐵 and 𝑥 ∈ 𝐴 are well defined for 𝑥 ∈ 𝑀 .

Remember 𝐴 ∼ 𝐵 ⟺ 𝐴 = 𝐵 ∨ (𝐴 ⊕ 𝐵 = {⊥} and 𝐴 is not finite) where ⊕ is the symmetric difference.
In fact this is the same as 𝐴 ∼ 𝐵 ⟺ 𝐴 = 𝐵 ∨ (𝐴 ⊕ 𝐵 = {⊥} and 𝐴 and 𝐵 are not finite) because 𝐴 and
𝐵 differ in a single element in this case.

We have to check ∼ is an equivalence relation. Reflexivity and symmetry are too simple. Let’s prove
reflexivity. Suppose 𝐴 ∼ 𝐵 and 𝐵 ∼ 𝐶. If 𝐴 = 𝐵 or 𝐵 = 𝐶 the proof is finished. Otherwise, the three sets
are not finite and 𝐴 ⊕ 𝐵 = {⊥} and 𝐵 ⊕ 𝐶 = {⊥}. Then 𝐴 ⊕ 𝐶 = {⊥}.

To characterize classes, if 𝐴 is finite then 𝐴 ∼ 𝐵 iff 𝐴 = 𝐵 as the second condition does not hold. If 𝐴 is
infinite, it shares class with any infinite set 𝐵 such that 𝐴 ⊕ 𝐵 = {⊥}. If ⊥ ∈ 𝐴 the only such 𝐵 is 𝐴\{⊥}
and if ⊥ ∉ 𝐴 its only companion is {⊥} ∪ 𝐴.

𝐴 ∪ 𝐵 is independent of the representatives for 𝐴 and 𝐵, because finite sets has a unique representative
and union with an infinite set produce an infinite set. 𝑥 ∈ 𝐴 makes sense because both representatives contain
the same elements except ⊥.

The order is well defined too. This is clear if ⊥ ∉ 𝐴. Otherwise, 𝐴\{⊥} ⊆ 𝐵 makes sense because
𝐴\{⊥} is the same set, no matter which representative of 𝐴 we take, and all representatives or none of 𝐵 are
contained in 𝐴\{⊥} because ⊥ ∉ 𝐴\{⊥}.

∎

▶ Proposition 2. For any set 𝑀 , 𝒫⊥(𝑀) is a chain-complete partial ordered set. Its minimum is {⊥} and
for any non-empty chain 𝐹 ⊆ 𝒫⊥(𝑀)

sup𝐹 = { ⋃𝐴∈𝐹 𝐴 if ∀𝐴 ∈ 𝐹 ⊥ ∈ 𝐴
𝑍 if ∃ 𝑍 ∈ 𝐹 ⊥ ∉ 𝑍

In the later case that 𝑍 such that ⊥ ∉ 𝑍 is unique.

We have to check that ≤ is a partial order and that every chain has a supremum in 𝒫⊥(𝑀). For the first
task, let 𝐴, 𝐵, 𝐶 ∈ 𝒫⊥(𝑀).

• Reflexive: we must prove 𝐴 ≤ 𝐴. If ⊥ ∈ 𝐴 then 𝐴 ≤ 𝐴 ⟺ 𝐴\{⊥} ⊆ 𝐴 which is true. Otherwise,
⊥ ∉ 𝐴 so 𝐴 ≤ 𝐴 ⟺ 𝐴 = 𝐴.

• Transitive: suppose 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐶. If ⊥ ∉ 𝐴 then 𝐴 = 𝐵 and ⊥ ∉ 𝐵. If ⊥ ∉ 𝐵 then 𝐵 = 𝐶 so
𝐴 ≤ 𝐶. Otherwise, 𝐴\{⊥} ⊆ 𝐵 and 𝐵\{⊥} ⊆ 𝐶, so 𝐴\{⊥} ⊆ 𝐶, which means 𝐴 ≤ 𝐶.

• Antisymmetric: suppose 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐴. If ⊥ ∉ 𝐴 or ⊥ ∉ 𝐵 then 𝐴 = 𝐵 by definition of ≤.
Otherwise and also from the definition, 𝐴\{⊥} ⊆ 𝐵 and 𝐵\{⊥} ⊆ 𝐴. Both 𝐴 and 𝐵 contain ⊥ so
𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, and then 𝐴 = 𝐵.

We can conclude ≤ is a partial order. Let 𝐹 be a chain. We consider two cases:

• For all 𝐴 ∈ 𝐹 , ⊥ ∈ 𝐴. We prove 𝑆 = ⋃𝐴∈𝐹 𝐴 ∈ 𝒫⊥(𝑀) is the supremum.

– It is an upper bound. Take 𝐴 ∈ 𝐹 and see 𝐴 ≤ 𝑆. In this case ⊥ ∈ 𝐴, so this is equivalent to
𝐴\{⊥} ⊆ 𝑆 and this is true, because 𝐴 ⊆ 𝑆.

– It is the least upper bound, because any other 𝐵 ∈ 𝒫⊥(𝑀) such that ∀𝐴 ∈ 𝐹 𝐴 ≤ 𝐵 satisfies
𝑆 ≤ 𝐵 or equivalently 𝑆\{⊥} ⊆ 𝐵 because ⊥ ∈ 𝑆. For any 𝑥 ∈ 𝑆\{⊥}, since 𝑆 is a union, there
is an 𝐴 ∈ 𝐹 such that 𝑥 ∈ 𝐴. Since 𝐴\{⊥} ⊆ 𝐵, 𝑥 ∈ 𝐵. We conclude 𝑆 ≤ 𝐵.

20

• There is a 𝑍 ∈ 𝐹 such that ⊥ ∉ 𝑍, then 𝑍 must be the supremum of 𝐹 . For this to make sense there
must be only one set such that ⊥ ∉ 𝑍. Suppose there were another set ⊥ ∉ 𝐴 ∈ 𝐹 . Then 𝐴 ≤ 𝑍 or
𝑍 ≤ 𝐴 because 𝐹 is a chain, in any case 𝐴 = 𝑍. There is only one.

– 𝑍 is an upper bound. Take 𝐴 ∈ 𝐹 , let’s see 𝐴 ≤ 𝑍. 𝐹 is a chain so 𝐴 ≤ 𝑍 or 𝑍 ≤ 𝐴. If the first
holds we have finished. Otherwise, 𝑍 = 𝐴 provided ⊥ ∉ 𝑍 and consequently 𝐴 ≤ 𝑍 too.

– Since 𝑍 ∈ 𝐹 , it must be the supremum.

∎

▶ Lemma 3. For any set 𝑀 and 𝐴, 𝐵, 𝐶 ∈ 𝒫⊥(𝑀) and a chain 𝐹 ⊆ 𝑃⊥(𝑀)

1. If 𝐵 ≤ 𝐶, 𝐴 ∪ 𝐵 ≤ 𝐴 ∪ 𝐶.

2. If ⊥ ∈ 𝐴 and 𝐵 ⊆ 𝐶, 𝐴 ∪ 𝐵 ≤ 𝐴 ∪ 𝐶.

3. sup {𝐴 ∪ 𝐵 ∶ 𝐴 ∈ 𝐹} = (sup 𝐹) ∪ 𝐵

4. ⋃𝐴∈𝐹 𝐴 ≤ sup 𝐹 ⊆ ⋃𝐴∈𝐹 𝐴.

5. ⋃𝐴∈𝐹 𝐴\{⊥} ⊆ sup 𝐹 ≤ ⋃𝐴∈𝐹 𝐴\{⊥}.
6. sup𝐹 = ⋃𝐴∈𝐹 𝐴\{⊥} if ∃𝐴 ∈ 𝐹 ⊥ ∉ 𝐴.

▶ Definition. For any sets 𝑀, 𝑁 , we define on 𝑀 → 𝒫⊥(𝑁) the order 𝑓 ⊑ 𝑔 ⟺ ∀𝑥 ∈ 𝑀 𝑓(𝑥) ≤ 𝑔(𝑥).

▶ Proposition 4. (𝑀 → 𝒫⊥(𝑁), ⊑) is a ccpo and for any family 𝐹 ⊆ 𝑀 → 𝒫⊥(𝑁)

(sup 𝐹)(𝑥) = sup 𝐹(𝑥) = sup {𝑓(𝑥) ∶ 𝑓 ∈ 𝐹}

Hence, for any non-empty set 𝑆 ⊆ 𝑀 , sup {𝑓|𝑆 ∶ 𝑓 ∈ 𝐹} = (sup𝐹)|𝑆.

▶ Definition. For any sets 𝑀 and 𝑁
1. We say 𝐴 ⊆ 𝒫⊥(𝑁) is final if ⊥ ∉ 𝐴.

2. We say 𝑓 ∶ 𝑀 → 𝒫⊥(𝑁) is final if 𝑓(𝑥) is final for all 𝑥 ∈ 𝑀 .

3. Any chain 𝐹 in 𝑃⊥(𝑁) is final if it contains a final element.

4. Any chain 𝐹 in 𝑀 → 𝑃⊥(𝑁) is final if 𝐹(𝑥) is final for all 𝑥 ∈ 𝑀 .

A final chain in 𝑀 → 𝑃⊥(𝑁) need not contain a final element, i.e. a function whose images are all final.
Consider 𝑀 = ℕ, 𝑁 = ∅, and 𝐹 = {𝑓𝑛 ∶ 𝑛 ∈ ℕ} with 𝑓𝑛(𝑘) = {⊥} for 𝑘 ≥ 𝑛 and 𝑓𝑛(𝑘) = ∅ for 𝑘 < 𝑛. It is a
chain because 𝑓𝑛 ⊑ 𝑓𝑛+1 and it is final since 𝐹(𝑘) contains ∅. However, none of the 𝑓𝑛 is final.

▶ Proposition 5. Given sets 𝑀 , 𝑁 , a finite subset 𝑆 ⊆ 𝑀 , and a non-empty chain 𝐹 ⊆ 𝑀 → 𝒫⊥(𝑁),

∀𝑥 ∈ 𝑆 𝐹(𝑥) is final ⟹ ∃ 𝑓 ∈ 𝐹 ∀𝑥 ∈ 𝑆 𝑓(𝑥) is final (= sup 𝐹(𝑥))

We prove the statement by induction on the size of 𝑆.
• If 𝑆 = ∅, then the statements reads ∃𝑓 ∈ 𝐹 , which is true.

• If 𝑆 = {𝑥}, then 𝐹(𝑥) is final and there is a final set 𝑓(𝑥) ∈ 𝐹(𝑥). We have found 𝑓 .
• Otherwise, we can split 𝑆 in two non-empty parts 𝐴 and 𝐵 such that 𝐴 ∪ 𝐵 = 𝑆. By the induction

hypothesis, there is an 𝑓 ∈ 𝐹 such that ⊥ ∉ 𝑓(𝑥) for all 𝑥 ∈ 𝐴 and 𝑔 ∈ 𝐹 such that ⊥ ∉ 𝑔(𝑥) for all
𝑥 ∈ 𝐵. Since 𝐹 is a chain, 𝑓 ⊑ 𝑔 or 𝑔 ⊑ 𝑓 . Without loss of generality, assume 𝑓 ⊑ 𝑔 and

𝑓 ⊑ 𝑔 ⇒ ∀𝑥 ∈ 𝑆 𝑓(𝑥) ≤ 𝑔(𝑥) ⇒ ∀𝑥 ∈ 𝐴 𝑓(𝑥) = 𝑔(𝑥) ⇒ ∀𝑥 ∈ 𝐴 𝑔(𝑥) is final

Since 𝑔(𝑥) is already final for all 𝑥 ∈ 𝐵, 𝑔 is final.

∎

21

▶ Proposition 6. For any indexed families {𝐴𝑖}𝑖∈𝐼 , {𝐵𝑖}𝑖∈𝐼 ⊆ 𝒫⊥(𝑀) such that 𝐴𝑖 ≤ 𝐵𝑖,

⋃
𝑖∈𝐼

𝐴𝑖 ≤ ⋃
𝑖∈𝐼

𝐵𝑖

We split the union depending on whether ⊥ ∈ 𝐴𝑖 or not. If ⊥ ∈ 𝐴𝑖, 𝐴𝑖 ≤ 𝐵𝑖 means 𝐴𝑖\{⊥} ⊆ 𝐵𝑖. Then

(⋃
𝑖∈𝐼,⊥∈𝐴𝑖

𝐴𝑖) \{⊥} = ⋃
𝑖∈𝐼,⊥∈𝐴𝑖

𝐴𝑖\{⊥} ⊆ ⋃
𝑖∈𝐼,⊥∈𝐴𝑖

𝐵𝑖 so ⋃
𝑖∈𝐼,⊥∈𝐴𝑖

𝐴𝑖 ≤ ⋃
𝑖∈𝐼,⊥∈𝐴𝑖

𝐵𝑖

On the other hand, if ⊥ ∉ 𝐴𝑖 then 𝐴𝑖 = 𝐵𝑖. All together,

⋃
𝑖∈𝐼

𝐴𝑖 = ⋃
𝑖∈𝐼,⊥∉𝐴𝑖

𝐴𝑖 ∪ ⋃
𝑖∈𝐼,⊥∈𝐴𝑖

𝐴𝑖 = ⋃
𝑖∈𝐼,⊥∉𝐴𝑖

𝐵𝑖 ∪ ⋃
𝑖∈𝐼,⊥∈𝐴𝑖

𝐴𝑖
(L3:1)

≤ ⋃
𝑖∈𝐼,⊥∉𝐴𝑖

𝐵𝑖 ∪ ⋃
𝑖∈𝐼,⊥∈𝐴𝑖

𝐵𝑖 = ⋃
𝑖∈𝐼

𝐵𝑖

∎

▶ Proposition 7. For any sets 𝑀, 𝑁 and finite 𝑆 ⊆ 𝑀 , and a chain 𝐹 ⊆ 𝑀 → 𝒫⊥(𝑁)

sup{ ⋃
𝑥∈𝑆

𝑓(𝑥) ∶ 𝑓 ∈ 𝐹} = ⋃
𝑥∈𝑆

(sup𝐹)(𝑥)

And if 𝑆 is infinite and the previous does not hold, sup{⋃𝑥∈𝑆 𝑓(𝑥) ∶ 𝑓 ∈ 𝐹} \{⊥} = ⋃𝑥∈𝑆(sup𝐹)(𝑥).

Let 𝐿 be the set to which the sup is applied in the left-hand side. For the proposition to make sense, 𝐿
must be a chain. But given 𝑓, 𝑔 ∈ 𝐹 we have 𝑓 ⊑ 𝑔 or 𝑔 ⊑ 𝑓 . Without loss of generality, suppose the first
holds. Then 𝑓(𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ 𝑀 . According to Proposition 6, ⋃𝑥∈𝑆 𝑓(𝑥) ≤ ⋃𝑥∈𝑆 𝑔(𝑥). 𝐿 is a chain.

To check the equality, we proceed differently whether 𝐹 is final or not. If it is not, there is a 𝑦 ∈ 𝑆 such
that 𝐹(𝑦) is not final. Hence, ⊥ ∈ ⋃𝑥∈𝑀 𝑓(𝑥) ⊇ 𝑓(𝑦) for all 𝑓 ∈ 𝐹 and then the supremum of 𝐿 is

sup 𝐿 = ⋃
𝑓∈𝐹

⋃
𝑥∈𝑆

𝑓(𝑥) = ⋃
𝑥∈𝑆

⋃
𝑓∈𝐹

𝑓(𝑥)

according to Proposition 2. From the other side (sup 𝐹)(𝑦) = ⋃𝑓∈𝐹 𝑓(𝑦) so ⊥ ∈ (sup 𝐹)(𝑦) and as conse-
quence ⊥ is in the right-hand side union. Then

⋃
𝑥∈𝑆

(sup𝐹)(𝑥) = {⊥} ∪ ⋃
𝑥∈𝑆

(sup𝐹)(𝑥)\{⊥} (L3:6)= {⊥} ∪ ⋃
𝑥∈𝑆

⋃
𝑓∈𝐹

𝑓(𝑥)\{⊥} = ⋃
𝑥∈𝑆

⋃
𝑓∈𝐹

𝑓(𝑥)

Then both sides coincide.
If 𝐹(𝑥) is final for all 𝑥 ∈ 𝑆 and 𝑆 is finite, by Proposition 5, there is a 𝑍 ∈ 𝐹 such that 𝑍(𝑥) is final

for 𝑥 ∈ 𝑆. Therefore, 𝑍(𝑥) = (sup𝐹)(𝑥) for all 𝑥 ∈ 𝑆, and then ⋃𝑥∈𝑆(sup 𝐹)(𝑥) is in 𝐿 and is a final set
because ⊥ does not belong to any set in the union, so it is the supremum of 𝐿.

Even if 𝑆 is infinite, most of the previous proof is still valid. The finiteness of 𝑆 was only used to claim
the existence of a final 𝑍 ∈ 𝐹 . Thus, the only case which has not been covered is when 𝐹 is final but there
is not a final function in 𝐹 . Then, every element in 𝐿 contains ⊥ and the supremum can be calculated as in
the non-final case. Then

⋃
𝑥∈𝑆

(sup𝐹)(𝑥) (L3:6)= ⋃
𝑥∈𝑆

⋃
𝑓∈𝐹

𝑓(𝑥)\{⊥} = (⋃
𝑥∈𝑆

⋃
𝑓∈𝐹

𝑓(𝑥)) \{⊥} = sup𝐿\{⊥}

∎
We use the auxiliary function 𝑏𝑜𝑡(𝐴) = {⊥} if ⊥ ∈ 𝐴 else ∅, to avoid some case distinctions in the

following.

22

▶ Lemma 8. For any sets 𝑀 and 𝑁 , and 𝐴, 𝐵 ∈ 𝒫⊥(𝑀) and 𝐶𝑥 ∈ 𝒫⊥(𝑁) for all 𝑥 ∈ 𝑀
1. If 𝐴 ⊆ 𝐵 then let 𝑥 ↢ 𝐴 ∶ 𝐶𝑥 ⊆ let 𝑥 ↢ 𝐵 ∶ 𝐶𝑥.

2. (let 𝑥 ↢ 𝐴 ∶ 𝐵𝑥)\{⊥} ⊆ ⋃𝑥∈𝐴\{⊥} 𝐵𝑥.

3. let 𝑥 ↢ 𝐴 ∶ 𝐵𝑥 = 𝑏𝑜𝑡(𝐴) ∪ let 𝑥 ↢ 𝐴\{⊥} ∶ 𝐵𝑥

4. {⊥} ∪ ⋃𝑥∈𝐴\{⊥} 𝐵𝑥 ≤ let 𝑥 ↢ 𝐴 ∶ 𝐵𝑥 ≤ ⋃𝑥∈𝐴\{⊥} 𝐵𝑥

5. ⋃𝑦∈𝐼 let 𝑥 ↢ 𝐴 ∶ 𝐶𝑥,𝑦 = let 𝑥 ↢ 𝐴 ∶ ⋃𝑦∈𝐼 𝐶𝑥,𝑦.

▶ Lemma 9. For any sets 𝑀 and 𝑁 , and 𝐴, 𝐵 ∈ 𝒫⊥(𝑀) and 𝐶𝑥, 𝐷𝑥 ∈ 𝒫⊥(𝑁) for all 𝑥 ∈ 𝑀 .

1. If 𝐴 ≤ 𝐵 then let 𝑥 ↢ 𝐴 ∶ 𝐶𝑥 ≤ let 𝑥 ↢ 𝐵 ∶ 𝐶𝑥.

2. If 𝐶𝑥 ≤ 𝐷𝑥 for all 𝑥 ∈ 𝑀 then let 𝑥 ↢ 𝐴 ∶ 𝐶𝑥 ≤ let 𝑥 ↢ 𝐴 ∶ 𝐷𝑥.
The premise is equivalent to 𝐶 ⊑ 𝐷, being 𝐶, 𝐷 ∶ 𝑀 → 𝒫⊥(𝑁).

1. If 𝐴 is final, 𝐴 = 𝐵 and the inequality follows from reflexivity. Otherwise, ⊥ ∈ 𝐴 implies 𝐴\{⊥} ⊆ 𝐵
and in particular 𝐴\{⊥} ⊆ 𝐵\{⊥}. From set theory ⋃𝑥∈𝐴\{⊥} 𝐶𝑥 ⊆ ⋃𝑥∈𝐵\{⊥} 𝐶𝑥 and then

⊥ ∈ let 𝑥 ↢ 𝐴 ∶ 𝐶𝑥 = {⊥} ∪ ⋃
𝑥∈𝐴\{⊥}

𝐶𝑥
(L3:1)

≤ {⊥} ∪ ⋃
𝑥∈𝐵\{⊥}

𝐶𝑥
(L8:4)

≤ let 𝑥 ↢ 𝐵 ∶ 𝐶𝑥

2. We have

let 𝑥 ↢ 𝐴 ∶ 𝐶𝑥 = 𝑏𝑜𝑡(𝐴) ∪ ⋃
𝑥∈𝐴

𝐶𝑥
(P6)
≤ 𝑏𝑜𝑡(𝐴) ∪ ⋃

𝑥∈𝐴
𝐷𝑥 = let 𝑥 ↢ 𝐴 ∶ 𝐷𝑥

∎

▶ Lemma 10. For any sets 𝑀 and 𝑁 , and 𝐴 ∈ 𝒫⊥(𝑀) and 𝐶𝑥 ∈ 𝒫⊥(𝑁) for all 𝑥 ∈ 𝑀 .

1. For any chain 𝐹 ⊆ 𝒫⊥(𝑀), let 𝑥 ↢ sup𝐹 ∶ 𝐶𝑥 = sup { let 𝑥 ↢ 𝐴 ∶ 𝐶𝑥 ∶ 𝐴 ∈ 𝐹}.
2. For any chain 𝐹 ⊆ (𝑀 → 𝒫⊥(𝑁)), let 𝑥 ↢ 𝐴 ∶ sup 𝐹 = sup { let 𝑥 ↢ 𝐴 ∶ 𝐶𝑥 ∶ 𝐶 ∈ 𝐹}.

The right-hand side of the equation of each statement is well defined because let, being monotone, trans-
forms chains into chains.

1. First, suppose 𝐹 is final, then there is a 𝑍 ∈ 𝐹 such that sup𝐹 = 𝑍 ∌ ⊥. We must prove 𝑆 ≔ let 𝑥 ↢
𝑍 ∶ 𝐶𝑥 is the supremum of the right-hand side chain.
Because 𝑍 ∈ 𝐹 , 𝑆 is in the chain and proving that it is an upper bound is enough. But this come from
monotonicity as for any 𝐵 ∈ 𝐹 we have 𝐵 ≤ 𝑍 and then let 𝑥 ↢ 𝐵 ∶ 𝐶𝑥 ≤ let 𝑥 ↢ 𝑍 ∶ 𝐶𝑥 = 𝑆 by the
previous lemma.
Now, suppose 𝐹 is not final, ∀𝐴 ∈ 𝐹 ⊥ ∈ 𝐴. Then

let 𝑥 ↢ ⋃
𝐴∈𝐹

𝐴 ∶ 𝐵𝑥
(P2)= {⊥} ∪ ⋃

𝑥∈(⋃𝐴∈𝐹 𝐴)\{⊥}
𝐵𝑥 = {⊥} ∪ ⋃

𝐴∈𝐹
⋃

𝑥∈𝐴\{⊥}
𝐵𝑥 = ⋃

𝐴∈𝐹
⎛⎜
⎝

{⊥} ∪ ⋃
𝑥∈𝐴\{⊥}

𝐵𝑥⎞⎟
⎠

= ⋃
𝐴∈𝐹

let 𝑥 ↢ 𝐴 ∶ 𝐵𝑥 = sup { let 𝑥 ↢ 𝐴 ∶ 𝐶𝑥 ∶ 𝐶 ∈ 𝐹}

23

2. Our goal is to prove the following (we have used Lemma 8 between lines)

let 𝑥 ↢ 𝐴 ∶ sup 𝐹 = sup { let 𝑥 ↢ 𝐴 ∶ 𝐶𝑥 ∶ 𝐶 ∈ 𝐹}
= =(L3:3)

𝑏𝑜𝑡(𝐴) ∪ ⋃𝑥∈𝐴\{⊥}(sup 𝐹)𝑥 𝑏𝑜𝑡(𝐴) ∪ sup {⋃𝑥∈𝐴\{⊥} 𝐶𝑥 ∶ 𝐶 ∈ 𝐹}

If ⊥ ∉ 𝐴 then 𝑏𝑜𝑡(𝐴) = ∅ and 𝐴 is finite. The straightforward application of Proposition 7 give us the
result. Otherwise ⊥ ∈ 𝐴 and 𝑏𝑜𝑡(𝐴) = {⊥}. We can still apply the same proposition and, being 𝐴
finite or not, we obtain the equality because {⊥} is in both sides.

∎
Up to now we have proven some properties of 𝒫⊥(𝑀) and its let operator. This section ends by stating

some standard facts about semantic functions defined as in Section 2.1, and set the stage for the proofs for
Section 3 below. The following proposition proof is omitted.

▶ Proposition 11. The following sets are ccpo

1. SFun with order 𝑓 ⊑ 𝑔 ⟺ ∀(𝜃, 𝑡) ∈ SDom 𝑓(𝜃, 𝑡) ≤ 𝑔(𝜃, 𝑡).
And for any chain 𝐹 ⊆ SFun, its supremum is (sup 𝐹)(𝜃, 𝑡) = sup {𝑓(𝜃, 𝑡) ∶ 𝑓 ∈ 𝐹}.

2. SFun𝑛 with order (𝑓1, … , 𝑓𝑛) ⊑ (𝑔1, … , 𝑔𝑛) ⟺ ∀(𝜃, 𝑡) ∈ SDom ⋀𝑛
𝑖=1 𝑓𝑖(𝜃, 𝑡) ≤ 𝑔𝑖(𝜃, 𝑡).

And for any chain 𝐹 ⊆ SFun𝑛, its supremum is sup 𝐹 = (sup{𝑓𝑖 ∶ (𝑓1, … , 𝑓𝑛) ∈ 𝐹})𝑛
𝑖=1.

3. SFun𝑛 → SFun with order 𝐹 ⊑ 𝐺 ⟺ ∀𝑓1, … , 𝑓𝑛 ∈ SFun 𝐹(𝑓1, … , 𝑓𝑛) ⊑ 𝐺(𝑓1, … , 𝑓𝑛).
And any chain 𝐶 has supremum (sup 𝐶)(𝑓1, … , 𝑓𝑛)(𝜃, 𝑡) = sup {𝐹(𝑓1, … , 𝑓𝑛)(𝜃, 𝑡) ∶ 𝐹 ∈ 𝐶}.

4. SFun𝑛 → SFun𝑚 with order 𝐹 ⊑ 𝐺 ⟺ ⋀𝑚
𝑖=1 𝐹𝑖 ⊑ 𝐺𝑖 where 𝐹𝑖 is the 𝑖-th component of 𝐹 .

▶ Lemma 12. A function SFun𝑛 → SFun is monotonic if and only if it is monotonic on every coordinate. It
is continuous if and only if it is continuous on every coordinate.

A.2 Proofs for the denotational semantics
Hereinafter, we prove that the denotational semantics in Section 3 is well defined. The key point is that
the fixed point used to define 𝑑𝑖 exists. Kleene Fixed Point Theorem will be used for that purpose: 𝒫⊥(𝑀)
must be a chain-complete partial ordered set (as we have proved in the previous section) and the semantic
functions must be monotonic and (Scott) continuous. In the following, we omit the definition context Δ
subscript in the semantic function, since it is understood from the context.

▶ Lemma 13. The following functions SFun𝑛 → SFun are continuous for any rule label 𝑟𝑙, 𝑙, 𝑟, 𝑃 ∈ 𝑇Σ(𝑋)
and condition 𝐶:

1. Comp(𝑓, 𝑔) = 𝑔 ∘ 𝑓
2. Union(𝑓, 𝑔) = (𝜃, 𝑡) ↦ 𝑓(𝜃, 𝑡) ∪ 𝑔(𝜃, 𝑡)
3. Star(𝑓) = (𝜃, 𝑡) ↦ ⋃∞

𝑛=0 𝑓𝑛(𝜃, 𝑡) ∪ {⊥ ∶ 𝑓𝑛(𝜃, 𝑡) ≠ ∅ for all 𝑛 ∈ ℕ}
4. Cond(𝑓, 𝑔, ℎ) = (𝜃, 𝑡) ↦ ℎ(𝜃, 𝑡) if 𝑓(𝜃, 𝑡) = ∅ else 𝑔 ∘ 𝑓(𝜃, 𝑡)
5. Check(𝐶, 𝜃, 𝑓1, … , 𝑓𝑛) = check(𝐶, 𝜃, 𝛼1 ⋯ 𝛼𝑛) with ⟦𝛼𝑖⟧ replaced by 𝑓𝑖. And its derived operators

Mcheck, Xcheck and Amcheck.

6. ApplyRule(𝑓1, … , 𝑓𝑛) = (𝜃, 𝑡) ↦ ⋃(𝑟𝑙,𝑙,𝑟,𝐶)∈𝑅 let (𝜎, 𝑐) ↢ Amcheck(𝑙, 𝑡,
𝐶, id[𝑥1/𝜃(𝑡1), … , 𝑥𝑛/𝜃(𝑡𝑛)]; 𝑓1 ⋯ 𝑓𝑚, 𝜃𝑠) ∶ {𝑐(𝜎(𝑟))}.

24

7. SubRewrite(𝑓1, … , 𝑓𝑛) = (𝜃, 𝑡) ↦ ⋃𝜎∈mcheck(𝑃,𝑡,𝐶,𝜃)

let 𝑡1 ↢ 𝑓1(𝜎, 𝜎(𝑥1)), … , 𝑡𝑛 ↢ 𝑓𝑛(𝜎, 𝜎(𝑥𝑛)) ∶ {𝜎[𝑥1/𝑡1, … , 𝑥𝑛/𝑡𝑛](𝑃)}.

According to Lemma 12, it is enough to prove that 𝐹 ∶ SFun𝑛 → SFun is monotonic and continuous by
coordinates. Remember that 𝐹 ∶ SFun → SFun is monotonic if 𝐹(𝑓)(𝜃, 𝑡) ≤ 𝐹(𝑔)(𝜃, 𝑡) whenever 𝑓 ⊑ 𝑔 and
𝐹 is continuous if sup {𝐹(𝑓)(𝜃, 𝑡) ∶ 𝑓 ∈ 𝐶} = 𝐹(sup𝐶)(𝜃, 𝑡) for all (𝜃, 𝑡) ∈ SDom.

1. Comp(𝑓, 𝑔)(𝜃, 𝑡) = let 𝑡′ ↢ 𝑓(𝜃, 𝑡) ∶ 𝑔(𝜃, 𝑡′). This is already solved using Lemma 9 for the monotonicity
and Lemma 10 for continuity.

2. Union(𝑓, 𝑔)(𝜃, 𝑡) = 𝑓(𝜃, 𝑡) ∪ 𝑔(𝜃, 𝑡). This finite union is monotonic by Proposition 6 and continuous by
Proposition 7.

3. Star(𝑓)(𝜃, 𝑡) = ⋃𝑛∈ℕ 𝑓𝑛(𝜃, 𝑡) ∪ {⊥ ∶ 𝑓𝑛(𝜃, 𝑡) ≠ ∅ for all 𝑛 ∈ ℕ}. First, 𝑓𝑛 is monotonic and continuous
after a simple induction on 𝑛 provided ∘ or Comp are. The monotonicity and continuity of Star follows
from those of the two clauses separately, by the same arguments given for the Union case. Let 𝑆 be
the second clause as a function of 𝑓 for some fixed 𝜃 and 𝑡, i.e. 𝑆(𝑓) = {⊥} if 𝑓𝑛(𝜃, 𝑡) ≠ ∅ for all 𝑛 ∈ ℕ,
𝑆(𝑓) = ∅ otherwise. 𝑆 is monotonic, since 𝑆(𝑓) = ∅ implies there is an 𝑛 ∈ ℕ such that 𝑓𝑛(𝜃, 𝑡) = ∅, so
𝑔𝑛(𝜃, 𝑡) = ∅ for all 𝑔 ⊒ 𝑓 by the monotonicity of exponentiation, and so 𝑆(𝑔) = ∅. Moreover, for any
chain 𝐹 , if 𝑆(sup𝐹) = ∅, there must be an 𝑛 ∈ ℕ such that (sup𝐹)𝑛(𝜃, 𝑡) = ∅. Thus, by the continuity
of exponentiation, there is an 𝑓 ∈ 𝐹 that 𝑓𝑛(𝜃, 𝑡) = ∅ and then 𝑆(𝑓) = ∅. This implies sup𝑆(𝐹) = ∅
and so 𝑆 is continuous.
For the first clause, monotonicity comes from Proposition 6. Proving continuity is not as straight-
forward, but follows from Proposition 7. Given a chain 𝐹 ⊆ SFun and a pair (𝜃, 𝑡), we invoke this
proposition with 𝑆 = 𝑀 = ℕ and the chain 𝐹 ′ = {𝑛 ↦ 𝑓𝑛(𝜃, 𝑡) ∶ 𝑓 ∈ 𝐹}. In fact, it is a chain because
if 𝑓 ⊑ 𝑔 then 𝑓𝑛 ⊑ 𝑔𝑛 for all 𝑛 ∈ ℕ. Its supremum is the function sup𝐹 ′ = 𝑛 ↦ (sup 𝐹)𝑛(𝜃, 𝑡). Since
ℕ is infinite the proposition says

sup{
∞
⋃
𝑛=0

𝑓𝑛(𝜃, 𝑡)} =
∞
⋃
𝑛=0

(sup 𝐶)𝑛(𝜃, 𝑡) ∨ sup{
∞
⋃
𝑛=0

𝑓𝑛(𝜃, 𝑡)} \{⊥} =
∞
⋃
𝑛=0

(sup 𝐶)𝑛(𝜃, 𝑡)

If the first holds, then Star is continuous. If the sets are infinite, even the second means that Star is
continuous. It remains to see that the first must hold if 𝑅 ≔ ⋃∞

𝑛=0(sup 𝐶)𝑛(𝜃, 𝑡) is finite.
If ⊥ ∈ 𝑅 then the second cannot hold, so the first does. Otherwise, ⊥ ∉ 𝑅 and the second may be true.
In this case 𝐹 must be final in 𝑅. Suppose it is not, i.e. that exists a 𝑡′ ∈ 𝑅 such that ⊥ ∈ (sup 𝐹)(𝜃, 𝑡′).
Since 𝑡′ ∈ 𝑅, 𝑡′ ∈ (sup 𝐹)𝑛(𝜃, 𝑡) for some 𝑛 ≥ 1 and then ⊥ ∈ (sup 𝐹)𝑛+1(𝜃, 𝑡) ⊆ 𝑅. And this is a
contradiction.
According to Proposition 5, there is a function 𝑧 ∈ 𝐶 such that 𝑧(𝜃, 𝑢) = (sup 𝐶)(𝜃, 𝑢) for all 𝑢 ∈ 𝑅,
which is finite. We will prove that the element ⋃∞

𝑛=0 𝑧𝑛(𝜃, 𝑡) of the left-hand side chain is contained in
𝑅. In that case, since ⊥ ∉ 𝑅, this set is final and then ⊥ is not in the chain’s supremum, so the first
identity holds and Star is continuous.
The proof is done by induction on 𝑛. The base case is 𝑛 = 0, where 𝑧0(𝜃, 𝑡) = {𝑡} ⊆ 𝑅. Suppose
𝑧𝑛(𝜃, 𝑡) ⊆ 𝑅, we know 𝑧𝑛+1(𝜃, 𝑡) = let 𝑡′ ↢ 𝑧𝑛(𝜃, 𝑡) ∶ 𝑧(𝜃, 𝑡′). Since 𝑡′ ∈ 𝑅, there is an 𝑚 ≥ 1 such
that 𝑡′ ∈ (sup 𝐶)𝑚(𝜃, 𝑡). Then 𝑧(𝜃, 𝑡′) = (sup𝐶)(𝜃, 𝑡′) ⊆ (sup 𝐶)𝑚+1(𝜃, 𝑡) ⊆ 𝑅. The union for all
𝑡 ∈ 𝑧𝑛(𝜃, 𝑡) is 𝑧𝑛+1(𝜃, 𝑡) and it is in 𝑅 (no {⊥} is added by let because ⊥ ∉ 𝑧𝑛(𝜃, 𝑡) ⊆ 𝑅).

4. Monotony and continuity of Cond in 𝑔 and ℎ with 𝑓 fixed is clear, because the function is then a
composition or the identity in ℎ. We should only take care of 𝑓 changing with fixed 𝑔 and ℎ.
For 𝑓, 𝑓 ′ ∈ SFun and 𝑓 ⊑ 𝑓 ′. If 𝑓(𝜃, 𝑡) = ∅ then 𝑓 ′(𝜃, 𝑡) = ∅ and nothing changes. If 𝑓 ′(𝜃, 𝑡) = ∅, 𝑓(𝜃, 𝑡)
can only be ∅ (just seen) or {⊥}, but in this case

Cond(𝑓, 𝑔, ℎ)(𝜃, 𝑡) = (𝑔 ∘ 𝑓)(𝜃, 𝑡) = let 𝑡′ ↢ {⊥} ∶ 𝑔(𝜃, 𝑡′) = {⊥}

so it is less or equal than Cond(𝑓 ′, 𝑔, ℎ) no matter what it is. In any other case Cond(𝑓, 𝑔, ℎ)(𝜃, 𝑡) =
Comp(𝑓, 𝑔)(𝜃, 𝑡) which is monotone and continuous in 𝑓 .

5. We check monotonicity and continuity by induction on the structure of 𝐶.

25

• The base case is Check(true, 𝜃, 𝑓1, … , 𝑓𝑛, 𝜃𝑠) = {𝜃} which is a constant in 𝑓1 to 𝑓𝑛. Hence, it is
monotonic and continuous.

• For Check(𝑙 = 𝑟 ∧ 𝐶, 𝜃, 𝑓1, … , 𝑓𝑛, 𝜃𝑠). If 𝜃(𝑙) = 𝜃(𝑟) that is Check(𝐶, 𝜃, 𝑓1, … , 𝑓𝑛, 𝜃𝑠). By induction
hypothesis it is continuous. In the other case, their value is ∅, a constant, which is continuous.

• For Check(𝑙 := 𝑟∧𝐶, 𝜃, 𝑓1, … , 𝑓𝑛, 𝜃𝑠) = ⋃𝜎∈match(𝜃(𝑙),𝜃(𝑟)) Check(𝐶, 𝜎∘𝜃, 𝑓1, … , 𝑓𝑛, 𝜃𝑠). By induction
hypothesis all recursive calls to check are monotone and continuous. The finite union of continuous
functions is continuous.

• For the rewriting condition,

Check(𝑙 => 𝑟 ∧ 𝐶, 𝜃, 𝑓1, … , 𝑓𝑛, 𝜃𝑠) =
let 𝑡 ↢ 𝑓1(𝜃, 𝑟) ∶ ⋃

𝜎 ∈ xmatch(𝜃(𝑟),𝑡)
Check(𝐶, 𝜎 ∘ 𝜃, 𝑓2 ⋯ 𝑓𝑛, 𝜃𝑠)

By induction hypothesis, the union terms are continuous. Their finite union is continuous, and
the let is also continuous in 𝑓1 in the first argument and 𝑓2, … , 𝑓𝑛 in the second one.

The derived check operators are finite unions of all substitutions from a match so, by Proposition 7,
they are continuous.

6. For the rule application, Amcheck(𝑙, 𝑡, 𝐶, id[𝑥1/𝜃(𝑡1), … , 𝑥𝑛/𝜃(𝑡𝑛)], 𝑓1 ⋯ 𝑓𝑛, 𝜃𝑠) is continuous in all 𝑓𝑖.
Then by the arguments used above the let is continuous for any substitution, and the union of those is
also continuous.

7. The 𝑓𝑖 are arguments in the index part of the let construct, then the let are continuous in 𝑓1, … , 𝑓𝑛.
The finite union of all those is continuous in 𝑓1, … , 𝑓𝑛.

∎

▶ Theorem 14. Given a rewrite theory ℛ = (Σ, 𝐸 ⊎ 𝐴𝑥, 𝑅) with strategies (𝐺, 𝐷), the functional 𝐹 ∶
SFun𝑚 → SFun𝑚 given by

𝐹(𝑑1, … , 𝑑𝑚) ≔ (⟦𝛿1⟧(𝑑1, … , 𝑑𝑚), … , ⟦𝛿𝑚⟧(𝑑1, … , 𝑑𝑚))

is well defined, monotonic and continuous. Then 𝐹 has a least fixed point

FIX 𝐹 = sup {𝐹 𝑛({⊥}, … , {⊥}) ∶ 𝑛 ∈ ℕ}

All semantic functions are well defined because they are given an unambiguous functional definition and
all cases are covered.

According to Kleene’s Fixed Point Theorem [13, Thm 5.11] [3, Thm 4.3.6], if 𝐹 is continuous in SFun𝑚

then it has a least fixed point calculated as above. In fact, monotonicity is a sufficient condition for the
existence of a least fixed point according to Knaster-Tarski Fixed Point Theorem [13, Sec 5.5] [3, Thm 2.3.2],
but not to find the characterization we have written.

𝐹 is monotonic and continuous if each component 𝐹𝑖 = ⟦𝛿𝑖⟧ is (see Proposition 11:4). We will prove it by
induction on 𝛿𝑖 structure:

• For idle, fail, and the match alternatives, the semantic function is a constant on 𝑑𝑖. Then it is
continuous.

• ⟦𝛼 ;𝛽⟧ = Comp(⟦𝛼⟧, ⟦𝛽⟧). By induction hypothesis ⟦𝛼⟧ and ⟦𝛽⟧ are monotonic and continuous. Comp
is continuous by the previous lemma, and functional composition preserves both. Hence, Comp is
continuous.

• Provided ⟦𝛼|𝛽⟧ = Union(⟦𝛼⟧, ⟦𝛽⟧), ⟦𝛼∗⟧ = Star(⟦𝛼⟧) and ⟦𝛼 ? 𝛽 : 𝛾 ⟧ = Cond(⟦𝛼⟧, ⟦𝛽⟧, ⟦𝛾⟧), the same
argument applies.

26

• Rule application and matchrew semantics are given by their corresponding functions ApplyRule and
SubRewrite, which are continuous by the previous lemma. The first is ApplyRule(⟦𝛼1⟧, … , ⟦𝛼𝑛⟧) and
the matchrew semantics is SubRewrite(⟦𝛼1⟧, … , ⟦𝛼𝑛⟧), and ⟦𝛼𝑖⟧ are continuous by induction hypothesis
in 𝑑1, … , 𝑑𝑛. Hence, both are continuous.

• For ⟦𝑠𝑙(𝑡1, … , 𝑡𝑛)⟧(𝜃, 𝑡) = 𝑓𝑠𝑙(𝜃(𝑡1), … , 𝜃(𝑡𝑛), 𝑡). And

𝑓𝑠𝑙(⃗𝑠, 𝑡) = ⋃(𝑠𝑙,𝑝⃗𝑖,𝛿𝑖,𝐶𝑖)∈𝐷 ⋃𝜎∈vmatch(𝑝⃗𝑖, ⃗𝑠,𝐶𝑖) 𝑑𝑖(𝜎, 𝑡)

is monotonic and continuous because it is the finite (and the indices do not depend on 𝑑𝑖) union of
some 𝑑𝑖, and the identity is clearly monotonic and continuous.

∎

▶ Corollary 15. Given a rewrite theory as in the previous theorem, the semantics of any strategy term is
well defined and 𝑑𝑖 = ⟦𝛿𝑖⟧.

A.2.1 About the alternative semantics without scopes

▶ Proposition 16. Given a rewrite theory with strategies ℛ. For any strategy 𝛼 ∈ Stratℛ,Ω, substitution
𝜃 ∶ 𝑋 → 𝑇Σ(𝑋) and term 𝑡 ∈ 𝑇Σ(𝑋)

⟦𝛼⟧Δ(𝜃, 𝑡) = ⟦𝜃(𝛼)⟧Δ(id, 𝑡)

First, we prove that

check(𝜃(𝐶), id; 𝜃𝑠(𝛼1) ⋯ 𝜃𝑠(𝛼𝑘), id) ∘ 𝜃 = check(𝐶, 𝜃; 𝛼1 ⋯ 𝛼𝑘, 𝜃𝑠)

assuming ⟦𝛼𝑖⟧(𝜃, 𝑡) = ⟦𝜃(𝛼𝑖)⟧(id, 𝑡) for 𝑖 ∈ {1, … , 𝑘} by induction on 𝐶, where Θ ∘ 𝜃 = {𝜎 ∘ 𝜃 ∶ 𝜎 ∈ Θ}.

• The base case is 𝐶 = true = 𝜃(𝐶). Then check(true, 𝜃; 𝛼1 ⋯ 𝛼𝑘, 𝜃𝑠) = {𝜃} = {id} ∘ 𝜃.
• For 𝑙 = 𝑟 ∧ 𝐶, in both cases we obtain the condition 𝜃(𝑙) = 𝜃(𝑟). When the condition does not hold, we

obtain ∅ in both sides. Otherwise and by the hypothesis, both sides coincide.

• For 𝑙 : 𝑠 ∧ 𝐶, the proof is almost identical.

• For 𝑙 := 𝑟 ∧ 𝐶, we have

check(𝜃(𝑙) := 𝜃(𝑟) ∧ 𝜃(𝐶), id; 𝜃𝑠(𝛼1) ⋯ 𝜃𝑠(𝛼𝑘), id) ∘ 𝜃
= ⋃

𝜎∈match(𝜃(𝑙),𝜃(𝑟))
check(𝜃(𝐶), 𝜎; 𝜃𝑠(𝛼1) ⋯ 𝜃𝑠(𝛼𝑘), id) ∘ 𝜃

By the induction hypothesis, in one direction,

check(𝜃(𝐶), 𝜎; 𝜃𝑠(𝛼1) ⋯ 𝜃𝑠(𝛼𝑘), id) = check(𝜎(𝜃(𝐶)), id; 𝜃𝑠(𝛼1) ⋯ 𝜃𝑠(𝛼𝑘), id) ∘ 𝜎

and in the other direction

check((𝜎 ∘ 𝜃)(𝐶), id; 𝜃𝑠(𝛼1) ⋯ 𝜃𝑠(𝛼𝑘), id) ∘ 𝜎 ∘ 𝜃 = check(𝐶, 𝜎 ∘ 𝜃; 𝛼1 ⋯ 𝛼𝑘, 𝜃𝑠)

Changing the union terms, we obtain the right-hand side of the desired identity.

• Finally, for 𝑙 => 𝑟 ∧ 𝐶.

check(𝜃(𝑙) => 𝜃(𝑟) ∧ 𝜃(𝐶), id; 𝜃𝑠(𝛼1) ⋯ 𝜃𝑠(𝛼𝑘), id) ∘ 𝜃
= let 𝑡 ↢ ⟦𝜃𝑠(𝛼1)⟧(id, 𝜃(𝑙)) ∶ ⋃

𝜎∈xmatch(𝜃(𝑟),𝑡)
check(𝜃(𝐶), 𝜎; 𝜃𝑠(𝛼1) ⋯ 𝜃𝑠(𝛼𝑘), id) ∘ 𝜃

From hypothesis, we know ⟦𝜃𝑠(𝛼1)⟧(id, 𝜃(𝑙)) = ⟦𝛼1⟧(𝜃𝑠, 𝜃(𝑙)). The same pair of applications of the
induction hypothesis in the previous case gives us the right-hand side term.

27

Then, we have

mcheck(𝑝, 𝑡, 𝐶, 𝜃; 𝛼1 ⋯ 𝛼𝑛, 𝜃𝑠) = ⋃
𝜎∈match 𝑃 s.t 𝐶(𝜃(𝑝),𝑡)

check(𝐶, 𝜎 ∘ 𝜃, 𝛼1 ⋯ 𝛼𝑛, 𝜃𝑠)

= ⋃
𝜎∈match 𝑃 s.t 𝐶(𝜃(𝑝),𝑡)

check(𝜃(𝐶), 𝜎, 𝜃𝑠(𝛼1) ⋯ 𝜃𝑠(𝛼𝑛), id) ∘ 𝜃

= mcheck(𝜃(𝑝), 𝑡, 𝜃(𝐶), id; 𝜃𝑠(𝛼1) ⋯ 𝜃𝑠(𝛼𝑛), id) ∘ 𝜃

Notice that in the third equality we have rewritten the union terms twice, in different directions.

Now, we prove “forall 𝜃 and 𝑡, ⟦𝛼⟧(𝜃, 𝑡) = ⟦𝜃(𝛼)⟧(id, 𝑡)” by induction on the structure of 𝛼.

• For idle, fail, we have 𝜃(𝛼) = 𝛼. The statement is trivially true .

• For match 𝑃 s.t 𝐶, we have ⟦match 𝑃 s.t 𝐶⟧(𝜃, 𝑡) = {𝑡} if mcheck(𝑃 , 𝑡, 𝐶, 𝜃) ≠ ∅ else ∅.
From the other side ⟦𝜃(match 𝑃 s.t 𝐶)⟧(id, 𝑡) = ⟦match 𝜃(𝑃) s.t 𝜃(𝐶)⟧(id, 𝑡) = {𝑡} if the condition
holds mcheck(𝑃 , 𝑡, 𝜃(𝐶), id) ≠ ∅ or else ∅. Using what we have proved for mcheck, we have finished.

• For 𝑠𝑙(𝑡1, … , 𝑡𝑛), then 𝜃(𝑠𝑙(𝑡1, … , 𝑡𝑛)) = 𝑠𝑙(𝜃(𝑡1), … , 𝜃(𝑡𝑛))

⟦𝜃(𝑠𝑙(𝑡1, … , 𝑡𝑛))⟧(id, 𝑡) = ⟦𝑠𝑙(𝜃(𝑡1), … , 𝜃(𝑡𝑛))⟧(id, 𝑡) = 𝑓𝑠𝑙(𝜃(𝑡1), … , 𝜃(𝑡𝑛), 𝑡) = ⟦𝑠𝑙(𝑡1, … , 𝑡𝑛)⟧(𝜃, 𝑡)

• For 𝛼 ;𝛽, then 𝜃(𝛼 ;𝛽) = 𝜃(𝛼) ; 𝜃(𝛽) and using induction hypothesis on 𝛼 and 𝛽

⟦𝜃(𝛼 ;𝛽)⟧(id, 𝑡) = ⟦𝜃(𝛼) ; 𝜃(𝛽)⟧(id, 𝑡) = ⟦𝜃(𝛽)⟧ ∘ ⟦𝜃(𝛼)⟧(id, 𝑡) = let 𝑡′ ↢ ⟦𝜃(𝛼)⟧(id, 𝑡) ∶ ⟦𝜃(𝛽)⟧(id, 𝑡′)
let 𝑡′ ↢ ⟦𝛼⟧(𝜃, 𝑡) ∶ ⟦𝛽⟧(𝜃, 𝑡′) = ⟦𝛽⟧ ∘ ⟦𝛼⟧(𝜃, 𝑡) = ⟦𝛼 ;𝛽⟧(𝜃, 𝑡)

• For 𝛼|𝛽, then 𝜃(𝛼|𝛽) = 𝜃(𝛼)|𝜃(𝛽) and using induction hypothesis on 𝛼 and 𝛽

⟦𝜃(𝛼|𝛽)⟧(id, 𝑡) = ⟦𝜃(𝛼)|𝜃(𝛽)⟧(id, 𝑡) = ⟦𝜃(𝛼)⟧(id, 𝑡) ∪ ⟦𝜃(𝛽)⟧(id, 𝑡) = ⟦𝛼⟧(𝜃, 𝑡) ∪ ⟦𝛽⟧(𝜃, 𝑡)
= ⟦𝛼|𝛽⟧(𝜃, 𝑡)

• For 𝛼∗, then 𝜃(𝛼∗) = 𝜃(𝛼)∗ and using induction hypothesis on 𝛼

⟦𝜃(𝛼∗)⟧(id, 𝑡) = ⟦𝜃(𝛼)∗⟧(id, 𝑡) =
∞
⋃
𝑛=0

⟦𝜃(𝛼)⟧𝑛(id, 𝑡) =
∞
⋃
𝑛=0

⟦𝛼⟧𝑛(𝜃, 𝑡) = ⟦𝛼∗⟧(𝜃, 𝑡)

• For 𝛼 ? 𝛽 : 𝛾 , then 𝜃(𝛼 ? 𝛽 : 𝛾) = 𝜃(𝛼) ? 𝜃(𝛽) : 𝜃(𝛾) and using induction hypothesis on 𝛼, 𝛽, 𝛾

⟦𝛼 ? 𝛽 : 𝛾 ⟧(id, 𝑡) = ⟦𝜃(𝛼) ? 𝜃(𝛽) : 𝜃(𝛾) ⟧(id, 𝑡) = ⟦𝜃(𝛽)⟧ ∘ ⟦𝜃(𝛼)⟧(id, 𝑡) if ⟦𝜃(𝛼)⟧(id, 𝑡) else ⟦𝜃(𝛾)⟧(id, 𝑡)
= ⟦𝛽⟧ ∘ ⟦𝛼⟧(𝜃, 𝑡) if ⟦𝛼⟧(𝜃, 𝑡) else ⟦𝛾⟧(𝜃, 𝑡) = ⟦𝛼 ? 𝛽 : 𝛾 ⟧(𝜃, 𝑡)

⟦𝜃(𝛽)⟧ ∘ ⟦𝜃(𝛼)⟧(id, 𝑡) = ⟦𝛽⟧ ∘ ⟦𝛼⟧(𝜃, 𝑡) had been proved above.

• For 𝑟𝑙[𝑥1 <- 𝑡1, … , 𝑥𝑛 <- 𝑡𝑛]{𝛼1, … , 𝛼𝑚} and using induction hypothesis for 𝛼1, … , 𝛼𝑛

⟦𝜃(𝑟𝑙[𝑥1 <- 𝑡1, … , 𝑥𝑛 <- 𝑡𝑛]{𝛼1, … , 𝛼𝑚})⟧(id, 𝑡)
= ⟦𝜃(𝑟𝑙[𝑥1 <- 𝜃(𝑡1), … , 𝑥𝑛 <- 𝜃(𝑡𝑛)]{𝜃(𝛼1), … , 𝜃(𝛼𝑚)})⟧(id, 𝑡)
= ⋃

(𝑟𝑙,𝑙,𝑟,𝐶)∈𝑅
let (𝜎, 𝑐) ↢ amcheck(𝑙, 𝑡, 𝐶, id[𝑥1/𝜃(𝑡1), … , 𝑥𝑛/𝜃(𝑡𝑛)]; 𝜃(𝛼1) ⋯ 𝜃(𝛼𝑚), id) ∶ {𝑐(𝜎(𝑟))}

= ⋃
(𝑟𝑙,𝑙,𝑟,𝐶)∈𝑅

let (𝜎, 𝑐) ↢ amcheck(𝑙, 𝑡, 𝐶, id[𝑥1/𝜃(𝑡1), … , 𝑥𝑛/𝜃(𝑡𝑛)]; 𝛼1 ⋯ 𝛼𝑚, 𝜃) ∶ {𝑐(𝜎(𝑟))}

= ⟦𝑟𝑙[𝑥1 <- 𝑡1, … , 𝑥𝑛 <- 𝑡𝑛]{𝛼1, … , 𝛼𝑚}⟧(𝜃, 𝑡)

In the third equality we have used the mcheck identity twice: to introduce id[𝑥1/𝜃(𝑡1), … , 𝑥𝑛/𝜃(𝑡𝑛)]
and then to extract it together with 𝜃. Notice the identity only holds if ⟦𝛼𝑖⟧(𝜃, 𝑡) = ⟦𝜃(𝛼𝑖)⟧(id, 𝑡) for all
1 ≤ 𝑖 ≤ 𝑚, but this is true because of induction hypothesis.

28

• matchrew 𝑃 s.t 𝐶 by 𝑥1 using 𝛼1, … , 𝑥𝑛 using 𝛼𝑛 and using induction hypothesis on 𝛼1, … , 𝛼𝑛

⟦𝜃(matchrew 𝑃 s.t 𝐶 by 𝑥1 using 𝛼1, … , 𝑥𝑛 using 𝛼𝑛)⟧(id, 𝑡)
= ⟦matchrew 𝜃−{𝑥𝑘𝑗 }(𝑃) s.t ⋀𝑗𝑥𝑘𝑗

= 𝜃(𝑥𝑘𝑗
) ∧ 𝜃(𝐶) by 𝑥1 using 𝜃(𝛼1), … , 𝑥𝑛 using 𝜃(𝛼𝑛)⟧(id, 𝑡)

= ⋃
𝜎∈Θ

let 𝑡1 ↢ ⟦𝜃(𝛼1)⟧(𝜎, 𝜎(𝑥1)), … , 𝑡𝑛 ↢ ⟦𝜃(𝛼𝑛)⟧(𝜎, 𝜎(𝑥𝑛)) ∶ {𝜎[𝑥1/𝑡1, … , 𝑥𝑛/𝑡𝑛](𝑃)}

where Θ = mcheck(𝜃−{𝑥𝑘𝑗 }(𝑃), 𝑡, ⋀𝑗𝑥𝑘𝑗
= 𝜃(𝑥𝑘𝑗

) ∧ 𝜃(𝐶), id), and 𝑥𝑘𝑗
are all variables designating sub-

terms to be rewritten that are bound by 𝜃. Since these variables are among 𝑥1, … , 𝑥𝑛,

𝜎[𝑥1/𝑡1, … , 𝑥𝑛/𝑡𝑛](𝑃) = 𝜎[𝑥1/𝑡1, … , 𝑥𝑛/𝑡𝑛](𝜃−{𝑥𝑘𝑗 }(𝑃)) = (𝜎 ∘ 𝜃)[𝑥1/𝑡1, … , 𝑥𝑛/𝑡𝑛](𝑃)

Using induction hypothesis twice, ⟦𝜃(𝛼𝑖)⟧(𝜎, 𝜎(𝑥𝑖)) = ⟦𝛼𝑖⟧(𝜎 ∘ 𝜃, 𝜎(𝑥𝑖)). The proof would be finished if
Θ ∘ 𝜃 = mcheck(𝑃 , 𝑡, 𝐶, 𝜃).

Θ ∘ 𝜃 = mcheck(𝜃−{𝑥𝑘𝑗 }(𝑃), 𝑡, ⋀𝑗𝑥𝑘𝑗
= 𝜃(𝑥𝑘𝑗

) ∧ 𝜃(𝐶), id) ∘ 𝜃−{𝑥𝑘𝑗 }

= mcheck(𝜃−{𝑥𝑘𝑗 }(𝑃), 𝑡, 𝜃−{𝑥𝑘𝑗 }(⋀𝑗𝑥𝑘𝑗
= 𝜃(𝑥𝑘𝑗

) ∧ 𝐶), id) ∘ 𝜃−{𝑥𝑘𝑗 }

= mcheck(𝑃 , 𝑡, ⋀𝑗𝑥𝑘𝑗
= 𝜃(𝑥𝑘𝑗

) ∧ 𝐶, 𝜃−{𝑥𝑘𝑗 })
= mcheck(𝑃 , 𝑡, 𝐶, 𝜃)

In the first line, 𝜃 can be replaced by itself with the variables 𝑥𝑘𝑗
unbound, because the substitutions

in Θ already have the 𝑥𝑘𝑗
variables instantiated to 𝜃(𝑥𝑘𝑗

) in the condition. For the same reason, not
replacing these variables in 𝐶 is without effect, since they will be bound when 𝐶 is recursively evaluated.

∎

▶ Proposition 17. Given a rewrite theory with strategies ℛ = (Σ, 𝐸, 𝑅; 𝐺, 𝐷), and 𝛼, 𝛽, 𝛾 ∈ Stratℛ,Ω

1. ⟦idle@ 𝑡⟧ = {𝑡}
2. ⟦fail@ 𝑡⟧ = ∅
3. ⟦𝛼|𝛽 @ 𝑡⟧ = ⟦𝛼@ 𝑡⟧ ∪ ⟦𝛽 @ 𝑡⟧

4. ⟦𝛼 ;𝛽 @ 𝑡⟧ = let 𝑡′ ↢ ⟦𝛼@ 𝑡⟧ ∶ ⟦𝛽 @ 𝑡′⟧

5. ⟦𝛼 ? 𝛽 : 𝛾 @ 𝑡⟧ = { ⟦𝛼 ;𝛽 @ 𝑡⟧ si ⟦𝛼@ 𝑡⟧ ≠ ∅
⟦𝛾 @ 𝑡⟧ si ⟦𝛼@ 𝑡⟧ = ∅

6. ⟦𝑠𝑙(𝑡1, … , 𝑡𝑛)@ 𝑡⟧ = ⋃𝑚𝑠𝑙
𝑖=1 ⋃𝜃∈vcheck(𝑝𝑠𝑙,𝑖,(𝑡1,…,𝑡𝑛),𝐶𝑠𝑙,𝑖)⟦𝜃(𝛿𝑠𝑙, ̄𝑐,𝑖)@ 𝑡⟧.

Items 1 to 5 are a direct translation using Proposition 16 of the semantic definition for the new semantics.
Statement 6 comes from

⟦𝑠𝑙(𝑡1, … , 𝑡𝑛)@ 𝑡⟧ = ⟦𝑠𝑙(𝑡1, … , 𝑡𝑛)⟧(id, 𝑡) = 𝑓𝑠𝑙(𝑡1, … , 𝑡𝑛, 𝑡) = ⋃ 𝑑𝑖(𝜃, 𝑡) (C15)= ⋃ ⟦𝛿𝑖⟧(𝜃, 𝑡)
(P16)= ⋃ ⟦𝜃(𝛿𝑖)@ 𝑡⟧

where the union range as in the statement.
∎

A.3 Proofs for the operational semantics
Now we start proving the equivalence between the previous denotational semantics in Section 3 and the
operational semantics in Section 4. Then we deal with some properties of the operational semantics.

Our notion of equivalence is that for all terms 𝑡, 𝑡′, strategy 𝛼, and substitution 𝜃, 𝑡 ∈ ⟦𝛼⟧(𝜃, 𝑡) iff
𝑡@𝛼 𝜃 →∗

𝑠,𝑐 𝑡@ 𝜀. Since not all execution states have this form and in order to build an inductive proof, we
ought to extend the semantic function to the whole 𝒳𝑆ℛ. In the following, we will not explicitly mention the
rewriting theory ℛ we are dealing with, and will take for granted that 𝑡, 𝑡′, … are terms in 𝑇Σ(𝑋); 𝜃, 𝜎, … are
substitutions in VEnv; 𝛼, 𝛽, 𝛾 strategies; 𝑞, 𝑞′, … execution states; and 𝑠, 𝑠′, 𝑠0 stacks.

29

▶ Definition. We define the function dsem ∶ 𝒳𝑆ℛ → 𝒫⊥(𝑇Σ(𝑋)) as follows

1. dsem(𝑡@ 𝜀) = {𝑡}
2. dsem(𝑡@ 𝜃𝑠) = dsem(𝑡@ 𝑠)
3. dsem(𝑡@𝛼𝑠) = let 𝑡′ ↢ ⟦𝛼⟧(vctx(𝑠), 𝑡) ∶ dsem(𝑡′ @ 𝑠)
4. dsem(subterm(𝑥1 ∶ 𝑞1, … , 𝑥𝑛 ∶ 𝑞𝑛; 𝑡)@ 𝑠) = let 𝑛

𝑖=1 𝑡𝑖 ↢ dsem(𝑞𝑖) ∶ dsem(𝑡[𝑥𝑖/𝑡𝑖]𝑛𝑖=1 @ 𝑠)
5. dsem(rewc(𝑝 ∶ 𝑞, 𝜎, 𝐶, ̄𝛼, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝑠) =

let 𝑡′ ↢ dsem(𝑞) ∶ ⋃𝜎𝑚∈match(𝑝,𝑡′) let 𝜎′ ↢ check(𝐶, 𝜎 ∘ 𝜎𝑚; ̄𝛼, 𝜃𝑠) ∶ {𝑚(𝜎′(𝑟))}

This function is a generalization of ⟦⋅⟧ because dsem(𝑡@𝛼 𝜃) = ⟦𝛼⟧(𝜃, 𝑡) (as easily follows from the
definition).

▶ Proposition 18. For 𝛼, 𝛽 ∈ Stratℛ,Ω and 𝑠 ∈ Stack

1. dsem(𝑡@𝛼 ;𝛽 𝑠) = dsem(𝑡@𝛼𝛽𝑠)
2. dsem(𝑡@𝛼|𝛽 𝑠) = dsem(𝑡@𝛼𝑠) ∪ dsem(𝑡@𝛽𝑠)
3. dsem(rewc(𝑝 ∶ 𝑡@𝛼 𝜃𝑠, 𝜎, 𝐶, ̄𝛼, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝑠) = let 𝜎′ ↢ check(𝑡′ => 𝑝 ∧ 𝐶, 𝜎; 𝛼 ̄𝛼, 𝜃𝑠) ∶ {𝑚(𝜎′(𝑟))} for 𝑡′

such that 𝜎(𝑡′) = 𝑡.

A routine calculation proves the first statement (we write 𝜃 for vctx(𝑠))

dsem(𝑡@𝛼 ;𝛽 𝑠) = let 𝑡′ ↢ ⟦𝛼 ;𝛽⟧(𝜃, 𝑡) ∶ dsem(𝑡′ @ 𝑠)
= let 𝑡′ ↢ (let 𝑡𝑚 ↢ ⟦𝛼⟧(𝜃, 𝑡) ∶ ⟦𝛽⟧(𝜃, 𝑡𝑚)) ∶ dsem(𝑡′ @ 𝑠)
= let 𝑡𝑚 ↢ ⟦𝛼⟧(𝜃, 𝑡) ∶ (let 𝑡′ ↢ ⟦𝛽⟧(𝜃, 𝑡𝑚) ∶ dsem(𝑡′ @ 𝑠))
= let 𝑡𝑚 ↢ ⟦𝛼⟧(𝜃, 𝑡) ∶ dsem(𝑡𝑚 @𝛽 𝑠))
= dsem(𝑡@𝛼𝛽 𝑠)

and the second

dsem(𝑡@𝛼|𝛽 𝑠) = let 𝑡′ ↢ ⟦𝛼|𝛽⟧(𝜃, 𝑡) ∶ dsem(𝑡′ @ 𝑠)
= let 𝑡′ ↢ ⟦𝛼⟧(𝜃, 𝑡) ∪ ⟦𝛽⟧(𝜃, 𝑡) ∶ dsem(𝑡′ @ 𝑠)
= let 𝑡′ ↢ ⟦𝛼⟧(𝜃, 𝑡) ∶ dsem(𝑡′ @ 𝑠) ∪ let 𝑡′ ↢ ⟦𝛽⟧(𝜃, 𝑡) ∶ dsem(𝑡′ @ 𝑠)
= dsem(𝑡′ @𝛼 𝑠) ∪ dsem(𝑡′ @𝛽 𝑠)

For the third statement,

dsem(rewc(𝑝 ∶ 𝑡@𝛼𝜃𝑠, 𝜎, 𝐶, ̄𝛼, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝑠)
= let 𝑡𝑚 ↢ ⟦𝛼⟧(𝜃𝑠, 𝑡) ∶ ⋃

𝜎𝑚∈match(𝑝,𝑡𝑚)
let 𝜎′ ↢ check(𝐶, 𝜎 ∘ 𝜎𝑚; ̄𝛼, 𝜃𝑠) ∶ {𝑚(𝜎′(𝑟))}

= let 𝜎′ ↢ check(𝑡′ => 𝑝 ∧ 𝐶, 𝜎; 𝛼 ̄𝛼, 𝜃𝑠) ∶ {𝑚(𝜎′(𝑟))}

by the definition of check.
∎

▶ Proposition 19. The execution tree for →𝑠,𝑐 is finitary.

In other words, the number of direct successors of any state 𝑞 ∈ 𝒳𝑆ℛ for →𝑠,𝑐 is finite. Terms like 𝑡@ 𝜃𝑠
have 𝑡@ 𝑠 as the only successor. Looking at Figures 2 and 3, it is easy to conclude that the successors of
𝑡@𝛼𝑠 are finitely many (no more that two reductions except for matchrew and rule application, which have
a successor for each possible match, anyhow a finite number).

Reasoning inductively, structured states have a finite number of successors too. In the case of rewc, they
are the replacement of the substate by its successors (a finite number by induction hypothesis) or the rewc

30

term for the next rewriting fragment or the plain term 𝑡@ 𝑠 after successful evaluation of the condition. In
the last two cases the successor are a finite amount because matches are finitely many. In the case of subterm,
the states that may follow are the replaced term 𝑡[𝑥𝑖/𝑡𝑖]@ 𝑠 upon successful termination, and the evolution of
the subterms. In the last case the number of possibilities is the sum of the possibilities for all of its subterms,
a finite number by induction hypothesis.

∎
On the contrary, note that the execution tree for ↠ may not be finitary. Suppose two rules are defined for

integer numbers: 𝑛 ⇒ 𝑠(𝑛) labeled inc and 𝑛 ⇒ −𝑚 if 𝑛 → 𝑚 labeled neg. The execution state 0@𝑛𝑒𝑔{𝑖𝑛𝑐∗}
has −𝑛@ 𝜀 as successor for all 𝑛 ∈ ℕ. In terms of →𝑠,𝑐 there is an infinite execution

0@𝑛𝑒𝑔{𝑖𝑛𝑐∗} →𝑐 … →𝑐 rewc(𝑚 ∶ 𝑘@ 𝑖𝑛𝑐∗, [𝑛 ↦ 0], true, 𝜀, id, −𝑚; 0)@ 𝜀 →𝑐 …

▶ Corollary 20. The execution tree for →𝑠,𝑐 is infinite iff it contains an infinite execution.

The if case is obvious. The only if case is also easy: the tree is finitary, so to be infinite, by Kőnig lemma
[6], it must have an infinite path (execution).

∎
▶ Definition. The call depth cdepth of a state 𝑞 ∈ 𝒳𝑆ℛ is defined as:

1. For 𝑡@ 𝑠, the number of substitutions in 𝑠.
2. For subterm(𝑥1 ∶ 𝑞1, … , 𝑥𝑛 ∶ 𝑞𝑛; 𝑡)@ 𝑠, the number of substitutions in 𝑠 plus the maximum of zero and

cdepth(𝑞𝑖) − 1 for all 𝑖.
3. For rewc(𝑝 ∶ 𝑞, 𝜎, 𝐶, ̄𝛼, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝑠, the number of variable environments in 𝑠 plus the maximum of

zero and cdepth(𝑞) − 1.
The call depth of an execution 𝑞1 →𝑠,𝑐 𝑞2 →∗

𝑠,𝑐 𝑞𝑛 →∗
𝑠,𝑐 … of length 1 ≤ 𝑙 ≤ ∞ is

sup { cdepth(𝑞𝑚) − cdepth(𝑞𝑛) ∣ 1 ≤ 𝑛 ≤ 𝑙, 𝑛 ≤ 𝑚 ≤ 𝑙 }

or the maximum call depth of the executions in the proofs for the [else] rules if this is greater. It can be
infinity.

The call depth is a measure of the number of nested calls, like the call stack size in a modern computer.
One is subtracted to the call depths of the substates in items 2 and 3 above because the substitutions at
their bottoms never come from a strategy call but from the matching environment of a matchrew, or the
replication of the outer context in rewc. The call depth of a state increases when more context is added
to the bottom of its queue, but the call depth of an execution is indifferent when all their states stacks are
extended the same way. Another property is that the call depth of the suffixes of any execution are always
less or equal than the depth of the whole.

For convenience and abusing notation, we write 𝑞 @ 𝑠 to represent a state in any of its forms with a global
stack 𝑠. That is, 𝑞 @ 𝑠 can be 𝑡@ 𝑠, subterm(…)@ 𝑠 or rewc(…)@ 𝑠.

▶ Lemma 21.

1. If 𝑡@ 𝑠1 𝜃 →∗
𝑠,𝑐 𝑡𝑚 @ 𝜀 and 𝑡𝑚 @ 𝑠2 →∗

𝑠,𝑐 𝑞 then 𝑡@ 𝑠1𝑠2 →∗
𝑠,𝑐 𝑞 where 𝜃 = vctx(𝑠2).

Moreover, the length of the resulting execution is the sum of the lengths of the original ones, and its
call depth is the maximum.

2. If 𝑞0 @ 𝑠1𝑠2 →∗
𝑠,𝑐 𝑞′ and 𝑠1 ≠ 𝜀 then

𝑞′ ∈ {𝑞 @ 𝑠′𝑠2 ∶ 𝑞0 @ 𝑠1𝜃 →∗
𝑠,𝑐 𝑞 @ 𝑠′} ∪ {𝑞 ∶ ∃ 𝑡𝑚 𝑞0 @ 𝑠1𝜃 →∗

𝑠,𝑐 𝑡𝑚 @ 𝜀 ∧ 𝑡𝑚 @ 𝑠2 →∗
𝑠,𝑐 𝑞}

3. If 𝑡@ 𝑠1𝑠2 →∗
𝑠,𝑐 𝑡′ @ 𝜀 then there is a term 𝑡𝑚 such that 𝑡@ 𝑠1𝜃 →∗

𝑠,𝑐 𝑡𝑚 @ 𝜀 and 𝑡𝑚 @ 𝑠2 →∗
𝑠,𝑐 𝑡′ @ 𝜀.

Some common facts follow easily from the inspection of the rules and axioms of the semantics definition:

• The global stack 𝑠 in 𝑞 @ 𝑠 only changes by a →𝑠,𝑐 reduction if 𝑞 = 𝑡@ 𝑠 for some term 𝑡.

31

• Only the top of the stack can be popped by a reduction, 𝑡@𝛼 𝑠 →𝑠,𝑐 𝑞 @ 𝑠𝛼 𝑠 for some stack 𝑠𝛼.

• Reductions only depend on the top of the stack and the variable environment. Thus, the stack can be
extended from below without effect if the latter is preserved, i.e. 𝑞 @ 𝑠 𝜃 →𝑠,𝑐 𝑞′ @ 𝑠′ implies 𝑞 @ 𝑠 𝑠0 →𝑠,𝑐
𝑞 @ 𝑠′𝑠0 where 𝜃 = vctx(𝑠0), which may be omitted if it is id.

Using these basic facts, we prove the statements:

1. Replace 𝜃 by 𝑠2 in the stacks’ bottoms of the first execution. Then 𝑡@ 𝑠1𝑠2 →∗
𝑠,𝑐 𝑡𝑚 @ 𝑠2 is obtained,

and joining it with the second execution, the statement holds.
While it is clear that the length is the sum of the lengths of the components, we will discuss the
call depth of the combined execution. It is the following maximum (the sup is a max because both
executions are finite)

max { cdepth(𝑞𝑚) − cdepth(𝑞𝑛) ∣ 1 ≤ 𝑛 ≤ 𝑙, 𝑛 ≤ 𝑚 ≤ 𝑙 }
Let 𝑙1 be the length of the first execution. For 𝑛 > 𝑙1, i.e. for states to the right of 𝑡𝑚 @ 𝑠2, the numbers
cdepth(𝑞𝑚) − cdepth(𝑞𝑛) are the same as in the original execution because the states are exactly the
same. The states before 𝑡𝑚 @ 𝑠2 have been extended with 𝑠2 at the bottom of their stacks, so their call
depth is greater than that of 𝑡𝑚 @ 𝑠2. Hence, terms like cdepth(𝑞𝑚)−cdepth(𝑞𝑛) with 𝑛 < 𝑙1 and 𝑚 ≥ 𝑙1
can be ignored when taking the maximum because they are bounded above by cdepth(𝑞𝑚)−cdepth(𝑞𝑙1

).
The only missing case is cdepth(𝑞𝑚)− cdepth(𝑞𝑛) with both 𝑛, 𝑚 < 𝑙1 but they are at most (and reach)
the call depth of the first execution, because they are the states of this execution extended uniformly
at the bottom.

2. The proof is carried out by induction on the length 𝑘 of the derivation 𝑞 @ 𝑠1𝑠2 →∗
𝑠,𝑐 𝑞′

• Base case (𝑘 = 0): then 𝑞0 @ 𝑠1𝑠2 = 𝑞′, so 𝑞′ is in the first set with the 0-length execution and
𝑠′ = 𝑠1.

• Inductive case: we have 𝑞0 @ 𝑠1𝑠2 →𝑠,𝑐 𝑞1 →𝑘
𝑠,𝑐 𝑞′. If 𝑞0 is a subterm or rewc state, the stack

remains unchanged in the first step, so we can apply induction hypothesis on 𝑞1 @ 𝑠1𝑠2 →𝑘
𝑠,𝑐 𝑞′ to

conclude. Otherwise, 𝑞0 @ 𝑠1𝑠2 = 𝑡@ 𝑠1𝑠2 for some term 𝑡. And since the stack 𝑠1 is not empty,
either 𝑠1 = 𝜎𝑠′

1 or 𝑠1 = 𝛼 𝑠′
1.

In the first case, 𝑡@𝜎𝑠′
1𝑠2 →𝑐 𝑡@ 𝑠′

1𝑠2. If 𝑠′
1 = 𝜀 then 𝑞′ is in the second set with 𝑡𝑚 = 𝑡.

Otherwise, we apply induction hypothesis to the rest of the derivation 𝑡@ 𝑠′
1𝑠2 →𝑘

𝑠,𝑐 𝑞′. Here, we
have two possibilities:

– There is a term 𝑡𝑚 such that 𝑡@ 𝑠′
1𝑠2 →∗

𝑠,𝑐 𝑡𝑚 @ 𝑠2 and 𝑡𝑚 @ 𝑠2 →∗
𝑠,𝑐 𝑞′. Hence, our 𝑞′ is in

the second set with 𝑡𝑚 = 𝑡. This follows from the second execution above and 𝑡@𝜎𝑠1𝜃 →𝑐
𝑡@ 𝑠1𝜃 →𝑐 𝑡@ 𝑠′

1𝜃 →∗
𝑠,𝑐 𝑡𝑚 @ 𝜃 →𝑐 𝑡𝑚 @ 𝜀.

– 𝑡@ 𝑠′
1𝜃 →∗

𝑠,𝑐 𝑞 @ 𝑠′ for some state 𝑞 and 𝑞′ = 𝑞 @ 𝑠′𝑠2. Thus, 𝑞′ is in the first set with
𝑡@ 𝑠1𝜃 = 𝑡@𝜎𝑠′

1 𝜃 →𝑐 𝑡@ 𝑠′
1 𝜃 →∗

𝑠,𝑐 𝑞 @ 𝑠′.
The second case, 𝑠1 = 𝛼𝑠′

1, whose first step is 𝑡@𝛼𝑠′
1𝑠2 →𝑠,𝑐 𝑞1 @ 𝑠𝛼𝑠′

1𝑠2 is almost identical.

3. We only have to apply (2) with 𝑞0 @ 𝑠1𝑠2 = 𝑡@ 𝑠1𝑠2 and 𝑞′ = 𝑡′ @ 𝜀 if 𝑠1 ≠ 𝜀 (otherwise is trivial).

∎
▶ Lemma 22. Given 𝑓 ∶ VEnv × 𝑇Σ(𝑋) → 𝒫⊥(𝑇Σ(𝑋)), assume

∀ 𝑡, 𝑡′ ∈ 𝑇Σ(𝑋) ∀𝜃 ∈ VEnv 𝑡′ ∈ 𝑓(𝜃, 𝑡) ⟹ 𝑡@𝛼 𝜃 →∗
𝑠,𝑐 𝑡′ @ 𝜀

For any 𝑘 ∈ ℕ, if 𝑡′ ∈ 𝑓𝑘(𝜃, 𝑡) then 𝑡@𝛼∗ 𝜃 →∗
𝑠,𝑐 𝑡′ @ 𝜀.

By induction on 𝑘. If 𝑘 = 0 (the base case), 𝑓0(𝜃, 𝑡) = {𝑡} so 𝑡 = 𝑡′ and we are done using the rule
𝑡@𝛼∗ 𝜃 →𝑐 𝑡@ 𝜃 →𝑐 𝑡@ 𝜀. In the inductive case, assume the lemma holds for 𝑘. We want to prove that if
𝑡′ ∈ 𝑓𝑘+1(𝜃, 𝑡) then 𝑡@𝛼∗ 𝜃 →∗

𝑠,𝑐 𝑡′ @ 𝜀. The definition of composition and 𝑓𝑘+1 = 𝑓 ∘ 𝑓𝑘 imply that there is
a term 𝑡𝑚 such that 𝑡𝑚 ∈ 𝑓𝑘(𝜃, 𝑡) and 𝑡′ ∈ 𝑓(𝜃, 𝑡𝑚). Using, in this order, the second rule for the iteration,
the statement assumption, and the induction hypothesis, we conclude

𝑡@𝛼∗ 𝜃 →𝑐 𝑡@𝛼𝛼∗ 𝜃 →∗
𝑠,𝑐 𝑡𝑚 @𝛼∗ 𝜃 →∗

𝑠,𝑐 𝑡′ @ 𝜀
∎

32

▶ Lemma 23. Given 𝑓 ∶ VEnv × 𝑇Σ(𝑋) → 𝒫⊥(𝑇Σ(𝑋)), assume

∀ 𝑡, 𝑡′ ∈ 𝑇Σ(𝑋) ∀𝜃 ∈ VEnv 𝑡@𝛼 𝜃 →∗
𝑠,𝑐 𝑡′ @ 𝜀 ⟹ 𝑡′ ∈ 𝑓(𝜃, 𝑡)

If 𝑡@𝛼∗ 𝜃 →∗
𝑠,𝑐 𝑡′ @ 𝜀 and the number of states in the execution with stack 𝛼∗ 𝜃 is exactly 𝑘 + 1, then

𝑡′ ∈ 𝑓𝑘(𝜃, 𝑡).

By induction on 𝑘. If 𝑘 = 0, the only allowed execution is 𝑡@𝛼∗ 𝜃 →𝑐 𝑡@ 𝜃 →𝑐 𝑡@ 𝜃. So 𝑡 = 𝑡′

and 𝑡 ∈ 𝑓0(𝜃, 𝑡) = {𝑡}. If 𝑘 > 0, we can decompose the execution in two parts: before the penultimate
state with stack 𝛼∗ 𝜃 and after this state. The first part is 𝑡@𝛼∗ 𝜃 →∗

𝑠,𝑐 𝑡𝑚 @𝛼∗ 𝜃 and it can be completed
with 𝑡𝑚 @𝛼∗ 𝜃 →𝑐 𝑡𝑚 @ 𝜃 →𝑐 𝑡𝑚 @ 𝜀. It contains exactly 𝑘 states with 𝛼∗ 𝜃, so by induction hypothesis,
𝑡𝑚 ∈ 𝑓𝑘−1(𝜃, 𝑡). The second execution is 𝑡𝑚 @𝛼∗ 𝜃 →∗

𝑠,𝑐 𝑡′ @ 𝜀, but its second state must be 𝑡𝑚 @𝛼𝛼∗ 𝜃 and
the last states need be 𝑡′ @𝛼∗ 𝜃 and 𝑡′ @ 𝜃. Forgetting about the first and last two states and removing 𝛼∗

from the stacks, we get 𝑡𝑚 @𝛼 𝜃 →∗
𝑠,𝑐 𝑡′ @ 𝜀. By the hypothesis of the lemma, 𝑡 ∈ 𝑓(𝜃, 𝑡𝑚). Combining both

results, 𝑡′ ∈ 𝑓(𝜃, 𝑡𝑚) and 𝑡𝑚 ∈ 𝑓𝑘−1(𝜃, 𝑡), we conclude 𝑡′ ∈ 𝑓𝑘(𝜃, 𝑡) as we wanted.
∎

▶ Lemma 24. Given 𝑓 ∶ VEnv× 𝑇Σ(𝑋) → 𝒫⊥(𝑇Σ(𝑋)) and assuming ⊥ ∈ 𝑓𝑘(𝜃, 𝑡) for some 𝑘 ∈ ℕ, there is a
term 𝑡⊥ and 𝑘⊥ ≤ 𝑘 such that 𝑡⊥ ∈ 𝑓𝑘⊥(𝜃, 𝑡) and ⊥ ∈ 𝑓(𝜃, 𝑡⊥).

The proof is by induction on 𝑘. For 𝑘 = 0, the premises are never satisfied, since 𝑓0(𝜃, 𝑡) = {𝑡}. The
statement clearly holds for 𝑘 = 1 with 𝑡⊥ = 𝑡 and 𝑘⊥ = 0. For 𝑘 ≥ 2, remember 𝑓𝑘(𝜃, 𝑡) = let 𝑡𝑚 ↢
𝑓𝑘−1(𝜃, 𝑡) ∶ 𝑓(𝜃, 𝑡𝑚). The following situations can happen:

• ⊥ ∈ 𝑓(𝜃, 𝑡𝑚). Then 𝑡⊥ = 𝑡𝑚 and 𝑘⊥ = 𝑘 − 1.
• ⊥ ∈ 𝑓𝑘−1(𝜃, 𝑡). Then the induction hypothesis proves the lemma.

∎
We define len(𝑞) for 𝑞 ∈ 𝒳𝑆ℛ as the maximum length of a →𝑠,𝑐 execution from 𝑞.

▶ Lemma 25.
1. subterm(𝑥1 ∶ 𝑞1, … , 𝑥𝑛 ∶ 𝑞𝑛; 𝑡)@ 𝜀 →∗

𝑠,𝑐 subterm(𝑥1 ∶ 𝑞′
1, … , 𝑥𝑛 ∶ 𝑞′

𝑛; 𝑡)@ 𝜀 if 𝑞𝑖 →∗
𝑠,𝑐 𝑞′

𝑖 for all 𝑖.
2. If subterm(𝑥1 ∶ 𝑞1, … , 𝑥𝑛 ∶ 𝑞𝑛; 𝑡)@ 𝜀 →∗

𝑠,𝑐 subterm(𝑥1 ∶ 𝑞′
1, … , 𝑥𝑛 ∶ 𝑞′

𝑛; 𝑡)@ 𝜀 then 𝑞𝑖 →∗
𝑠,𝑐 𝑞′

𝑖 for all 𝑖.
3. If 𝑞𝑖 →∗

𝑠,𝑐 𝑡𝑖 @ 𝜀 for all 1 ≤ 𝑖 ≤ 𝑛 then subterm(𝑥1 ∶ 𝑞1, … , 𝑥𝑛 ∶ 𝑞𝑛; 𝑡)@ 𝜀 →∗
𝑠,𝑐 𝑡[𝑥𝑖/𝑡𝑖]𝑛𝑖=1 @ 𝜀.

4. If subterm(𝑥1 ∶ 𝑞1, … , 𝑥𝑛 ∶ 𝑞𝑛; 𝑡)@ 𝜀 →∗
𝑠,𝑐 𝑡′ @ 𝜀 then there are terms 𝑡1, … , 𝑡𝑛 such that 𝑞𝑖 →∗

𝑠,𝑐 𝑡𝑖 @ 𝜀
for all 1 ≤ 𝑖 ≤ 𝑛 and 𝑡′ = 𝑡[𝑥𝑖/𝑡𝑖]𝑛𝑖=1.

5. len(subterm(𝑥1 ∶ 𝑞1, … , 𝑥𝑛 ∶ 𝑞𝑛; 𝑡)@ 𝜀) = ∑𝑛
𝑘=1 len(𝑞𝑘) + 1.

Statements (3) and (4) are a corollary of statements (1) and (2). Induction is used to prove the latter.

1. By induction on the execution lengths from 𝑞𝑖. Suppose all lengths are 0 then 𝑞𝑖 = 𝑞′
𝑖 and the empty

execution solves the statement. Otherwise, there is at least a positive number in the 𝑛-tuple of execution
lengths. We assume the statement is true for any collection of derivations of lower or equal length with
at least one strictly lower coordinate. Suppose, without loss of generality, that 𝑞1 →𝑠,𝑐 𝑞1,1 →∗

𝑠,𝑐 𝑞′
1.

Then by [prl𝑠] or [prl𝑐] we can assert

subterm(𝑥1 ∶ 𝑞1, … , 𝑥𝑛 ∶ 𝑞𝑛; 𝑡)@ 𝜀 →𝑠,𝑐 subterm(𝑥1 ∶ 𝑞1,1, … , 𝑥𝑛 ∶ 𝑞𝑛; 𝑡)@ 𝜀
And the remaining execution to be applied in 𝑥1 is strictly shorter than the original one. The derivation
can be completed by induction hypothesis.

2. Now, induction is based on the length of the execution in the premise. Suppose the length is 0, then
𝑞𝑖 = 𝑞′

𝑖 and the empty executions from every 𝑞𝑖 make the statement true. If the length is positive, there
must be an initial [prl𝑐] or [prl𝑠] transition

subterm(𝑥1 ∶ 𝑞1, … , 𝑥𝑖 ∶ 𝑞𝑖, … , 𝑥𝑛 ∶ 𝑞𝑛; 𝑡)@ 𝜀 →𝑠,𝑐 subterm(𝑥1, 𝑞1, … , 𝑥𝑖 ∶ 𝑞𝑖,1, … , 𝑥𝑛 ∶ 𝑞𝑛; 𝑡)@ 𝜀
and for this to be true 𝑞𝑖 →𝑠,𝑐 𝑞𝑖,1 must hold. By induction hypothesis on the execution from the
right-hand side, 𝑞𝑗 →∗

𝑠,𝑐 𝑞′
𝑗 for all 𝑗 ≠ 𝑖 and 𝑞𝑖 →𝑠,𝑐 𝑞𝑖,1 →∗

𝑠,𝑐 𝑞′
𝑖 . So we have found the desired

executions.

33

3. It is enough to apply (1) and then subterm(𝑥1 ∶ 𝑡1 @ 𝜀, … , 𝑥𝑛 ∶ 𝑡𝑛 @ 𝜀; 𝑡)@ 𝜀 →𝑐 𝑡[𝑥𝑖/𝑡𝑖]𝑛𝑖=1 @ 𝜀.
4. 𝑡[𝑥𝑖/𝑡𝑖]𝑛𝑖=1 @ 𝜀 must be preceded by subterm(𝑥1 ∶ 𝑡1 @ 𝜀, … , 𝑥𝑛 ∶ 𝑡𝑛 @ 𝜀; 𝑡)@ 𝜀, so we can apply (2) to

conclude.

5. For the last statement, we observe in the proofs of the previous items that the size of the subterm
execution we have built in (1,3) is the sum of the lengths of their subexecutions plus the ending
transition. And the length of the substate executions we have recovered in (2,4) sum the length of the
original derivation except for the last →𝑐 transition. Then we conclude respectively the ≥ and the ≤
of the fifth statement, so we can assert the identity.

∎

▶ Lemma 26. For any conditions 𝐶1 and 𝐶2, and ̄𝛼1 ∈ Strat∗
ℛ,Ω for the rewriting fragments of 𝐶1 and ̄𝛼2

for 𝐶2

check(𝐶1 ∧ 𝐶2, 𝜎, ̄𝛼1 ̄𝛼2, 𝜃) = let 𝜎′ ↢ check(𝐶1, 𝜎, ̄𝛼1, 𝜃) ∶ check(𝐶2, 𝜎′, ̄𝛼2, 𝜃)
and if 𝐶1 is equational (̄𝛼1 = 𝜀), the let is a normal union.

Follows from the recursive definition of check.
∎

▶ Theorem 27. Forall 𝑡 ∈ 𝑇Σ(𝑋) and 𝑞 ∈ 𝒳𝑆ℛ

𝑡 ∈ dsem(𝑞) ⟺ 𝑞 →∗
𝑠,𝑐 𝑡@ 𝜀

and ⊥ ∈ dsem(𝑞) iff there is an infinite execution from 𝑞.

The simultaneous proof of both ⇒ and ⇐ will be done by induction, on the structure of 𝑞 but also on the
approximants of the semantic function. Remember that the meaning of the strategy definitions in a module
is given by functions 𝑑𝑖, and 𝑑𝑖 is defined as the 𝑖-th component of the fixed point FIX 𝐹 of the function
𝐹(𝑑1, … , 𝑑|𝐷|) = (⟦𝛿1⟧, … , ⟦𝛿|𝐷|⟧) where 𝛿𝑖 is the strategy definition term. By Theorem 14 we know that
FIX 𝐹 = sup{𝐹 𝑛({⊥}, … , {⊥}) ∶ 𝑛 ∈ ℕ}, where the supremum (see Proposition 2 and Proposition 11) is the
union (perhaps removing ⊥) by coordinates. We write 𝑑(𝑛)

𝑘 = 𝐹 𝑛
𝑘 ({⊥}, … , {⊥}). And replacing 𝑑𝑘 by 𝑑(𝑛)

𝑘 ,
we also define 𝑓 (𝑛)

𝑠𝑙 , ⟦𝛼⟧(𝑛), dsem(𝑛) and check(𝑛). Note that

𝑑(𝑛+1)
𝑘 = 𝐹𝑘(𝑑(𝑛)

1 , … , 𝑑(𝑛)
|𝐷|) = ⟦𝛿𝑘⟧(𝑑(𝑛)

1 , … , 𝑑(𝑛)
|𝐷|)

so 𝑑(𝑛)
𝑘 ⊑ 𝑑(𝑛+1)

𝑘 because 𝐹 is monotonic. The other functions are monotonic too.

Induction property. The induction property in ℕ × 𝒳𝑆ℛ with the order we detail below is p(𝑛, 𝑞) ⟺

1. Forall 1 ≤ 𝑘 ≤ |𝐷|, 𝑡 ∈ 𝑑(𝑛)
𝑘 (𝜃, 𝑡0) implies 𝑡0 @ 𝛿𝑘𝜃 →∗

𝑠,𝑐 𝑡@ 𝜀.

2. Forall 𝑡 ∈ dsem(𝑛)(𝑞), 𝑞 →∗
𝑠,𝑐 𝑡@ 𝜀.

3. If 𝑞 →∗
𝑠,𝑐 𝑡@ 𝜀 with call depth at most 𝑛, then 𝑡 ∈ dsem(𝑛)(𝑞).

4. If ⊥ ∈ dsem(𝑛)(𝑞), then there is a →𝑠,𝑐 execution whose call depth is at least 𝑛 + 1 ignoring [else] proofs
or containing infinitely many consecutive iterations of the same strategy.

5. If ⊥ ∉ dsem(𝑛)(𝑞), then all executions from 𝑞 are finite and its call depth is at most 𝑛.
The induction order is the lexicographic order for the well-defined ℕ4 tuple

(𝑛, strategy constructors in the whole 𝑞, nested 𝒳𝑆ℛ constructors in 𝑞, condition fragments in 𝑞)

It is a well-founded order, and every syntactic substate of an execution state is below the whole state.

34

p implies the theorem. Assume p(𝑛, 𝑞) for every 𝑛 ∈ ℕ and 𝑞 ∈ 𝒳𝑆ℛ. Given 𝑞, if 𝑡 ∈ dsem(𝑞), by the
fixed-point definition recalled above, 𝑡 ∈ dsem(𝑛0)(𝑞) for some 𝑛0 ∈ ℕ. From p(𝑛0, 𝑞) we conclude ⇒ by item
(2). If we are given a derivation 𝑞 →∗

𝑠,𝑐 𝑡@ 𝜀 and 𝑛0 is its call depth, p(𝑛0, 𝑞) lets us conclude ⇐ by item (3).
If ⊥ ∉ dsem(𝑞) then ⊥ ∉ dsem(𝑛0)(𝑞) for some 𝑛0 ∈ ℕ (by a simple generalization of Proposition 7), then
all executions for 𝑞 are finite. If otherwise ⊥ ∈ dsem(𝑞), then ⊥ ∈ dsem(𝑛)(𝑞) for all 𝑛 ∈ ℕ, so an iteration
is executed infinitely many consecutive times from 𝑞 or there are derivations of arbitrary big call depth and
hence length by (4). In either case, there is an infinite execution, either directly or by Corollary 20.

Induction for 1. First, we will prove (1) for any 𝑞 ∈ 𝒳𝑆ℛ.

• For 𝑛 = 0, 𝑑(0)
𝑘 = {⊥} (the constant function) so 𝑡 ∈ 𝑑(0)

𝑘 (𝜃, 𝑡0) never holds and (1) is true vacuously.

• Now assume p(𝑛, 𝑞) for all 𝑞 ∈ 𝒳𝑆ℛ to prove the first statement of p(𝑛 + 1, 𝑞). If 𝑡 ∈ 𝑑(𝑛+1)
𝑘 (𝜃, 𝑡0), and

by the recursive definition of the approximants, 𝑡 ∈ ⟦𝛿𝑖⟧(𝑛)(𝜃, 𝑡0) = dsem(𝑛)(𝑡0 @ 𝛿𝑖 𝜃). The induction
hypothesis (item 2) let us conclude 𝑡0 @ 𝛿𝑖 𝜃 →∗

𝑠,𝑐 𝑡@ 𝜀.

Induction for 2-5:. now we will prove the rest of the statements ranging on 𝑞 for any 𝑛 ∈ ℕ. First, we
will treat the stack cases. We will usually make explicit which elements are in the semantics dsem(𝑛) and
which derivation can follow from the state, so that the properties follow easily. The base cases are:

• idle From one side dsem(𝑛)(𝑡0 @ idle 𝜃) = ⟦idle⟧(𝑛)(𝜃, 𝑡0) = ⟦idle⟧(𝜃, 𝑡0) = {𝑡0}, and from the other
side, 𝑡0 @ idle 𝜃 →𝑐 𝑡0 @ 𝜃 →𝑐 𝑡0 @ 𝜀 is the only allowed execution from 𝑡0 @ idle 𝜃. It is clear that (2),
(3) and (5) hold. Statement (4) holds trivially.

• fail We know dsem(𝑛)(𝑡0 @ fail 𝜃) = ⟦fail⟧(𝑛)(𝜃, 𝑡0) = ⟦fail⟧(𝜃, 𝑡0) = ∅ and that no →𝑠,𝑐 transition
starts from 𝑡0 @ fail 𝜃. So all statements are satisfied vacuously.

• match 𝑃 s.t 𝐶 Again

dsem(𝑛)(𝑡0 @ match 𝑃 s.t 𝐶 𝜃) = ⟦match 𝑃 s.t 𝐶⟧(𝑛)(𝜃, 𝑡0) = ⟦match 𝑃 s.t 𝐶⟧(𝜃, 𝑡0)
which equals ∅ if mcheck(𝑃 , 𝑡, 𝜃) ≠ ∅ or {𝑡0} otherwise. From the other side,

𝑡0 @ match 𝑃 s.t 𝐶 𝜃 →𝑐 𝑡0 @ 𝜃 →𝑐 𝑡0 @ 𝜀
if the matching is not empty, and no transition leaves the state otherwise. All this implies (2), (3) and
(5), while (4) is trivially true.

• 𝑟𝑙[𝑥1 <- 𝑡1, … , 𝑋𝑚 <- 𝑡𝑚] Now

dsem(𝑛)(𝑡0 @ 𝑟𝑙[𝑥1 <- 𝑡1, … , 𝑋𝑚 <- 𝑡𝑚] 𝜃) = ⟦𝑟𝑙[𝑥1 <- 𝑡1, … , 𝑋𝑚 <- 𝑡𝑚]⟧(𝑛)(𝜃, 𝑡0)
= ⟦𝑟𝑙[𝑥1 <- 𝑡1, … , 𝑋𝑚 <- 𝑡𝑚]⟧(𝜃, 𝑡0)
= ruleApply(𝑡0, 𝑟𝑙, id[𝑥𝑖/𝜃(𝑡𝑖)]𝑛𝑖=1)

and iff 𝑡 belongs to such a set we have

𝑡0 @ 𝑟𝑙[𝑥1 <- 𝑡1, … , 𝑋𝑚 <- 𝑡𝑚] 𝜃 →𝑐 𝑡@ 𝜃 →𝑐 𝑡@ 𝜀
This implies (2), (3) and (5). The premise of (4) cannot happen.

And now the inductive cases. We will sometimes resort to Proposition 18 and understand that it is
extended to the superscripted dsem because the proof is exactly the same.

• 𝑟𝑙[𝑥1 <- 𝑡1, … , 𝑋𝑚 <- 𝑡𝑚]{𝛼1, … , 𝛼𝑘} In this case, only reducing with the second rule of Figure 3 is
allowed.

𝑡@ 𝑟𝑙[𝑥1 <- 𝑡1, … , 𝑋𝑚 <- 𝑡𝑚]{𝛼1, … , 𝛼𝑘} 𝜃 →𝑐 rewc(𝑟1 ∶ 𝜎(𝑙1)@𝛼1𝜃, 𝜎, 𝐶, 𝛼2 ⋯ 𝛼𝑘, 𝑟, 𝑐; 𝑡)@ 𝜃
for any rule (𝑟𝑙, 𝑙, 𝑟, 𝐶0∧𝑙1 => 𝑟1∧𝐶) and match (𝜎, 𝑐) ∈ amatch(𝑙, 𝑡, id[𝑥𝑖/𝑡𝑖]𝑚𝑖=1, 𝐶0). The rank decreases
in the transition (a strategy constructor less), so we can apply induction hypothesis on the right-hand
side. By Proposition 18 the dsem(𝑛) of both sides is the same. Properties (2), (3), (4), and (5) follow
immediately.

35

• 𝜃 𝑠 The only allowed reduction here is 𝑡0 @ 𝜃𝑠 →𝑐 𝑡0 @ 𝑠 and, by definition of dsem, the semantics of
both sides are exactly the same. Properties (2) and (5) follow directly.

(3). Given a derivation 𝑡0 @ 𝜃𝑠 →𝑐 𝑡0 @ 𝑠 →∗
𝑠,𝑐 𝑡@ 𝜀 whose call depth is at most 𝑛, the suffix derivation

from 𝑡0 @ 𝑠 has lower or equal call depth. So the induction hypothesis p(𝑛, 𝑡0 @ 𝑠) can be applied
to conclude that 𝑡 ∈ dsem(𝑛)(𝑡0 @ 𝜃 𝑠).

(4). If ⊥ is in the dsem(𝑛), there is an execution from 𝑡0 @ 𝑠 with call depth at least 𝑛 + 1, so the full
execution has call depth at least 𝑛 + 1 because it must be greater or equal than that of its suffix.

• 𝛼 𝑠 where 𝑠 contains at least a strategy expression. We know

𝑅 ≔ dsem(𝑛)(𝑡0 @𝛼 𝑠) = let 𝑡𝑚 ↢ ⟦𝛼⟧(𝑛)(𝜃, 𝑡0) ∶ dsem(𝑡𝑚 @ 𝑠)

and we can invoke the induction hypotheses p(𝑛, 𝑡0 @𝛼 𝜃) and p(𝑛, 𝑡𝑚 @ 𝑠) where 𝜃 = vctx(𝑠) (both are
lower in the order because the number of strategy constructors decreases).

(2). From the induction hypotheses, 𝑡0 @𝛼 𝜃 →∗
𝑠,𝑐 𝑡𝑚 @ 𝜀 and 𝑡𝑚 @ 𝑠 →∗

𝑠,𝑐 𝑡@ 𝜀 if 𝑡 ∈ dsem(𝑡0 @𝛼 𝑠).
These executions can be joined by Lemma 21 (item 1) to build the desired one.

(3). We are give an execution 𝑡0 @𝛼 𝑠 →∗
𝑠,𝑐 𝑡@ 𝜀. This execution can be split using the third statement

of Lemma 21 in two executions 𝑡0 @𝛼 𝜃 →∗
𝑠,𝑐 𝑡𝑚 @ 𝜀 and 𝑡𝑚 @ 𝑠 →∗

𝑠,𝑐 𝑡@ 𝜀 for some term 𝑡𝑚 (both
clearly have lower or equal call depth than the original one). The induction hypotheses say that
𝑡𝑚 ∈ dsem(𝑛)(𝑡0 @𝛼 𝜃) = ⟦𝛼⟧(𝑛)(𝜃, 𝑡𝑚) and 𝑡 ∈ dsem(𝑡𝑚 @ 𝑠), so we can conclude 𝑡 ∈ dsem(𝑡0 @𝛼𝑠).

(4). ⊥ ∈ 𝑅 if ⊥ ∈ ⟦𝛼⟧(𝑛)(𝜃, 𝑡0) or ⊥ ∈ dsem(𝑡𝑚 @ 𝑠). By induction hypothesis and in any case, the
combined execution’s call depth is at least 𝑛 + 1 because one of its components is.

(5). If ⊥ ∉ 𝑅 then ⊥ is neither in dsem(𝑛)(𝑡𝑚 @ 𝑠) for any 𝑡𝑚 in ⟦𝛼⟧(𝑛)(𝜃, 𝑡0) nor in ⟦𝛼⟧(𝑛)(𝜃, 𝑡0) itself,
so all executions from these states are finite and their call depth is at most 𝑛 by Lemma 21 (1).

• 𝛼 ;𝛽 By Proposition 18, 𝑡0 @𝛼 ;𝛽 𝜃 and 𝑡0 @𝛼𝛽 𝜃 are semantically equivalent, 𝑡0 @𝛼 ;𝛽 𝜃 →𝑐 𝑡0 @𝛼𝛽 𝜃
is the single possible reduction from the state, and 𝑡0 @𝛼𝛽 𝜃 is lower than 𝑡0 @𝛼 ;𝛽 𝜃 (the sequence
constructor is removed). So this case is reduced to the previous one, using the induction hypothesis.

• 𝛼|𝛽 The possible successors are

𝑡0 @𝛼|𝛽 𝜃 𝑡0 @𝛼 𝜃
𝑡0 @𝛽 𝜃

c

c

and by Proposition 18, dsem(𝑛)(𝑡0 @𝛼|𝛽 𝜃) = dsem(𝑛)(𝑡0 @𝛼 𝜃) ∪ dsem(𝑛)(𝑡0 @𝛽 𝜃).

(2). Suppose without loss of generality that 𝑡 ∈ dsem(𝑛)(𝑡0 @𝛼 𝜃). By p(𝑛, 𝑡0 @𝛼 𝜃), 𝑡0 @𝛼 𝜃 →∗
𝑠,𝑐 𝑡@ 𝜀.

Prefixing this execution with the initial state by the disjunction rule, we obtain an execution from
𝑡0 @𝛼|𝛽 𝑠 to 𝑡@ 𝜀 as we wanted.

(3). Any 𝑡0 @𝛼|𝛽 𝜃 →∗
𝑠,𝑐 𝑡@ 𝜀 must start with a →𝑐 transition to 𝑡0 @𝛼 𝜃 or 𝑡0 @𝛽 𝜃. Suppose we are

in the second case, by induction hypothesis p(𝑛, 𝑡0 @𝛽 𝜃), 𝑡 ∈ dsem(𝑛)(𝑡0 @𝛽 𝜃) but this is included
in the dsem(𝑛) set of the initial term.

(4). If ⊥ is in the dsem(𝑛) of the initial set, it must be in the semantic set of one of its descendants,
so there is an execution with call depth at least 𝑛 from it. Prepending 𝑡0 @𝛼|𝛽 𝜃 as initial state
does not affect the call depth, so we have (4).

(5). All derivations from the successor terms above being finite, the derivation from the disjunction
only increases the length in one.

• 𝛼∗ The possible successors are

𝑡0 @𝛼∗ 𝜃 𝑡0 @ 𝜃 𝑡0 @ 𝜀
𝑡0 @𝛼𝛼∗ 𝜃

c

c

c

36

and if 𝑡 ∈ dsem(𝑛)(𝑡0 @𝛼∗𝜃) = ⟦𝛼∗⟧(𝑛)(𝜃, 𝑡0) then there is a 𝑘 ∈ ℕ such that 𝑡 ∈ ⟦𝛼⟧(𝑛)𝑘(𝜃, 𝑡0). We can
always use induction hypothesis p(𝑛, 𝑡0 @𝛼 𝜃).

(2). By the induction hypothesis and Lemma 22 we obtain (2).
(3). Take an execution 𝑡0 @𝛼∗ 𝜃 →∗

𝑠,𝑐 𝑡′ @ 𝜀. An inductive proof will be sketched. There are only two
possibilities for the second state of the derivation: (A) 𝑡0 @ 𝜃, in which case the only reachable
𝑡 is 𝑡0 and it belongs to ⟦𝛼∗⟧(𝑛)(𝜃, 𝑡0), and 𝑡0 @𝛼𝛼∗ 𝜃. In this case, and using Lemma 21 (item
3), there must be a term 𝑡𝑚 such that 𝑡0 @𝛼 𝜃 →∗

𝑠,𝑐 𝑡𝑚 @ 𝜀 and (B) 𝑡𝑚 @𝛼∗𝜃 →∗
𝑠,𝑐 𝑡@ 𝜀. Both

executions’ call depth is at most 𝑛, so the induction hypothesis p(𝑛, 𝑡0 @𝛼 𝜃) lets us conclude that
𝑡𝑚 ∈ ⟦𝛼⟧(𝑛)(𝜃, 𝑡0) and, since 𝑡𝑚 @𝛼∗𝜃 →∗

𝑠,𝑐 𝑡′ @ 𝜀 is strictly shorter than the original execution, we
can assert 𝑡 ∈ ⟦𝛼∗⟧(𝑛)(𝜃, 𝑡𝑚). Then joining these two memberships and by the semantic definition
of 𝛼∗, 𝑡 ∈ ⟦𝛼∗⟧(𝑛)(𝜃, 𝑡0).

(4). If ⊥ ∈ dsem(𝑛)(𝑡0 @𝛼∗ 𝜃), either there is an infinite iteration from 𝑡0 @𝛼∗ 𝜃 or there is a 𝑘0 such
that ⊥ ∈ ⟦𝛼⟧(𝑛)𝑘0 . In the first case, we are done. Otherwise, by Lemma 24 there is a 𝑘⊥ ∈ ℕ
and a term 𝑡⊥ ∈ ⟦𝛼⟧(𝑛),𝑘⊥(𝜃, 𝑡) such that ⊥ ∈ ⟦𝛼⟧(𝑛)(𝜃, 𝑡⊥). By induction hypothesis and Lemma
22, 𝑡0 @𝛼∗ 𝜃 →∗

𝑠,𝑐 𝑡⊥ @ 𝜀 and this must end with 𝑡⊥ @𝛼∗ 𝜃 →𝑐 𝑡⊥ @ 𝜃 →𝑐 𝑡⊥ @ 𝜀. Using induction
hypothesis p(𝑛, 𝑡⊥ @𝛼 𝜃), there is an execution whose call depth is at least 𝑛 + 1 from 𝑡⊥ @𝛼 𝜃.
Assembling both using Lemma 21 (item 1) and other rules and extensions, we conclude with

𝑡0 @𝛼∗ 𝜃 →∗
𝑠,𝑐 𝑡⊥ @𝛼∗ 𝜃 →𝑐 𝑡⊥ @𝛼𝛼∗ 𝜃 →∗

𝑠,𝑐 …

whose call depth is at least 𝑛 + 1.
(5). If ⊥ ∉ dsem(𝑛)(𝑡0 @𝛼∗ 𝜃) we are sure there is an 𝑘0 such that ⟦𝛼⟧(𝑛),𝑘0(𝜃, 𝑡) = ∅. This implies there

are not execution sequences which unrolls 𝛼 more than 𝑛0 times, and so the maximum length
of any execution is at most 𝑛0 times the maximum length of an execution from 𝑡@𝛼 𝜃, a finite
number. The proof of the fact that 𝛼 is not unrolled more that 𝑛0 times is given by Lemma 23 (its
assumption is true by induction hypothesis p(𝑛, 𝑡0 @𝛼 𝜃)), because to unroll a 𝑛0 + 1 time there
must be a state 𝑡@𝛼∗𝜃 with 𝑡 ∈ ⟦𝛼⟧(𝑛),𝑘0(𝜃, 𝑡) = ∅ and this is impossible.

• 𝛼 ? 𝛽 : 𝛾 The possible successors are these two, but the second line can only be taken if the execution
tree from 𝑡0 @𝛼 𝜃 is finite and does not contain solutions

𝑡0 @𝛼 ? 𝛽 : 𝛾 𝜃 𝑡0 @𝛼𝛽 𝜃
𝑡0 @ 𝛾 𝜃

c

c

And dsem(𝑛)(𝑡0 @𝛼 ? 𝛽 : 𝛾 𝜃) = ⟦𝛼 ? 𝛽 : 𝛾 ⟧(𝑛)(𝜃, 𝑡0) is ⟦𝛼⟧(𝑛) ∘ ⟦𝛽⟧(𝑛)(𝜃, 𝑡0) if ⟦𝛼⟧(𝑛)(𝜃, 𝑡0) ≠ ∅ and
⟦𝛾⟧(𝑛)(𝜃, 𝑡0) otherwise.

(2). In the first case, since 𝑡 ∈ ⟦𝛼⟧(𝑛) ∘ ⟦𝛽⟧(𝑛)(𝜃, 𝑡0), there is a term 𝑡𝑚 such that 𝑡𝑚 ∈ ⟦𝛼⟧(𝑛)(𝜃, 𝑡0) and
𝑡 ∈ ⟦𝛽⟧(𝑛)(𝜃, 𝑡𝑚). By induction hypothesis p(𝑛, 𝑡0 @𝛼 𝜃) and p(𝑛, 𝑡𝑚 @𝛽 𝜃) there are executions
𝑡0 @𝛼 𝜃 →∗

𝑠,𝑐 𝑡𝑚 @ 𝜀 and 𝑡𝑚 @𝛽 𝜃 →∗
𝑠,𝑐 𝑡@ 𝜀. By Lemma 21, 𝑡0 @𝛼𝛽 𝜃 →∗

𝑠,𝑐 𝑡𝑚 @𝛽 𝜃 →∗
𝑠,𝑐 𝑡@ 𝜀 as

we wanted.
In the second case, by p(𝑛, 𝑡0 @𝛼 𝜃) and p(𝑛, 𝑡0 @ 𝛾 𝜃), 𝑡0 @ 𝛾 𝜃 →∗

𝑠,𝑐 𝑡@ 𝜀, to which we append
the [else] rule application because the execution tree from 𝛼 is finite without solutions. Indeed,
dsem(𝑛)(𝑡0 @𝛼 𝜃) = ⟦𝛼⟧(𝜃, 𝑡0) = ∅ and by property (5) all execution from 𝑡0 @𝛼 𝜃 are finite with
call depth at most 𝑛, and by property (3) and the fact that ⊥ ∉ ∅, no execution from 𝛼 leads to
a solution.

(3). Take a derivation 𝑡0 @𝛼 ? 𝛽 : 𝛾 𝜃 →∗
𝑠,𝑐 𝑡@ 𝜀. The second state can be 𝑡0 @𝛼𝛽 𝜃 or 𝑡0 @ 𝛾 𝜃,

in the latter case with a finite execution tree without solutions from 𝑡@𝛼 𝜃. Anyhow we can
apply induction hypothesis to the sequent (less strategy constructors). In the first case, 𝑡 is in
dsem(𝑛)(𝑡0 @𝛼𝛽 𝜃) and this set is contained in the dsem(𝑛) value of the original state, so 𝑡 is in it.
In the second case, we know by (3) in p(𝑛, 𝑡0 @ 𝛾 𝜃) that 𝑡 ∈ ⟦𝛾⟧(𝑛)(𝜃, 𝑡0). We want to prove that
𝑅 ≔ ⟦𝛼⟧(𝑛)(𝜃, 𝑡0) is empty, to apply the semantic definition for the conditional and finally conclude
that 𝑡 belongs to its semantic set. If ⊥ ∉ 𝑅, by property (5) of p(𝑛, 𝑡0 @𝛼 𝜃), all derivations from
𝛼 have call depth at most 𝑛, and by property (3), no term belongs to 𝑅. Without terms and

37

without ⊥, 𝑅 = ∅. Otherwise ⊥ ∈ 𝑅, and there is an execution from 𝛼 whose call depth is at
least 𝑛 + 1. So the execution tree makes the initial execution call depth greater that 𝑛, and there
is nothing to prove.

(4). If ⊥ is in the global dsem(𝑛), ⊥ ∈ ⟦𝛼⟧(𝑛), or ⟦𝛼⟧(𝑛) ≠ ∅ and ⊥ ∈ ⟦𝛽⟧(𝑛), or ⟦𝛼⟧(𝑛) = ∅ and ⊥ ∈ ⟦𝛾⟧(𝑛).
In any case and by the induction hypothesis we have invoked before, an execution whose call depth
is greater than 𝑛 can be built, perhaps using Lemma 21.

(5). If ⊥ is not a member of the global dsem, all executions from 𝛼 are finite and their call depth is at
most 𝑛, and if ⟦𝛼⟧(𝑛) ≠ ∅ then all executions from 𝛽 are finite, and if ⟦𝛼⟧(𝑛) = ∅ then all executions
from 𝛾 are finite. The executions from 𝑡0 @𝛼 ? 𝛽 : 𝛾 𝜃 are only prepended by this initial state, so
they are also finite. The same arguments are valid for the call depth.

• matchrew 𝑃 s.t 𝐶 by 𝑥1 using 𝛼1, … , 𝑥𝑛 using 𝛼𝑛 First, all possible reductions are

𝑡0 @ matchrew 𝑃 s.t 𝐶 by 𝑥1 using 𝛼1, … , 𝑥𝑛 using 𝛼𝑛 𝜃
→𝑐 subterm(𝑥1 ∶ 𝜎(𝑥1)@𝛼1𝜎, … , 𝑥𝑛 ∶ 𝜎(𝑥𝑛)@𝛼𝑛𝜎; 𝑡)@ 𝜃

for any 𝜎 ∈ match(𝑃 , 𝑡, 𝐶). The right-hand state is smaller that the left-hand state (a strategy construc-
tor less), so we can apply the induction hypothesis. From the other side, the semantics of the first state
equals the semantics of the second by the definition of the dsem, since the semantics of the substates
dsem(𝑛)(𝑞𝑖) = dsem(𝑛)(𝜎(𝑥𝑖)@𝛼𝑖𝜎) = ⟦𝛼𝑖⟧(𝑛)(𝜎, 𝜎(𝑥𝑖)) and both let expressions coincide. Their call
depths are also the same. Thus, (2), (3), (4), and (5) intermediately follow.

• 𝑠𝑙(𝑡1, … , 𝑡𝑛) 𝜃) The only possible successors of 𝑡0 @ 𝑠𝑙(𝑡1, … , 𝑡𝑛) 𝜃 are 𝑡0 @ 𝛿𝑖 𝜎 𝜃 for any 𝛿𝑖 and 𝜎 ∈
vmatch(⃗𝑝𝑖, ⃗𝑠, 𝐶) where ⃗𝑠 = 𝜃(𝑡1) ⋯ 𝜃(𝑡𝑛). From the other side

dsem(𝑛)(𝑡0 @ 𝑠𝑙(𝑡1, … , 𝑡𝑛) 𝜃) = ⟦𝑠𝑙(𝑡1, … , 𝑡𝑛)⟧(𝑛)(𝜃, 𝑡0) = 𝑓 (𝑛)
𝑠𝑙 (𝜃(𝑡1), … , 𝜃(𝑡𝑛), 𝑡)

= ⋃
(𝑠𝑙,𝑝⃗𝑖,𝛿𝑖,𝐶𝑖)∈𝐷

⋃ {𝑑(𝑛)
𝑖 (𝜎, 𝑡) ∶ 𝜎 ∈ vcheck(⃗𝑝𝑖, ⃗𝑠, 𝐶𝑖)}

Hence, 𝑡 ∈ dsem(𝑛)(𝑡0 @ 𝑠𝑙(𝑡1, … , 𝑡𝑚) 𝜃) if 𝑡 ∈ 𝑑(𝑛)
𝑖 (𝜎, 𝑡0) for some 1 ≤ 𝑖 ≤ |𝐷|.

(2). By the property (1) we have inductively (but separately) proved in the first paragraphs, and since
𝑡 ∈ 𝑑(𝑛)

𝑖 (𝜎, 𝑡0), there must be an execution 𝑡0 @ 𝛿𝑖 𝜎 →∗
𝑠,𝑐 𝑡@ 𝜀. 𝜃 can be added in the stacks’

bottom, and using the call rule, we prove (2)

𝑡0 @ 𝑠𝑙(𝑡1, … , 𝑡𝑛) 𝜃 →𝑐 𝑡0 @ 𝛿𝑖 𝜎 𝜃 →∗
𝑠,𝑐 𝑡@ 𝜃 →𝑐 𝑡@ 𝜀

The rest of the properties are not proven uniformly in 𝑛 and we will distinguish cases. First suppose
𝑛 = 0. Then 𝑑(0)

𝑘 = {⊥}. So dsem(0)(𝑡0 @ 𝑠𝑙(𝑡1, … , 𝑡𝑛) 𝜃) = {⊥} except in case 𝑚𝑠𝑙 = 0 or no definition
matches the call arguments, when it is ∅.
(3). It holds vacuously because the executions from 𝑡0 @ 𝑠𝑙(𝑡1, … , 𝑡𝑛) 𝜃 have call depth at least 1 and

only execution whose call depth is 0 are considered.
(4). The reduction 𝑡0 @ 𝑠𝑙(𝑡1, … , 𝑡𝑛) 𝜃 →𝑐 𝑡0 @ 𝛿𝑖 𝜎 𝜃 is allowed and its call depth is 1 > 0.
(5). ⊥ is in dsem(0), so there is nothing to prove.

Now, we will prove the case 𝑛 > 0. By definition 𝑑(𝑛+1)
𝑖 = 𝐹𝑖(𝑑(𝑛)

1 , … , 𝑑(𝑛)
|𝐷|) = ⟦𝛿𝑖⟧(𝑑(𝑛)

1 , … , 𝑑(𝑛)
|𝐷|) so that

𝑑(𝑛+1)
𝑖 (𝜎, 𝑡0) = ⟦𝛿𝑖⟧(𝑛)(𝜎, 𝑡0) = dsem(𝑛)(𝑡0 @ 𝛿𝑖𝜎)

We invoke p(𝑛, 𝑡0 @ 𝛿𝑖 𝜎) and proceed

(3). Take an execution 𝑡0 @ 𝑠𝑙(𝑡1, … , 𝑡𝑛) 𝜃 →∗
𝑠,𝑐 𝑡@ 𝜀 whose call depth is at most 𝑛+1. The second state

must be 𝑡0 @ 𝛿𝑖 𝜎 𝜃 for some 𝑖 and 𝜃, and its tail must be 𝑡@𝜎 𝜃 →𝑐 𝑡@ 𝜃 →𝑐 𝑡@ 𝜀. The maximum
cdepth(𝑞𝑚) − cdepth(𝑞𝑛) (with 𝑚 ≥ 𝑛) in the definition of call depth is reached only with 𝑛 = 1
because the call depth is 1 in the initial state, while it is at least two in the rest of the execution
but the two last states, where it only decreases. So the execution 𝑡0 @ 𝛿𝑖 𝜎 →∗

𝑠,𝑐 𝑡@ 𝜀, removing
the last states and 𝜃 from the bottom, has a call depth of 𝑛. Hence, the induction hypothesis can
be applied to conclude 𝑡 ∈ dsem(𝑛)(𝑡0 @ 𝑠𝑙(𝑡1, … , 𝑡𝑛) 𝜃).

38

(4). If ⊥ ∈ ⟦𝑠𝑙(𝑡1, … , 𝑡𝑛)⟧(𝑛+1)(𝜃, 𝑡0) then by the definition recalled above ⊥ ∈ 𝑑(𝑛+1)
𝑖 (𝜎, 𝑡0) for some 𝑖

and 𝜎. So ⊥ ∈ dsem(𝑛)(𝑡0 @ 𝛿𝑖 𝜎) and there is an execution 𝑡0 @ 𝛿𝑖 𝜎 →∗
𝑠,𝑐 𝑞 @ 𝑠 with call depth at

least 𝑛 + 1, reached as the difference between the call depths of the state number 𝑢 and the state
number 𝑙 with 𝑢 ≥ 𝑙. Moreover, the minimum call depth of every state is 1 except if 𝑠 = 𝜀, when
the penultimate state is 𝑞 @𝜎. Hence, the call depth for 𝑙 is at least 1 because if 𝑙 were the last
state, 𝑢 = 𝑙 and the call depth would be 0 that cannot be 𝑛 + 1 for any 𝑛 ∈ ℕ.
Let’s build an execution with call depth at least 𝑛 + 2. Adding 𝜃 to the bottoms, we increase
the call depth of all states in 1, then we prepend the initial state and get 𝑡0 @ 𝑠𝑙(𝑡1, … , 𝑡𝑛) 𝜃 →𝑐
𝑡0 @ 𝛿𝑖 𝜎 𝜃 →∗

𝑠,𝑐 𝑞 @ 𝑠 𝜃. Clearly the maximum in the call depth definition is reached subtracting
the call depth of the first state, because one is a minimum and the maximum for cdepth(𝑞𝑚) is
taken in the bigger set possible. The call depth of the modified state 𝑢 (now in position 𝑢 + 1)
has increased in one, so, subtracting 1, the call depth of the new execution is at least 𝑛 + 2, unless
the subtracting call depth for the original substitution was 0. But this is impossible as we have
reasoned in the paragraph above.

(5). If ⊥ ∉ ⟦𝑠𝑙(𝑡1, … , 𝑡𝑛)⟧(𝑛+1)(𝜃, 𝑡0), then ⊥ ∉ dsem(𝑛)(𝑡0 @ 𝛿𝑖 𝜎) for all 𝑖 and match 𝜎, so from these
states all executions are finite (if any). The execution sequences starting from 𝑡0 @ 𝑠𝑙(𝑡1, … , 𝑡𝑛) 𝜃
are the previous ones prepended by 𝑡0 @ 𝑠𝑙(𝑡1, … , 𝑡𝑛) 𝜃 →𝑐, and adding 𝜃 at the bottom of their
stacks. They can also be extended by 𝑡@ 𝜃 →𝑐 𝑡@ 𝜀 to drop the new context at the end. Anyhow,
they are still finite. This process also increases their call depth in 1, so that they are at most 𝑛+1,
which is valid. This can be justified as in (4).

• subterm(… , 𝑥𝑖 ∶ 𝑞𝑖, … ; 𝑡0)@ 𝜀 and call this state 𝑞 in the following. We know

dsem(𝑛)(𝑞) = let 𝑡1 ↢ dsem(𝑛)(𝑞1) … let 𝑡𝑘 ↢ dsem(𝑛)(𝑞𝑘) ∶ dsem(𝑛)(𝑡0[𝑥𝑖/𝑡𝑖]𝑘𝑖=1 @ 𝜀)

So if 𝑡 ∈ dsem(𝑛)(𝑞) there must be 𝑡𝑖 ∈ dsem(𝑛)(𝑞𝑖) for all 1 ≤ 𝑖 ≤ 𝑘 such that 𝑡 = 𝑡0[𝑥𝑖/𝑡𝑖]𝑘𝑖=1.

(2). By induction hypotheses p(𝑛, 𝑞𝑖) for every substate 𝑞𝑖 of 𝑞, 𝑞𝑖 →∗
𝑠,𝑐 𝑡𝑖 @ 𝜀. Lemma 25 lets us

conclude (2) because there is an execution 𝑞 →∗
𝑠,𝑐 𝑡0[𝑥𝑖/𝑡𝑖]𝑘𝑖=1 @ 𝜀 = 𝑡@ 𝜀.

(3). Suppose there is an execution 𝑞 →∗
𝑠,𝑐 𝑡@ 𝜀. By Lemma 25 we know 𝑞𝑖 →∗

𝑠,𝑐 𝑡𝑖 @ 𝜀 for some terms
𝑡𝑖 and 𝑡 = 𝑡0[𝑥𝑖/𝑡𝑖]𝑘𝑖=1. Then by induction hypotheses p(𝑛, 𝑞𝑖), 𝑡𝑖 ∈ dsem(𝑛)(𝑞𝑖). Looking at the
dsem(𝑛) definition above and provided dsem(𝑛)(𝑡@ 𝜀) = {𝑡} we conclude 𝑡 ∈ dsem(𝑛)(𝑞).

(4). If ⊥ ∈ dsem(𝑛)(𝑞) then ⊥ ∈ dsem(𝑛)(𝑞𝑙) for some 1 ≤ 𝑙 ≤ 𝑘. Then by hypothesis there is an
execution 𝑞𝑙 →∗

𝑠,𝑐 𝑞′ whose call depth is at least 𝑛 + 1. We can then build a derivation from 𝑞
advancing the 𝑙-th component by the reductions of the aforementioned execution using [prl𝑠] or
[prl𝑐] (Lemma 25, item 1). Then a derivation from 𝑞 whose call depth is at least 𝑛 + 1 exists.

(5). If ⊥ ∉ dsem(𝑛)(𝑞), ⊥ cannot be in any of the dsem(𝑛)(𝑞𝑖) by definition of let. Hence, all derivations
from 𝑞𝑖 are finite and so are those from 𝑞 according to Lemma 25. The condition about the call
depths is also preserved.

• rewc(𝑝 ∶ 𝑞; … ; 𝑡0) The semantics of this state is

𝑅 ≔ dsem(𝑛)(rewc(𝑝 ∶ 𝑞; … ; 𝑡0)@ 𝜃)
= let 𝑡′ ↢ dsem(𝑛)(𝑞) ∶ ⋃

𝜎𝑚∈match(𝑝,𝑡′)
let 𝜎′ ↢ check(𝑛)(𝐶, 𝜎 ∘ 𝜎𝑚; ̄𝛼, 𝜃) ∶ {𝑚(𝜎′(𝑟))}

If 𝑡 belongs to the set above, there must be a 𝑡𝑚 ∈ dsem(𝑛)(𝑞), 𝜎𝑚, and 𝜎′. From the other side, the
execution from the term can evolve using [rewc𝑠] and [rewc𝑐]

rewc(𝑝 ∶ 𝑞, …) →∗
𝑠,𝑐 rewc(𝑝 ∶ 𝑞′, …) ⟺ 𝑞 →∗

𝑠,𝑐 𝑞′

and if 𝑞′ is a solution 𝑡𝑚 @ 𝜀, the following state must be one of two:

– 𝐶 is equational and there is a match 𝜎′ as we can read in the last rule in Figure 3. The following
state is 𝑡@ 𝜃 →𝑐 𝑡@ 𝜀 for some 𝑡.

39

– If 𝐶 contains a rewriting fragment, the next state is another rewc(𝑟𝑐 ∶ 𝜎1(𝑙𝑐)@𝛼 𝜃, 𝜎1, 𝐶′ …)@ 𝜃
where 𝐶 = 𝐶0 ∧ 𝑙𝑐 => 𝑟𝑐 ∧ 𝐶′ with 𝐶0 an equational condition and 𝜎1 like in the last rule in
Figure 2. This state is lower in the order because it has fewer condition fragments, so we can call
p(𝑛, rewc(𝑟𝑐 ∶ 𝜎1(𝑙𝑐)@𝛼𝜃, 𝜎1, 𝐶′, …)).
More precisely, 𝜎1 ∈ check(𝐶0, 𝜎 ∘ 𝜎𝑚), and according to Proposition 18 (3) the semantics of
this new rewriting state is let 𝜎′ ↢ check(𝑙𝑐 => 𝑟𝑐 ∧ 𝐶′, 𝜎1; ̄𝛼, 𝜃) ∶ {𝑚(𝜎′(𝑟))}. By Lemma 26,
𝜎′ ∈ check(𝑛)(𝐶, 𝜎 ∘ 𝜎𝑚; ̄𝛼, 𝜃). So all reachable states from the new rewriting state are in the
semantics of the initial rewc state.

(2). Since 𝑡 ∈ dsem(𝑛)(𝑞) and by induction hypothesis p(𝑛, 𝑞), 𝑞 →∗
𝑠,𝑐 𝑡𝑚 @ 𝜀 so

rewc(𝑝 ∶ 𝑞, 𝜎, 𝐶, ̄𝛼, …)@ 𝜃 →∗
𝑠,𝑐 rewc(𝑝 ∶ 𝑡𝑚 @ 𝜀, 𝜎, 𝐶, ̄𝛼, …)@ 𝜃

and there are 𝜎𝑚 ∈ match(𝑝, 𝑡𝑚) and 𝜎′ ∈ check(𝑛)(𝐶, 𝜎 ∘ 𝜎𝑚; ̄𝛼, 𝜃) such that 𝑡 = 𝑚(𝜎′(𝑟)). Using
the previous and if 𝐶 is equational, we can apply the rule we have mentioned above and expand
this derivation with →𝑠 𝑡@ 𝜃 →𝑐 𝑡@ 𝜀 as we wanted. Otherwise, if 𝐶 = 𝐶0 ∧ 𝑙𝑐 => 𝑟𝑐 ∧ 𝐶′ and
𝜎′ ∈ check(𝑛)(𝐶, 𝜎 ∘ 𝜎𝑚; ̄𝛼, 𝜃) there must be a 𝜎1 ∈ check(𝑛)(𝐶0, 𝜎 ∘ 𝜎𝑚) by Lemma 26 such that
𝜎′ ∈ check(𝑛)(𝐶′, 𝜎1, ̄𝛼, 𝜃). So we can apply the rule cited above and append at the end of the
execution rewc(𝑟𝑐 ∶ 𝜎1(𝑙𝑐)@𝛼𝜃, 𝜎1, 𝐶′, …). Applying the induction hypothesis to this state, we get
the rest of the derivation and conclude.

(3). Take a derivation rewc(𝑝 ∶ 𝑞, …) →𝑐 𝑡@ 𝜀. There must be a first state rewc(𝑝 ∶ 𝑡𝑚 @ 𝜀, …) and
𝑞 →∗

𝑠,𝑐 𝑡𝑚 @ 𝜀. Hence and by induction hypothesis, 𝑡𝑚 ∈ dsem(𝑛)(𝑞). If the next state is a term
state 𝑡@ 𝜃, the rule from Figure 3 must have been applied so there is a 𝜎′ to conclude that
𝑡 ∈ dsem(𝑛)(rewc(…)).
When the next state is another rewriting condition state, the rule in Figure 2 must have been
applied. So there are 𝜎𝑚 and 𝜎1. According to what we have said in the initial paragraphs of this
case, all terms in dsem(𝑛) of the new state are in dsem(𝑛) of the initial state. And by induction
hypothesis, the reachable solutions from the state are in its dsem(𝑛).

(4). If ⊥ ∈ 𝑅 then ⊥ ∈ dsem(𝑛)(𝑞) or ⊥ ∈ check(𝑛)(𝐶, 𝜎 ∘ 𝜎𝑚; ̄𝛼, 𝜃) (in which case there must be a
rewriting condition fragment in 𝐶). If the first is true, there is an execution from 𝑞 whose call
depth is at least 𝑛 + 1. Using [rewc𝑠] and [rewc𝑐], we can easily build an execution from the rewc
state with the same call depth.
In the second case ⊥ is in the dsem(𝑛) of the next condition fragment state, so by induction
hypothesis there is an execution from it whose call depth is at least 𝑛 + 1, and prefixing the way
to the lower state preserves the call depth. So we have an execution from the initial state with a
call depth greater than 𝑛.

(5). If ⊥ ∉ 𝑅, all executions from 𝑞 are finite with call depth at most 𝑛. If 𝐶 does not contain rewriting
fragments, the executions’ length can only be extended by two new states in decreasing call depths.
Otherwise, all derivations get stuck or arrive to the next rewriting fragment state. By induction
hypothesis, all executions from it are finite and with call depth bounded by 𝑛, so the full execution
also satisfies these properties.

∎

▶ Corollary 28. For all 𝑡, 𝑡′ ∈ 𝑇Σ(𝑋), 𝛼 ∈ Stratℛ,Ω and 𝜃 ∈ VEnv

𝑡′ ∈ ⟦𝛼⟧(𝜃, 𝑡) ⟺ 𝑡@𝛼 𝜃 →∗
𝑠,𝑐 𝑡′ @ 𝜀

and ⊥ ∈ ⟦𝛼⟧(𝜃, 𝑡) iff there is an infinite derivation from 𝑡@𝛼 𝜃.

It follows immediately from the previous theorem, by taking 𝑞 ≔ 𝑡0 @𝛼 𝜃.
∎

A.3.1 Some properties
▶ Definition. All recursive calls in a strategy expression are tail if the expression is:

• idle, fail, a test, or a strategy call expression.

40

• 𝛼|𝛽 and all recursive calls in 𝛼 and 𝛽 are tail.

• 𝛼 ;𝛽 and 𝛼 does not contain recursive calls and all recursive calls in 𝛽 are tail.

• 𝛼 ?𝛽 : 𝛾 and 𝛼 does not contain recursive calls, and all recursive calls in 𝛽 and 𝛾 are tail.

• A subterm rewriting or rule application expression, and all recursive calls in its substrategies are tail.

▶ Proposition 29. For any 𝛼 ∈ Stratℛ,Ω. The set of reachable states from 𝑡@𝛼 is finite for all 𝑡 ∈ 𝑇Σ(𝑋) if
any of the following conditions holds:

1. 𝛼 does not contain iterations or recursive function calls.

2. The reachable terms from 𝑡@𝛼 are finitely many, strategy call argument only take a finite number of
values, and all recursive calls in strategy definitions are tail.
We must also consider that variable environments are replaced instead of pushed to the stack when
other substitution is on top. This optimization does not affect the semantics.

In the first statement, no recursive strategy calls are allowed, but non-recursive ones are admissible. This
means that the call graph of the strategy definitions does not contain cycles: it is a directed acyclic graph.
Thus, it admits a topological ordering, in which the expression 𝛼 can be included. We proceed by induction
on this topological ordering and then on the structure of the execution states using the using the lexicographic
tuple in the proof of the last theorem (without approximants):

• For 𝑡@ idle 𝜃, 𝑡@ fail 𝜃, 𝑡@ match 𝑃 s.t 𝐶 𝜃 only 𝑡@ 𝜃, 𝑡@ 𝜀, and themselves can be reached by →𝑠,𝑐.
So the reachable states’ cardinality is at most two.

• 𝑡@𝛼|𝛽 𝜃 can only be followed by 𝑡@𝛼 𝜃 and 𝑡@𝛽 𝜃. By induction hypothesis the reachable states from
both are finite and so is their union.

• 𝑡@ 𝜃 𝑠 is only followed by 𝑡@ 𝑠. By induction hypothesis the reachable states are finitely many.

• 𝑡@𝛼 𝑠. We know by Lemma 21 that if 𝜃 = vctx(𝑠)
{𝑞 ∶ 𝑡@𝛼 𝑠 →∗

𝑠,𝑐 𝑞} = {𝑞 @ 𝑠′𝑠 ∶ 𝑡@𝛼 𝜃 →∗
𝑠,𝑐 𝑞 @ 𝑠′} ∪ {𝑞 ∶ 𝑡@𝛼 𝜃 →𝑠,𝑐 𝑡𝑚 @ 𝜀 ∧ 𝑡𝑚 @ 𝑠 →∗

𝑠,𝑐 𝑞}
By induction hypothesis for 𝑡@𝛼 𝜃, the number of 𝑞 in the first set is finite. Thus, the number of 𝑡𝑚
in the second set is finite too, and by induction hypothesis for 𝑡𝑚 @ 𝑠, a finite number of 𝑞 lay in the
second set. Hence, the global number of reachable states is finite.

• 𝑡@𝛼 ;𝛽 𝜃. The only direct successor is 𝑡@𝛼𝛽 𝜃, which is lower in the order. The case is already covered
by induction hypothesis.

• 𝑡@ 𝑟𝑙[𝑆𝑢𝑏𝑠] 𝜃 has a finite number of successors, as a finite number of rules (with label 𝑟𝑙) can be
applied in a finite number of positions, with a finite number of matches. If the rule application includes
strategies for the rewriting condition fragments, it is still finite. 𝑡@ 𝑟𝑙[𝑆𝑢𝑏𝑠]{𝛼1, … , 𝛼𝑛}𝜃 →𝑐 rewc(𝑝 ∶
𝑞, 𝜎, 𝐶, 𝛼1 ⋯ 𝛼𝑛, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝜃 is the only possibility for a finite set of 𝜎, 𝜃𝑠, 𝑟 and 𝑚. The sequent is
lower in the order, so by induction hypothesis, only a finite number of states are reachable from it.

• 𝑡@ matchrew 𝑃 s.t 𝐶 by 𝑥1 using 𝛼1, … , 𝑥𝑛 using 𝛼𝑛 →𝑐 subterm(… , 𝑥𝑖 ∶ 𝑡@𝛼𝑖, … ; 𝑡)@ 𝜃 for
all possible matches, which are a finite set. Being the successor lower in the order and by induction
hypothesis, the reachable states are finitely many.

• For 𝑡@𝛼 ? 𝛽 : 𝛾 𝜃 and by induction hypothesis both 𝑡@𝛼 𝜃, 𝑡′ @𝛽 𝜃 and 𝑡@ 𝛾 𝜃 for any term 𝑡′ reach
only a finite number of states. The successors of 𝑡@𝛼 ? 𝛽 : 𝛾 by →𝑐 are 𝑡@ 𝛾 𝜃 and 𝑡@𝛼𝛽 𝜃. Both of
them have a finite number of successors by hypothesis and an already considered case.

• For subterm(𝑥1 ∶ 𝑞1, … , 𝑥𝑛, 𝑞𝑛; 𝑡)@ 𝑠, induction hypothesis can be applied to 𝑞𝑖 so the reachable states
from them are finitely many. In Lemma 25 we learn that the reachable states from a subterm state
are the combination of its reachable subterms (which is a finite number, the product of the number
of reachable substates) plus the reachable states from any subterm(𝑥1 ∶ 𝑡1 @ 𝜀, … , 𝑥𝑛 ∶ 𝑡𝑛 @ 𝜀; 𝑡)@ 𝑠 →𝑐
𝑡[𝑥𝑖/𝑡𝑖]𝑛𝑖=1 @ 𝑠. By induction hypothesis for 𝑡′ @ 𝑠, these are a finite number. Thus, the reachable states
from the original one are finitely many.

41

• For rewc(𝑝 ∶ 𝑞, 𝜎, 𝐶, 𝛼1 ⋯ 𝛼𝑛, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝑠, we can invoke the induction hypothesis for 𝑞. Again the
number of reachable states induced by the execution of 𝑞 is finite. For every final execution rewc(𝑝 ∶
𝑡𝑚 @ 𝜀, 𝜎, 𝐶, 𝛼1 ⋯ 𝛼𝑛, 𝜃𝑠, 𝑟, 𝑐; 𝑡)@ 𝑠 there are a finite number of direct successors, one for each possible
match. These successors are rewc states with fewer condition fragments or plain states 𝑡′ @ 𝑠. In any
case we can apply induction hypothesis to conclude that the reachable states are finitely many.

• For a strategy call, 𝑡@ 𝑠𝑙(𝑡1, … , 𝑡𝑛)𝜃 →𝑐 𝑡@ 𝛿𝑖𝜎 𝜃 for every 𝜎 ∈ vmatch(⃗𝑝𝑖, (𝑡1, … , 𝑡𝑛), 𝐶𝑖) and definition
(𝑠𝑙, ⃗𝑝𝑖, 𝛿𝑖, 𝐶𝑖) ∈ 𝐷, which are finitely many. Since the definition 𝛿𝑖 is below in the topological order,
we known that finitely many states are reachable when executing it, so the reachable states from the
strategy call are a finite union of finite sets, hence finite.

The second statement will be proved differently. First, observe that the aforementioned optimization
does not affect the semantics, because vctx(𝜎1𝜎2𝑠) = 𝜎1 whatever 𝜎2 is and the only allowed execution from
𝑡@𝜎1𝜎2 𝑠 starts with 𝑡@𝜎1𝜎2 𝑠 →𝑐 𝑡@𝜎2 𝑠 →𝑐 𝑡@ 𝑠. Thus, 𝜎2 do not have any effect and can be safely
removed. Notice that recursive calls in iterations 𝛼∗ are never tail, so no recursive calls are allowed inside
𝛼∗. We can then prove regardless of recursive calls that starting from 𝑡@𝛼∗𝜃 there is a finite number of
reachable states. This will be done by induction on the number of nested iterations in 𝛼. Suppose 𝛼 does
not contain another iteration, then by the first statement, 𝑡′ @𝛼 𝜃 reaches a finite number of states for any
term 𝑡′. Consider the set 𝑅 including every reachable states from 𝑡′ @𝛼∗𝜃 for every reachable term 𝑡′, which
clearly contains the reachable states from 𝑡@𝛼∗𝜃. An element of this set is either 𝑡′ @𝛼∗𝜃, 𝑡′ @ 𝜃, 𝑡′ @ 𝜀, or
a reachable state from 𝑡′ @𝛼 𝜃 with 𝛼∗𝜃 instead of 𝜃 at the bottom of the stack for some 𝑡′. Since the latter
are finitely many and the number of 𝑡′ is also finite, 𝑅 is a finite set, and we are done. If 𝛼 contains an
iteration 𝛽∗, the number of nested iterations in 𝛽 is strictly lower that the number for 𝛼, so the induction
hypothesis lets us conclude that the reachable states from 𝛽∗ are finitely many. A straightforward induction
on the structure of the expressions, like in the first statement, would complete the proof.

If all recursive calls in 𝛿𝑖 are tail, we will prove that the reachable states are finitely many. When a strategy
is called, 𝑡@ 𝑠𝑙(𝑡1, … , 𝑡𝑛)𝑠 →𝑐 𝑡@ 𝛿𝑖𝜎𝑠, new content is pushed on top of the stack: all calls in 𝛿𝑖 are tail and
𝜎 only take a finite number of values since strategies are only called with finitely many distinct arguments
by hypothesis and matches for each one are also finite. Reachable states from 𝑡@ 𝛿𝑖𝜎𝑠 include the reachable
states from the state itself without executing recursive calls, and the reachable states from 𝑡′ @ 𝑠𝑙(𝑡1, … , 𝑡𝑛)𝜎𝑠
for any recursive call in 𝛿𝑖 and terms 𝑡′ (remember all recursive calls are tail). The first set of reachable
states is finite, because of the previous results and provided that recursive calls are not expanded, and the
𝑡′ @ 𝑠𝑙(𝑡1, … , 𝑡𝑛)𝜎𝑠 states are also finitely many because, by assumption, reachable terms 𝑡′ and call arguments
𝑡1, … , 𝑡𝑛 take a finite number of values. These states evolve 𝑡′ @ 𝑠𝑙(𝑡1, … , 𝑡𝑛)𝜎𝑠 →𝑐 𝑡′ @ 𝛿𝑖𝜎′𝜎𝑠 but with the
optimization the second state is replaced by 𝑡′ @ 𝛿𝑖𝜎′𝑠, which was already counted. Hence, a finite number
of states is reachable from all strategy definitions.

The proof of the previous statement of the proposition can be used to conclude that all reachable states
from any original state 𝑡@𝛼 are finitely many.

∎

▶ Proposition 30. The 𝜔-language 𝐸(𝛼, 𝐼) where finite words are extended repeating the last state forever
is

{cterm(𝑞0) cterm(𝑞1) ⋯ cterm(𝑞𝑛) ⋯ ∣ 𝑞0 ↠ 𝑞1 ↠ ⋯ ↠ 𝑞𝑛 ↠ ⋯}
where the ↠ transition is extended with 𝑞 ↠ 𝑡@ 𝜀 whenever 𝑞 →∗

𝑐 𝑡@ 𝜀.

Let 𝐸𝜔(𝛼, 𝐼) be the language 𝐸(𝛼, 𝐼) where finite words are extended repeating the last symbol forever,
and 𝑆 the set in the statement. We have to prove that 𝐸𝜔(𝛼, 𝐼) = 𝑆. Take 𝑤 ∈ 𝐸𝜔(𝛼, 𝐼), two cases are
possible for some 𝑡 ∈ 𝐼 :

• 𝑤 ∈ 𝑇𝜔(𝑡@𝛼). Here, 𝑆 and the definition of 𝑇𝜔 coincide, so clearly 𝑤 ∈ 𝑆.
• 𝑤 = 𝑤1 ⋯ 𝑤𝑛𝑤 𝜔

𝑛 where 𝑤1 ⋯ 𝑤𝑛 ∈ 𝑇succ(𝑡@𝛼). By definition of 𝑇succ, there are 𝑞1, … , 𝑞𝑛 such that
𝑞𝑘 ↠ 𝑞𝑘+1, 𝑤𝑘 = cterm(𝑞𝑘), and 𝑞𝑛 →∗

𝑐 𝑤𝑛 @ 𝜀.
Then, defining 𝑞𝑘 = 𝑤𝑛 @ 𝜀 for all 𝑘 ≥ 𝑛 + 1, we have 𝑞𝑛 ↠ 𝑞𝑛+1 and 𝑞𝑘 ↠ 𝑞𝑘+1 in the extended sense
for all 𝑘 ≥ 𝑛 + 1, because 𝑤𝑛 @ 𝜀 →∗

𝑐 𝑤𝑛 @ 𝜀 with an empty execution. Hence, 𝑤 ∈ 𝑆.

42

From the other side, take 𝑤 ∈ 𝑆. By its definition, there are 𝑞𝑘 for 𝑘 ≥ 1 such that 𝑞𝑘 ↠ 𝑞𝑘+1 and
𝑤𝑘 = cterm(𝑞𝑘). Suppose all ↠ reductions are of the original ↠ relation, then the definition of 𝑇𝜔 is
attained, so 𝑤 ∈ 𝐸𝜔(𝛼, 𝐼). Otherwise, there is an 𝑙 ≥ 1 such that 𝑞𝑙 ↠ 𝑞𝑙+1 only in the extended relation.
Then 𝑞𝑙 →∗

𝑐 𝑤𝑙 @ 𝜀 and 𝑞𝑙+1 = 𝑤𝑙 @ 𝜀. No control reduction can be applied to 𝑤𝑙 @ 𝜀, so the only allowed
execution from the state is the empty one. Thus, 𝑞𝑙+2 must be 𝑞𝑙+1 itself, and inductively 𝑞𝑘 = 𝑞𝑙+1 = 𝑤𝑙 @ 𝜀
for all 𝑘 ≥ 𝑙 + 1. Finally, 𝑤𝑘 = 𝑤𝑙 for all 𝑘 ≥ 𝑙 and 𝑤1 ⋯ 𝑤𝑙 is in 𝑇succ(𝑡@ 𝜀) because 𝑞𝑙 →∗

𝑐 𝑤𝑙 @ 𝜀. All that
means 𝑤 ∈ 𝐸𝜔(𝛼, 𝐼).

∎
▶ Proposition 31. For any 𝛼 ∈ Stratℛ,Ω and 𝐼 ⊆ 𝑇Σ(𝑋) finite, if the reachable states from 𝑡@𝛼 are finitely
many for 𝑡 ∈ 𝐼 , the extended abstract strategy 𝐸(𝛼, 𝐼) is a 𝜔-regular language, and a Büchi automaton for
it is 𝒜 = (𝑄, cterm(𝑄), 𝛿, {𝑠𝑡𝑎𝑟𝑡}, 𝑄) where 𝑄 = {𝑠𝑡𝑎𝑟𝑡} ∪ {𝑞 ∈ 𝒳𝑆ℛ ∣ 𝑡 ∈ 𝐼 ∧ 𝑡@𝛼 ↠∗ 𝑞} and

𝛿(𝑠𝑡𝑎𝑟𝑡, 𝑡) = { 𝑡@𝛼 } if 𝑡 ∈ 𝐼
𝛿(𝑠𝑡𝑎𝑟𝑡, 𝑡) = ∅ if 𝑡 ∉ 𝐼

𝛿(𝑞, 𝑡) = { 𝑞′ ∶ 𝑞 ↠ 𝑞′ ∧ cterm(𝑞′) = 𝑡 } for 𝑞 ∈ 𝑄\{𝑠𝑡𝑎𝑟𝑡}
∪ { 𝑡@ 𝜀 ∶ if 𝑞 →∗

𝑐 𝑡@ 𝜀 }

Then, we must check that 𝐿(𝒜) = 𝐸(𝛼, 𝐼). First prove 𝐿(𝒜) ⊆ 𝐸(𝛼, 𝐼). For each 𝑤 ∈ 𝐿(𝒜) there must
be an automaton run start 𝜋 ∈ 𝒳𝑆𝜔

ℛ. Let ensure 𝜋𝑖 ↠ 𝜋𝑖+1 and 𝑤𝑖 = cterm(𝜋𝑖), so that 𝑤 ∈ 𝐸(𝛼, 𝐼) by
definition.

• Base case: the automata starts in the state start so 𝑤0 must belong to 𝐼 and 𝜋0 = 𝑤0 @𝛼. Clearly
𝑤0 = cterm(𝑤0 @𝛼).

• Inductive case: for 𝑖 ≥ 1, 𝜋𝑖+1 ∈ 𝛿(𝜋𝑖, 𝑤𝑖+1) so by definition of 𝛿, 𝜋𝑖 ↠ 𝜋𝑖+1 and 𝑤𝑖+1 = cterm(𝜋𝑖+1)
if 𝜋𝑖+1 is in the first set. If it is in the second, 𝜋𝑖 →∗

𝑐 𝜋𝑖+1 = 𝑤𝑖+1 @ 𝜀, and 𝑤𝑖+1 = cterm(𝜋𝑖) because
the control reductions preserve the current term. Hence, 𝑤𝑖+1 = cterm(𝜋𝑖+1) = cterm(𝜋𝑖) = 𝑤𝑖 and
𝜋𝑖 ↠ 𝜋𝑖+1 in the extended sense.

Then we need to prove 𝐸(𝛼, 𝐼) ⊆ 𝐿(𝒜). If 𝑤 ∈ 𝐸(𝛼, 𝐼) then 𝑤 ∈ 𝑇succ(𝑡@𝛼) or 𝑤 ∈ 𝑇𝜔(𝑡@𝛼) for some 𝑡 ∈ 𝐼 .
Let do the second case, the first is quite similar. By definition of 𝑇𝜔 there is a succession of states 𝑞0 ⋯ 𝑞𝑛 ⋯
such that 𝑤𝑖 = cterm(𝑞𝑖) with 𝑞0 = 𝑡@𝛼. This succession (prepended by 𝑠𝑡𝑎𝑟𝑡) is a run for 𝒜:

• Base case: 𝑞0 = 𝑤0 @𝛼 with 𝑤0 ∈ 𝐼 . So the automaton can pass from 𝑠𝑡𝑎𝑟𝑡 to 𝑞0.

• Inductive case: the automaton is in the state 𝑞𝑖 and reads 𝑤𝑖+1. We know that 𝑞𝑖 ↠ 𝑞𝑖+1 and 𝑤𝑖+1 =
cterm(𝑞𝑖+1) so 𝑞𝑖+1 ∈ 𝛿(𝑞𝑖, 𝑤𝑖).

And consequently 𝑤 ∈ 𝐿(𝒜).
∎

A.3.2 Another definition for strategies

▶ Lemma 32. If 𝑡@ 𝑠 →+
𝑠,𝑐 𝑡′ @ 𝑠′, the number of strategy constructors is strictly lower in 𝑠′ than in 𝑠, or

the execution reduces a strategy call and cdepth(𝑡′ @ 𝑠′) > cdepth(𝑡@ 𝑠), or 𝑠 and 𝑠′ contain an iteration
expression that is being executed.

We only have to observe Figures 2 and 3 to see that all rules from flat states, except the rule for calls
and starting iterations, reduce the number of strategy constructors. Some other rules create subterm or rewc
states, but they also reduce the number of constructors in the strategy stack. The rules that modify these
structured states preserve the stack unchanged, so when they are removed the stack stay with a strictly lower
number of constructors.

The rule for strategy calls can increment the number of strategy constructors, because it pushes the
strategy definition on top of the stack. However, it also pushes a substitution, thus increasing the call depth
of the successor state. The substitution is the first item to be pushed, so it is not removed until all the
strategy definition has been popped. And then, the number of strategy constructor shrinks, because the
strategy call term was removed.

∎

43

▶ Proposition 33. Given an execution 𝜋 = 𝑞0 ⋯ 𝑞𝑛 ⋯ ∈ Ex𝜔(𝑞0), the following conditions are equivalent:

1. For all 𝑛 ∈ ℕ and position 𝑝 in 𝑞𝑛 such that 𝑞𝑛|𝑝 →∗
𝑐 𝑡𝑛 @𝛼∗𝑠, Iter(𝑝, 𝛼, 𝑠) is finite.

2. 𝜋 iterates finitely.

3. For any 𝑛 ∈ ℕ and position 𝑝 in 𝑞𝑛 such that 𝑞𝑛|𝑝 →∗
𝑐 𝑡𝑛 @𝛼∗𝑠, Iter(𝑝, 𝛼, 𝑠) is finite or Leave(𝑝, 𝛼, 𝑠) is

infinite.

And the last two conditions are equivalent even with the optimization of Proposition 4:2.

This is the plan for the proof. Note that the implication (1) ⇒ (3) is obvious, and that only (3) ⇒ (1) is
not valid when the optimization of Proposition 4:2 is considered.

1 2 3

• (2) ⇒ (3). Take 𝑛 and 𝑝 such that 𝑞𝑛|𝑝 →∗
𝑐 𝑡𝑛 @𝛼∗𝑠. By reductio ad absurdum, suppose Leave(𝑝, 𝛼, 𝑠) is

finite and Iter(𝑝, 𝛼, 𝑠) is infinite. There exists 𝑀 ≔ maxLeave(𝑝, 𝛼, 𝑠), and since Iter(𝑝, 𝛼, 𝑠) is infinite,
it must have an element 𝑘 > 𝑀 . Then, ConsIter(𝑘, 𝑝) = Iter(𝑝, 𝛼, 𝑠) ∩ [𝑘, ∞), which is an infinite set,
against (2).

• (3) ⇒ (2). For any 𝑛 and 𝑝 such that 𝑞𝑛|𝑝 →∗
𝑐 𝑡𝑛 @𝛼∗𝑠, we need to prove that ConsIter(𝑛, 𝑝) is finite.

Since ConsIter(𝑛, 𝑝) ⊆ Iter(𝑝, 𝛼, 𝑠), if the second is finite, the first is.
Otherwise Leave(𝑝, 𝛼, 𝑠) is infinite, so there is a 𝑗 ≥ 𝑛 such that 𝑗 ∈ Leave(𝑝, 𝛼, 𝑠). Thus, ConsIter(𝑛, 𝑝)
size is less that 𝑗 − 𝑛 + 1, so it is finite.

• (3) ⇒ (1). For any 𝑛 and 𝑝 such that 𝑞𝑛|𝑝 →∗
𝑐 𝑡𝑛 @𝛼∗𝑠, there are two possibilities, either Iter(𝑝, 𝛼, 𝑠) is

finite and we are done, or Leave(𝑝, 𝛼, 𝑠) is infinite. We will prove that the second option is not possible,
but this is only valid when not using the optimization. First, we claim that states of the form 𝑡@ 𝑠 can
only appear a finite number of times in an execution, from which the finiteness of Leave follows. This
fact is not true when using the optimization from Proposition 4:2, because call contexts disappear and
cannot be used to distinguish states.
If we have 𝑡@ 𝑠 ↠+ 𝑡′ @ 𝑠, since the number of strategy constructors and call depth in both sides is
the same, and by Lemma 32, then 𝑠 must contain an iteration expression that has been reduced during
the execution. We proceed by induction on the number of iteration expressions in 𝑠. Suppose there is
none, then 𝑡@ 𝑠 occur only once in the execution, so Leave(𝑝, 𝛼, 𝑠) is finite for all 𝑝 and 𝛼 involved.
Otherwise, suppose 𝑠 = 𝑠1𝛽∗𝑠0 where 𝑠1 does not contain iteration expressions, and the occurrences of
𝑡@ 𝑠0 for some different terms 𝑡 are finite. Then Leave(𝑝, 𝛽, 𝑠0) is finite, and by (3), Iter(𝑝, 𝛽, 𝑠0) also
is. If we have 𝑡@ 𝑠 ↠+ 𝑡′ @ 𝑠, there must be an iteration of 𝛽 in between, but only a finite number of
these are possible, so only a finite number of states of the from 𝑡@ 𝑠 occur. Hence, Leave(𝑝, 𝛼, 𝑠) and
Iter(𝑝, 𝛼, 𝑠) are finite, by statement (3).

∎

▶ Proposition. Given an execution 𝜋 ∈ Ex𝜔(𝑞0) that iterates finitely, cdepth(𝜋𝑛) → ∞ when 𝑛 → ∞.

First, we prove cdepth(𝜋𝑛) → ∞ if the number of strategy calls is infinite, provided 𝜋 iterates finitely
and the optimization is not used, as otherwise cdepth would not make sense. A strategy stack can be seen
as a call stack. In 𝑠1𝜃𝑠0, where 𝑠1 does not contain substitutions, 𝑠1 is the remaining code for the current
call context, and 𝜃 are their local variables; 𝑠0 is the rest of the backtrace, which may contain several other
nested contexts. When a strategy call is reduced, another call context is created.

We will build a graph whose vertices are the different call contexts that occur in the execution of 𝜋. The
edges link a context with its single parent context. This forms a finitary tree, as only a finite number of calls
can appear in a context, i.e. in a strategy definition or in the main strategy, and they can only be executed
a finite number of times in each context, because 𝜋 iterates finitely.

If there are infinitely many strategy calls, the tree must be infinite. By Kőnig lemma, there must be an
infinite branch. Remember that cdepth(𝜋𝑛) → ∞ means that for all 𝑀 ∈ ℕ there is an 𝑛0 ∈ ℕ such that for

44

all 𝑛 ≥ 𝑛0, cdepth(𝜋𝑛) ≥ 𝑀 . Choosing the vertex at depth 𝑀 in the infinite branch, we get a context from
which the execution will never exit, as there is a non-terminating calling sequence in it.

Now, we want to see that 𝜋 contains infinite strategy calls. By Lemma 32 and because reductions do not
leave from states with empty stack, there must be an infinite number of iterations or an infinite number of
strategy calls. If there is a finite number of strategy calls, there is a finite number of stacks. And only a finite
number of iteration expressions can be found in 𝜋, since they are also finite in the strategy definitions. Hence,
the states where an iteration starts are inside the union of all Leave(𝑝, 𝛼, 𝑠) for 𝑝 (depend on the number of
matchrew in the terms), 𝛼 and 𝑠. The set Leave(𝑝, 𝛼, 𝑠) is finite by the first statement of Proposition 4:4,
and their parameters can only take a finite number of values, as we have reasoned above. So, the number of
iterations is finite. Thus, assuming that the number of calls is infinite leads to a contradiction, so the number
of calls is infinite.

∎

▶ Proposition 34. For any 𝛼 ∈ Stratℛ,Ω and 𝐼 ⊆ 𝑇Σ(𝑋) finite, if the reachable states from 𝑡@𝛼 are finitely
many for 𝑡 ∈ 𝐼 , the extended abstract strategy 𝐸(𝛼, 𝐼) is an 𝜔-regular language, and a Streett automaton for
it is 𝒜 = (𝑄2, cterm(𝑄 \ {start}), 𝛿, {start} × 𝐼, 𝑆) where

𝑄 = {start} ∪ {𝑞 ∈ 𝒳𝑆ℛ ∣ 𝑡 ∈ 𝐼 ∧ 𝑡@𝛼 ↠∗ 𝑞},

the Streett conditions are 𝑆 = { (𝐴𝑝,𝛼,𝑠, 𝐵𝑝,𝛼,𝑠) ∶ (𝑝, 𝛼, 𝑠) ∈ 𝐽 } for

𝐽 = { (𝑝, 𝛼, 𝑠) ∶ ∃ 𝑞 ∈ 𝑄, 𝑡 ∈ 𝑇Σ/𝐸 𝑞|𝑝 →∗
𝑐 𝑡@𝛼∗𝑠 }

𝐴𝑝,𝛼,𝑠 = { (𝑞, 𝑞′) ∈ 𝑄2 ∶ 𝑞|𝑝 →∗
𝑠,𝑐 𝑡@𝛼𝛼∗𝑠 ↠ 𝑞′|𝑝, 𝑡 ∈ 𝑇Σ/𝐸 }

𝐵𝑝,𝛼,𝑠 = { (𝑞, 𝑞′) ∈ 𝑄2 ∶ 𝑞|𝑝 →∗
𝑠,𝑐 𝑡@ 𝑠 ↠ 𝑞′|𝑝, 𝑡 ∈ 𝑇Σ/𝐸 },

and
𝛿((𝑞, 𝑞′), 𝑡) = { (𝑞′, 𝑞″) ∈ 𝑄2 ∶ 𝑞′ ↠ 𝑞″ ∧ cterm(𝑞′) = 𝑡 } ∪ { (𝑞′, 𝑡@ 𝜀) ∶ if 𝑞′ →∗

𝑐 𝑡@ 𝜀 }
This automaton is valid both with or without the optimization of Proposition 4:2.

Looking at the automaton in Proposition 4:3, we can see that {𝑞 ∶ (𝑦, 𝑞) ∈ 𝛿((𝑥, 𝑦), 𝑡)} = 𝛿0(𝑦, 𝑡) for any
𝑥, 𝑦 ∈ 𝑄 if 𝛿0 is the transition relation of the previous automaton. Hence, ignoring the additional copy of the
next execution state in each state in this automaton, their runs are the same and they recognize the same
words except for the acceptance condition. Thus, we only have to ensure that the additional restrictions
actually ban executing iterations forever.

Let 𝜋 be an execution of the semantics, we want to see that 𝜌 = (start, 𝜋0)(𝜋0, 𝜋1) ⋯ is accepting iff 𝜋
iterates finitely. Remember that 𝜌 is accepting iff inf(𝜌)∩𝐴𝑝,𝛼,𝑠 = ∅ or inf(𝜌)∩𝐵𝑝,𝛼,𝑠 = ∅ for all (𝑝, 𝛼, 𝑠) ∈ 𝐽 .
And 𝜋 iterates finitely if Iter𝜋(𝑝, 𝛼, 𝑠) is finite or Leave𝜋(𝑝, 𝛼, 𝑠) is infinite, for all (𝑝, 𝛼, 𝛽) ∈ 𝐽 , by the third
statement of Proposition 4:4. Comparing definitions, it is easy to conclude

{ (𝜋𝑘, 𝜋𝑘+1) ∶ 𝑘 ∈ Iter𝜋(𝑝, 𝛼, 𝑠) } = 𝐴𝑝,𝛼,𝑠 ∩ 𝑃 { (𝜋𝑘, 𝜋𝑘+1 ∶ 𝑘 ∈ Leave(𝑝, 𝛼, 𝑠) } = 𝐵𝑝,𝛼,𝑠 ∩ 𝑃 ,

where 𝑃 = {(𝜋𝑘, 𝜋𝑘+1) ∶ 𝑘 ∈ ℕ} = {𝜌𝑘 ∶ 𝑘 ≥ 1}. Now, intersecting with inf(𝜌) ⊆ 𝑃 in both equations and
both sides, 𝜌 is accepting if

inf(𝜌) ∩ { 𝜌𝑘 ∶ 𝑘 ∈ Iter𝜋(𝑝, 𝛼, 𝑠) } = ∅ or inf(𝜌) ∩ { 𝜌𝑘 ∶ 𝑘 ∈ Leave𝜋(𝑝, 𝛼, 𝑠) } ≠ ∅

Since inf(𝜌) are the states 𝑞 such that the number of 𝑘 ∈ ℕ satisfying 𝜋𝑘 = 𝑞 is infinite, the latter equations
mean Iter𝜋(𝑝, 𝛼, 𝑠) is finite or Leave𝜋(𝑝, 𝛼, 𝑠) is infinite. Hence, 𝜋 iterates finitely iff 𝜌 is accepting.

∎

▶ Lemma 35. Given a rewrite theory ℛ and 𝑡, 𝑡′ ∈ 𝑇Σ/𝐸 such that 𝑡 →1
ℛ 𝑡′, there is a strategy 𝛼 of the form

matchrew 𝑃 by 𝑥 using 𝑟𝑙[𝑆𝑢𝑏𝑠]{ ̄𝛽} ; match 𝑡′ such that ⟦𝛼⟧(𝜃, 𝑡) = {𝑡′}.

Observe that the simpler strategy expression all ; match 𝑡 almost satisfies the conditions required for
𝛼, but it does not guarantee termination in the presence of rules with rewriting conditions. In other words,
its denotation could be {𝑡′, ⊥} in addition to {𝑡′}. Moreover, the final test is required because there may be
two rules with the same label and left-hand side but different right-hand side.

45

If 𝑡 →1
ℛ 𝑡′, there must exist a (perhaps conditional) rule 𝑟𝑙 ∶ 𝑙 → 𝑟 if 𝐶, a substitution 𝜎, and a position

𝑝 in 𝑡 such that 𝑡|𝑝 = 𝜎(𝑙), 𝑡′ = 𝑡[𝑝/𝜎(𝑟)] and 𝜎(𝐶) holds. First, we suppose 𝐶 does not contain rewriting
condition fragments. If 𝑥1, … , 𝑥𝑛 are the variables that occur in 𝑙 and 𝐶, and 𝑥 is a fresh variable, the desired
𝛼 is then

matchrew 𝑡[𝑝/𝑥] by 𝑥 using 𝑟𝑙[𝑥1 ← 𝜎(𝑥1), … , 𝑥𝑛 ← 𝜎(𝑥𝑛)] ; match 𝑡′

This strategy forces the 𝑟𝑙 rule application to the specific position 𝑝, with the specific substitution 𝜎, and
then it is checked that the result is 𝑡′. The only possible successful execution is

𝛼 →𝑐 subterm(𝑥 ∶ 𝑡|𝑝 @ 𝑟𝑙[𝑥1 ← 𝜎(𝑥1), … , 𝑥𝑛 ← 𝜎(𝑥𝑛)]; 𝑡)@ match 𝑡′

→𝑠 subterm(𝑥 ∶ 𝜎(𝑟)@ 𝜀; 𝑡)@ match 𝑡′ →𝑐 𝑡′ @ match 𝑡′ →𝑐 𝑡′ @ 𝜀
Any other execution from 𝛼 can only differ in the term after the rewrite and must fail before the test, so all
possible executions are finite. Hence, ⟦𝛼⟧(𝜃, 𝑡) = {𝑡′}.

If 𝐶 contains rewriting conditions, strategies should be provided for these. Since the rule have been
applied, for each rewriting condition 𝑟𝑤𝑐𝑙 => 𝑟𝑤𝑐𝑟, a sequence 𝑡1𝑡2 ⋯ 𝑡𝑛 must exist with 𝜎(𝑟𝑤𝑐𝑙) = 𝑡1,
𝜎(𝑟𝑤𝑐𝑟) = 𝑡𝑛 and 𝑡𝑘 →1

ℛ 𝑡𝑘+1. We can apply this lemma inductively to 𝑡𝑘 →1
ℛ 𝑡𝑘+1, provided that only a

finite number of rewriting conditions have been computed to get 𝑡 →1
ℛ 𝑡′. Joining all 𝑡𝑘 transition with the

concatenation operator of strategies, we get a strategy for one of the 𝛽 of the matchrew. Doing this with all
rewriting fragments, the lemma conditions hold.

∎
▶ Proposition 36. If 𝑆 ⊆ 𝑇Σ(𝑋) finite and 𝐿 ⊆ 𝑆𝜔 is a regular language and 𝑤𝑖 →1

ℛ 𝑤𝑖+1 for all 𝑤 ∈ 𝐿,
there is a strategy 𝛼 and a set 𝐼 ⊆ 𝑇Σ(𝑋) such that 𝐸(𝛼, 𝐼) = 𝐿 and the reachable states from 𝑡@𝛼 with
optimization are finitely many for any 𝑡 ∈ 𝑇Σ(𝑋).

First, 𝐼 = {𝑤0 ∶ 𝑤 ∈ 𝐿} and there is an automaton 𝒜 = (𝑄, 𝑆, 𝛿, 𝑄0, 𝐹) for the 𝜔-regular language 𝐿. The
symbols of the alphabet are states, but our strategy language is based on rules. Hence, we have to translate
them.

For each pair of terms 𝑡, 𝑡′ ∈ 𝑆, there is a strategy 𝛼𝑡,𝑡′ in the terms of Lemma 35. The transition
automaton is defined 𝒯 = (𝑆 × 𝑄, 𝑅𝐴, Δ, 𝑆𝑄0, 𝑆 × 𝐹) where 𝑅𝐴 = {𝛼𝑡,𝑡′ ∣ 𝑡, 𝑡′ ∈ 𝑆} and

Δ((𝑡, 𝑞), 𝛼) = { (𝑡′, 𝑞′) ∣ 𝑡@𝛼 →∗
𝑠,𝑐 𝑡′ @ 𝜀, 𝑞′ ∈ 𝛿(𝑞, 𝑡′) } 𝑆𝑄0 = { (𝑡, 𝑞) ∣ 𝑡 ∈ 𝐼, 𝑞 ∈ 𝛿(𝑞0, 𝑡), 𝑞0 ∈ 𝑄0 }

Note than only 𝛼𝑡,𝑡′ satisfies the condition on the definition of Δ.
First, we want to prove that 𝐿 = {𝑣 ∈ 𝑇 𝜔

Σ/𝐸 ∣ 𝑣𝑘 @𝑤𝑘 →∗
𝑠,𝑐 𝑣𝑘+1 @ 𝜀 for all 𝑘 ∈ ℕ, 𝑤 ∈ 𝐿(𝒯)}.

• Take 𝑤 ∈ 𝐿(𝒯), there is a run 𝜋 ∈ (𝑆 × 𝑄)𝜔 for it in 𝒯. Call 𝑣 ∈ 𝑆𝜔 the first projection of the run
𝑣𝑘 = (𝜋𝑘)1. By definition of Δ, 𝑣𝑘 @𝑤𝑘 →∗

𝑠,𝑐 𝑣𝑘+1 @ 𝜀. The second projection 𝜌 of 𝜋 is an accepting
run in 𝒜 for 𝑣, because, again by definition of Δ, 𝜌𝑘+1 ∈ 𝛿(𝜌𝑘, 𝑤𝑘+1) and inf(𝜌) ∩ 𝐹 has the same size
as inf(𝜋) ∩ (𝑆 × 𝐹). Hence, 𝑣 ∈ 𝐿.

• Take 𝑣 ∈ 𝐿. Since 𝒜 accepts 𝑣, there is a run 𝜌 ∈ 𝑄𝜔 with inf(𝜌) ∩ 𝐹 ≠ ∅. Then 𝜋 ∈ (𝑆 × 𝑄)𝜔

defined by 𝜋′
𝑘 = (𝑣𝑘, 𝜋𝑘) is a valid run in 𝒯 for the word 𝑤 ∈ 𝑅𝐴𝜔 with 𝑤𝑘 = 𝛼𝑣𝑘,𝑣𝑘+1

. In fact,
(𝑣𝑘+1, 𝜋𝑘+1) ∈ Δ((𝑣𝑘, 𝜋𝑘), 𝛼𝑣𝑘,𝑣𝑘+1

) since 𝜋𝑘+1 ∈ 𝛿(𝜋𝑘, 𝑣𝑘+1) and 𝑣𝑘 @𝛼𝑣𝑘,𝑣𝑘+1
→∗

𝑠,𝑐 𝑣𝑘+1 @ 𝜀. Then 𝑣 is
in the right-hand set.

Second, we will construct the strategy expression 𝛼 that generates 𝐿. Since 𝐿(𝒯) is an 𝜔-regular language,
it can be expressed as 𝜔-regular expression [9], which always have the form 𝑟1𝑠𝜔

1 + … + 𝑟𝑛𝑠𝜔
𝑛 for 𝑟𝑖, 𝑠𝑖 regular

expressions and 𝜀 ∉ 𝐿(𝑠𝑖). The conversion from regular expressions to strategy expressions is almost an
identity. ∅ is translated as fail, 𝜀 as idle, alternation, concatenation and iterations are the same in both
languages. For each 𝑠𝑖, to represent 𝑠𝜔

𝑖 , we define a named strategy with label 𝑓𝑖 without arguments and
defined as 𝑇 (𝑠𝑖) ; 𝑓𝑖 if 𝑇 is the translation function.

Inductively, we will prove that any successful execution 𝑡@𝑇 (𝑟) for any regular or 𝜔-regular expression
𝑟 sequentially executes every strategy in a word 𝑤 ∈ 𝐿(𝑟), and that all words in 𝐿(𝑟) can be successfully
executed for some initial term. This implies, from what we have proved above, that the traces for 𝑇 (𝑟) are
exactly 𝐿 as we want to prove. If the basic strategies 𝛼 ∈ 𝑅𝐴 were more complicated, the previous would
not make sense, because, how can we split an arbitrary execution to tell what sequence of strategies have
been run? However, elements of 𝑅𝐴 are atoms, a single rule application enclosed by the matchrew opening
and closing transitions. Only control transitions could appear between these atoms.

46

• If 𝑟 = 𝛼𝑡,𝑡′ is a basic symbol, 𝐿(𝑟) = {𝛼𝑡,𝑡′} and its translation is 𝛼𝑡,𝑡′ . The only successful execution
is 𝑡@𝛼𝑡,𝑡′ →∗

𝑠,𝑐 𝑡@ 𝜀, and only if the initial term is 𝑡.
• If 𝑟 = ∅, 𝐿(𝑟) = ∅ and its translation is fail. No successful execution can follow from 𝑡@ fail.

• If 𝑟 = 𝜀, 𝐿(𝑟) = {𝜀} and its translation is idle. The only possible derivation is 𝑡@ idle →𝑐 𝑡@ 𝜀 for
any 𝑡 ∈ 𝑇Σ/𝐸, and no atom in 𝑅𝐴 is executed.

• If 𝑒 = 𝑟𝑠, 𝐿(𝑒) = 𝐿(𝑟)𝐿(𝑠) and 𝑇 (𝑒) = 𝑇 (𝑟) ;𝑇 (𝑠). According to Lemma 21, successful executions
from 𝑡@𝑇 (𝑟) ;𝑇 (𝑠) are concatenations of successful execution for 𝑡@𝑇 (𝑟) →∗

𝑠,𝑐 𝑡′ @ 𝜀 and 𝑡′ @𝑇 (𝑠).
By induction hypothesis, successful executions from 𝑇 (𝑟) and 𝑇 (𝑠) execute stepwise 𝐿(𝑟) and 𝐿(𝑠). So,
𝑇 (𝑒) executes 𝐿(𝑟) and then 𝐿(𝑠), that is, 𝐿(𝑟)𝐿(𝑠).
Moreover, given a word 𝑣 ∈ 𝐿(𝑟) and 𝑤 ∈ 𝐿(𝑠) there are successful executions following their steps.
Hence, the composition of these is the execution that follows 𝑣𝑤 ∈ 𝐿(𝑒).

• If 𝑒 = 𝑟 + 𝑠, 𝐿(𝑒) = 𝐿(𝑟) ∪ 𝐿(𝑠) and 𝑇 (𝑒) = 𝑇 (𝑟)|𝑇 (𝑠). Since

𝑡@𝑇 (𝑒) |𝑇 (𝑠) 𝑡@𝑇 (𝑟)
𝑡@𝑇 (𝑠)

c

c

Thus, the successful executions sequences from 𝑡@𝑇 (𝑒) are the union of those for 𝑡@𝑇 (𝑟) and 𝑡@𝑇 (𝑠).
By induction hypothesis, they stepwise execute 𝐿(𝑟) and 𝐿(𝑠), so the alternation executes 𝐿(𝑟) ∪ 𝐿(𝑠),
as we wanted.

• If 𝑒 = 𝑟∗, then 𝐿(𝑒) = 𝐿(𝑟)∗ and 𝑇 (𝑒) = 𝑇 (𝑟)∗. Successful executions from 𝑡@𝑇 (𝑟)∗ are finite iterations
of successful executions for 𝑇 (𝑟). Since these follow stepwise 𝐿(𝑟) by induction hypothesis, 𝑡@𝑇 (𝑟)∗

follows 𝐿(𝑟)∗ as we want to prove.

• Now, we start with 𝜔-regular expressions. If 𝑒 = 𝑟𝜔, then 𝐿(𝑒) = 𝐿(𝑟)𝜔 and 𝑇 (𝑒) = 𝑓𝑒 with 𝑓𝑒 defined
as 𝑇 (𝑟) ; 𝑓𝑒. By induction hypothesis, the atoms executed for 𝑡@𝑇 (𝑟) and any term 𝑡 are 𝐿(𝑟). Using
the optimization, we obtain an execution loop

𝑡@ 𝑓𝑒 →𝑐 𝑡@𝑇 (𝑟) ; 𝑓𝑒 →𝑐 𝑡@𝑇 (𝑟)𝑓𝑒 →∗
𝑠,𝑐 𝑡@ 𝑓𝑒

that executes 𝑇 (𝑟), so executions for 𝑓𝑒 are 𝑇 (𝑟)𝜔.

• The alternation and concatenation cases for regular expressions are also valid for 𝜔-languages (except
in the first entry of the concatenation).

Finally, and since the strategy satisfies the conditions of the second statement of Proposition 4:2, the
reachable states are finite.

∎

A.4 Proofs for the rewriting semantics
In this section, we prove the equivalence between the denotational semantics in Section 3 and the rewriting
semantics in Section 5. This is done in much the same way as the equivalence proof between the former and
the operational semantics in Section A.3.
▶ Definition. The semantic denotation dsem ∶ 𝑇𝒮(𝑀,𝑆𝑀) → 𝒫⊥(𝑇Σ) of an execution state of the rewriting
semantics is defined as follows:

1. dsem(nil) = ∅.
2. dsem(sol(𝑡)) = {𝑡}.
3. dsem(< 𝛼 @ 𝑡 >) = ⟦𝛼⟧(id, 𝑡)
4. dsem(< 𝑄 ; seq(𝛽) >) = let 𝑡 ← dsem(𝑄) ∶ ⟦𝛽⟧(id, 𝑡)

5. dsem(< 𝑄 ; ifc(𝛽, 𝛾, 𝑡) >) = { let 𝑡′ ← dsem(𝑄) ∶ ⟦𝛽⟧(id, 𝑡′) dsem(𝑄) ≠ ∅
⟦𝛾⟧(id, 𝑡) dsem(𝑄) = ∅

47

6. dsem(< 𝑄 ; chkrw(𝑙 := 𝑟 /\ 𝐶, 𝛼 ⃗𝛼, 𝑟, 𝑐) >) =
let 𝑡 ← dsem(𝑄) ∶ ⋃𝜎∈match(𝑡,𝑟) let 𝜎′ ← check(𝐶, 𝜎, ⃗𝛼, id) ∶ {𝑐(𝜎′(𝑟))}

7. dsem(< 𝑄 ; mrew(𝑃, 𝜎, 𝑐, 𝑥, 𝑥1 using𝛼1, … , 𝑥𝑛 using𝛼𝑛) >) =
let 𝑥 ← dsem(𝑄), 𝑥1 ← ⟦𝛼1⟧(id, 𝜎(𝑥1)), … , 𝑥𝑛 ← ⟦𝛼𝑛⟧(id, 𝜎(𝑥𝑛)) ∶ {𝑐(𝜎(𝑃 [𝑥/𝑡, 𝑥1/𝑡1, … , 𝑥𝑛/𝑡𝑛]))}

8. dsem(𝑄 𝑄′) = dsem(𝑄) ∪ dsem(𝑄′)

We will make extensive use of the following statements to compose executions without explicitly men-
tioning them, since otherwise the text will be less readable.

▶ Lemma 37. For every configurations 𝑄, 𝑄1, 𝑄2 of the operational semantics,

1. {𝑄′ ∶ 𝑄1𝑄2 →∗ 𝑄′} = {𝑄′
1𝑄′

2 ∶ 𝑄1 →∗ 𝑄′
1, 𝑄2 →∗ 𝑄′

2}.
2. The executions from the soup 𝑄 𝑆 are exactly (𝑄𝑘𝑗

𝑆𝑙𝑗
)𝑚1+𝑚2
𝑗=0 for an execution (𝑄𝑘)𝑚1

𝑘=0 with 𝑄0 = 𝑄
and 𝑚1 ∈ ℕ∪{∞}, an execution (𝑆𝑘)𝑚2

𝑘=0 with 𝑆0 = 𝑆 and 𝑚2 ∈ ℕ∪{∞}, and two monotone sequences
(𝑘𝑗)𝑚1+𝑚2

𝑗=0 and (𝑙𝑗)𝑚1+𝑚2
𝑗=0 with 𝑘𝑗 + 𝑙𝑗 = 𝑗 for all 𝑗.

3. The sequence (< 𝑄𝑘 ; 𝑐 >)𝑚
𝑘=0 is a valid execution iff (𝑄𝑘)𝑚

𝑘=0 is a valid execution. Moreover, solutions
may be removed from the soup 𝑄𝑘 and continued outside.

The rules of the rewriting semantics ensure that tasks at the same level evolve independently of each
other, and their independent executions can be combined side by side in the soup according to the axioms of
rewriting. Since rules can be applied inside subterms, the last statement is also valid.

∎
Given an execution Π starting from 𝑄 𝑄′, let Π𝑄 be the independent execution that follows from 𝑄 as

indicated above. If Π is a continuation task, Π𝑐 will denote the execution inside the configuration and Π−𝑐
the execution outside the configuration and after it is dissolved. In a strict sense, Π𝑐 is not an execution
since sol(𝑡) states may disappear from it, but this will be immaterial.
▶ Definition. The call depth cdepth ∶ 𝑇 ∗

𝒮(𝑀,𝑆𝑀) → ℕ of an execution in the semantics is defined as follows:

1. cdepth(𝜀) = 0.
2. cdepth(nil) = 0
3. cdepth(𝑄 𝑄′ Π) = max{cdepth((𝑄 Π)𝑄), cdepth((𝑄′ Π)𝑄′)}.
4. cdepth(< 𝛼 @ 𝑡 >Π) = cdepth(Π) if 𝛼 is not a strategy call or Π = 𝜀.
5. cdepth(< sl(𝑡1, … , 𝑡𝑛) @ 𝑡 >Π) = 1 + cdepth(Π) if Π ≠ 𝜀.
6. cdepth(< 𝑄 ; seq(𝛽) >Π) = max{cdepth(𝑄 Πseq), cdepth(Π−seq)}.
7. cdepth(< 𝑄 ; ifc(𝛽, 𝛾, 𝑡) >Π) = max{cdepth(𝑄 Πifc), cdepth(Π−ifc)} (if the ifc continuation is

transformed to a seq continuation as indicated by the rules, Πifc comprises both fragments).

8. cdepth(< 𝑄 ; chkrw(𝑙 := 𝑟 /\ 𝐶, ⃗𝛼, 𝑟, 𝑐) >Π) = max{cdepth(𝑄 Πchkrw), cdepth(Π−chkrw)}.
9. cdepth(< 𝑄 ; mrew(𝑃, 𝜎, 𝑐, 𝑥, 𝑥1 using𝛼1, … , 𝑥𝑛 using𝛼𝑛) >Π) =

max{cdepth(𝑄 Πmrew), cdepth(Π−mrew)}.

▶ Definition. The relation (≺) ∈ 𝑇 2
𝒮(𝑀,𝑆𝑀) is defined as the transitive closure of:

1. nil ≺ 𝑄 and sol(𝑡) ≺ 𝑄 for any other 𝑄.

2. If 𝛼 is within 𝑄 and < 𝛼 @ 𝑡 > ≠ 𝑄 for all 𝑡 ∈ 𝑇Σ, < 𝛼 @ 𝑡 > ≺ 𝑄 for any 𝑡 ∈ 𝑇Σ.

3. 𝑄1 ≺ 𝑄1 𝑄2 and 𝑄2 ≺ 𝑄1 𝑄2.

4. 𝑄 ≺ < 𝑄 ; 𝑐 > for any continuation 𝑐.

48

5. < < 𝛼 @ 𝑡 > ; seq(𝛽) > ≺ < 𝛼;𝛽 @ 𝑡 >.

6. < 𝑄 ; seq(𝛽) > ≺ < 𝑄 ; ifc(𝛽, 𝛾, 𝑡) >.

7. < < 𝛼 @ 𝑡 > ; ifc(𝛽, 𝛾, 𝑡) > ≺ < 𝛼 ?𝛽 : 𝛾 @ 𝑡 >.

8. < < 𝛼 @ 𝑡′ > ; chkrw(𝐶, ⃗𝛼, 𝑟, 𝑐) > ≺ < rl[𝛼 ⃗𝛼] @ 𝑡 >.

9. < < 𝛼 @ 𝑡′ > ; chkrw(𝐶′, ⃗𝛼, 𝑟′, 𝑐′) > ≺ < 𝑄 ; chkrw(𝐶, 𝛼 ⃗𝛼, 𝑟, 𝑐) >.

10. The counterparts of (8) and (9) for the matchrew strategy.

▶ Lemma 38. The relation (≺) ∈ 𝑇 2
𝒮(𝑀,𝑆𝑀) is a well-founded strict order.

We claim that all descending chains from a state 𝑄 are finite, and proceed by induction on the number of
symbols in 𝑄 excluding the terms of the underlying system. Since the relation ≺ is the transitive closure of
the axioms (1-11) in its definition, we can assume that all steps in the chain are the direct application of one of
these axioms. Hence, any state of the semantics that does not match any axiom trivially satisfies the desired
property, like nil and sol(𝑡). For any state 𝑄, the application of the first axiom leads to these states, so all
chains using it are finite. Any chain starting with a step caused by (2-4) is finite by induction hypothesis,
because the left-hand side of the relation has strictly fewer symbols. In (5), the number of symbols does not
decrease, but the only predecessors of the left-hand side are nil and sol(𝑡) by 1, < 𝛼 @ 𝑡 > by 4, and < 𝛾
@ 𝑡 > for any substrategy 𝛾 of 𝛼 or 𝛽 by 2. All of them have a lower number of symbols, so all chains from
the concatenation are finite. The same argument is valid for the remaining axioms, taking into account that
the number of condition fragments and substrategies decreases in 9 and 11 (the implicit counterpart of 9 for
the matchrew).

∎

▶ Lemma 39. For any state term 𝑄 of the operational semantics, any term 𝑡, and any natural number 𝑛,

1. 𝑡 ∈ dsem(𝑛)(𝑄) implies 𝑄 →∗ sol(𝑡)𝑄′ with a call depth of at most 𝑛.

2. 𝑄 →∗ sol(𝑡)𝑄′ with a call depth of at most 𝑛 implies 𝑡 ∈ dsem(𝑛)(𝑄).

3. ⊥ ∈ dsem(𝑛)(𝑄) implies there is a 𝑄′ such that 𝑄 →∗ 𝑄′ with a call depth of at least 𝑛 + 1 or there is
an execution with infinitely many consecutive iterations on the same strategy.

4. ⊥ ∉ dsem(𝑛)(𝑄) implies all executions from 𝑄 and their call depths are at most 𝑛.

The proof is carried out by induction on 𝑛, which will only be explicitly visible when dealing with strategy
calls, and then by induction on the terms 𝑄 via the order ≺. For this second induction, the simplest base
cases are the states nil and sol(𝑡) with denotations ∅ and {𝑡} and no successors, which trivially satisfy all
properties.

We now consider basic tasks of the form < 𝛼 @ 𝑡 >, whose denotations are always ⟦𝛼⟧(𝑛)(id, 𝑡). As we
will later see for each case, these tasks always have a single successor 𝑄1 ⋯ 𝑄𝑛 with a variable number of
tasks, and the denotation of < 𝛼 @ 𝑡 > is the union of the denotations of these tasks.Under these conditions,
if moreover the transition is not a strategy call and successor tasks satisfy the properties, the original task
satisfies them too. In effect, (1) holds because 𝑡 belongs to the denotation of at least one of the successors,
for which there is an execution that yields sol(𝑡), which can be extended by leaving the rest of the tasks
(if any) untouched along the execution and prepending the initial state. (2) holds because tasks at the same
level are completely independent, and so the sol(𝑡) term must have been reached by one of them, 𝑡 belong to
its denotation, and then to the denotation of the initial term. Similar arguments prove (3) since ⊥ should be
in the denotation of at least one of the tasks, and the execution with 𝑛 + 1 of call depth or infinite iterations
can be extended as above; and (4), because ⊥ cannot be contained in the denotations of any of the successor
tasks, their executions are all finite, and so are their combinations extended with the initial term. Since
the call depth is independent for each subtask and the first transition is not a call, the call depth of the
whole path does not increase. This said, we will only focus on proving that the denotation is preserved in
the first step and that the properties are satisfied by the subtasks, which usually follows from the induction
hypothesis.

49

• For idle, the denotation of the task dsem(𝑛)(< idle @ 𝑡 >) = ⟦idle⟧(𝑛)(id, 𝑡) is {𝑡} and its successor
is sol(𝑡), whose denotation is also {𝑡} by definition. Induction hypothesis can be applied to sol(𝑡).

• For fail, the successor is nil and both have ∅ as denotation. Induction hypothesis can be applied to
nil.

• For the tests, their successors are sol(𝑡) or nil depending on whether the matching and condition are
satisfied. In either case, the denotation is preserved, and induction hypothesis can be applied to both.

• For 𝛼|𝛽, the successor is < 𝛼 @ 𝑡 > < 𝛽 @ 𝑡 > and the denotations of both sides are ⟦𝛼⟧(𝑛)(id, 𝑡) ∪
⟦𝛽⟧(𝑛)(id, 𝑡) by definition. Induction hypothesis can be applied to both subtasks.

• For 𝛼;𝛽, the only successor of the state is < < 𝛼 @ 𝑡 > ; seq(𝛽) > , whose denotation let 𝑡′ ←
⟦𝛼⟧(𝑛)(id, 𝑡) ∶ ⟦𝛽⟧(𝑛)(id, 𝑡′) coincides with that of the initial state by definition. Induction hypothesis
can be applied, by the fifth item in the definition of the order.

• For 𝛼*, the successor is sol(𝑡) < 𝛼;𝛼* @ 𝑡 >. The denotation of the left-hand side is ⋃𝑘≥0(⟦𝛼⟧(𝑛))𝑘(id, 𝑡),
which can be recursively expressed as {𝑡} ∪ ⟦𝛼;𝛼*⟧(𝑛)(id, 𝑡) to match the denotation of the right-hand
side. Induction hypothesis cannot be directly applied, so let consider each property one by one.

1. Suppose 𝑡′ ∈ ⟦𝛼*⟧(𝑛). Since this is a union, there exists an 𝑚 ∈ ℕ such that 𝑡 ∈ (⟦𝛼*⟧(𝑛))𝑚. If
𝑚 = 0, then 𝑡′ = 𝑡 and the property is satisfied because of the sol(𝑡) state. Otherwise, reasoning
inductively on 𝑚, there must be a 𝑡𝑚 ∈ ⟦𝛼⟧(𝑛) such that 𝑡′ ∈ (⟦𝛼*⟧(𝑛))𝑚−1(id, 𝑡𝑚), and then

< 𝛼;𝛼* @ 𝑡 > → < < 𝛼 @ 𝑡 > ; seq(𝛼*) > →∗ < sol(𝑡𝑚)𝑄′ ; seq(𝛼*) >
→ < 𝛼* @ 𝑡𝑚 > < 𝑄′ ; seq(𝛼*) > →∗ sol(𝑡′)𝑄″ < 𝑄′ ; seq(𝛼*) >

where we have used the first property of the induction hypothesis on 𝛼 to conclude < 𝛼 @ 𝑡 > →∗

sol(𝑡𝑚)𝑄′, and the induction hypothesis on 𝑚 to obtain < 𝛼* @ 𝑡𝑚 > →∗ sol(𝑡′)𝑄″.
2. Suppose < 𝛼* @ 𝑡 > →∗ sol(𝑡′)𝑄, a finite number of seq continuations for 𝛼* must have been

opened and closed in the sequence of tasks leading to sol(𝑡′). If 𝑚 is that number, we can induc-
tively prove that 𝑡′ ∈ (⟦𝛼⟧(𝑛))𝑚(id, 𝑡) ⊆ ⟦𝛼*⟧(𝑛)(id, 𝑡). If 𝑚 = 0, 𝑡′ = 𝑡 and we are done. Otherwise,
the execution may look like in the first case, so we can conclude from the second property of the
induction hypothesis on 𝛼 that 𝑡𝑚 ∈ ⟦𝛼⟧(𝑛)(id, 𝑡) because < 𝛼 @ 𝑡 > →∗ sol(𝑡𝑚)𝑄, and by the
induction hypothesis on 𝑚 that 𝑡′ ∈ (⟦𝛼⟧(𝑛))𝑚−1(id, 𝑡𝑚). The definition of composition does the
rest.

3. If ⊥ is contained in the denotation, two cases are possible. If (⟦𝛼⟧(𝑛))𝑚(id, 𝑡) ≠ ∅ for all 𝑚 ∈ ℕ, we
can build iterations or arbitrary length with the procedure above, and there must be an infinite
iteration by the Kőnig’s lemma. Otherwise, ⊥ ∈ (⟦𝛼⟧(𝑛))𝑚(id, 𝑡) for some 𝑚 ∈ ℕ such that
⊥ ∈ ⟦𝛼⟧(𝑛)(id, 𝑡𝑚) and 𝑡𝑚 ∈ (⟦𝛼⟧(𝑛))𝑚−1(id, 𝑡). In this case, there is an execution with call depth
greater than 𝑛+1 or with an infinite iteration from < 𝛼 @ 𝑡𝑚 > that is reachable from < 𝛼* @ 𝑡 >
with the construction already shown.

4. If ⊥ is not contained in the denotation, ⊥ is also absent in ⟦𝛼⟧(𝑛)(id, 𝑡𝑚) for every reachable 𝑡𝑚.
Hence, the executions from the initial task are necessarily finite, and the call depths of the complete
executions are not greater than those of the iteration, because nested calls between iterations are
clearly not possible.

• For 𝛼?𝛽:𝛾, the successor is < < 𝛼 @ 𝑡 > ; ifc(𝛽, 𝛾, 𝑡)> and the denotation is preserved, let 𝑡′ ←
⟦𝛼⟧(𝑛)(id, 𝑡) ∶ ⟦𝛽⟧(𝑛)(id, 𝑡′) if ⟦𝛼⟧(𝑛)(id, 𝑡) = ∅, and ⟦𝛾⟧(𝑛)(id, 𝑡) otherwise. Induction hypothesis can be
applied, by the seventh point of the order definition.

• For a matchrew, the successor is a configuration with a mrew-continuation tasks for each possible match
of the pattern. Checking that the definition of dsem(𝑛) for this task coincides with ⟦matchrew…⟧(𝑛)

is simply looking at them. Induction hypothesis can be applied due to the ninth item of the order
definition.

• For a plain rule application rl[𝜌] with optional substitution 𝜌, the successor is a soup with sol(𝑡𝑘)
states, one for each possible rewrite under these conditions. The union of these terms is the denotation
of the right-hand side, and this is exactly the meaning of rl[𝜌]. Induction hypothesis can be applied
too.

50

• For a rule application rl[𝜌]{ ⃗𝛼} with rewriting conditions, the successor is a soup of tasks with chkrw
continuation, whose dsem(𝑛) value has been defined to coincide with the denotation of the application.
Induction hypothesis can be applied due to the eight point of the order definition.

• For a strategy call sl(𝑡1, … , 𝑡𝑛), the successor is a soup with a configuration < 𝜎(𝛿) @ 𝑡 > for every
definition 𝛿 of sl and every matching substitution 𝜎 for the call term. If 𝑛 = 0, (1) and (4) hold
vacuously since the denotation can only be {⊥}, and (2) is trivially satisfied since the only possible
execution with a null call depth from this term is the empty one. The third property holds, since the
first step from the call term is actually an execution of call depth 0 + 1 = 1 (even if the successor is
nil).
Otherwise, if 𝑛 > 0, ⟦sl(𝑡1, … , 𝑡𝑛)⟧(𝑛)(id, 𝑡) = ⋃(𝛿,𝜎)⟦𝛿⟧(𝑛−1)(𝜎, 𝑡) = ⋃(𝛿,𝜎)⟦𝜎(𝛿)⟧(𝑛−1)(id, 𝑡) by definition
of the semantics and by Proposition 3:3. The denotations coincide with an application less in the second
term. Hence, we can apply induction hypothesis on the call definitions, and solve (1) and (2) as usual.
If ⊥ is in the denotation of the call, it must be in the denotation of one of its executions, from which a
call leaves with at least call depth 𝑛, yielding an execution with call depth 𝑛 + 1 from the initial task.
Conversely, if ⊥ is not in any denotation, all executions from the definitions are finite with call depth
bounded by 𝑛 − 1, so their combinations are also finite and have call depth at most 𝑛 once the initial
step is prepended.

The case of non-atomic tasks remains. We do not explicitly argue about the existence of an infinite
iteration when proving the third property, because that iteration exists in the whole execution if and only if
it exists in one of the executions that are combined.

• For the union of tasks 𝑄1 𝑄2, all the four properties hold as a consequence of Lemma 37 and the
induction hypothesis. The call depth of a union is the maximum of the call depths, so this does not
pose any problem.

• For a state < 𝑄 ; seq(𝛼) >, its denotation is let 𝑡′ ← dsem(𝑛)(𝑄) ∶ ⟦𝛼⟧(𝑛)(id, 𝑡′). If 𝑡 belongs to this
set, there must be some 𝑡𝑚 such that 𝑡𝑚 ∈ dsem(𝑛)(𝑄) and 𝑡 ∈ ⟦𝛼⟧(𝑛)(id, 𝑡𝑚). By induction hypothesis,
𝑄 →∗ sol(𝑡𝑚)𝑄′ with call depth at most 𝑛, and < 𝛼 @ 𝑡 > →∗ sol(𝑡)𝑄″ with the same call depth
bound. Then,

< 𝑄 ; seq(𝛼) > →∗ < sol(𝑡𝑚)𝑄′ ; seq(𝛼) > → < 𝛼 @ 𝑡𝑚 > < 𝑄′ ; seq(𝛼) >
→∗ sol(𝑡)𝑄″ < 𝑄′ ; seq(𝛼) >

The call depth is the maximum of the two starred transitions, and so it is bounded by 𝑛, proving the first
property. The second property assumes < 𝑄 ; seq(𝛼) > →∗ sol(𝑡)𝑄‴ and due to the determinism
of the semantics, this implies 𝑄 →∗ sol(𝑡𝑚)𝑄′ for some 𝑡𝑚 such that < 𝛼 @ 𝑡𝑚 > →∗ sol(𝑡)𝑄″ like
in the previous sequence. The call depths of these executions are necessarily below 𝑛 as they are part
of the complete execution, so induction hypothesis can be applied to conclude that 𝑡𝑚 ∈ dsem(𝑛)(𝑄)
and 𝑡 ∈ ⟦𝛼⟧(𝑛)(id, 𝑡𝑚) as we wanted.

Regarding ⊥, the global denotation contains it iff ⊥ ∈ dsem(𝑛)(𝑄) or ⊥ ∈ ⟦𝛼⟧(𝑛)(id, 𝑡𝑚) for some
𝑡𝑚 ∈ dsem(𝑛)(𝑄) by definition of let. In the first case, this yields a global execution that does not pop
the continuation with call depth 𝑛 + 1. In the second case, the execution formed as above has call
depth 𝑛 + 1 because of the second starred transition. If ⊥ is not any of those sets, the executions are
concatenations of finite executions, so they are finite, and their call depths are the maximum of call
depths bounded by 𝑛, so they are below 𝑛.

• For a state < 𝑄 ; ifc(𝛽, 𝛾, 𝑡) >, its denotation is let 𝑡′ ← dsem(𝑛)𝑄 ∶ ⟦𝛽⟧(𝑛)(id, 𝑡′) if dsem(𝑛)(𝑄) ≠
∅, and ⟦𝛾⟧(𝑛)(id, 𝑡) otherwise. In the first case, we can reason exactly as in the previous case, taking into
account that the ifc transition is translated to a seq one on the first solution. For the second case, let
us see that dsem(𝑛)(𝑄) = ∅ iff 𝑄 →∗ nil. Clearly, by induction hypothesis, 𝑡𝑚 ∈ dsem(𝑛)(𝑄) implies
𝑄 →∗ sol(𝑡𝑚)𝑄′, and since nil cannot be rewritten to sol(𝑡𝑚) nor vice versa, 𝑄 →∗ nil is impossible.
Conversely, if dsem(𝑛)(𝑄) = ∅, then all executions from 𝑄 are finite and with call depth bounded by 𝑛.
The second property of the induction hypothesis is then applicable for any execution 𝑄 → sol(𝑡)𝑄′,
but these are impossible because 𝑡 ∉ ∅. Observing the rules of the operational semantics, we can see
that every state has a successor except nil and sol(𝑡), so all executions must end in nil.

51

Using what we have just proved, if we assume 𝑡′ is in the denotation and dsem(𝑛)(𝑄) = ∅, necessarily
𝑡′ ∈ ⟦𝛾⟧(𝑛)(id, 𝑡) and

< 𝑄 ; ifc(𝛽, 𝛾, 𝑡) > →∗ < nil ; ifc(𝛽, 𝛾, 𝑡) > → < 𝛾 @ 𝑡 > →∗ sol(𝑡′)𝑄′

Hence, the first property is satisfied. If we assume that a solution has been reached with an execution
like above, this means that dsem(𝑛)(𝑄) = ∅ and 𝑡′ is in the denotation of 𝛾, so it is in the denotation
of the initial state. Similar reasons can be provided for the third and fourth properties.

• For a state < 𝑄 ; chkrw(𝐶, ⃗𝛼, 𝑟, 𝑐) >, its denotation can be directly read from the definition. If
⃗𝛼 = 𝜀, successful executions have the form

< 𝑄 ; chkrw(𝐶, ⃗𝛼, 𝑟, 𝑐) > →∗ < sol(𝑡𝑚)𝑄′ ; chkrw(𝐶, ⃗𝛼, 𝑟, 𝑐) >
→ sol(𝑐(𝜎(𝑟))) < 𝑄′ ; chkrw(𝐶, ⃗𝛼, 𝑟, 𝑐) >

where 𝜎 is a matching substitution of 𝑡𝑚 into the rewriting condition pattern. Otherwise, let ⃗𝛼 be 𝛽 ⃗𝛽,
the sol(𝑡𝑚) term is replaced by another chkrw continuation with < 𝛽 @ 𝑡 > in the subsearch and ⃗𝛽
in the list of pending strategies. In both cases, induction hypothesis can be applied to prove properties
(1-4). Notice that according to its definition, the call depth of the whole execution is the maximum of
the subexecutions involved, so the bounds are preserved.

• For a state < 𝑄 ; mrew(𝑃, 𝜎, 𝑐, 𝑥, 𝑥1 using𝛼1, … , 𝑥𝑛 using𝛼𝑛) > the proof is very similar to the
previous case.

∎
▶ Lemma 40. For any execution state 𝑄, dsem(𝑄) = sup{dsem(𝑛)(𝑄) ∶ 𝑛 ∈ ℕ}. Moreover, ⋃𝑛∈ℕ dsem(𝑛)(𝑄)∩
𝑇Σ(𝑋) = dsem(𝑄) ∩ 𝑇Σ(𝑋).

The statement follows from the fact that dsem(𝑛) is the definition of dsem with ⟦𝛼⟧ replaced by ⟦𝛼⟧(𝑛),
that sup ⟦𝛼⟧(𝑛) = ⟦𝛼⟧, and that those definitions are continuous. The consequence follows from the properties
of the order and its supremum.

∎
▶ Proposition 41. For any state 𝑄 of the operational semantics,

𝑡 ∈ dsem(𝑄) ⟺ ∃ 𝑄′ 𝑄 →∗ sol(𝑡)𝑄′.
Moreover, ⊥ ∈ dsem(𝑄) iff there is an infinite execution from 𝑄.

Each of the implications in this statement easily follows from an item of Lemma 39 using Lemma 40
extensively.

1. If 𝑡 ∈ dsem(𝑄), then 𝑡 ∈ dsem(𝑛)(𝑄) for some 𝑛 ∈ ℕ, and so 𝑄 →∗ sol(𝑡)𝑄′ for some 𝑄′ by the first
item of the lemma.

2. The call depth of a fixed path 𝑄 →∗ sol(𝑡)𝑄′ is a fixed number 𝑛, and so the second item can be used
to conclude 𝑡 ∈ dsem(𝑛)(𝑄) and by containment 𝑡 ∈ dsem(𝑄).

3. If ⊥ ∈ dsem(𝑄), ⊥ ∈ dsem(𝑛)(𝑄) for all 𝑛 ∈ ℕ by the properties of the supremum. Hence, there are
paths of arbitrary call depth or a path with infinitely many iterations, which is necessarily infinite. In
the first case, since → is finitary and by the Kőnig lemma, there is an infinite execution from 𝑄.

4. If ⊥ ∉ dsem(𝑄), there must be a number 𝑛 such that ⊥ ∉ dsem(𝑛)(𝑄). The fourth item of the lemma
then asserts that all executions from 𝑄 are finite.

∎
▶ Theorem 42. For any terms 𝑡, 𝑡′ and strategy expression 𝛼,

𝑡′ ∈ ⟦𝛼⟧(id, 𝑡) ⟺ ∃ 𝑄′ < 𝛼 @ 𝑡 > →∗ sol(𝑡′)𝑄′.
Moreover, ⊥ ∈ ⟦𝛼⟧(id, 𝑡) iff there is an infinite execution from < 𝛼 @ 𝑡 >.

This is a direct corollary of Proposition 41, where 𝑄 is replaced by < 𝛼 @ 𝑡 >, and the set dsem(< 𝛼 @ 𝑡 >)
is legitimately replaced by its definition ⟦𝛼⟧(id, 𝑡).

∎

52

Acknowledgements
Research partially supported by the Spanish Ministry of Science and Innovation through the projects TRACES
(TIN2015‑67522‑C3‑3‑R) and ProCode (PID2019‑108528RB‑C22), and by the Ministry of Universities via the
grant FPU17/02319.

References
[1] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-Oliet, J. Meseguer, R. Rubio, and C.

Talcott. Maude Manual v3.1. October 2020.
[2] S. Eker, N. Martí-Oliet, J. Meseguer, and A. Verdejo. Deduction, strategies, and rewriting. In M. Archer,

T. B. de la Tour, and C. Muñoz, editors, Proceedings of the 6th International Workshop on Strategies
in Automated Deduction, STRATEGIES 2006, Seattle, WA, USA, August 16, 2006, volume 174(11) of
Electronic Notes in Theoretical Computer Science, pages 3–25. Elsevier, 2007.

[3] J. Gaoubault-Larrecq. Non-Hausdorff Topology and Domain Theory. New Mathematical Monographs.
Cambridge University Press, 2013.

[4] C. Kirchner, F. Kirchner, and H. Kirchner. Strategic computation and deduction. In C. Benzmüller,
C. E. Brown, J. Siekmann, and R. Statman, editors, Reasoning in Simple Type Theory. Festchrift in
Honour of Peter B. Andrews on His 70th Birthday. Volume 17, Studies in Logic and the Foundations
of Mathematics, pages 339–364. College Publications, 2008.

[5] H. Kirchner. Rewriting strategies and strategic rewrite programs. In N. Martí-Oliet, P. C. Ölveczky,
and C. L. Talcott, editors, Logic, Rewriting, and Concurrency - Essays dedicated to José Meseguer on
the Occasion of His 65th Birthday, volume 9200 of Lecture Notes in Computer Science, pages 380–403.
Springer, 2015. isbn: 978-3-319-23164-8.

[6] D. Kőnig. Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta Sci. Math. (Szeged), 3:121–
130, 1927.

[7] N. Martí-Oliet, J. Meseguer, and A. Verdejo. A rewriting semantics for Maude strategies. In G. Roşu,
editor, Proceedings of the Seventh International Workshop on Rewriting Logic and its Applications,
WRLA 2008, Budapest, Hungary, March 29-30, 2008, volume 238(3) of Electronic Notes in Theoretical
Computer Science, pages 227–247. Elsevier, 2009.

[8] N. Martí-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language for Maude. In N. Martí-
Oliet, editor, Proceedings of the Fifth International Workshop on Rewriting Logic and its Applications,
WRLA 2004, Barcelona, Spain, March 27-April 4, 2004, volume 117 of Electronic Notes in Theoretical
Computer Science, pages 417–441. Elsevier, 2004.

[9] D. Parker. 𝜔-regular languages. Technical report, Department of Computer Science. University of Ox-
ford, 2011.

[10] R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo. Model checking strategy-controlled rewriting sys-
tems. In H. Geuvers, editor, 4th International Conference on Formal Structures for Computation and
Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, volume 131 of LIPIcs, 34:1–34:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[11] R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo. Strategies, model checking and branching-time
properties in Maude. In S. Escobar and N. Martí-Oliet, editors, Rewriting Logic and Its Applications
- 13th International Workshop, WRLA 2020, Virtual Event, October 20-22, 2020, Revised Selected
Papers, volume 12328 of Lecture Notes in Computer Science, pages 156–175. Springer, 2020. isbn:
978-3-030-63595-4.

[12] R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo. Strategies, model checking and branching-time
properties in Maude. J. Log. Algebr. Methods Program., 123:1–28, 2021.

[13] G. Winskel. The Formal Semantics of Programming Languages. An Introduction. Foundations of Com-
puting. The MIT Press, 1994.

53

http://dx.doi.org/10.1016/j.entcs.2006.03.017
http://dx.doi.org/10.1017/CBO9781139524438
https://hal.inria.fr/inria-00433745
http://dx.doi.org/10.1007/978-3-319-23165-5_18
http://pub.acta.hu/
http://dx.doi.org/10.1016/j.entcs.2009.05.022
http://dx.doi.org/10.1016/j.entcs.2004.06.020
http://www.prismmodelchecker.org/lectures/pmc/17-omega%20regular.pdf
http://dx.doi.org/10.4230/LIPIcs.FSCD.2019.31
http://dx.doi.org/10.4230/LIPIcs.FSCD.2019.31
http://dx.doi.org/10.1007/978-3-030-63595-4_9
http://dx.doi.org/10.1007/978-3-030-63595-4_9
http://dx.doi.org/10.1016/j.jlamp.2021.100700
http://dx.doi.org/10.1016/j.jlamp.2021.100700

	Strategy language syntax
	Semantics infrastructure
	Basic operations of rewriting logic

	Denotational semantics
	A semantics without scopes

	Operational semantics
	Some properties
	Another definition for strategies

	Rewriting semantics
	Relation with the other semantics

	Proofs
	Proofs for the semantic infrastructure
	Proofs for the denotational semantics
	About the alternative semantics without scopes

	Proofs for the operational semantics
	Some properties
	Another definition for strategies

	Proofs for the rewriting semantics

	References

