Compositional Maude: syntax and usage

0. Martin, A. Verdejo, N. Marti-Oliet
Facultad de Informatica
Universidad Complutense de Madrid, Spain

{omartins, jalberto,narciso}@ucm.es

December 21, 2022

1 Introduction

This document describes the usage of a piece of software. It is related to our
work on bringing compositional specification and verification to rewriting logic.

We have proposed an extension to the language Maude to allow for com-
positional specification and verification; we refer to it as compositional Maude.
Our tool accepts specifications written in this extended language and performs
a translation into standard Maude. This document describes the syntax that
we have proposed and that our tool accepts. The tool is functional, but must
be considered a work in progress. Indeed, at present, it does not accept all stan-
dard Maude syntax. We describe the usage of the tool and the points where we
fall short.

This document is mainly about using the tool. Explanations on its inter-
nal workings and the theoretical basis behind it is to be found in the papers
mentioned on our webpage http://maude.ucm.es/syncprod/.

2 The syntax of compositional Maude

In addition to the standard modules in Maude, our extension introduces egali-
tarian modules. These can be atomic or nonatomic. We describe their syntax
in the following two sections. Then we describe the syntax for assignment syn-
chronization criteria and assume/guarantee statements.

2.1 Atomic egalitarian modules

Atomic egalitarian modules are delimited by the keywords aemod and endaem.
They are system modules (as opposed to functional ones). The main difference
with respect to standard system modules is the use of egalitarian rewrite rules:

‘ rl s =[t]=>s’

http://maude.ucm.es/syncprod/

where s and s’ are terms of sort State and t is a term of sort Trans. These
two sorts, State and Trans, with a supersort of both named Stage, are declared
in a predefined module called STAGE, which can be imported into any system
module. Rules can be conditional:

‘ crl s =[t]=> s’ if C .

We require that the module is topmost, that is, rewrites can only happen at
the top of the initial term and whatever subsequent stage terms. Free variables
are allowed to appear in t, s’, and C, although this can prevent the resulting
module from being executable and model-checkable.

The last ingredient of atomic modules is the infrastructure to declare and
define properties. We introduce the keyword ppt and a new declaration sentence
marked by it:

‘ ppt p : sl ... sn -> s .
where p is an identifier for the property, and s, si are sorts. Often, n is 0:
‘ ppt p : -> s .

The symbol @ represents the evaluation of a property at a stage. The defi-
nition of the values of properties is specified by equations with the form
‘ eqp @g= ...
for a property p (maybe with parameters) and a stage term g. Conditional
equations can certainly be used.

For an example, this is a module modeling the tick of a clock, with a property
to inform about its ticking:

aemod CLOCK is
ex STAGE .
ops before after : -> State .
ops ticking gettingReady : -> Trans .
eq init = before .
rl before =[ticking]=> after .
rl after =[gettingReady]=> before .
ppt isTicking : -> Bool .
eq isTicking @ ticking = true .
eq isTicking @ G:Stage = false [owise]
endaem

For convenience, the constant init is also declared in STAGE, to represent the
initial stage of the system.

2.2 Nonatomic egalitarian modules

The keywords emod and endem delimit nonatomic egalitarian modules. These
are system modules which specify how a new system is built from existing
components. The components can be atomic or nonatomic. We also allow
standard Maude system modules (mod ... endm) as components, as long as they
declare the needed properties.

The instruction to build a composed system has this syntax:

sync My || ... || My,
on Mz$pz = Mj$pj
/\ L
/N Mip$pr = M;$p
Each M}, is a module expression, and each py, is a property declared and defined
in Mj,. All subscripts range over 1,...,n, and they can be repeated, that is,
the same module can be used in several criteria, with the same property or a
different one. The semantics of this instruction is that the systems My, ..., M,
can proceed in whichever way that makes the properties satisfy all the equalities
at all times.

The syntax M$p, with the dollar sign, is copied from the one to access
elements of (an instantiation of) a theory in Maude. Indeed, the operands for
the sync...on instruction may be modules received as arguments, but they may
alternatively be modules previously introduced. That is, both of these structures
are allowed:

emod M1 is ... ppt pl : ... endem
aemod M2 is ... ppt p2 : ... endaem
emod M is

sync M1 || M2
on Mi$pl = M2$p2 .

endem

or
th T1 is ... ppt pl : ... endth
th T2 is ... ppt p2 : ... endth

emod M{X1 :: T1, X2 :: T2} is
sync X1 || X2
on X1$pl = X2$p2 .

endem

An emod must contain exactly one sync ...on instruction and zero or more
property declarations and inh statements. An inh statement (short for inherit)
specifies which properties from the components are inherited by the new module,
and with what names. Only properties that are explicitly inherited in this way
count as properties of the composed module. Thus, the general shape of an inh
statement is
| inh p’ = M$p .
specifying that the property p from module M is inherited in the current module
with name p’. Properties defined by an inh statement must have been previously
declared.

The following is an example emod. It assumes the modules CLOCK and CLOCK’
define each a Boolean property isTicking. It specifies that both tick at the same
time. In turn, it defines the property isFirstTicking.

‘ emod SYNCED-CLOCKS is

sync CLOCK || CLOCK’

on CLOCK$isTicking = CLOCK’$isTicking .
ppt isFirstTicking : -> Bool .
inh isFirstTicking = CLOCK$isTicking .
endem

2.3 Assignment synchronization criteria

In addition to the equality synchronization criteria presented above, we allow
assignment synchronization criteria, replacing = by :=. That is, both of these
Mi$p1 = Ma$p:
Mi$pr := Ma$po
are allowed as synchronization criteria in a sync. . .on instruction. The semantics
is the same but the use of := conveys the idea that the value on which the
properties agree is chosen by My, while M; is ready to go on with any value it
is handed. That is, it emulates value passing.

The advantage of using assignment criteria, as well as the requirements im-
plied by its use, will be made clear by a simple example. Consider a sender/re-
ceiver system. The module RECEIVER includes the rule
‘ rl readyToReceive =[receiving]=> received X .
for a variable X, and it defines a property valueReceived by
‘ eq valueReceived @ received X = X .

That rule is not executable by standard means, because it has a free variable
on the right-hand side.
Meanwhile, the module SENDER includes the rule

‘ rl readyToSend Y =[sending Y]=> sent Y .
and this definition for the property valueSent
‘ eq valueSent @ sent Y =Y .

We want to compose both systems so that the value one sends is the value
the other receives. We use an assignment criterion:
sync SENDER || RECEIVER
on RECEIVER$valueReceived := SENDER$valueSent .
Our tool, when fed with those modules, composes the individual rules, pro-
ducing in first instance the composed rule

crl < receiving, sending Y > => < received X, sent Y >
if valueReceived @ received X := valueSent @ sent Y .

The synchronization criterion has been translated into a condition on the des-
tination state. As it stands, this is not a valid matching condition in Maude (its

left-hand side is not what is called a pattern in [@Clavel DEELMMRT2020MaudeM31}),

but both sides are statically evaluated, resulting in

crl < receiving, sending Y > => < received X, sent Y >
if X :=Y .

This is executable, but it would have not been executable with an equational
condition: if X = Y. This is the advantage of assignment criteria: they allow
producing executable composed modules from nonexecutable components.

The fact that the split translates assignment criteria into matching condi-
tions, thus, puts an extra requirement on the definition of the properties in-
volved. Namely, the expression to the left of the := sign must be statically
equationally reducible to a pattern. In most cases in which we use := in our
specifications, the expression to the left reduces to a variable, which is a simple
kind of pattern.

2.4 Assume/guarantee statements

To be ready for assume/guarantee-style compositional verification, we introduce
a new kind of statement:

‘ ag α |> γ .

where « is the temporal formula representing the assumption, + is the one
representing the guarantee, ag is a new keyword, and the symbol |> is the ASCII
rendering for >. Thus, such a statement appearing in a module M represents the
assertion M = ary.

Such statements are allowed in any system module, either aemod, emod, or
even mod. The constant formula True can be used to the left of |> when no
assumption is needed. Several ag statements are allowed in the same module,
with different assumptions or guarantees. They are also allowed in theories,
in which case they are to be understood as expressing requirements for each
instance to satisfy. But if we want to state that a particular instantiation of the
theory does satisfy the ag statement, we have to repeat it in the body of the
instantiation.

Both formulas, o and ~y, have to be elements of the sort Formula as declared
in the standard Maude module LTL. However, we depart here from the stan-
dard in that we use properties in formulas, instead of the usual atomic propo-
sitions. That is, we assume the declaration subsort Bool < Formula . instead
of subsort Prop < Formula . Only Boolean properties are allowed in formulas,
which are in essence the same thing as the usual atomic propositions. Still, given
that all our developments are based on properties, we feel that using them to
the very end is the right thing to do.

To the module SYNCED-CLOCKS above, for example, the following can be added:
‘ ag True |> [] <> isFirstTicking .

3 Usage

The implementation is to be fed with a specification written in Compositional
Maude, and it produces an equivalent standard Maude specification, that can
then be run, analyzed and verified.

To run the code, a decently recent version of Python 3 is needed. Also needed
are the packages Lark (https://github.com/lark-parser/lark) for EBNF

https://github.com/lark-parser/lark

parsing, and maude-bindings (https://github.com/fadoss/maude-bindings),
for calling Maude’s engine from Python.

The command line to execute is
‘ python cmaude c|v <infile> <module>

where:

e a c or a v must be specified, to obtain one of the two possible translations
(explained below);

e <infile> is the name of the file with the compositional specification, usu-
ally with .cmaude extension;

e <module> is the name of the module in the <infile> that represents the
whole composed system, and that we are interested in analyzing.

Also, cmaude is the name of the directory I have placed my Python code
into. It can be named otherwise (and the command line changed accordingly).
Python, when given the name of a directory, looks inside for a file named
__main__.py and executes it.

If the input file is named whatever. cmaude, the output is named whatever-c.maude
or whatever-v.maude, according to the translation we chose in the command line.

The output file contains the translation of <module> and the translations of
any other modules that <module> depends on.

We want to make it clear that, at present, our tool only performs the trans-
lation, and hands the standard-Maude result to the user, who can then use
existing Maude tools on it.

4 The two translations

As observed above, two different translations are provided by our tool, corre-
sponding to choosing ¢ (for compose) or v (for verify) in the command line.
Strictly speaking, only the first one is an actual translation: the second pro-
duces only the needed machinery to verify the global system. Let us be a little
more clear.

The c option outputs, as promised, a standard Maude module that is equiva-
lent to the compositionally specified original one. Usually, some auxiliary mod-
ules need to be translated and output as well. Loosely speaking, the modules

fmod M1 is ... endfm
emod M2 is ... endem
aemod M3 is ... endaem
emod M is

pr M1 .

sync M2 || M3 on ...

endem

are translated into

https://github.com/fadoss/maude-bindings

fmod M1 is ... endfm
mod M is
pr M1 .
(statements for the composition of M2 and M3)

endm

The second translation is useful when we are aiming only at verification, not
execution, and each component includes its own ag statements. The schematic
example below may help clarify all the wording that follows.

In this case, we interpret that the specifier is stating that

e each component satisfies the ag statements included in it, and

e the global ag statements, the ones included in the composed system, follow
from the ones in the components.

In this case, we do not need to perform a complete translation, we only have
to check that the global ag statements follow from the components’.
What our implementation does, then, is:

e it recursively deals with each component and its ag statements until reach-
ing the base cases (see next), and

e produces a functional (not system) module containing the formula that
represents the fact that the ag statements from the components imply the
ones in the composed module.

The base cases for this procedure are:

® aemods,

e standard mods,

e emods some of whose components do not contain ag statements.

It is then left to the user the task of verifying the translated base cases
(probably with the use of Maude’s model checker), and proving the ag’s from
the components imply the one in the composed system (probably with the use
of Maude’s tautology checker).

Each ag is translated into a constant operator of sort Formula, with names
<ag0>, <agl>... But in an emod all whose components have ags, each ag gives
also rise to new formula with names <ded0>, <ded1>... each stating that the
components ag’s imply the corresponding global ag.

For a very schematic example, consider this compositional specification:

aemod M1 is

ag al |> gl .
endaem

aemod M2 is

--- no ag
endaem

emod M3 is
sync M1 || M2 on ...
ag a3 [> g3 .

endem

aemod M4 is

ag a4 |> g4 .
endaem

emod M5 is
sync M3 || M4 on ...

ag ab |> gb .
ag ab’ > gb’
endem

When processed by our tool with the v option, it would produce:

mod M3 is
. --- statements for the composition of M1 and M2
eq <agl0> = a3 -> g3 .

endm

mod M4 is

eq <agl> = a4 > g4 .
endm

fmod M5 is

eq <M3|<ag0>> = <M3|a3> -> <M3|g3> .

eq <M4|<ag0>> = <M4|ad> -> <M4|g4> .

eq <ag0> = ab -> gb .

eq <ded0> = (<M3|<ag0>> /\ <M4|<ag0d>>) -> <agld> .

eq <agl> = ab’ -> gb’

eq <ded1> = (<M3|<ag0>> /\ <M4|<ag0>>) —-> <agl> .
endfm

The points to note are:

e The verification of the ag statement in module M3 cannot be made com-
positionally, because one of the components, M2 does not include an ag
statement of its own. Thus, M3 is processed as if with the ¢ option, and
neither M1, nor M2 are output.

e The formulas named <ag0> in M3 and M4 are direct translations of the
corresponding ag statements. The user should model check each of these
modules against its <ag0>.

e The global module M5 is transformed into a functional module. The result
does not include the statements for the composition of M3 and M4, but
just definitions of formulas. Each ag statement in M5 is, first, literally
translated into a formula <agh> and, second, produces a <dedN> formula
stating that the component’s ag statements imply each <agh>.

e The operators <ag0> from the components are qualified with their component-
module name when inserted into M5.

e A complete verification of M5 consists in verifying M3 and M4 satisfy their
<ag0> (maybe by using Maude’s model checker), and checking that <dedo>
and <ded1> indeed hold (maybe by using Maude’s tautology checker).

5 Important fine print to have in mind

5.1 On the qualification of names

When we translate a composed module (that is, an emod) into a standard one (a
mod), it may happen that names from different component modules clash. That
is, that operators or sorts from different components are called the same just by
chance. We want to avoid this. The way Maude deals with this when importing
modules into others is to trust the coder, assume no clash will happen, but warn
the user when they do happen. But we insist all the time in the importance
of considering each component as an individual system, coded with no regard
to other possible components with which it may be composed later. Thus, we
think it is necessary that our tool deals properly with that. The solution is that
we qualify names with the name of the module they come from, so that SortName
in module ModName, when inserted in the translation of composed system, gets
renamed as <ModName | SortName>. Of course, the particular pattern used for the
renaming is of no importance (it is isolated in a function in the code), as long as
there is a minimal chance that clashes still occur. However, this is more easily
said than done. We discuss next the difficulties with this approach, how we
have solved them, and with which limitations.

We qualify names of sorts, operators, and variables, both in the text of the
module and in the modules imported in including mode if they are functional
modules or imported in any way if they are system modules. (See the first
author’s PhD thesis, Composition in rewriting logic, for the rationale for this.)
Renaming them in their declarations is an easy task, as they are easy to spot.
Quite more difficult is to rename them when they occur inside a term. Our
grammar definition and our parser are not able to parse inside terms. That
is, they are able to delimit the lhs of an equation, but not inside it. The
reason is that it depends not on the grammar of Maude (either extended for
compositionality or not) but in the signature declared in the very Maude module.
Maude (and Full Maude) performs a two-pass parsing, the first pass being like
ours, the second one being used to solve the so-called bubbles, that is, to parse
inside terms by using the signature, which is now known thanks to the first

pass. We can do this as well, because the metaParse function is available to us
through Rubén Rubio’s package maude-bindings. But, as we explain next, this
only solves part of the problem.

So, say we have the term in its bubble form (that is, as a string of characters)
and parsed into an object of the class Term as returned by Rubén’s tool. Now,
we need to traverse the term tree, qualifying each identifier that needs to while
traversing, build a new term with the qualified pieces, and print the resulting
term to a string. Traversing the term is possible, again, by using Rubén’s tool.
Prettyprinting is also possible. The problem is building the new term, because
there are no functions for it. Also the question of which module would the
produced term be a term in needs consideration: the answer is “in the renamed
signature of the original module”. But, after all, this renamed signature is part
of the new module, the result of the translation of the composed module, so
we can just take the signature of this resulting module. It remains, however,
the problem with building a term. I guess Rubén could enrich his tool with
functions to this aim but, at present, they do not exist.

Finally, here is our solution. We delimit the elements in the term by looking
for spaces and breaking characters (in Maude they are () [1{2,). In this easy way
we can find the names that need to be qualified, perform a substring replace, and
done. This, indeed, works well for operators declared in the standard prefix way,
that is, with no underscores used as placeholders. Underscores make everything
more complex. We proceed by considering each part of the name as a name to
qualify in itself, but this is error-prone. For example, the same piece can be part
of more that one identifier and, in this case, we qualify it everywhere we find
it. Or, for another example, a comma (,) can be part of such an identifier and,
in this case, we will qualify all commas, even the ones that are part of Maude
syntax, like for separating arguments in a function call. Also, empty syntax is
not renamed at all.

By the way, the names to be qualified are also split by backquotes that
represent blank spaces, that is, the ones not followed by a breaking character.
This is also error-prone!

5.2 Other fine print

e Our implementation accepts rules with free variables on the rhs. When
split (that is, translated), these produce rules that are not valid for Maude’s
engine. However, when a module including such a rule is composed with
another with an appropriate assignment criterion, the variable stops being
free in the resulting composed rule. Therefore, free variables must be used
with care.

e To each module that includes an ag statement, the translation adds the
importation ex MODEL-CHECKER * (sort State to <MC|State>) ., so that,
in particular, formulas can be written in the ag. The renaming of State
is needed because we use the sort State for our own aims, and we want
to avoid clashes (namely, our State is a subsort of Stage, that is in turn

10

made a synonym of <MC|State>).

Dealing with formulas (that is, terms of sort Formula) in the ag statement
is made complicated by two factors. One is that it is convenient to be
able to parse a formula, so as to transform it as needed. The second, more
important, is that the two arguments of an ag _ |> _ . statement have
to be formulas. Thus, it seems necessary that Formula be a grammatical
entity. The alternative is that the parser accepts any terms there, and only
afterwards it is checked (or assumed) their sort is Formula. At present,
we have chosen the option to make it part of our extended grammar.
However, when all is translated into standard Maude, the formulas are
terms of sort Formula, as usual. Doing it like I am doing it at present has
the problem that formulas have a predefined syntax, and I cannot define
my own formula operators, for instance, nor auxiliary formulas (convenient
in case they get too large).

For reasons explained somewhere else (see the first author’s PhD thesis),
rules have to be written and properties have to be defined in such a way
that there is always an equation that matches the state terms in the rule,
without over-relying on the owise attribute. For example,

var R : Pair .
rlml | R=>m2 | R .

eqP@ m2 | (X, YD) =Y.
eq P @ S:State = 0 [owise]

is problematic, because m2 | R, considering R as if it was a new constant,
does not match the first equation and erroneously falls into the second.
Instead, we would write the rule as:

| riml | (X,) =>m2 | (X, V)

Or, alternatively, the equations as:

eq P @ (m2 | R) = second(R)
eq P @ S:State = 0 [owise]

Better yet, we could entirely avoid the use of owise in the equations defin-
ing properties.

Our implementation assumes that all properties are totally defined.
Operators declared with underscores are not accepted.

When the option v is used, synchronization criteria are translated by our
tool into equations. Therefore, they must be written with care. For ex-
ample, this
sync A ||l B || C
on A$P = B$Q
/\ A$P = C$R .

11

would be translated into

eq A$P = B$Q .
eq A$P = C$R .

which is non-confluent. Instead, it must be written as

sync A || B || C
on B$Q = A$P
/\ C$R = AS$P .

Rules do not are allowed to have labels, even standard rules.

Import instructions must be for only one module each. That is, no
pr M1 M2 ., but pr M1 . pr M2 .

Operators to the kind must be declared by using the >. The notation
[Kind] is not accepted.

The option v outputs the translation of all modules that include one or
more ag statements (and the ones imported by these). Some of them may
be unsuitable to be fed into Maude because of fresh variables on the rhs
of rules.

In the papers and the PhD thesis, we are using rl and crl to introduce
egalitarian rules, the same as for standard rules. However, our imple-
mentation, at present, needs that egalitarian rules are introduced by the
keywords erl and cerl.

12

	Introduction
	The syntax of compositional Maude
	Atomic egalitarian modules
	Nonatomic egalitarian modules
	Assignment synchronization criteria
	Assume/guarantee statements

	Usage
	The two translations
	Important fine print to have in mind
	On the qualification of names
	Other fine print

